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Introduction 
Terascale computing and large scientific experiments produce enormous quantities of data that require 
effective and efficient management. The task of managing scientific data is so overwhelming that 
scientists spend much of their time managing the data by developing special purpose solutions, rather 
than using their time effectively for scientific investigation and discovery.  Effectively generating, 
managing, and analyzing this information requires a comprehensive, end-to-end approach to data 
management that encompasses all of the stages from the initial data acquisition to the final analysis of 
the data. Fortunately, the data management problems encountered by most scientific domains are 
common enough to be addressed through shared technology solutions. Based on the community input, 
we have identified three significant requirements. First, more efficient access to storage systems is 
needed. In particular, parallel file system improvements are needed to write and read large volumes of 
data without slowing a simulation, analysis, or visualization engine.  These processes are complicated 
by the fact that scientific data are structured differently for specific application domains, and are stored 
in specialized file formats.  Second, scientists require technologies to facilitate better understanding of 
their data, in particular the ability to effectively perform complex data analysis and searches over large 
data sets.  Specialized feature discovery and statistical analysis techniques are needed before the data 
can be understood or visualized.  To facilitate efficient access it is necessary to keep track of the 
location of the datasets, effectively manage storage resources, and efficiently select subsets of the data. 
Finally, generating the data, collecting and storing the results, data post-processing, and analysis of 
results is a tedious, fragmented process.  Tools for automation of this process in a robust, tractable, and 
recoverable fashion are required to enhance scientific exploration. 

The Scientific Data Management (SDM) Center [1], funded under the DOE SciDAC program, focuses 
on the application of known and emerging data management technologies to scientific applications.  
The Center’s goals are to integrate and deploy software-based solutions to the efficient and effective 
management of large volumes of data generated by scientific applications. Our purpose is not only to 
achieve efficient storage and access to the data using specialized indexing, compression, and parallel 
storage and access technology, but also to enhance the effective use of the scientist’s time by 
eliminating unproductive simulations, by providing specialized data-mining techniques, by 
streamlining time-consuming tasks, and by automating the scientist’s workflows. Our approach is to 
provide an integrated scientific data management framework where components can be chosen by the 
scientists and applied to their specific domains.  By overcoming the data management bottlenecks and 
unnecessary information-technology overhead through the use of this integrated framework, scientists 
are freed to concentrate on their science and achieve new scientific insights. 

The Three-Layer Organization of the SDM Center 
As part of our evolutionary technology development and deployment process (from research 

through prototypes to deployment and infrastructure) we have organized our activities in three layers 
that abstract the end-to-end data flow described above.  We labeled the layers as Storage Efficient 
Access (SEA), Data Mining and Analytics (DMA), and Scientific Process Automation (SPA). The 



 
 
 
 
 
 

Parallel 
NetCDF

Parallel
Virtual

File
System 

Storage
Resource
Manager

(SRM)

Hardware, Operating Systems, and Storage Systems

Data
Analysis and

Feature
Identification

Active
Storage

Data Mining and Analysis (DMA) Layer

Storage Efficient Access (SEA) Layer

Scientific
Workflow

Components 

Scientific Process Automation (SPA) Layer 
Workflow

Management
Engine
(Kepler)

Analysis

Parallel R
Statistical

Efficient
indexing
(Bitmap 
Index)

Parallel
I/O

(ROMIO)

Parallel 
NetCDF

Parallel
Virtual

File
System 

Storage
Resource
Manager

(SRM)

Hardware, Operating Systems, and Storage Systems

Data
Analysis and

Feature
Identification

Active
Storage

Data Mining and Analysis (DMA) Layer

Storage Efficient Access (SEA) Layer

Scientific
Workflow

Components 

Scientific Process Automation (SPA) Layer 
Workflow

Management
Engine
(Kepler)

Analysis

Parallel R
Statistical

Efficient
indexing
(Bitmap 
Index)

Parallel
I/O

(ROMIO)

 
 

Figure 1: The three-layer organization of technologies in the SDM Center 

SEA layer is 
immediately on top of 
hardware, operating 
systems, file systems, 
and mass storage 
systems, and provides 
parallel data access 
technology and 
transparent access to 
archival storage.  The 
DMA layer, which builds 
on the functionality of 
the SEA layer, consists 
of indexing, feature 
selection, and parallel 
statistical analysis 
technology.  The SPA 
layer, which is on top of 
the DMA layer, provides 
the ability to 
composeworkflows from 
the components in the 
DMA layer as well as 
application specific 
modules.  Figure 1 shows this organization and the components developed by the center and applied to 
various scientific applications. 

Over the last several years, the technologies supported by the SDM center have been deployed for a 
variety of application domains. Some of the most notable achievements are:  
• More than a tenfold speedup in writing and reading netCDF files has been achieved by developing 

MPI-IO based Parallel netCDF software being utilized by astrophysics, climate, and Parallel VTK.  
• An improved version of PVFS is now offered by cluster vendors, including Dell, Atipa, and 

Platform, and PVFS is the only freely available parallel file system on IBM’s BlueGene/L.  
• Methods for the correct classification of orbits in puncture plots and for “blob tracking” from the 

National Compact Stellarator eXperiment (NCSX) at PPPL was using a combination of image 
processing, statistics, and pattern recognition techniques. 

• A new bitmap indexing method has enabled efficient search over billions of collisions (events) in 
High Energy Physics, and is being applied to combustion, astrophysics, and visualization domains. 
It achieves more than a tenfold speedup in generating regions and tracking them over time.  

• The development of a Parallel R, an open source parallel version of the popular statistical package 
R. These are being applied to climate, GIS, and mass spec proteomics applications.  

• A scientific workflow management and execution system (called Kepler) has been developed and 
deployed within multiple scientific domains, including genomics and astrophysics. The system 
supports design and the execution of flexible and reusable, component-oriented workflows.  

Descriptions of technologies developed and used in the SDM Center 

In this section we describe the SDM Center technologies, and include some examples of their 
application in various scientific projects.  We proceed with technologies from the top layer to the 
bottom layer. 

 



 
 
 
 
 
 

 

 

The Kepler Scientific Workflow System 
A practical bottleneck for more effective use of available computational and data resources is often the 
design of resource access and use of processes, and the corresponding execution environments, i.e., in 
the scientific workflow environment of end user scientists. The goal of the Kepler system [2] is to 
provide solutions and products for effective and efficient modeling, design and execution of scientific 
workflows.  Kepler is a multi-site open source effort, co-founded by the SDM center, to extend the 
Ptolemy system (from UC Berkeley) and create an integrated scientific workflow infrastructure. We 
have also started to incorporate data, process, system and workflow provenance and run-time tracking 
and monitoring.  We have worked closely with application scientists to design, implement, and deploy 
workflows that address their real-
world needs.  In particular, we 
have active users on the SciDAC 
Terascale Supernova Initiative 
(TSI) team and an LLNL 
Biotechnology project, and the 
Center for Plasma Edge 
Simulation (CPES) fusion 
project.  While the Scientific 
Process Automation (SPA) layer 
uses Kepler to achieve workflow 
automation, it is the specific task 
components (called “actors” in 
Kepler) developed by the SDM 
center that makes our work 
unique in it usefulness to 
scientific applications. 

Underlying challenges related to simulations, data analysis and data manipulation include scalable 
parallel numerical algorithms for solution of large, often sparse linear systems, flow equations, and 
large Eigen-value problems, running of simulation on supercomputers, movement of large amounts of 
data over large distances, collaborative visualization and computational steering, and collection of 
appropriate process and 
simulation related status and 
provenance information. This 
requires interdisciplinary teams 
of application scientists and 
computer scientists working 
together to define the workflows 
and putting them into the Kepler 
workflow framework.   The 
general underlying “template” are 
often similar across disciplines: 
large-scale parallel computations 
and steering (hundreds of 
processors, gigabytes of memory, 
hours to weeks of CPU time), 
data-movement and reduction 
(terabytes of data), visualization 
and analytics (interactive, 
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Figure 2: An abstract representation of a scientific workflow 

 
Figure 3: Instantiation of the abstract workflow in Kepler 
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Figure 5: tracking of “blobs” in Fusion images 

retrospective, and auditable). An abstraction of this and its Kepler translation are illustrated in Figure 2 
and 3 for a particular astrophysics project, call the Terascale Supernova Initiative (TSI) [3].  Figure 3 
shows the capability of the Kepler system to represent hierarchically structures workflows.  In the 
center of the figure there are four simple high-level tasks; each is expanded into lower level tasks that 
mange the detailed processes.  

Feature Extraction and Tracking 

As part of the Data Mining and Analysis (DMA) layer, 
the SDM center is developing scalable algorithms for the 
interactive exploration of large, complex, multi-
dimensional scientific data. By applying and extending 
ideas from data mining, image and video processing, 
statistics, and pattern recognition, we are developing a 
new generation of computational tools and techniques that 
are being used to improve the way in which scientists 
extract useful information from data [5].  These tools 
were applied to problems in a variety of application areas, 
including separation of signals in climate data from 
simulations, the identification of key features in sensor 
data from the D-III-D Tokamak, and the classification and 
characterization of orbits in Poincaré plots in Fusion data.   

A specific example of the effectiveness of such 
techniques is the identification of the movement of 
“blobs” in images form fusion experiments, using data 
from the National Spherical Torus Experiment (NSTX) [4], shown in Figure 4.  A blob is a coherent 
structure in the image that carries heat and energy from the center of the torus to the wall.  Figure 5 
shows bright blobs extracted from experimental images from the NSTX.  The blobs are high energy 
regions.  If they hit the torus wall that confines 
the plasma, it can vaporize. The figure shows 
movement of the blobs over time. A key 
challenge to the analysis is the lack of a precise 
definition for these structures.  Figure 5 shows 
three consecutive images from an NSTX 
sequence. The original images are somewhat 
noisy and must first be processed to remove the 
noise. We have applied our background 
subtraction software to remove the quiescent 
background intensity in the sequences.  Next, 
ambient background intensity, which is 
approximated by the median of the sequence, is 
removed, thus highlighting the blob regions, as 
shown in the second row of the figure. We then 
use image processing techniques to identify and 
track the blobs over time, as shown in the third 
row. The goal is validate and refine the theory of 
plasma turbulence. 

Parallel Statistical Analysis 

Another area supported by the DMA layer is efficient statistical analysis. Present data analysis 
tools such as Matlab, IDL, and R, even though highly advanced in providing various statistical 

 
Figure 4: A schematic of the NSTX 



 
 
 
 
 
 

 
 
Figure 6: Providing data and task parallelism in 

ParallelR 

analysis capabilities, are not apt to handle large data-sets. Most of the researchers’ time is spent on 
addressing data preparation and management needs of their analyses.  Parallel R [6] is an open source 
parallel statistical analysis package developed by the SDM center, that lets scientists employ a wide 
range of statistical analysis routines on high performance shared and distributed memory architectures 
without having to deal with the intricacies of parallelizing these routines.  Parallel R lets scientists 
employ a wide range of statistical analysis routines 
on high performance architectures without having 
to deal with the intricacies of parallelizing these 
routines. Through Parallel R the user can distribute 
data and carry out the required parallel computation 
but maintain the same look-and-feel interface of the 
R system. Two major levels of parallelism are 
supported: data parallelism (k-means clustering, 
Principal Component Analysis, Hierarchical 
Clustering, Distance matrix, Histogram) and task 
parallelism (Likelihood Maximization, Bootstrap 
and Jackknife Re-sampling, Markov Chain Monte 
Carlo, Animations).  Figure 6 shows a schematic of 
the concepts.  ParallelR has been applied in multiple 
scientific projects including feature extraction for 
quantitative high-throughput proteomics, parallel 
analyses of climate data, and in combination with 
geographical information systems. 

Specialized indexing technology for very large datasets 
Another aspect of effective data analysis supported by the DMA technology in the SDM cneter, is the 
ability to identify in real-time items of interest from billions of data values in large datasets.  This is a 
significant challenge posed by the huge amount of data being produced by many data-intensive 
science applications.  For example, a high-energy physics experiment called STAR is producing 
hundreds of terabytes of data a year and has accumulated many millions of files in last five years of 
operation. One of the core missions of the STAR experiment is to verify the existence of a new state 
of matter called the Quark Gluon Plasma (QGP).  An effective strategy for this task is to find the high-
energy collisions that contain signatures unique to QGP, such as a phenomenon called jet quenching. 
Among the hundreds of millions of collision events captured, a very small fraction of them, maybe 
only a few hundreds contain clear signatures of jet quenching.  Efficiently identifying these events and 
transferring the relevant data files to analysis programs are a great challenge.  Many data-intensive 
science applications are facing similar challenges in searching their data.  
Over the last several years, we have been working on a set of strategies to address this type of 
searching problem.  Usually, the data to be searched are read-only. Our approach takes advantage of 
this fact.  We have developed a specialized indexing methods based on representing the indexed data 
as compressed bitmap.  This indexing method, called FastBit [7], is an extremely efficient bitmap 
indexing technology.  Unlike other bitmap indexes that assume low cardinality of possible data values, 
FastBit is particularly useful for scientific data, since it is designed for high-cardinality numeric data.  
FastBit performs 12 times faster than any known compressed bitmap index in answering range 
queries.  Because of its speed, Fastbit facilitates real-time analysis of data, searching over billions of 
data values in seconds.  FastBit has been applied to several application domains, including finding 
flame fronts in combustion data, searching for rare events from billion of high energy physics collision 
events, and more recently to facilitate query-based visualization.  The examples in Figure 7 (for 
astrophysics and combustion data) show the use of a tool, called DEX [..], that used Fastbit in 
combination of VTK to achieve very fast selection of features from large datsets and their display in 
real-time. 



 
 
 
 
 
 

 
Advanced I/O Infrastructure  

As high-performance computing applications scale and move from performing simulation and 
computing to data analysis they become tremendously data-
intensive, creating a potential bottleneck in the entire 
scientific discovery cycle.  At the same time, it is a well-
known phenomenon that I/O access rates have not kept pace 
with high-performance computing performance as a whole.  
Because of this phenomenon, it becomes increasingly 
important for us to extract the highest possible performance 
from the I/O hardware that is available to us. Even if raw 
hardware capacity for storage and I/O is available in an 
infrastructure, the complexity arising from the scale and 
parallelism is daunting and requires significant advances in 
software to provide the required performance to applications. 

The Storage Efficient Access (SEA) component provides the software infrastructure necessary for 
efficient use of the I/O hardware by applications.  This is accomplished through a sequence of tightly 
coupled software layers, shown in Figure 8, building on top of I/O hardware at the bottom and 
providing application-oriented, 
high-level I/O interfaces at the top.  
Three APIs are made available for 
accessing SEA components: 
Parallel netCDF at the high-level 
I/O library level, and ROMIO at the 
MPI-IO level, and Parallel Virtual 
File System (PVFS) at the file 
level. 

PVFS [8] can provide multiple 
GB/second parallel access rates, 
and is freely available.  Above the 
parallel file system is software 
designed to aid applications in 
more efficiently accessing the 
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Figure 7: examples of regions found by Fastbit indexes in real-time from very large datasets 
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Figure 8: the I/O stack 
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Figure 9: Serialization problems in original netCDF removed 
in Parallel netCDF to achieve a 10 fold performance increase
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Figure 10: The Active Storage architecture  

parallel file system.  Implementations of the MPI-IO interface are arguably the best example of this 
type of software.  MPI-IO provides optimizations that help map complex data movement into efficient 
parallel file system operations.  Our ROMIO [9] MPI-IO interface implementation is freely distributed 
and is the most popular MPI-IO implementation for both clusters and a wide variety of vendor 
platforms.  MPI-IO is a powerful but low-level interface that operates in terms of basic types, such as 
floating point numbers, stored at offsets in a file.  However, some scientific applications desire more 
structured formats that map more closely to the structures applications use, such as multidimensional 
datasets.  NetCDF [10] is a widely used API and portable file format that is popular in the climate 
simulation and data fusion communities. As part of the work in the SDM center, a parallel version of 
NetCDF (pNetCDF) was developed.  It provides a new interface for accessing NetCDF data sets in 
parallel. This new parallel API closely mimics the original API, but is designed with scalability in 
mind and is implemented on top of MPI-IO. Performance evaluations using micro-benchmarks as well 
as application I/O kernels have shown major scalability improvements over previous efforts.  Figure 9 
shows schematically the concept of adding a parallel netCDF layer to eliminate serialization through a 
single processor.  

Upcoming systems will incorporate hundreds of thousands of compute processors along with a 
collection of support nodes. Using POSIX and MPI-IO interfaces, I/O operations will be forwarded 
through a set of I/O nodes to storage targets.  Progress is on it way to use PVFS such petascale 
systems. 

Active Storage 

Despite recent advancements in storage technologies for many data intensive applications, analysis 
of data remains a serious bottleneck. In traditional cluster systems, I/O-intensive tasks must be 
performed in the compute nodes. This produces a high volume of network traffic. One option for data 
analysis is to leverage resources not on the client side, but on the storage side referred to as Active 
Storage. The original research efforts on active storage were based on a premise that modern storage 
architectures might include usable processing resources at the storage controller or disk; unfortunately, 
commodity storage has not yet reached this point. However, parallel file systems offer a similar 
opportunity. Because the servers used in parallel file systems often include commodity processors 
similar to the ones used in compute nodes, many Giga-op/s of aggregate processing power are often 
available in the parallel file system. As part 
of the SEA layer technology, our goal, in 
the Active Storage project, is to leverage 
these resources for data processing. 
Scientific applications that rely on out-of-
core computation are likely candidates for 
application of this technique, because their 
data is already being moved through the file 
system.  The Active Storage approach 
allows moving computations involving data 
stored in a parallel file system from the 
compute nodes to the storage nodes. 
Benefits of Active Storage include: low 
network traffic, local I/O operations, and 
better overall performance. The SDM 
center has implemented Active Storage on 
Lustre and PVFS parallel file systems.  We 
plan to pursue deployment of Active 
Storage in biology or climate application. 
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