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Supercomputers give scientists the power to model highly complex and detailed physical 
phenomena and chemical processes, leading to many advances in science and engineering. With 
the current growth rates of supercomputing speed and capacity, scientists are anticipated to study 
many problems at unprecedented complexity and fidelity and attempt many new problems for 
the first time.  The size and complexity of the data produced by such ultra-scale simulations, 
however, present tremendous challenges to the subsequent data visualization and analysis tasks, 
creating a growing gap between scientists’ ability to simulate complex physics at high resolution 
and their ability to extract knowledge from the resulting massive data sets.  The Institute for 
Ultrascale Visualization [1][2], funded by the U.S. Department of Energy’s SciDAC program 
[3], aims to close this gap by developing advanced visualization technologies that enable 
knowledge discovery at the peta and exa-scale.  This article reveals three such enabling 
technologies that are critical to the future success of scientific supercomputing and discovery. 
 
Parallel Visualization 
 
Parallel visualization can be a useful path to understanding data at the ultra scale but is not 
without its own challenges especially across our diverse scientific user community. The Ultravis 
Institute has brought together leading experts from visualization, high-performance computing, 
and science application areas to make 
parallel visualization technology a 
commodity for SciDAC scientists and the 
broader community. One distinct effort is 
the development of scalable parallel 
visualization methods for understanding 
vector field data. Vector field visualization 
is more difficult to do than scalar field 
visualization because it generally requires 
more computing for conveying the 
directional information and more storage 
space to store the vector field. 

  
So far, more researchers have worked on the 
visualization of scalar field data than vector 
field data, regardless of the fact that vector 
fields in the same data sets are equally 
critical to the understanding of the   
modeled phenomena.  3D vector field  

 
 

Figure 1. Simultaneous visualization of velocity 
and angular momentum fields obtained from a 
supernova simulation. 
 
 



visualization particularly requires more attention from the research community because most of 
the effective 2D vector field visualization methods incur visual clutter when directly applied to 
depicting 3D vector data.  For large data sets, a scalable parallel visualization solution for 
depicting vector field is even more needed because the expanded space requirement and 
additional calculations needed to ensure temporal coherence for visualizing time-varying vector 
data. Furthermore, it is challenging to simultaneously visualize both scalar and vector fields due 
to the added complexity of rendering calculations and combined computing requirements. As a 
result, previous works in vector field visualization primarily focused on 2D, steady flow field, 
the associated seed/glyph placement problem, or the topological aspect of the vector fields.  
 
Particle tracing is fundamental to portraying the 
structure and direction of a vector flow field. When 
an appropriate set of seed points are used, we can 
construct paths and surfaces from the traced 
particles to effectively characterize the flow field. 
Visualizing a large time-varying vector field on a 
parallel computer using particle tracing presents 
some unique challenges. Even though the tracing of 
each individual particle is independent of other 
particles, a particle may drift to anywhere in the 
spatial domain over time, demanding interprocessor 
communication. Furthermore, as particles move 
around, the number of particles each processor must 
handle varies, leading to uneven workloads.  We 
have developed a scalable parallel particle tracing 
algorithm allowing us to visualize large time-
varying 3D vector fields at the desired resolution 
and precision [4]. Figure 1 shows visualization of 
velocity field superimposed with volume rendering 
of  a scalar field from a supernova simulation.  
 
We take a high-dimensional approach by treating 
time as the fourth dimension, rather than consider 
space and time as separate entities. In this way, a 
4D volume is used to represent a time-varying 3D 
vector field. This unified representation enables us 
to make a time-accurate depiction of the flow field. 
More importantly, it allows us to construct 
pathlines by simply tracing streamlines in the 4D 
space. To support adaptive visualization of the data, 
we cluster the 4D space in a hierarchical manner. The resulting hierarchy can be used to allow 
visualization of the data at different levels of abstraction and interactivity. This hierarchy also 
facilitates data partitioning for efficient parallel pathline construction. We have achieved 
excellent parallel efficiency using up to 256 processors for the visualization of large flow field 
[4]. This new capability enables scientists to see their vector field data in unprecedented detail, at 
varying abstraction levels, and with higher interactivity, as shown in Figure 2.  

 
 

       
Figure 2. Pathline visualization of velocity 
field from a supernova simulation and the 
corresponding vector field partitioning. 



 Visualization Interfaces 
 
Over the past twenty years, many novel visualization techniques have been invented but few 
have been deployed in production systems and tools. Even though some of techniques are made 
available in a few open-source visualization tools, scientists seem to prefer the more rudimentary 
tools they have been using.  There are several reasons for this.  First, scientists are reluctant to 
switch to a new tool unless the tool can seamlessly fit in their existing computing and analysis 
environment. Second, although the new technique may produce highly desired visualizations, it 
would not be widely employed if it requires a tedious process and special hardware to operate. 
Third and most importantly, for scientists to adopt a new tool, the tool must be very easy and 
intuitive to use.  The past effort in the visualization research community largely focused on 
improving the performance and quality of visualization calculations.   Only from a few years 
ago, the design and deployment of appropriate user interfaces for advanced visualization 
techniques began to receive more attention [5][8]. 
 
Interface design has played a major role in several of our visualization projects.  One such 
visualization interface designed for exploring time-varying multivariate volume data consists of 
three components, which abstract the complexity of exploring in different spaces of the data and 
visualization parameters [6]. One important concept realized here is that the interface is also the 
visualization itself. As shown in Figure 3, the right-most panel displays the time histograms of 
the data. A time histogram shows how the distribution of data values changes over the whole 
time sequence and can thus help the user to identify time steps of interest and to specify time-
varying features. The middle panel attempts to display the potential correlation between each 
pair of variables in parallel coordinates for a selected time step. By examining different pairs of 
variables the user can often identify features of interest based on the correlations observed. The 
left-most panel displays hardware accelerated volume rendering enhanced with the capability to 
render multiple variables into a single visualization in a user controllable fashion. Such 
simultaneous visualization of multiple scalar quantities allows the user to more closely explore 
and validate their simulations from the parallel-coordinate space to the 3D physical space. These 
three components are tightly cross linked to facilitate tri-space data exploration, offering 
scientists new power to study their time-varying volume data. 
 

 
Figure 3. Interface for tri-space visual exploration of time-varying multivariate volume data [6]. From left to 
right, the spatial view, variable view, and temporal view of the data are given. 



The other interface design effectively facilitates visualization of multidimensional particle data 
output from a gyrokinetic simulation [6].  Depicting the complex phenomena associated with the 
particle data presents a challenge due to the large quantity of particles, variables, and time steps. 
By utilizing two modes of interaction–physical space and variable space–our system allows 
scientists to explore collections of densely packed particles and discover interesting features 
within the data. While single variables can be easily explored through the use of a one 
dimensional transfer function, we again turn to the information visualization approach of parallel 
coordinates for interactively selecting particles in multivariate space. In this manner, particles 
with deeper connections can be separated from the rest of the data and then rendered using 
sphere glyphs and pathlines, as shown in Figure 4. With this system, scientists at Princeton 
Plasma Physics Laboratory are able to more easily identify features of interest, such as the 
location and motion of particles that become trapped in turbulent plasma flow. The combination 
of scientific and information visualization techniques extend our ability to analyze complex 
collections of particles. 

 

  
 
Figure 4. A parallel coordinate interface for multidimensional particle data visualization. The six axes of 
the parallel coordinates, from top to bottom, are: toroidal coordinate, trap particle condition, parallel 
velocity, statistical weight, perpendicular velocity, and distance from the center. Left: Visualization of 
those particles in a layer far from the center, with high parallel velocity and non-zero statistical weight. 
Right: Visualization of those particles changing direction frequently. This is achieved by restricting the 
parallel velocity values in a small range.  
 
In addition, we have been studying how to incorporate machine learning into the process of 
visualization, leading to an intelligent interface for data visualization. Intelligent interfaces are 
anticipated to replace the current clutter of hardware-specific and algorithm-specific controls 
with a simple and intuitive interface supported by an invisible layer of complex intelligent 
algorithms [8]. Only high-level, goal-oriented decisions need to be made by the user, making 
cutting-edge visualization technology directly accessible to a wide range of application scientists.  
To make intelligent interfaces widely employed, we need to evaluate the effectiveness of the 
resulting interface designs using a variety of applications. These studies will pave the way to the 
creation of next-generation visualization technology. We believe the next generation 
visualization technology will be built upon further exploitation of human perception to simplify 
visualization, advanced hardware features to accelerate visualization calculations, and machine 
learning to reduce the complexity, size, and high-dimensionality of data. 



In-Situ Visualization 
 
Due to the size of data output by a large-scale simulation,  visualization is almost exclusively 
done as a post-processing step.  Even though it is desirable to monitor and validate some of the 
simulation stages, the cost of moving the simulation output to a visualization machine could be 
too high to make interactive visualization feasible. A better approach is not to move the data, or 
to keep the data that must be moved to a minimum. That is, both simulation and visualization 
calculations run on the same parallel supercomputer so the data can be shared, as shown in 
Figure 5.   Such in-situ processing can render images directly or extract features, which are much 
smaller than the full raw data, to store for on-the-fly or later examination. As a result, reducing 
both the data transfer and storage costs early in the data analysis pipeline can optimize the 
overall scientific discovery process.  
 
In practice, however, this approach was seldom adopted because of two reasons. First, most 
scientists were reluctant to use their supercomputer time for visualization calculations. Second, it 
could take a significant effort to couple a legacy parallel simulation code with an in-situ 
visualization code. In particular, the domain decomposition optimized for the simulation is often 
unsuitable for parallel visualization, resulting in the need to replicate data for speeding up the 
visualization calculations. Hence, the common practice for scientists has been to store only a 
small fraction of the data or to study the stored data at a coarser resolution, which defeats the 
original purpose of performing the high-resolution simulations. To enable scientists to study the 
full extent of the data generated by their simulations and for us to possibly realize the concept of 
steering simulations at extreme-scale, we ought to begin investigating the option of in-situ 
processing and visualization. Many scientists become convinced that simulation-time feature 
extraction, in particular, is a feasible solution to their large data problem. An important fact is 
that during the simulation time, all relevant data about the simulated field are readily available 
for the extraction calculations.  
 

 
 
Figure 5. Left: the conventional ways to visualize a large-scale simulation running on a supercomputer.  
Right:  In-situ processing and visualization of large-scale simulations.  
 
In many cases, it is also desirable and feasible to render the data in-situ for monitoring and 
steering a simulation. Even in the case that runtime monitoring is not practical due to the length 



of the simulation run or the nature of the calculations, it could still be desirable to generate an 
animation characterizing selected parts of the simulation. This in-situ visualization capability is 
especially helpful when a significant amount of the data is to be discarded. Along with restart 
files, the animations could capture the integrity of the simulation with respect to a particularly 
important aspect of the modeled phenomenon.  
 
We have been studying in-situ processing and visualization for selected applications to 
understand the impact of this new approach on ultra-scale simulations, subsequent visualization 
tasks, and how scientists do their work. Compared with a traditional visualization task that is 
performed in a post-processing fashion, in-situ visualization brings some unique challenges. First 
of all, the visualization code must interact directly with the simulation code, which requires both 
the scientist and the visualization specialist to commit to this integration effort. To optimize 
memory usage, we have to find a way for the simulation and visualization codes to share the 
same data structures to avoid replicating data. Second, visualization workload balancing is more 
difficult to achieve since the visualization has to comply with the simulation architecture and be 
tightly coupled with it.  Unlike parallelizing visualization algorithms for standalone processing 
where we can partition and distribute data best suited for the visualization calculations, for in-
situ visualization, the simulation code dictates data partitioning and distribution. Moving data 
frequently among processors is not an option for visualization processing. We need to rethink to 
possibly balance the visualization workload so the visualization is at least as scalable as the 
simulation. Finally, visualization calculations must be low cost, with decoupled I/O for 
delivering the rendering results while the simulation is running. Since the visualization 
calculations on the supercomputer cannot be hardware accelerated, we must find other ways to 
simplify the calculations such that adding visualization would take away only a very small 
fraction of the supercomputer time allocated to the scientist.  
 
We have realized in-situ visualization for a terascale earthquake simulation [9]. This work also  
won the HPC Analytics Challenges of the SC 2006 Conference [10] because of the scalability 
and interactive volume visualization we demonstrated. Over a wide-area network, we were able 
to interactively change view angles, adjust sampling steps, edit color and opacity transfer 
function, and zoom in and out for visually monitoring the simulation running on 2048 processors 
of a supercomputer at the Pittsburgh Supercomputing Center. We were able to achieve high 
parallel efficiency exactly because we made the visualization calculations, i.e., direct volume 
rendering, to use the data structures used by simulation code, which removes the need to 
reorganize the simulation output and replicate data. Rendering is done in-situ using the same data 
partitioning made by the simulation, and thus no data movement is needed among processors. 
Similar to the traditional parallel volume rendering algorithms, our parallel in-situ rendering 
pipeline consists of two stages: parallel rendering and parallel image compositing. In the 
rendering stage, each processor renders its local data using software ray-casting. Note that this 
stage may not be balanced given a set of visualization parameters and the transfer function used. 
In the image compositing stage, a new algorithm is designed to build a communication schedule 
in parallel on the fly. The basic idea is to balance the overall visualization workload by carefully 
distributing the compositing calculations. This is possible because parallel image compositing 
uses only the data generated by the rendering stage and is thus completely independent of the 
simulation.  
 



For implementation of in-situ visualization, no significant change is needed for the earthquake 
simulation code for the integration. The only requirement for the simulation is to provide APIs 
for the access of the simulation internal data structure, which does not require much effort in 
practice. Furthermore, because all the access is read operation, the simulation context is not 
affected by the visualization calculations. The advantage of our approach is obvious. Scientists  
do not need to change their code to incorporate in-situ visualization. They only need to provide 
an interface for the visualization code to access their data, as everything else is taken care of by 
the visualization part. This approach is certainly the most acceptable by scientists.  
 
Conclusion 
 
We are not too far from peta- and exa-scale computing.  Will we have the adequate tools for 
possibly extracting meaning from the data sets generated by such extreme-scale simulations?   
The investment made by the DOE SciDAC program in ultra-scale visualization [2] is timely and 
ensures that challenges will be addressed. In this article, we point out the grand challenges facing 
extreme-scale data analysis and visualization, and present several key technologies for gaining 
insights in ultra-scale simulations. While we have had some success in deploying some of these 
technologies, further research and experimental studies are still needed to make these new 
technologies benefit the scientific supercomputing community at large.  
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