
FOX: A Fault-oblivious Extreme-scale
Execution Environment (fox.xstack.org)

Exascale computing systems will provide a thousand-fold increase in parallelism and a
proportional increase in failure rate relative to today's machines. Systems software for exascale
machines must provide the infrastructure to support existing applications while simultaneously
enabling efficient execution of new programming models that naturally express dynamic,
adaptive, irregular computation; coupled simulations; and massive data analysis in a highly
unreliable hardware environment with billions of threads of execution. Further, these systems
must be designed with failure in mind. FOX is a new system for the exascale which will support
distributed data objects as a first class
object in the operating system itself. This
memory-based data store will be named
and accessed as part of the file system
name space of the application. We can
build many types of objects with this data
store, including data-driven work queues,
which will in turn support applications with
inherent resilience.

Work queues are a familiar concept in many areas
of computing; we will apply the work queue concept
to applications. Figure 1 shows a graphical data
flow description of a molecular modeling
application, which can be executed using a work
queue approach.

We have simulated an application modified to use
this model and, in simulation, parallel performance
improves. Figure 2 shows the comparative
performance, with the traditional SPMD-style
program on the left, and the data-driven program
on the right. Utilization is higher, cycle times for an
iteration are shorter, and work on the next cycle can
begin well before the current cycle completes.

Figure 1. Dependency graph for a portion of the
Hartree-Fock procedure.

G

G(i,j,k,l)

D(k,l)

F

F(i,j)

G(i,j,k,l) G(i,k,j,l)

F(i,i)

J

F(i,j) F(j,j) S(i,i) S(i,j) S(j,j)

J(d,i,j)

F(i,i)

R

F(i,j) F(j,j) J(d,i,j)

Fi(d,s,i,j)

D(0,0)

F F FF FF

S(0,0)

J(0)

R(0) R(0)R(0)

D(1,0)

S(1,0)

D(1,1)

S(1,1)

D(2,0)

S(2,0)

R(0) R(0)

D(2,1)

S(2,1)

D(2,2)

S(2,2)

J(0)

R(0)

R(0)

Fi(0,2,0,0)

R(0)

Fi(0,1,0,0)

F(0,0)

G

G(0,0,0,0)

G

G(1,1,0,0)

G

G(2,2,0,0)

R(0)R(0)

F(1,0) F(1,1)

G

G(1,1,1,1)

G

G(2,2,1,1)

J(0,1,0)

R(0)R(0)

J(0)

R(0)

R(0)

Fi(0,1,2,2)

F(2,2)

G

G(2,2,2,2)

R(0)

Fi(0,1,1,1)Fi(0,1,2,1)

F(2,0)F(2,1)

J(0,2,1)

Si(0,1,1,1)Si(0,1,2,1)

R(0) R(0)

Fi(0,2,2,0)

Fi(0,1,1,0)

Fi(0,1,2,0)

J(0,2,0)

Si(0,1,0,0)

Si(0,1,2,2) Si(0,2,2,0)

Si(0,1,1,0)

Si(0,1,2,0)

Fi(0,2,1,1)

Fi(0,2,2,2)

Elementary Operations

Assembly

Dependency

Graph

JG

Fi

F

Figure 2. A comparison of processor
utilization for traditional (top) and data-
centric (bottom) approaches using
simulated timings for a portion of the
Hartree-Fock procedure.

Progress to date
SST/Macro
The team recently met (physically and virtually) at Sandia National Labs for a “deep dive” into
the SST/Macro simulator. We learned how to measure and characterize applications behavior
as well as “skeletonize” an application so it can be moved to the simulator.

To make SST/Macro more widely available, we have packaged it as a virtual machine image for
VMWare. This allows users who might not want to build the software to simply download and
boot the VMWare image. Use of a virtual machine eliminates OS issues.

SST/Macro has been extended to support a mail box capability, as well as active messages.
Fault injection support is in development.

Applications
LLNL is providing a graph processing application for study. This is a challenging application as it
has only run well on shared-memory machines, and features very small messages. Getting it to
run well on MPI requires modifications such as message aggregation that are not an optimal fit
to the application. We will use SST/Macro to study what kind of message-passing interface
might best suit the application, and the implications of such an interface for both hardware and
software architecture.

PNNL has undertaken characterization of key modules of NWChem from a fault tolerance
perspective. This process will be used to identify critical application phases, kernels from which
will be studied using SST/Macro. Some early results have been submitted for publication in
Euro-Par 2011.

PNNL has begun preliminary investigation into evaluating energy usage. The study of candidate
applications will be used to develop kernels for SST/Macro.
Runtimes
Sandia has been experimenting with a specialization of Plan 9 to support active messages. The
initial changes to Plan 9 now support one-sided active messages with sub-10-microsecond
latency. The send overhead is just 1.165 microseconds. We believe we can improve on this
time, such that we can have a kernel-based active message support rivaling the performance of
MPI. Vita Nuova has focused on developing a new service to support messaging and sharing of
large chunks of data, using new system interfaces on Plan 9, including experimenting with
different representations of RDMA on BG/P. PNNL is developing fault tolerant data stores. The
work on efficient fault tolerance data stores for read-only matrices under generalized cartesian
distributions has been accepted for publication in Computing Frontiers 2011.PNNL and OSU are
investigating fault tolerant dynamic load balancing schemes through additions to work stealing.
This involves minimizing the space and communication overhead in identifying communication
progress and tasks executed, and minimizing work lost due to failures.

Operating Systems
The Osprey O/S being developed by the Network Systems group at Bell Labs, which builds on
the experience gained from applying the Plan 9 O/S on systems ranging from embedded
network components to BG/P.

The second is a Library OS from IBM which is also coming up on test hardware. This new OS
builds on work done for the DARPA HPCS program.

