ExM: System support for extreme-scale, many-task applications

Ian Foster (PI), Ewing Lusk (PI), Ketan Maheshwari, Todd Munson, Michael Wilde (Lead PI), Argonne
Daniel S. Katz (PI), Justin Wozniak, Zhao Zhang, University of Chicago
Sameer Al-Kiswany, Matei Ripeanu (PI), Emalayan Vairavanathan, University of British Columbia

Problem: scaleup of many-task applications

Exascale computers will enable and demand new
problem solving methods that involve many concurrent
and interacting tasks. Methodologies such as rational
design, uncertainty quantification, parameter
estimation, and inverse modeling all have this many-
task property. All will frequently have aggregate
computing needs that require exascale computers. For
example, proposed next-generation climate model
ensemble studies will involve 1,000 or more runs, each
requiring 10,000 cores for a week, to characterize
model sensitivity to initial condition and parameter
uncertainty.

Goal

The goal of the ExM project is to achieve the technical
advances required to execute such many-task
applications efficiently, reliably, and easily on petascale
and exascale computers. In this way, we will open up
extreme-scale computing to new problem solving
methods and application classes.

Anticipated impact

The project will produce advances in computer science
and software technology that enable the efficient and
reliable use of exascale computers for new classes of
applications. In this way, the project will both accelerate
access to exascale computers by important existing
applications and facilitate uptake of large-scale parallel
computing by other application communities for which
itis currently out of reach. The project will also produce
students and postdocs expert in innovative system
software for extreme-scale computers.

Project overview

Running many-task applications efficiently, reliably, and
easily on extreme-scale computers is challenging.
System software designed for today’s mainstream single
program multiple data (SPMD) computations is not
necessarily a good match to the demands of many-task
applications. To address these demands, the ExM
project will design, develop, and evaluate two new
system software components. The ExM data store will
allow concurrent and asynchronous application tasks to
communicate efficiently and reliably, both with each
other and with persistent storage, by reading and
writing data objects maintained in node-local storage,
including memory, SSD, and local disk. The ExM task

U.S. DEPARTMENT OF A

[3]5{c) §

Argonne

manager will allow for the rapid, data-aware, and
efficient dispatch of many tasks to large exascale
computing systems and for the fault-tolerant execution
of those tasks. These components will be efficiently
integrated with current and future extreme-scale
system software and made available to developers via
both a parallel scripting language and APIs.

Project scope and activities

Design, build, and evaluate an ExM data store to provide
efficient and reliable read and write operations from
many tasks against both in-memory and on-disk storage
systems, via both sequential and parallel I/0 interfaces.

Design, build, and evaluate an ExM task manager to
provide efficient and reliable management of large task
graphs that can productively utilize exascale platforms.

Integrate these components with high-level libraries
and languages: C, Python, and Swift (as exemplars of
distinct classes of high-level languages).

Evaluate the performance and usability of these system
components, programming libraries, and systems at
large scale by applying them to challenging DOE science
applications.

ExM Architecture

Client (master)
application

Compute unit Maater

executor

Compute unit

Ultra-fast Message
BXeCLe queues

Compute unit//

[\\Compute unit

Compute unit

Global persistent
storage
Extreme-scale computing complex

Computation Institute

ExM distributed task management targets high utilization, low latency,

and resiliency in the face of failing components and interconnects.

Task
subgraph

o

Graph

e — T B
Local Local Local Local

o

Graph
executor

Task
subgraph

ExM complex-wide data storage — based on MosaStore — is embedded and distributed
across nodes and RAM storage to provide a namespace and fast file data exchange.

Task queue executor

United States Western Europe Restof Europe Mexico
o 1
1000 0 —
predict() o
0 = -
calls 0l S|

2010 2020 2030 2040 2050 2060
Middle East/North Arica
~

2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060

China Russia+- India
Z i Z

2010 2020 2030 2040 2050 2060

2010 2020 2030 2040 2050 2060

i
2010 2020 2030 2040 2050 2060

2010 2020 2030 2040 2050 2060

United States Western Europe Restof Europe Meico

40 40 1w 1
20 2 i |
o 0 —<< 0 |
-20] -0 -0 N H-
| |
40 ~40)] X -

2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060

2010 2020 2030 2040 2050 2060

China+ Russia+ India

20|
foreach sim in [1:1000] { e o
(structure[sim], log[sim]) = predict(p, 100., 25.); ’zs 740
} -)

2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2650 2060
result = analyze(structure)

2010 2020 2030 2040 2050 2060

Simple Swift scripts (left) specify and execute 1,000 parallel tasks for protein structure prediction with Monte Carlo simulated
annealing, and 5,000 models exploring uncertainty in consumer and industrial electricity usage (right).

12C ADLB+GFMC

2,0
Number of Nodes (4 OMP

Traditional Master/Worker has a scaling bottleneck of worker ranks trying to access the shared queue managed by the master.
ADLB scales to over 100K cores by making a shared queue accessible to all ranks without need to go through an arbiter process.

For more information: Contact: Michael Wilde, wilde@mcs.anl.gov

Parallel Scripting for Applications at the Petascale and Beyond. Michael Wilde, lan Foster, Kamil Iskra, Pete Beckman, Zhao
Zhang, Allan Espinosa, Mihael Hategan, Ben Clifford, loan Raicu IEEE Computer, Vol. 42, 11. 2009.

Swift parallel scripting language: http://www.ci.uchicago.edu/swift

ADLB (Asynchronous dynamic load balancer): http://www.cs.mtsu.edu/~rbutler/ad/b

MosaStore: http://netsyslab.ece.ubc.ca/wiki/index.php/MosaStore

ExM Project: http://www.mcs.anl.gov/exm (in progress)

' |
|
Task graph executor Task queue executor I storage storage storage storage :
ti |
Task graph partitioner L ExM Data Store J

Global Data Store

