Dynamic Non-Hierarchical File Systemsfor Exascale Storage

Darrell Long (Pl) and Ethan Miller (Co-PI)
University of California, Santa Cruz

Overview

In-memory
structures

Modern high-end computing (HEC) systems must manage

petabytes of data stored in billions of files, yet currentiggues

for naming and managing files were developed 40 years ago for

collections of thousands of files. HEC users are therefaetb

to adapt their usage to fit an outdated file system model and in-

terface, unsuitable for exascale systems. Attempts tclketine

interface, such as augmentation or replacement with deg¢aba

or the layering of additional interfaces and semantic esi®% Figure 1: Metadata clustering example. Metadata clusters, partitions,

atop existing filesystems result in performance-limitestegns shown in different shades, index different partitions of file system-meta

that do not adequately scale. data. Each partition is stored sequentially on disk. The entire file system
Parallels exist between HEC systems and the web, where I¢etadata index is composed of the set of all metadata clusters.

cating and browsing data sets has rapidly become domingted b

search. The strengths and weaknesses of the web provide sey- . . .

eral useful lessons from which we have learned: 1) Althohgh t dexing and storage layer on which semantic name spaces can be

web implements a hierarchical namespace, search has beco It Th_u_s, we must ensure that the interface is casy E:El.nd
the dominant navigation tool in the face of the massive velum as sufficient expressiveness to allow the constructiomefigs

of data that is accessible; 2) While findisgmeinformation is to pose complex but g_seful_questlons. .

easy, finding theight or goodinformation is not; 3) The eas- We_b users are familiar with the problem_of mformat_lon over
ier it is for people to contribute information to a reposytahe !oad inresponse ‘0.3 S‘?amh query; we wil reducg this jerob
more critical it becomes to determine the veracity of thaada in our system by facilitating searches that are restriciedidcal

4) The links that relate documents provide valuable insigfiot rggion O_f the provenance and re!ationship gra_ph. This coanbi
the importance of documents. From these observations we cdi" of file rglatlonshlp mformaﬂon and pgr-flle metadatesh
see that simply modifying existing high performance filésyss st_rong promise to greatly improve the qgahty (.)f searchesv_es
to support search, and the requisite storage of additi@mahs- will explore approaches that allow queries to include thfsri-
tic metadata, would be woefully inadequate mation. Our language should allow queries to consider caty p
' .) L ticular links in establishing distance; this will allow qigs to
We propose to develop a radically different filesystem struc . : :
ture that addresses these problems directly, and whicthewdt- be restrlgted to f lles that are nearby or related from a paaic
age provenance (a record of the data and processes that cohe' > pomt- Of_VIeW' S
tributed to its creation), file content, and rich semanticdane Problem: Finding Good or Correct Information is Difficult
data to provide a scalable and segrchable file nqmespadeaSucsm ution: Integrated, Scalable I ndexing
namespace would allow the tracking of data as it moves tliroug
the scientific workflow. This allows scientists to better fand
utilize the datatheyneed, using both content and data history h A | | -of-the-stgf
to identify and manage stored information. We take advantag>ca/c SyStems rely on general-purpose, ofi-or-the- i
of the familiar search-based metaphor to provide an irgiasly- tions, such as relatlongl database systems. However, $bx_ese
to-use interface that enables users to find the files they aveed tems are typu_:ally designed for other workloads, such as b_us
evaluate the authenticity and quality of those files. Readithis ness processing, and thus make few file search.(.)pt|m|zat|ons
vision requires research success in dynamic, nonhieidie As a result, they lack the performance and scalability toeskl

systems design and implementation, large-scale metadata m file sfﬁarch ?t large dscaltla(.l Ag;”e syst(im stearcnlndetﬁ must-leve
agement, efficient scalable indexing, and automatic pravea age file system and workload properties {o achieve the nexgess

capture. performance. _ _ _

The approach we are proposing provides an index for two
Problem: Hierarchical Namespaces are Unnavigable for HEC types of per-file metadata: simple metadata and contemEbas
Systems metadata. Searching against the different types of metacais
a different process. Simple metadata can be compared using
relatively static evaluations, similar to those providediirela-
A critical issue for managing files in HEC file systems is ensur tional database system: string equality, regular expsassiand
ing that users can easily find the files they need. We are proposaumeric comparisons. However, content-based metadafa is o
ing a search-based interface as timy interface to the file sys- ten evaluated fosimilarity to an exemplar; for example, a user
tem name space. Our new architecture improves semantic filmight search for climate simulation results similar to the she
system performance and scalability by providing a combined just produced. Similarity evaluation requires more corapan,

On-disk
layout

Providing good performance and scalability for file searchn
exascale system requires new indexing solutions. Exidiiag

Solution: Dynamic Nonhierarchical File Systems

Disk

Standard File System Metadata Layout Layout directories adjacent on disk. Metadata clustering exple#v-

7 R e N

ol I e L L O A O) eral file system properties. First, disks are much betteeat s
Metacata Layout quential transfers than random accesses. Metadata dhgster
etadna e Lot leverages this to pre-fetch an entire sub-tree in a singtgela

B = [~ [~ [=[]

[[11] sequential access. Second, file metadata exhilaitse space
locality: metadata attributes are dependent on their location in
the name space. For example, files owned by a certain user are
likely to be clustered in that user's home directory or tlaeiive
project directories, not randomly scattered across theygeem.
Thus, queries will often need to search files and directdhat

are nearby in the name space. Clustering allows this metadat
Figure 2: Metadata clustering. Each block corresponds to an i-node to be accessed more quickly using fewer VO requests. Third,
on disk. Shaded blocks labeled 'D’ are directory i-nodes while non-me.tadata F:Igstgrlng WOI’kS. W?” for.many file system workinad
shaded blocks labeled 'F’ are file i-nodes. In the top disk layout, the inWhICh exhibit similar locality in their workloads. Often,ask-

direction between directory and file i-nodes causes them to be scatterd@ds access multiple, related directories, for which tetiisg
across the disk. The bottom disk layout shows how metadata clusteWorks well.

ing co-locates i-nodes for an entire sub-tree on disk to improve searcprgplem: Tracking Relations Among Documents
performance.

AFile System Sub-tree

Solution: Provenance

Provenance information is a critical part of file system meta
and may also require application-specific routines to cdmpu data information, since it provides insight into the preeesthat
similarity metric. created a particular piece of data. Previous work has demon-

We will also expand on the functionality provided by file sys- strated that provenance information can be efficiently wapt
tem indexes, providing features not typically availabletumrent ~ and stored for relatively small data collections; we wilpard
file systems and search indexes. There are several criioa#l ¢ on this work to integrate provenance collection and manage-
ponents to make search practical for everyday, real-wastl u ment across exabyte-scale storage with billions of fileswille
First, search must enforce file security, however, doingfso e develop techniques for managing provenance at exabyte-sca
ficiently is not straightforward. Our techniques allow sdtyu along with other metadata, for guaranteeing integrity afvpr
information to be used during index partitioning and emiseld nance that records sufficient operations to recreate betinth
within each partition. Doing so allows us to eliminate gaotis puts and the workflow that generated a particular piece @f,dat
with improper permissions from the search space, improvingnd for efficiently extracting file attribute and inter-fikdlation-
performance and potentially altering the ordering of ne¢ar ship information from the file system.
results. Second, search must allow the combination of [ger-fi We are developing new scalable techniques for extractiag fil
metadata with graph-based information to permit seardiags t metadata. Basic metadata—information currently stored in i
find relevant “nearby” files. This functionality is not presén nodes and small-scale extended attributes—are easily dghndl
current Web-based searches: there is no way to find a page Iy our approach, since updates can be sent directly to the.MDS
which a given page links that contains a certain term, fonexa Since they are relatively small, it is likely that they wilhly
ple. be updated by a single client even for a large file; thus, han-
dling such updates requires relatively few MDS resourcesv-H
ever, file content in a HEC system is orders of magnitude farge
Solution: Metadata M anagement than basic metadata, and extracting metadata from HEC files

can be computationally and 1/O intensive. Thus, we will rely

F'Iz system me;[adata ;hould pe_dtreactiel_d as (;in aid to rEfr‘\r,‘v‘"’r‘]g'Ulgontransducersthat are customized to each type of file. In our
and accessing data and not arigid and limited structure system, relationships between files érst-classentities, and

ghe user must conform. quth|s endlwe propose :0 enhanceﬁn;et@én have tags and ownership information associated with.the
ata mgnggement to provi 1€ Seamiess support for a seaset- aTracking such relationships requires monitoring callshsfile
dynamic interface to the files. File system search provides @ystem (e.gopen andcl ose) and providing additional API

clean, pow_erfurl]abstracnon from th?_lf'le systgzm. It 'Z ofdam-d calls to explicitly establish relationships between filesaddi-
ler to specifywhatone wants using file metadata and extended;,, 1, hroviding API calls to explicitly link files, our systn wil

attributes rather than specifyinghereto find it. ‘Searchable ., jicitiy gather provenance and other relationship infation
metadata allows users and administrators to ask complé@d ' onitoring processes on client nodes, and will coalesae t
guestions about the properties of the files being storegiriel
them to locate, manage, and analyze their data.

We propose addressing this problem using metadata cluster-
ing, a concept similar to embedded i-nodes which store file i-
nodes adjacent to their parent directory on disk. Metadata ¢
tering goes a step further and stores a group of file i-nodds an

Problem: Veracity of Information is Often Unknown

information either at the client level or on the MDS.

