
Dynamic Non-Hierarchical File Systems for Exascale Storage
Darrell Long (PI) and Ethan Miller (Co-PI)

University of California, Santa Cruz

Overview

Modern high-end computing (HEC) systems must manage
petabytes of data stored in billions of files, yet current techniques
for naming and managing files were developed 40 years ago for
collections of thousands of files. HEC users are therefore forced
to adapt their usage to fit an outdated file system model and in-
terface, unsuitable for exascale systems. Attempts to enrich the
interface, such as augmentation or replacement with databases,
or the layering of additional interfaces and semantic extensions
atop existing filesystems result in performance-limited systems
that do not adequately scale.

Parallels exist between HEC systems and the web, where lo-
cating and browsing data sets has rapidly become dominated by
search. The strengths and weaknesses of the web provide sev-
eral useful lessons from which we have learned: 1) Although the
web implements a hierarchical namespace, search has become
the dominant navigation tool in the face of the massive volume
of data that is accessible; 2) While findingsomeinformation is
easy, finding theright or good information is not; 3) The eas-
ier it is for people to contribute information to a repository, the
more critical it becomes to determine the veracity of that data;
4) The links that relate documents provide valuable insightinto
the importance of documents. From these observations we can
see that simply modifying existing high performance filesystems
to support search, and the requisite storage of additional seman-
tic metadata, would be woefully inadequate.

We propose to develop a radically different filesystem struc-
ture that addresses these problems directly, and which willlever-
age provenance (a record of the data and processes that con-
tributed to its creation), file content, and rich semantic meta-
data to provide a scalable and searchable file namespace. Such a
namespace would allow the tracking of data as it moves through
the scientific workflow. This allows scientists to better findand
utilize the datatheyneed, using both content and data history
to identify and manage stored information. We take advantage
of the familiar search-based metaphor to provide an initialeasy-
to-use interface that enables users to find the files they needand
evaluate the authenticity and quality of those files. Realizing this
vision requires research success in dynamic, nonhierarchical file
systems design and implementation, large-scale metadata man-
agement, efficient scalable indexing, and automatic provenance
capture.

Problem: Hierarchical Namespaces are Unnavigable for HEC
Systems

Solution: Dynamic Nonhierarchical File Systems

A critical issue for managing files in HEC file systems is ensur-
ing that users can easily find the files they need. We are propos-
ing a search-based interface as theonly interface to the file sys-
tem name space. Our new architecture improves semantic file
system performance and scalability by providing a combinedin-

On-disk

layout

In-memory

structures

Figure 1: Metadata clustering example. Metadata clusters, partitions,
shown in different shades, index different partitions of file system meta-
data. Each partition is stored sequentially on disk. The entire file system
metadata index is composed of the set of all metadata clusters.

dexing and storage layer on which semantic name spaces can be
built. Thus, we must ensure that the interface is easy-to-use and
has sufficient expressiveness to allow the construction of queries
to pose complex but useful questions.

Web users are familiar with the problem of “information over-
load” in response to a search query; we will reduce this problem
in our system by facilitating searches that are restricted to a local
region of the provenance and relationship graph. This combina-
tion of file relationship information and per-file metadata has
strong promise to greatly improve the quality of searches, so we
will explore approaches that allow queries to include this infor-
mation. Our language should allow queries to consider only par-
ticular links in establishing distance; this will allow queries to
be restricted to files that are nearby or related from a particular
user’s point of view.

Problem: Finding Good or Correct Information is Difficult

Solution: Integrated, Scalable Indexing

Providing good performance and scalability for file search in an
exascale system requires new indexing solutions. Existingfile
search systems rely on general-purpose, off-of-the-shelfsolu-
tions, such as relational database systems. However, thesesys-
tems are typically designed for other workloads, such as busi-
ness processing, and thus make few file search optimizations.
As a result, they lack the performance and scalability to address
file search at large scale. A file system search index must lever-
age file system and workload properties to achieve the necessary
performance.

The approach we are proposing provides an index for two
types of per-file metadata: simple metadata and content-based
metadata. Searching against the different types of metadata uses
a different process. Simple metadata can be compared using
relatively static evaluations, similar to those provided in a rela-
tional database system: string equality, regular expressions, and
numeric comparisons. However, content-based metadata is of-
ten evaluated forsimilarity to an exemplar; for example, a user
might search for climate simulation results similar to the one she
just produced. Similarity evaluation requires more computation,

1



Disk
Layout

Dir. 

A

Dir. 

D

Dir.

B

Dir.

C

F1 F2

F3 F4

F6 F7

F9 F5

DA F1 F2 DB F5 DC F6 F4 F9 F7 DD F3

Standard File System Metadata Layout

Metadata Layout

A File System Sub-tree

Disk
Layout

DA F2 DB F5 F6 F7 F3 F4 F9F1 DC DD

Metadata Cluster

Figure 2: Metadata clustering. Each block corresponds to an i-node
on disk. Shaded blocks labeled ’D’ are directory i-nodes while non-
shaded blocks labeled ’F’ are file i-nodes. In the top disk layout, the in-
direction between directory and file i-nodes causes them to be scattered
across the disk. The bottom disk layout shows how metadata cluster-
ing co-locates i-nodes for an entire sub-tree on disk to improve search
performance.

and may also require application-specific routines to compute a
similarity metric.

We will also expand on the functionality provided by file sys-
tem indexes, providing features not typically available incurrent
file systems and search indexes. There are several critical com-
ponents to make search practical for everyday, real-world use.
First, search must enforce file security, however, doing so ef-
ficiently is not straightforward. Our techniques allow security
information to be used during index partitioning and embedded
within each partition. Doing so allows us to eliminate partitions
with improper permissions from the search space, improving
performance and potentially altering the ordering of returned
results. Second, search must allow the combination of per-file
metadata with graph-based information to permit searches that
find relevant “nearby” files. This functionality is not present in
current Web-based searches: there is no way to find a page to
which a given page links that contains a certain term, for exam-
ple.

Problem: Veracity of Information is Often Unknown

Solution: Metadata Management

File system metadata should be treated as an aid to managing
and accessing data and not a rigid and limited structure to which
the user must conform. To this end we propose to enhance meta-
data management to provide seamless support for a search-based
dynamic interface to the files. File system search provides a
clean, powerful abstraction from the file system. It is ofteneas-
ier to specifywhat one wants using file metadata and extended
attributes rather than specifyingwhere to find it. Searchable
metadata allows users and administrators to ask complex, adhoc
questions about the properties of the files being stored, helping
them to locate, manage, and analyze their data.

We propose addressing this problem using metadata cluster-
ing, a concept similar to embedded i-nodes which store file i-
nodes adjacent to their parent directory on disk. Metadata clus-
tering goes a step further and stores a group of file i-nodes and

directories adjacent on disk. Metadata clustering exploits sev-
eral file system properties. First, disks are much better at se-
quential transfers than random accesses. Metadata clustering
leverages this to pre-fetch an entire sub-tree in a single large
sequential access. Second, file metadata exhibitsname space
locality: metadata attributes are dependent on their location in
the name space. For example, files owned by a certain user are
likely to be clustered in that user’s home directory or theiractive
project directories, not randomly scattered across the filesystem.
Thus, queries will often need to search files and directoriesthat
are nearby in the name space. Clustering allows this metadata
to be accessed more quickly using fewer I/O requests. Third,
metadata clustering works well for many file system workloads,
which exhibit similar locality in their workloads. Often, work-
loads access multiple, related directories, for which clustering
works well.

Problem: Tracking Relations Among Documents

Solution: Provenance

Provenance information is a critical part of file system meta-
data information, since it provides insight into the processes that
created a particular piece of data. Previous work has demon-
strated that provenance information can be efficiently captured
and stored for relatively small data collections; we will expand
on this work to integrate provenance collection and manage-
ment across exabyte-scale storage with billions of files. Wewill
develop techniques for managing provenance at exabyte-scale
along with other metadata, for guaranteeing integrity of prove-
nance that records sufficient operations to recreate both the in-
puts and the workflow that generated a particular piece of data,
and for efficiently extracting file attribute and inter-file relation-
ship information from the file system.

We are developing new scalable techniques for extracting file
metadata. Basic metadata—information currently stored in i-
nodes and small-scale extended attributes—are easily handled
by our approach, since updates can be sent directly to the MDS.
Since they are relatively small, it is likely that they will only
be updated by a single client even for a large file; thus, han-
dling such updates requires relatively few MDS resources. How-
ever, file content in a HEC system is orders of magnitude larger
than basic metadata, and extracting metadata from HEC files
can be computationally and I/O intensive. Thus, we will rely
upontransducersthat are customized to each type of file. In our
system, relationships between files arefirst-classentities, and
can have tags and ownership information associated with them.
Tracking such relationships requires monitoring calls to the file
system (e.g.open andclose) and providing additional API
calls to explicitly establish relationships between files.In addi-
tion to providing API calls to explicitly link files, our system will
implicitly gather provenance and other relationship information
by monitoring processes on client nodes, and will coalesce that
information either at the client level or on the MDS.

2


