% | George R. Brown
School of Engineering
@ Computer Science

F ogrammlng Constructs for Exascale Systems
and their Implementation Challenges

Vivek Sarkar
——— OREILLY Rice University
——— vsarkar@rice.edu

i i hitp://habanero.rice.edu

e Workshop on Exascale Programming Challenges
July 27 — 29, 2011, Marina del Rey, CA

EEEBHELS IIIEIEII HE

ssor 1 Pre Processor 80 P
SP) E |A-Switch
i i
| | |

| Crossbar Network

L2 D: 1l
- Ex 22| Bl == = x| PDRZ SORAMy,
bl B8 & 2§ - B§ B§|| contoler
| 5D
o

Workshop Goals

1.

Define objective criteria for assessing programming
models, language features, compilers, and runtime
systems and metrics for success.

Prioritize programming model, language, compiler and
runtime challenges for Exascale systems.

Prioritize options for (i) evolutionary path, (i) revolutionary
path, and (iii) bridging the gap between evolutionary and
revolutionary paths.

Lay out a roadmap, with options, timeline, and rough cost
estimates for programming Exascale systems that are

responsive to the needs of applications and future
architectural constraints.

High-Level Declarative Programming Your Favorite DSL

OpenMP

it e

pthreads, mutexes, ...

T | PR DY G

This Talk

= |dentification of four classes of intermediate-level
programming constructs that will be necessary for
mapping applications onto Exascale hardware

= Focus is on “performance-aware” parallel constructs

= Compiler and runtime should devote major effort to optimizing
these constructs

= Summary of some recent compiler and runtime
Implementation experiences with these constructs

= Use of these constructs in bridging the gap between
evolutionary and revolutionary solutions

% :‘ RICE 4 ﬁ‘

Four classes of Intermediate-Level Programming Constructs

1) Asynchronous tasks and data transfers e.g.,

= MPI: mpi_isend, mpi_irecv, mpi_wait

= OpenMP: task, taskwait

= Cilk: spawn, sync

= CAF, UPC, Chapel: function shipping

= X10: async, finish, asyncMemcpy, futures, foreach

= Habanero: async, finish, asyncMemcpy, futures, async-await, forall

2) Collective and point-to-point synchronization & reductions e.g.,
= MPI: mpi_send, mpi_recv, mpi_barrier, mpi_reduce,

= OpenMP: barrier, reductions

= Cilk: reducers

= CAF, UPC, Chapel: barrier, reductions

= X10: clocks, finish accumulators, conditional atomic

= Habanero: phasers, phaser accumulators, finish accumulators

Four classes of Intermediate-Level Programming Constructs

3) Mutual exclusion e.g.,

= OpenMP: atomic, critical

= X10, Chapel, STM systems: atomic

= Galois: operations on unordered sets
= Habanero: isolated

4) Locality control for task and data distribution e.g.,

= MPI: all-local (shared-nothing)

= CAF, Chapel, UPC, X10: PGAS storage model (local vs. remote)

= Sequoia: hierarchical storage model w/ static tasks

= Habanero: hierarchical place tree w/ dynamic parallelism, heterogeneity

= Scalable implementations of these constructs require first-class compiler and
runtime support; evolutionary solutions are possible with only runtime support

Constructs can be exposed to the programmer by extending current low-level
Cprogramming models, or can be generated from high-level programming models ﬁ

E 6

Implementation Experiences with these constructs

Habanero-Java

= Pedagogic language and implementation used to teach sophomore-level class on
Fundamentals of Parallel Programming at Rice (COMP 322)

= Derived from Java-based v1.5 of X10 language from 2007
Habanero-C
* Habanero-C optimizing compiler builds on Rose and LLVM
* New Rose—>LLVM translator improves communication between high-level & low-level optimizers

* Habanero-C runtime supports work-stealing and work-sharing schedulers across
homogeneous and heterogeneous processors (hybrid task scheduling across CPU
computation workers, CPU communication workers, GPU workers, FPGA workers)

X10 v2.0.6 and 2.1.1
* First-class PGAS support with extensions for dynamic parallelism and heterogeneity (GPUs)

e Communication optimizations implemented in X10 compiler front-end

OpenMP 3.0
* Implementation of phasers as library extension to OpenMP

* Enhancements to OpenMP task scheduling (collaboration with IBM XL compiler team)

RICE 7 ﬁ“

Class 1 example (Lightweight asynchronous tasks and
data transfers) --- Communication Optimizations for
Distributed-Memory X10 Programs

Il Original Code
class C {

global var x;

global var y;

}

val ¢1:C = new C(2,3);
val ¢2:C = new C(3,4);

L ClX L
. C2.X ..
+C2Y i |/ Transformed Code

only three scalar

values are communicated & no
RR handles are communicated

) val ¢1:C = new C(2,3);
val c2:C = new 4),
val c1_x=cl.x;
val c2_x = c2.x;
val c2_y = c2.y;
. cl x..;

. C2_X ...}

RICE } c2_y .., 8

Communication
Buffer
AR RR(c1)
= c1.loc
= y &c1
: RR(c2
RR(c2) \c2)
c2.loc
C2.X
&c2
c2.y

Communication
Buffer

¢l x

c2_X

c2_y

Communication Optimization: Scalar
Replacement for Global Arrays

Il Original Code

val iiint = ... JI

val jiint = | RR(v) RR(v)

val v:Array[int](1) = new Array[int](n); v(0) v.loc
V) o

V(i)

L V(j); v(n)

}

Il Transformed Code
val isint=...;
val jint = ...;
val v:Array[int](1) = new Array[int](n);
val v_izint = v(i);
val v_jint= v(j);
LV

Vs

Communication
Buffer

only two scalar

values v_iand v_j are
communicated

Vi
vV

Experimental Results (MolDyn): Execution time in seconds

160 500
unopt 450 unopt
120 —=-opt ‘;05‘; —&-opt
300

M S0
0 —g r— 1 0

2 3 8 16 kY4 64 128 2 4 8 16
BlueGene/P Cluster Power7 Cluster
400
‘00 1 — Performange |mprove.me.>nts. due
fo communication optimization on
200

128-node BlueGene/P

100 \ 32-node Nehalem

—

0 16-node Power7

2 4 8 16 32
Nehalam Cluster

“Communication Optimizations for Distributed-Memory X10 Programs”. Rajkishore Barik, Jisheng
Zhao, David Grove, Igor Peshansky, Zoran Budimli¢, Vivek Sarkar. IPDPS 2011.

Class 2 example (Collective and point-to-point
synchronization & reductions) --- Phasers

= New synchronization construct designed to unify

= Strict and fuzzy barriers

. ‘ Done
= Single statements °
Executing
= Asynchronous point-to-point synchronization O
Pending
= Asynchronous collectives __, Phaser

Synchronization

= Streaming computations
= Dynamic parallelism

Local
Dependency

= Semantic guarantees

= Dynamic phase ordering --- if 3 a phaser ph s.t. i1’s signal phase w.r.t. phis <i2’s
wait phase w.r.t. ph, then i1 must have completed before i2 started

= Deadlock freedom --- no deadlock possible with next and finish operations

= Determinism --- a data-race-free program with finish, async, futures, phasers must be
deterministic

= References
“Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point Synchronization”, J.Shirako,
D.Peixotto, V.Sarkar, W.Scherer, ICS 2008
= “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”, J.Shirako, D.Peixotto, V.Sarkar,
W.Scherer, IPDPS 2009
= “Hierarchical Phasers for Scalable Synchronization and Reduction”, J.Shirako, V.Sarkar, IPDPS 2010 ﬁ

3"\% RICE 11

Example of Point-to-point Synchronization with Phaser Array

finish {

phaser [] ph = new phaser[m+l];

for (int i = 1; i < m; i++)

async phased (ph[i]<SIG>,

ph[i-1]<WAIT>) {

for (int j = 1; j < n; Jj++) {
a[i][j] = foo(al[i][]j], alil[j-1]1, a[i-1][3-11);

next;

} // for
} // £inish

(12) o

(13) o

(14) o

S

\{

j —— 1 Loop carried dependence

sig(ph[1]) sig(ph[2]) sig (ph[3]) sig (ph[4])
wait(ph[0]) wait(ph[1]) wait (ph[2]) wait (ph[3])

A1 Az Az Ag

(i=hj=1) (=4 j=1) (i=3,j=1) (i=
ext—> néext——> néxt——>

(i=j=2) (i=j=2) (i=3/j=2) (i=4/j=2)
next—> negxt—> next—> n

(i=1,)j=3) (i=2)j=3) (i=3)j=3) (i=4,
xt—> xt—> xt—> next—

(=\j=a) (=8yj=4) (i=%)i=4) (i=4\= i

next—> next—> next—> n
12

Comparing OpenMP Barriers with Point-to-Point
Synchronization using Phasers Library in OpenMP

20

16.0%7

15

~A

14.9

10

Speedup vs. serial

Nehalem (8 cores)

“ OpenMP

Xeon (16 cores)

Fdtd-2d | Seidel-2d

“ Phasers

Fdtd-2d | Seidel-2d

Power7 (32 cores)

“Unifying Barrier and Point-to-Point Synchronization in OpenMP with Phasers”,
J. Shirako, K. Sharma, V. Sarkar, IWOMP 2011, June 2011.

13

Example of Asynchronous Reductions with Phaser
Accumulators

phaser ph new phaser (signalWait) ;
accumulator a = new accumulator (ph, accumulator.SUM, int.class);

accumulator b = new accumulator (ph, accumulator.MIN, double.class);

Allocation: Specify operator and type of accumulator

foreach (point [i] : [0:n-1]) phased (ph<signalWait>) ({
int iv = 2*i + j;
double dv = -1.5*i + j;

a.send(iv); b.send(dv); send: Send a value to accumulator
// Do other work before next

next; next: Barrier operation; advance the phase

int sum = a.result() .intValue ()
double min = b.result () .doubleValue() ;

\ result: Get the result from previous phase (no race condition)

% RICE 14 ﬁ‘

Data-Driven Futures (DDFs) for Deterministic Task
Parallelism --- creating Dynamic Dataflow graphs on the fly

Approach: separation of classical “futures” into data (DDF)
and control (async await) parts

- New DDF creation e.g., new Data DrivenFuture()

Put Fill in DDF and release any waiting async'’s

- Await An await clause on an async ensures that the async is not
scheduled until all input DDF’s become available; gets on
these input DDF’s will not block as a result

(Different from Ivar model, where task may block on each

RICE lvar access) - ﬁ

DDF Example

DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {

async await (left) useLeftChild();

async awalit (right) useRightChild();

async await (left, right) useBothChildren();

async left.put(leftChildCreator());

async right.put(rightChildCreator());

}

Reference: Sagnak Tasirlar, Vivek Sarkar, “Data-Driven Tasks and their Implementation,” ﬁ

RICE !CPP 2011 (to appear). 16

Classification and Properties of Parallel Programs

5) DRF-ALL

4) DLF-DRF-ALL

2) DLF-
DRF-DET

1) DLF-
DRF-DET-SER

%' RICE

17

= | egend
= DET = Deterministic
» DRF = Data-Race-Free
= DLF = DeadLock-Free
= SER = Serializable
= Subsets of task-parallel constructs

can be used to guarantee
membership in certain classes e.g.,

= [fan HJ program is data-race-free
and only uses async, finish, and

phaser constructs (no mutual

exclusion), then it is guaranteed to
belong to the DLF-DRF-DET class

= Adding async await yields

programs in the DRF-DET class

= Adding isolated yields programs in

the DRF-ALL class ﬁy

Class 3 example (Mutual exclusion)
--- Delauney Mesh Refinement in
Habanero-Java and Galois-Java

1: GaloisR 5

: —Tnew Lambda2Void<... >() {
public void call(GNode<Element> item,
ForeachContext<GNode<Element>> ctx)

5: if (!mesh.contains(item, MethodFlag.CHECK_CONFL
1: void doCavity(Triangle start) { 6: WorkNotUsefulException.throwException();
3: I start.isActive()) { 7: Cavity cavity = new Cavity(mesh);
4: Cavity ¢ = new Cavity(stm) : 8: cavity.initialize (item);
5: c.initialize(start); 9: cavity.build();
6 c.retriangulate(); 10: cavity.update() ;
// launch retriagnulation on new bad triangles. //remove the old data
7: Iterator bad = c.getBad().iterator(); 11: List<...> preNodes = cavity.getPre() .getNodes();
8: while (bad.hasNext()) { 12: for (int i = 0; i < preNodes.size(); i++)
9: final Triangle b = (Triangle)bad.next(); 13: mesh.remove (preNodes.get (i), MethodFlag.NONE);
10: doCavity(b);
} //add new data
14: Subgraph postSubgraph = cavity.getPost();
// if original bad triangle was NOT retriangulated, 15: List<...> postNodes = postSubgraph.getNodes();
// launch its retriangulation again 16: for (int i = 0; i < postNodes.size(); i++) {
11: if (start.isActive()) 17: GNode<Element> node = postNodes.get(i);
12: doCavity(start); 18: mesh.add(node, MethodFlag.NONE);
19: .NONE) ;
} // end isolated 20: if (element.isBad())
} 21: ctx.add(node, MethodFlag.NONE);
, }
13: void main() { 24: List<...> postEdges = postSubgraph.getEdges();
14: mesh = ... ; // Load from file 25: for (int i = 0; i < postEdges.size(); i++) {
15: initialBadTriangles = mesh.badTriangles(); 26: ObjectUndirectedEdge<...> edge = postEdges.get(i);
163-‘“ = initialBadTriangles.iterator(); 27: mesh.addEdge (edge.getSrc(), edge.getDst(),
17:(_finish 28: edge.getData(), MethodFlag.NONE);
18: while (it.hasNext()) {

19: final Triangle t = (Triangle) it.next(); 29: 1f (mesh.contains(item, MethodFlag.NONE)) {
20: if (t.isBad()) 30: ctx.add(item, MethodFlag.NONE);

21: Cavity.doCavity(t); }

22: }

19: } 31 }, Priority. first(ChunkedFIFO.class)

20: } . thenLocally(LIFO.class)) ;

% RICE Habanero-Java 18 Galois-Java

Delegated Isolation

= Challenge: scalable implementation of isolated with deadlock
safety and livelock safety when object-set is not known on
entry to isolated block

= Approach:

= Restrict attention to “async isolated” case
= replace non-async “isolated” by “finish async isolated”
= Task dynamically acquires ownership of each object accessed in
Isolated block (optimistic parallelism)

= On conflict, task A transfers all ownerships to conflicting task B and
delegates execution of isolated block to B

» Deadlock-freedom and livelock-freedom guarantees

= “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri,
V. Sarkar, OOPSLA 2011 (to appear)

’ 6

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

14 -

12 -

=
o
1

@ HJ (Global lock)

DSTM2 performance: — m- Chorus
0 962s w/ 1 thread —x — Java (FGL)
\ — A - - Galois
\\ 177s wi 16 threads —&— HJ (Delegated Isolation)
\
° \\ RY SRMAITTI @ veeennnn. " Y @:ccvernnenns @ vovvnnnn P ®

[%2]
©
c
(@]
(®}
(]
(%]
k=
(]
£
+—
HJ (SEQ)
0

threads

x b

2

Class 4 example: HC Hierarchical Place Trees for heterogeneous

architectures
PLO
D
PL1 PL2 PL7
W4
PL3 PL4 PL5 PL6
WO W1 W2 W3

|-

= Devices (GPU or FPGA) are represented as memory
module places and agent workers

async at(P) S
Creates new activity to execute statement S at place P (can be CPU, GPU, FPGA)

GPU memory configuration are fixed, while FPGA
memorv are reconfiaurable at runtime

L

PL

|PL

Physical memory

Cache

GPU memory

Reconfigurable FPGA

. — Implicit data movement

— EXxplicit data movement

EWX

EWx

CPU computation worker

Device agent worker

-Physically explicit data transfer between main memory and device memory

=Use of IN and OUT clauses to improve programmability of data transfers

-Device agent workers

=Perform asynchronous data copy and task launching for device

Heterogeneous testbed: Convey HC-1 + GPU

“Commodity” Intel Server Convey FPGA-based coprocessor
Application Application Engi AE
Exiding Bub pplication Engines (AEs) ot
(AEH) r;‘, —= ED Eat?
ZB\ e, & 3
Xeon Dual Core LV5138 [F559" Controller Hub | 80GB/s off-chip bandwidth
35W TDP Lok 90W Design Power
T3 . = s 3+ 3 3
Intel®l/0 <P A A A e A
Subs%%tem Memory \ :'// \ :'// \ ;"// \ :"// Memory :"// \ -:// \ -/r// \ r//

ard Intel® x86-64 Serve| Tesla C1060 rocessor

* x86-64 Linux 100GB/s off-chip bandwidth ped
ache-coherent memory
200W TDP

NSF Expeditions Center for Domain-Specific Computing (CDSC)
http://cdsc.ucla.edu

@RI' | | 22 “

Toolchain for Server-class CHP testbed

CnC-HC (Application Modeling)

Multi-core parallelism GPU programming FPGA design using
usin HatF))anero-C CUDA tasks called autoPilot, FPGA tasks
3 from Habanero-C called from Habanero-C

¥

¥

¥

Habanero-C runtime using Hierarchical Place Trees J

%' RICE 2

Experimental Results on Convey HC-1 testbed

= Pipeline: Denoise-->Registration (200 iterations)-->Segmentation (100 iterations)

- Esti E
Execution Time stimated Energy

) 30000 |
800 B OpenMP
600 1 B OpenMP £2000 B CNC-HC
] B CNC-HC 20000 W CPU+GPU
@ CPU+GPU+FPGA
sec 400 ¥/ ; gﬂ:gg3+FPGA J 15000 —
10000
200 1
5000
0- 0
OpenMP CPU+GPU OpenMP CPU+GPU
= Multi-images (4 images)
Execution Time Throughput
3000 -
2500 2.00 -
2000 { [CPU-only 1.50 4 m CPU-only
sec 1500 B CPU+GPU Images/min 1.00 ¥ W CPU+GPU
1000 B CPU+GPU+FPGA 0.50 ¥ W CPU+GPU+FPGA
5001 0.00
0 CPU-only

"CPU-only CPU+GPU+FPGA

Bridging the Gap between Evolutionary and
Revolutionary Solutions

= Exascale will cause a larger disruption at the intra-node level than at
the inter-node level

= |deal solution would be to design an integrated programming model
from scratch ... but can we also bridge between revolutionary intra-
node programming models and evolutionary inter-node programming
models?

= One possible approach

= |ntra-node runtime system with computation and communication workers
= Communication subsystem only interacts with communication workers

= Computation tasks execute on computation workers to support intra-node
programming constructs

= Computation tasks dispatch communication tasks on communication workers
= Termination of communication tasks may unblock some computation tasks
This approach can also be extended for reductions/collectives ﬁ
b

PRICE "

Prototype Integration of Habanero-C Computation
Workers with MPI Communication Workers

puII MP and submlt
steal tasks

steal tasks OQ

head
tail F——
push
| Pop tasks push MPs | | released
push tasks \ 4 continuation
Computation Computation | .| Communication |
Worker 1 [e Worker n WOerr

query submitted MP3~ LQQ

DQ: double-ended queue (deque), OQ: outbox queue, LQQ: local query queue

Similar prototypes also in progress for shmem and GASNet

“Integrating MPI with Asynchronous Task Parallelism®, Poster abstract, EuroMPI 2011.
Yonghong Yan, Sanjay Chatterjee, Zoran Budimlic, and Vivek Sarkar.

%' RICE | 2%

High-Level Declarative Programming Your Favorite DSL

: .
pthreads, mutexes, ...

