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Workshop Goals 

1.  Define objective criteria for assessing programming 
models, language features, compilers, and runtime 
systems and metrics for success. 

2.  Prioritize programming model, language, compiler and 
runtime challenges for Exascale systems. 

3.  Prioritize options for (i) evolutionary path, (ii) revolutionary 
path, and (iii) bridging the gap between evolutionary and 
revolutionary paths. 

4.  Lay out a roadmap, with options, timeline, and rough cost 
estimates for programming Exascale systems that are 
responsive to the needs of applications and future 
architectural constraints. 
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This Talk 

  Identification of four classes of intermediate-level 
programming constructs that will be necessary for 
mapping applications onto Exascale hardware 
  Focus is on “performance-aware” parallel constructs 

 Compiler and runtime should devote major effort to optimizing 
these constructs  

  Summary of some recent compiler and runtime 
implementation experiences with these constructs 

  Use of these constructs in bridging the gap between 
evolutionary and revolutionary solutions 
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Four classes of Intermediate-Level Programming Constructs 
1) Asynchronous tasks and data transfers e.g., 
  MPI: mpi_isend, mpi_irecv, mpi_wait 
  OpenMP: task, taskwait 
  Cilk: spawn, sync 
  CAF, UPC, Chapel: function shipping 
  X10: async, finish, asyncMemcpy, futures, foreach 
  Habanero: async, finish, asyncMemcpy, futures, async-await, forall 

2) Collective and point-to-point synchronization & reductions e.g., 
   MPI: mpi_send, mpi_recv, mpi_barrier, mpi_reduce,  
  OpenMP: barrier, reductions 
  Cilk: reducers 
  CAF, UPC, Chapel: barrier, reductions 
  X10: clocks, finish accumulators, conditional atomic 
  Habanero: phasers, phaser accumulators, finish accumulators 
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3) Mutual exclusion e.g., 
  OpenMP: atomic, critical 
  X10, Chapel, STM systems: atomic 
  Galois: operations on unordered sets 
  Habanero: isolated 

4) Locality control for task and data distribution e.g., 
  MPI: all-local (shared-nothing) 
  CAF, Chapel, UPC, X10: PGAS storage model (local vs. remote) 
  Sequoia: hierarchical storage model w/ static tasks 
  Habanero: hierarchical place tree w/ dynamic parallelism, heterogeneity 

  Scalable implementations of these constructs require first-class compiler and 
runtime support; evolutionary solutions are possible with only runtime support 

  Constructs can be exposed to the programmer by extending current low-level 
programming models, or can be generated from high-level programming models 

Four classes of Intermediate-Level Programming Constructs 
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Implementation Experiences with these constructs 
  Habanero-Java 

  Pedagogic language and implementation used to teach sophomore-level class on 
Fundamentals of Parallel Programming at Rice (COMP 322) 

  Derived from Java-based v1.5 of X10 language from 2007 
  Habanero-C  

•  Habanero-C optimizing compiler builds on Rose and LLVM 
•  New RoseLLVM translator improves communication between high-level & low-level optimizers 

•  Habanero-C runtime supports work-stealing and work-sharing schedulers across 
homogeneous and heterogeneous processors (hybrid task scheduling across CPU 
computation workers, CPU communication workers, GPU workers, FPGA workers) 

•  X10 v2.0.6 and 2.1.1 
•  First-class PGAS support with extensions for dynamic parallelism and heterogeneity (GPUs)  
•  Communication optimizations implemented in X10 compiler front-end 

•  OpenMP 3.0 
•  Implementation of phasers as library extension to OpenMP 
•  Enhancements to OpenMP task scheduling (collaboration with IBM XL compiler team) 
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Class 1 example (Lightweight asynchronous tasks and 
data transfers) --- Communication Optimizations for 
Distributed-Memory X10 Programs 

only three scalar 
values are communicated & no 
RR handles are communicated 

// Original Code 
class C { 
global var x; 
global var y; 
} 
val c1:C = new C(2,3); 
val c2:C = new C(3,4); 
at (p) async { 
... c1.x ...; 
... c2.x ...; 
... c2.y ...; 
} 

// Transformed Code 
val c1:C = new C(2,3); 
val c2:C = new C(3,4); 
val c1_x = c1.x; 
val c2_x = c2.x; 
val c2_y = c2.y; 
at (p) async { 
... c1_x ...; 
... c2_x ...; 
... c2_y ...; 
} 

Communication  
Buffer RR(c1) 

RR(c2) 

RR(c1) 

RR(c2) 

c1.x 
c1.y 

c2.x 
c2.y 

c1.loc 
&c1 

c2.loc 
&c2 

Communication  
Buffer 

c1_x 
c2_x 
c2_y 
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Communication Optimization: Scalar 
Replacement for Global Arrays 

only two scalar 
values v_i and v_j are 
communicated 

// Original Code 
val i:int = ...; 
val j:int = ...; 
val v:Array[int](1) = new Array[int](n); 
at (p) async { 
... v(i); 
... v(j); 
} 

// Transformed Code 
val i:int = ...; 
val j:int = ...; 
val v:Array[int](1) = new Array[int](n); 
val v_i:int = v(i); 
val v_j:int= v(j); 
at (p) async { 
... v_i; 
... v_j; 
} 

RR(v) 

i 

v(0) 

j 
RR(v) 

v(1) 
... 

v.loc 
&v 

Communication  
Buffer 

v_i 
v_j 

v(n) 
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Experimental Results (MolDyn): Execution time in seconds 

 Performance improvements due 
to communication optimization on 

128-node BlueGene/P 
32-node Nehalem 
16-node Power7 

BlueGene/P Cluster Power7 Cluster 

Nehalam Cluster 

“Communication Optimizations for Distributed-Memory X10 Programs”.  Rajkishore Barik, Jisheng 
Zhao, David Grove, Igor Peshansky, Zoran Budimlić, Vivek Sarkar. IPDPS 2011. 
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  New synchronization construct designed to unify 
  Strict and fuzzy barriers 
  Single statements 
  Asynchronous point-to-point synchronization 
  Asynchronous collectives 
  Streaming computations 
  Dynamic parallelism 

  Semantic guarantees 
  Dynamic phase ordering --- if ∃ a phaser ph s.t. i1’s signal phase w.r.t. ph is < i2’s 

wait phase w.r.t. ph, then i1 must have completed before i2 started 
  Deadlock freedom --- no deadlock possible with next and finish operations 
  Determinism --- a data-race-free program with finish, async, futures, phasers must be 

deterministic 
  References 

  “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point Synchronization”, J.Shirako, 
D.Peixotto, V.Sarkar, W.Scherer, ICS 2008 

  “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”, J.Shirako, D.Peixotto, V.Sarkar, 
W.Scherer, IPDPS 2009 

  “Hierarchical Phasers for Scalable Synchronization and Reduction”, J.Shirako, V.Sarkar, IPDPS 2010 

Class 2 example (Collective and point-to-point 
synchronization & reductions) --- Phasers 
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Example of Point-to-point Synchronization with Phaser Array 
finish { 
  phaser [] ph = new phaser[m+1]; 
  for (int i = 1; i < m; i++) 
    async phased (ph[i]<SIG>, ph[i-1]<WAIT>){ 
      for (int j = 1; j < n; j++) { 
        a[i][j] = foo(a[i][j], a[i][j-1], a[i-1][j-1]); 
        next; 
      } // for 
} // finish 

(i=1, j=1) 

(i=1, j=2) 

(i=1, j=3) 

(i=1, j=4) 

(i=2, j=1) 

(i=2, j=2) 

(i=2, j=3) 

(i=3, j=1) 

(i=3, j=2) 

(i=4, j=1) 

(i=2, j=4) 

(i=3, j=3) 

(i=3, j=4) 

(i=4, j=2) 

(i=4, j=3) 

(i=4, j=4) 

sig(ph[1]) 
wait(ph[0]) 

sig (ph[3]) 
wait (ph[2]) 

sig(ph[2]) 
wait(ph[1]) 

sig (ph[4]) 
wait (ph[3]) 

next next next next 

next next next next 

next next next next 

next next next next 
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Comparing OpenMP Barriers with Point-to-Point 
Synchronization using Phasers Library in OpenMP 
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OpenMP Phasers 

“Unifying Barrier and Point-to-Point Synchronization in OpenMP with Phasers”, 
J. Shirako, K. Sharma, V. Sarkar, IWOMP 2011, June 2011. 
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Example of Asynchronous Reductions with Phaser 
Accumulators  
phaser ph = new phaser(signalWait); 
accumulator a = new accumulator(ph, accumulator.SUM, int.class); 
accumulator b = new accumulator(ph, accumulator.MIN, double.class); 

foreach (point [i] : [0:n-1]) phased (ph<signalWait>) { 
   int iv = 2*i + j; 
   double dv = -1.5*i + j; 
   a.send(iv); b.send(dv); 

   // Do other work before next 

   next; 

   int sum = a.result().intValue(); 
   double min = b.result().doubleValue(); 
   … 
} 

send: Send a value to accumulator 

next: Barrier operation; advance the phase 

result: Get the result from previous phase (no race condition) 

Allocation: Specify operator and type of accumulator 
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Data-Driven Futures (DDFs) for Deterministic Task 
Parallelism --- creating Dynamic Dataflow graphs on the fly 

 Approach: separation of classical “futures” into data (DDF) 
and control (async await) parts 

DDF creation  e.g., new Data DrivenFuture() 

Put Fill in DDF and release any waiting async’s 

Await An await clause on an async ensures that the async is not 
scheduled until all input DDF’s become available; gets on 
these input DDF’s will not block as a result 
(Different from Ivar model, where task may block on each 
Ivar access)  

New   
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DDF Example 

DataDrivenFuture left = new DataDrivenFuture(); 
DataDrivenFuture right = new DataDrivenFuture(); 
finish { 
    async await ( left ) useLeftChild(); 
    async await ( right ) useRightChild(); 
    async await ( left, right ) useBothChildren(); 
    async left.put(leftChildCreator()); 
    async right.put(rightChildCreator()); 
} 

Reference: Sağnak Taşırlar, Vivek Sarkar, ‘‘Data-Driven Tasks and their Implementation,’’ 
ICPP 2011 (to appear). 
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Classification and Properties of Parallel Programs 
  Legend 

  DET = Deterministic 
  DRF = Data-Race-Free 
  DLF = DeadLock-Free 
  SER = Serializable 

  Subsets of task-parallel constructs 
can be used to guarantee 
membership in certain classes e.g., 
  If an HJ  program is data-race-free 
and only uses async, finish, and 
phaser constructs (no mutual 
exclusion), then it is guaranteed to 
belong to the DLF-DRF-DET class 
  Adding async await yields 
programs in the DRF-DET class 
  Adding isolated yields programs in 
the DRF-ALL class 

7) ALL 

6) DET 
5) DRF-ALL 

4) DLF-DRF-ALL 

1) DLF- 
DRF-DET-SER 

3) DRF-DET 

2) DLF- 
DRF-DET 
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Class 3 example (Mutual exclusion) 
--- Delauney Mesh Refinement in 
Habanero-Java and Galois-Java 
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Delegated Isolation  
  Challenge: scalable implementation of isolated with deadlock 

safety and livelock safety when object-set is not known on 
entry to isolated block 

  Approach: 
  Restrict attention to “async isolated” case 

  replace non-async “isolated” by “finish async isolated” 
  Task dynamically acquires ownership of each object accessed in 

isolated block (optimistic parallelism) 
  On conflict, task A transfers all ownerships to conflicting task B and 

delegates execution of isolated block to B 
  Deadlock-freedom and livelock-freedom guarantees 

  “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, 
V. Sarkar, OOPSLA 2011 (to appear) 
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Performance: DMR benchmark on 16-core Xeon SMP 
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)  

DSTM2 performance: 
962s w/ 1 thread    
177s w/ 16 threads  
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Class 4 example: HC Hierarchical Place Trees for heterogeneous 
architectures  

PL0 

PL1 PL2 

PL3 PL4 PL5 PL6 

PL7 PL8 

W0 W1 W2 W3 

W4 W5 

PL 

PL 

PL 

PL 

Physical memory 

Cache 

GPU memory 

Reconfigurable FPGA 

Implicit data movement 
Explicit data movement 

Wx CPU computation worker 

Wx Device agent worker 
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Heterogeneous testbed: Convey HC-1 + GPU 

Xeon Dual Core LV5138 
35W TDP 

Tesla C1060 
100GB/s off-chip bandwidth 
200W TDP 

XC5LX330 FPGAs 
80GB/s off-chip bandwidth 
90W Design Power 

NSF Expeditions Center for Domain-Specific Computing (CDSC) 
http://cdsc.ucla.edu 
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Toolchain for Server-class CHP testbed 

CnC-HC (Application Modeling) 

Multi-core parallelism 
using Habanero-C 

GPU programming 
CUDA tasks called 
from Habanero-C 

FPGA design using 
autoPilot, FPGA tasks 

called from Habanero-C 

Habanero-C runtime using Hierarchical Place Trees 



24 

Experimental Results on Convey HC-1 testbed 
  Pipeline: Denoise-->Registration (200 iterations)-->Segmentation (100 iterations) 

  Multi-images (4 images) 
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Bridging the Gap between Evolutionary and 
Revolutionary Solutions 
  Exascale will cause a larger disruption at the intra-node level than at 

the inter-node level 
  Ideal solution would be to design an integrated programming model 

from scratch … but can we also bridge between revolutionary intra-
node programming models and evolutionary inter-node programming 
models? 

   One possible approach 
  Intra-node runtime system with computation and communication workers 

  Communication subsystem only interacts with communication workers 

  Computation tasks execute on computation workers to support intra-node 
programming constructs 

  Computation tasks dispatch communication tasks on communication workers 
  Termination of communication tasks may unblock some computation tasks 
  This approach can also be extended for reductions/collectives 
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Prototype Integration of Habanero-C Computation 
Workers with MPI Communication Workers 

!"!"#$%&'()(*#(#"+%(%(",#(+%(-."#"!"$%/&$0"+%(%(."$""!"'$12'"+%(34"+%(%(

“Integrating MPI with Asynchronous Task Parallelism”, Poster abstract, EuroMPI 2011.  
Yonghong Yan, Sanjay Chatterjee, Zoran Budimlic, and Vivek Sarkar.   

Similar prototypes also in progress for shmem and GASNet  
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