
Programming Constructs for Exascale Systems
and their Implementation Challenges

Vivek Sarkar
Rice University

vsarkar@rice.edu
http://habanero.rice.edu

Workshop on Exascale Programming Challenges
July 27 – 29, 2011, Marina del Rey, CA

2

Workshop Goals

1.  Define objective criteria for assessing programming
models, language features, compilers, and runtime
systems and metrics for success.

2.  Prioritize programming model, language, compiler and
runtime challenges for Exascale systems.

3.  Prioritize options for (i) evolutionary path, (ii) revolutionary
path, and (iii) bridging the gap between evolutionary and
revolutionary paths.

4.  Lay out a roadmap, with options, timeline, and rough cost
estimates for programming Exascale systems that are
responsive to the needs of applications and future
architectural constraints.

3 pthreads, mutexes, …

OpenMP

CUDA MPI

GASNet OpenCL

NESL

Your Favorite DSL

Trilinos

ArBB
CnC

Galois

Orc

4

This Talk

  Identification of four classes of intermediate-level
programming constructs that will be necessary for
mapping applications onto Exascale hardware
  Focus is on “performance-aware” parallel constructs

 Compiler and runtime should devote major effort to optimizing
these constructs

  Summary of some recent compiler and runtime
implementation experiences with these constructs

  Use of these constructs in bridging the gap between
evolutionary and revolutionary solutions

5

Four classes of Intermediate-Level Programming Constructs
1) Asynchronous tasks and data transfers e.g.,
  MPI: mpi_isend, mpi_irecv, mpi_wait
  OpenMP: task, taskwait
  Cilk: spawn, sync
  CAF, UPC, Chapel: function shipping
  X10: async, finish, asyncMemcpy, futures, foreach
  Habanero: async, finish, asyncMemcpy, futures, async-await, forall

2) Collective and point-to-point synchronization & reductions e.g.,
  MPI: mpi_send, mpi_recv, mpi_barrier, mpi_reduce,
  OpenMP: barrier, reductions
  Cilk: reducers
  CAF, UPC, Chapel: barrier, reductions
  X10: clocks, finish accumulators, conditional atomic
  Habanero: phasers, phaser accumulators, finish accumulators

6

3) Mutual exclusion e.g.,
  OpenMP: atomic, critical
  X10, Chapel, STM systems: atomic
  Galois: operations on unordered sets
  Habanero: isolated

4) Locality control for task and data distribution e.g.,
  MPI: all-local (shared-nothing)
  CAF, Chapel, UPC, X10: PGAS storage model (local vs. remote)
  Sequoia: hierarchical storage model w/ static tasks
  Habanero: hierarchical place tree w/ dynamic parallelism, heterogeneity

  Scalable implementations of these constructs require first-class compiler and
runtime support; evolutionary solutions are possible with only runtime support

  Constructs can be exposed to the programmer by extending current low-level
programming models, or can be generated from high-level programming models

Four classes of Intermediate-Level Programming Constructs

7

Implementation Experiences with these constructs
  Habanero-Java

  Pedagogic language and implementation used to teach sophomore-level class on
Fundamentals of Parallel Programming at Rice (COMP 322)

  Derived from Java-based v1.5 of X10 language from 2007
  Habanero-C

•  Habanero-C optimizing compiler builds on Rose and LLVM
•  New RoseLLVM translator improves communication between high-level & low-level optimizers

•  Habanero-C runtime supports work-stealing and work-sharing schedulers across
homogeneous and heterogeneous processors (hybrid task scheduling across CPU
computation workers, CPU communication workers, GPU workers, FPGA workers)

•  X10 v2.0.6 and 2.1.1
•  First-class PGAS support with extensions for dynamic parallelism and heterogeneity (GPUs)
•  Communication optimizations implemented in X10 compiler front-end

•  OpenMP 3.0
•  Implementation of phasers as library extension to OpenMP
•  Enhancements to OpenMP task scheduling (collaboration with IBM XL compiler team)

8

Class 1 example (Lightweight asynchronous tasks and
data transfers) --- Communication Optimizations for
Distributed-Memory X10 Programs

only three scalar
values are communicated & no
RR handles are communicated

// Original Code
class C {
global var x;
global var y;
}
val c1:C = new C(2,3);
val c2:C = new C(3,4);
at (p) async {
... c1.x ...;
... c2.x ...;
... c2.y ...;
}

// Transformed Code
val c1:C = new C(2,3);
val c2:C = new C(3,4);
val c1_x = c1.x;
val c2_x = c2.x;
val c2_y = c2.y;
at (p) async {
... c1_x ...;
... c2_x ...;
... c2_y ...;
}

Communication
Buffer RR(c1)

RR(c2)

RR(c1)

RR(c2)

c1.x
c1.y

c2.x
c2.y

c1.loc
&c1

c2.loc
&c2

Communication
Buffer

c1_x
c2_x
c2_y

9

Communication Optimization: Scalar
Replacement for Global Arrays

only two scalar
values v_i and v_j are
communicated

// Original Code
val i:int = ...;
val j:int = ...;
val v:Array[int](1) = new Array[int](n);
at (p) async {
... v(i);
... v(j);
}

// Transformed Code
val i:int = ...;
val j:int = ...;
val v:Array[int](1) = new Array[int](n);
val v_i:int = v(i);
val v_j:int= v(j);
at (p) async {
... v_i;
... v_j;
}

RR(v)

i

v(0)

j
RR(v)

v(1)
...

v.loc
&v

Communication
Buffer

v_i
v_j

v(n)

10

Experimental Results (MolDyn): Execution time in seconds

 Performance improvements due
to communication optimization on

128-node BlueGene/P
32-node Nehalem
16-node Power7

BlueGene/P Cluster Power7 Cluster

Nehalam Cluster

“Communication Optimizations for Distributed-Memory X10 Programs”. Rajkishore Barik, Jisheng
Zhao, David Grove, Igor Peshansky, Zoran Budimlić, Vivek Sarkar. IPDPS 2011.

11

  New synchronization construct designed to unify
  Strict and fuzzy barriers
  Single statements
  Asynchronous point-to-point synchronization
  Asynchronous collectives
  Streaming computations
  Dynamic parallelism

  Semantic guarantees
  Dynamic phase ordering --- if ∃ a phaser ph s.t. i1’s signal phase w.r.t. ph is < i2’s

wait phase w.r.t. ph, then i1 must have completed before i2 started
  Deadlock freedom --- no deadlock possible with next and finish operations
  Determinism --- a data-race-free program with finish, async, futures, phasers must be

deterministic
  References

  “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point Synchronization”, J.Shirako,
D.Peixotto, V.Sarkar, W.Scherer, ICS 2008

  “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”, J.Shirako, D.Peixotto, V.Sarkar,
W.Scherer, IPDPS 2009

  “Hierarchical Phasers for Scalable Synchronization and Reduction”, J.Shirako, V.Sarkar, IPDPS 2010

Class 2 example (Collective and point-to-point
synchronization & reductions) --- Phasers

12

Example of Point-to-point Synchronization with Phaser Array
finish {
 phaser [] ph = new phaser[m+1];
 for (int i = 1; i < m; i++)
 async phased (ph[i]<SIG>, ph[i-1]<WAIT>){
 for (int j = 1; j < n; j++) {
 a[i][j] = foo(a[i][j], a[i][j-1], a[i-1][j-1]);
 next;
 } // for
} // finish

(i=1, j=1)

(i=1, j=2)

(i=1, j=3)

(i=1, j=4)

(i=2, j=1)

(i=2, j=2)

(i=2, j=3)

(i=3, j=1)

(i=3, j=2)

(i=4, j=1)

(i=2, j=4)

(i=3, j=3)

(i=3, j=4)

(i=4, j=2)

(i=4, j=3)

(i=4, j=4)

sig(ph[1])
wait(ph[0])

sig (ph[3])
wait (ph[2])

sig(ph[2])
wait(ph[1])

sig (ph[4])
wait (ph[3])

next next next next

next next next next

next next next next

next next next next

13

Comparing OpenMP Barriers with Point-to-Point
Synchronization using Phasers Library in OpenMP

1.7
3.4

4.9
6.2

5.0

8.4

16.0

9.7

14.9

1.9

5.9
7.1

6.3
8.0

12.1

16.9

11.3

18.7

0

5

10

15

20

SOR Fdtd-2d Seidel-2d SOR Fdtd-2d Seidel-2d SOR Fdtd-2d Seidel-2d

Nehalem (8 cores) Xeon (16 cores) Power7 (32 cores)

S
p

ee
d

u
p

 v
s.

 s
er

ia
l

OpenMP Phasers

“Unifying Barrier and Point-to-Point Synchronization in OpenMP with Phasers”,
J. Shirako, K. Sharma, V. Sarkar, IWOMP 2011, June 2011.

14

Example of Asynchronous Reductions with Phaser
Accumulators
phaser ph = new phaser(signalWait);
accumulator a = new accumulator(ph, accumulator.SUM, int.class);
accumulator b = new accumulator(ph, accumulator.MIN, double.class);

foreach (point [i] : [0:n-1]) phased (ph<signalWait>) {
 int iv = 2*i + j;
 double dv = -1.5*i + j;
 a.send(iv); b.send(dv);

 // Do other work before next

 next;

 int sum = a.result().intValue();
 double min = b.result().doubleValue();
 …
}

send: Send a value to accumulator

next: Barrier operation; advance the phase

result: Get the result from previous phase (no race condition)

Allocation: Specify operator and type of accumulator

15

Data-Driven Futures (DDFs) for Deterministic Task
Parallelism --- creating Dynamic Dataflow graphs on the fly

 Approach: separation of classical “futures” into data (DDF)
and control (async await) parts

DDF creation e.g., new Data DrivenFuture()

Put Fill in DDF and release any waiting async’s

Await An await clause on an async ensures that the async is not
scheduled until all input DDF’s become available; gets on
these input DDF’s will not block as a result
(Different from Ivar model, where task may block on each
Ivar access)

New

16

DDF Example

DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {
 async await (left) useLeftChild();
 async await (right) useRightChild();
 async await (left, right) useBothChildren();
 async left.put(leftChildCreator());
 async right.put(rightChildCreator());
}

Reference: Sağnak Taşırlar, Vivek Sarkar, ‘‘Data-Driven Tasks and their Implementation,’’
ICPP 2011 (to appear).

17

Classification and Properties of Parallel Programs
  Legend

  DET = Deterministic
  DRF = Data-Race-Free
  DLF = DeadLock-Free
  SER = Serializable

  Subsets of task-parallel constructs
can be used to guarantee
membership in certain classes e.g.,
  If an HJ program is data-race-free
and only uses async, finish, and
phaser constructs (no mutual
exclusion), then it is guaranteed to
belong to the DLF-DRF-DET class
  Adding async await yields
programs in the DRF-DET class
  Adding isolated yields programs in
the DRF-ALL class

7) ALL

6) DET
5) DRF-ALL

4) DLF-DRF-ALL

1) DLF-
DRF-DET-SER

3) DRF-DET

2) DLF-
DRF-DET

18

Class 3 example (Mutual exclusion)
--- Delauney Mesh Refinement in
Habanero-Java and Galois-Java

19

Delegated Isolation
  Challenge: scalable implementation of isolated with deadlock

safety and livelock safety when object-set is not known on
entry to isolated block

  Approach:
  Restrict attention to “async isolated” case

  replace non-async “isolated” by “finish async isolated”
  Task dynamically acquires ownership of each object accessed in

isolated block (optimistic parallelism)
  On conflict, task A transfers all ownerships to conflicting task B and

delegates execution of isolated block to B
  Deadlock-freedom and livelock-freedom guarantees

  “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri,
V. Sarkar, OOPSLA 2011 (to appear)

20

!

"

#

$

%

&!

&"

&#

& " # $ % &! &" &# &$

'()
*+
(,
+-*

./
,0

-+

1+'23*40-

56+789/:49+9/.;<
=2/3>-
64?4+7@8A<
849/(-
56+7B*9*C4'*0+D-/94'(/,<

56 7EFG<

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

DSTM2 performance:
962s w/ 1 thread
177s w/ 16 threads

21

Class 4 example: HC Hierarchical Place Trees for heterogeneous
architectures

PL0

PL1 PL2

PL3 PL4 PL5 PL6

PL7 PL8

W0 W1 W2 W3

W4 W5

PL

PL

PL

PL

Physical memory

Cache

GPU memory

Reconfigurable FPGA

Implicit data movement
Explicit data movement

Wx CPU computation worker

Wx Device agent worker

22

Heterogeneous testbed: Convey HC-1 + GPU

Xeon Dual Core LV5138
35W TDP

Tesla C1060
100GB/s off-chip bandwidth
200W TDP

XC5LX330 FPGAs
80GB/s off-chip bandwidth
90W Design Power

NSF Expeditions Center for Domain-Specific Computing (CDSC)
http://cdsc.ucla.edu

23

Toolchain for Server-class CHP testbed

CnC-HC (Application Modeling)

Multi-core parallelism
using Habanero-C

GPU programming
CUDA tasks called
from Habanero-C

FPGA design using
autoPilot, FPGA tasks

called from Habanero-C

Habanero-C runtime using Hierarchical Place Trees

24

Experimental Results on Convey HC-1 testbed
  Pipeline: Denoise-->Registration (200 iterations)-->Segmentation (100 iterations)

  Multi-images (4 images)

25

Bridging the Gap between Evolutionary and
Revolutionary Solutions
  Exascale will cause a larger disruption at the intra-node level than at

the inter-node level
  Ideal solution would be to design an integrated programming model

from scratch … but can we also bridge between revolutionary intra-
node programming models and evolutionary inter-node programming
models?

  One possible approach
  Intra-node runtime system with computation and communication workers

  Communication subsystem only interacts with communication workers

  Computation tasks execute on computation workers to support intra-node
programming constructs

  Computation tasks dispatch communication tasks on communication workers
  Termination of communication tasks may unblock some computation tasks
  This approach can also be extended for reductions/collectives

26

Prototype Integration of Habanero-C Computation
Workers with MPI Communication Workers

!"!"#$%&'()(*#(#"+%(%(",#(+%(-."#"!"$%/&$0"+%(%(."$""!"'$12'"+%(34"+%(%(

“Integrating MPI with Asynchronous Task Parallelism”, Poster abstract, EuroMPI 2011.
Yonghong Yan, Sanjay Chatterjee, Zoran Budimlic, and Vivek Sarkar.

Similar prototypes also in progress for shmem and GASNet

27 pthreads, mutexes, …

OpenMP

CUDA MPI

GASNet OpenCL

NESL

Your Favorite DSL

Trilinos

ArBB
CnC

Galois

Orc

