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Impact of Languages 
and Compilers

 Languages and Compilers have drastically 
improved the programmer productivity
 Ease of expression and construction of large programs

 High Level Languages
 Object Oriented Languages

 Elimination of many classes of bugs
 Managed Memory
 Type Safety

 Fully portable across all hardware
 Instruction Level Parallelism

 …except in high performance programming!



Impact of Languages 
and Compilers in parallelism

 Parallel programming still feels like 
assembly level programming
 All the hardware features are fully exposed

 Need to explicitly manage  no portability 
 Many classes of nasty bugs 

 Deadlocks, race conditions etc. 



Success Criteria for a Compiler 

1. Effective
2. Stable
3. Portable
4. Scalable
5. Simple



1: Effective

 Options are obscured
 Impossible to identify, 

evaluate, select
�

 Options not available
 In a local minima
 Heroic effort needed to get out

�

 Compiler optimizations has to select the best choice among 
all possibilities, but…

 To be effective compiler
 Restrict the choices when a property is hard to automate or constant 

across architectures of current and future           expose to the user
 Expose ones that are automatable and variable  hide from the user
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2: Stable

 Simple change in the program should not 
drastically change the performance!
 Otherwise need to understand the compiler 

inside-out
 Programmers want to treat the compiler as a 

black box



3: Portable
 Work on the spectrum of current architectures

 Terrascale, petascale

 Need to be “Future-Proof”
 Ex: heterogeneous architectures  

 Cannot hardcode parameters that’ll change



4: Scalable 
 Works well on your small cluster is good
 …but will it work the same work on Jaguar? 
 How about the exascale machines?



5: Simple 
 Aggressive analysis and complex transformation lead to:

 Buggy compilers!
 Programmers want to trust their compiler!
 How do you manage a software project when the compiler is broken?

 Long time to develop

 Simple compiler ⇒ fast compile-times 
 Current compilers are too complex!

Compiler Lines of Code
GNU GCC ~ 1.2 million

SUIF ~ 250,000

Open Research Compiler ~3.5 million

Trimaran ~ 800,000

StreamIt ~ 300,000



A Success Story: Register Allocation
 Effective

 Every architecture has registers at the bottom of the memory hierarchy 
 All the registers were hidden from the users

 Early C let the users bound registers to variables, but now hidden from the user
 Users are exposed to identifying reg allocatable variables (i.e. with volatile)
 Allocating a variable to a register reduce mem bandwidth  clear winner

 Stable
 Local optimization. If you miss one, no global consequence 

 Portable
 Variations between hardware (# of regs, special purpose regs) is exposed 

and managed by the compiler
 Scalable

 Local problem, out of Moore’s curve  scaling is not an issue
 Simple

 Graph coloring and spilling heuristics is (now) trivial



The Dream:
Automatic Parallelization
 Identify loops where each 

iteration can run in parallel
 DOALL parallelism

 What Matters
 Parallelism Coverage
 Parallelism Granularity 

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE
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Why Automatic Parallelism Failed
 Lack of Effectiveness

 Sequential description obscures inherent parallelism
 Need heroic analysis

 Lack of Scalability
 Amdhal’s law: increased parallelism  more parallelism coverage
 Need more heroic analysis

 Lack of Stability
 Granularity of Parallelism
 Small changes have a large impact

 Parallelize one additional statement  change the granularity
 Needs even more heroic analysis

 Lack of Simplicity
 All these heroic analyses  A hugely complex compiler



The Reality: MPI + X
 All the burden on the programmer

 Parallelization
 Computation and Data partitioning
 Communication orchestration



Why Compilers will not succeed with 
MPI+X

 Lack of Effectiveness
 Programmer binds most important decisions
 Not too much choice exposed to the compiler

 Lack of Portability
 Data partitioning and communication orchestration

 Early binding to the given architecture
 Heroic analysis will be needed to change automatically

 MP+OpenMP+Cuda+???
 The partitioning match the current components
 Heterogeneous mix will change in the future

 Lack of Scalability
 Hard to scale when hard bound to current machines



If we have a Revolution, what should 
it be? 
 A new programming model/language that….

 Will take much of the burden of away from the programmer
 Managing the architectural features
 Tuning for performance 

 Will make some classes of hard problems completely go away
 No race conditions or deadlocks

 Will make is possible for the compiler to “do the right thing”
 Able to optimize by taking advantage of all the capabilities
 Able to provide performance portability for current and future machines

 Will make is possible for experts to “help” the compiler
 A performance guru can provide patterns and transformations that are 

specific to the given application

 A new compiler that will not let the programmers down!



Selecting between the programmer 
and the compiler

 Let the programmer handle features that are 
impossible to automate
But…make them constant across all current and 
future architectures
 Get the programmers to expose maximum 

concurrency inherent to the algorithm
 Get the programmers to over partition the data 

(perhaps hierarchically) 
 Get the programmer to provide more than one choice 

of algorithm and data partition



Selecting between the programmer 
and the compiler

 Let the compiler handle features that change 
across architectures
 Managing parallelism
 Managing heterogeneity
 Managing data partitioning
 Managing communication orchestration  



What happens if these are still too 
hard for the compiler to handle?

 Provide hooks so expert performance gurus can 
intervene when needed

 Invest in developing compiler technology
 Wait patiently until the compiler people get 

it(hopefully!) working



Problem with High Performance 
Languages

 There are no new ideas in high 
performance languages
 No new constructs
 No new programming models

 Either…
 We have discovered all there is to find
 We have lost the capability to find new ones



Why it is hard to evolve a new 
language (feature)
 Test languages are different from production languages

 Test language: experiment with a couple of features
 Production language: feature complete 

 Integrate good features from multiple (test) languages

 Languages need to evolve
 Hard to get it right the first time
 Most user interface designs processes are set around rapid 

evolution with ample user feedback

 Need input from programmers to evolve
 Need a lot of programmers to use the language

 Different programmers think differently
 Need programmers to use it for a long time

 First impression is not what makes a good language
 Measure the productivity of a trained programmer in the language 



Why it is hard to evolve a new 
language (feature)
 Market forces work against new languages

 Primary criteria for adoption is large number of existing users

 There is nothing in it for a programmer
 Hard to make a long-term investment

 The language may not last
 At best, it’ll keep changing 

 Has to deal with bugs
 The compiler will be buggy

 Has to deal with incomplete systems
 Important features will be missing
 Tools will be missing

 More promise than reality
 Compiler optimizable does not mean optimizations will be 

implemented…or works well.



My personal experience 
 We developed the StreamIt language and compiler

 A high performance language for the static subset of the streaming domain
 A great optimizing compiler

 We did a extensive evaluation of the language 
 65 programs
 34,000 lines of code
 Written by 22 students
 Over 8 year period

 An Empirical Characterization of Stream Programs and its Implications for 
Language and Compiler Design [PACT2010] 

 Extremely painful to do 
 Could not get outside “users” (…but many compiler researchers)
 Had to find my own cadre of students (Meng and undergrad)
 Still none of them were domain experts or professional programmers

 This type of evaluation is very rare



Proposal: A National Center for 
Programming Language Evaluation

 A Virtual Center 
 Access to many professional programmers with difference skills
 Infrastructure for scientific and unbiased evaluation

 Evaluation process akin to Drug Trials
 Stage 1:

 Select 20 language/feature projects
 One week evaluation with 5 to 15 programmers
 Write a set of small kernels 

 Stage 2:
 Down select 4 to 5 projects
 3 to 6 month evaluation by 20 to 40 programmers
 In one or two teams, develop a substantial application

 Stage 3:
 Down select 1 to 2 projects
 Provide support to build/improve the tools and the compiler
 One year effort by 50 to 100 programmers to port a real system
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