
Why Compilers Have
Failed To Support 
HPC Programmers

and 
What Can We Do About It

Saman Amarasinghe
Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory



Impact of Languages 
and Compilers

 Languages and Compilers have drastically 
improved the programmer productivity
 Ease of expression and construction of large programs

 High Level Languages
 Object Oriented Languages

 Elimination of many classes of bugs
 Managed Memory
 Type Safety

 Fully portable across all hardware
 Instruction Level Parallelism

 …except in high performance programming!



Impact of Languages 
and Compilers in parallelism

 Parallel programming still feels like 
assembly level programming
 All the hardware features are fully exposed

 Need to explicitly manage  no portability 
 Many classes of nasty bugs 

 Deadlocks, race conditions etc. 



Success Criteria for a Compiler 

1. Effective
2. Stable
3. Portable
4. Scalable
5. Simple



1: Effective

 Options are obscured
 Impossible to identify, 

evaluate, select
�

 Options not available
 In a local minima
 Heroic effort needed to get out

�

 Compiler optimizations has to select the best choice among 
all possibilities, but…

 To be effective compiler
 Restrict the choices when a property is hard to automate or constant 

across architectures of current and future           expose to the user
 Expose ones that are automatable and variable  hide from the user

� ����
���

���
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�



2: Stable

 Simple change in the program should not 
drastically change the performance!
 Otherwise need to understand the compiler 

inside-out
 Programmers want to treat the compiler as a 

black box



3: Portable
 Work on the spectrum of current architectures

 Terrascale, petascale

 Need to be “Future-Proof”
 Ex: heterogeneous architectures  

 Cannot hardcode parameters that’ll change



4: Scalable 
 Works well on your small cluster is good
 …but will it work the same work on Jaguar? 
 How about the exascale machines?



5: Simple 
 Aggressive analysis and complex transformation lead to:

 Buggy compilers!
 Programmers want to trust their compiler!
 How do you manage a software project when the compiler is broken?

 Long time to develop

 Simple compiler ⇒ fast compile-times 
 Current compilers are too complex!

Compiler Lines of Code
GNU GCC ~ 1.2 million

SUIF ~ 250,000

Open Research Compiler ~3.5 million

Trimaran ~ 800,000

StreamIt ~ 300,000



A Success Story: Register Allocation
 Effective

 Every architecture has registers at the bottom of the memory hierarchy 
 All the registers were hidden from the users

 Early C let the users bound registers to variables, but now hidden from the user
 Users are exposed to identifying reg allocatable variables (i.e. with volatile)
 Allocating a variable to a register reduce mem bandwidth  clear winner

 Stable
 Local optimization. If you miss one, no global consequence 

 Portable
 Variations between hardware (# of regs, special purpose regs) is exposed 

and managed by the compiler
 Scalable

 Local problem, out of Moore’s curve  scaling is not an issue
 Simple

 Graph coloring and spilling heuristics is (now) trivial



The Dream:
Automatic Parallelization
 Identify loops where each 

iteration can run in parallel
 DOALL parallelism

 What Matters
 Parallelism Coverage
 Parallelism Granularity 

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE

processors

TI
M

E



Why Automatic Parallelism Failed
 Lack of Effectiveness

 Sequential description obscures inherent parallelism
 Need heroic analysis

 Lack of Scalability
 Amdhal’s law: increased parallelism  more parallelism coverage
 Need more heroic analysis

 Lack of Stability
 Granularity of Parallelism
 Small changes have a large impact

 Parallelize one additional statement  change the granularity
 Needs even more heroic analysis

 Lack of Simplicity
 All these heroic analyses  A hugely complex compiler



The Reality: MPI + X
 All the burden on the programmer

 Parallelization
 Computation and Data partitioning
 Communication orchestration



Why Compilers will not succeed with 
MPI+X

 Lack of Effectiveness
 Programmer binds most important decisions
 Not too much choice exposed to the compiler

 Lack of Portability
 Data partitioning and communication orchestration

 Early binding to the given architecture
 Heroic analysis will be needed to change automatically

 MP+OpenMP+Cuda+???
 The partitioning match the current components
 Heterogeneous mix will change in the future

 Lack of Scalability
 Hard to scale when hard bound to current machines



If we have a Revolution, what should 
it be? 
 A new programming model/language that….

 Will take much of the burden of away from the programmer
 Managing the architectural features
 Tuning for performance 

 Will make some classes of hard problems completely go away
 No race conditions or deadlocks

 Will make is possible for the compiler to “do the right thing”
 Able to optimize by taking advantage of all the capabilities
 Able to provide performance portability for current and future machines

 Will make is possible for experts to “help” the compiler
 A performance guru can provide patterns and transformations that are 

specific to the given application

 A new compiler that will not let the programmers down!



Selecting between the programmer 
and the compiler

 Let the programmer handle features that are 
impossible to automate
But…make them constant across all current and 
future architectures
 Get the programmers to expose maximum 

concurrency inherent to the algorithm
 Get the programmers to over partition the data 

(perhaps hierarchically) 
 Get the programmer to provide more than one choice 

of algorithm and data partition



Selecting between the programmer 
and the compiler

 Let the compiler handle features that change 
across architectures
 Managing parallelism
 Managing heterogeneity
 Managing data partitioning
 Managing communication orchestration  



What happens if these are still too 
hard for the compiler to handle?

 Provide hooks so expert performance gurus can 
intervene when needed

 Invest in developing compiler technology
 Wait patiently until the compiler people get 

it(hopefully!) working



Problem with High Performance 
Languages

 There are no new ideas in high 
performance languages
 No new constructs
 No new programming models

 Either…
 We have discovered all there is to find
 We have lost the capability to find new ones



Why it is hard to evolve a new 
language (feature)
 Test languages are different from production languages

 Test language: experiment with a couple of features
 Production language: feature complete 

 Integrate good features from multiple (test) languages

 Languages need to evolve
 Hard to get it right the first time
 Most user interface designs processes are set around rapid 

evolution with ample user feedback

 Need input from programmers to evolve
 Need a lot of programmers to use the language

 Different programmers think differently
 Need programmers to use it for a long time

 First impression is not what makes a good language
 Measure the productivity of a trained programmer in the language 



Why it is hard to evolve a new 
language (feature)
 Market forces work against new languages

 Primary criteria for adoption is large number of existing users

 There is nothing in it for a programmer
 Hard to make a long-term investment

 The language may not last
 At best, it’ll keep changing 

 Has to deal with bugs
 The compiler will be buggy

 Has to deal with incomplete systems
 Important features will be missing
 Tools will be missing

 More promise than reality
 Compiler optimizable does not mean optimizations will be 

implemented…or works well.



My personal experience 
 We developed the StreamIt language and compiler

 A high performance language for the static subset of the streaming domain
 A great optimizing compiler

 We did a extensive evaluation of the language 
 65 programs
 34,000 lines of code
 Written by 22 students
 Over 8 year period

 An Empirical Characterization of Stream Programs and its Implications for 
Language and Compiler Design [PACT2010] 

 Extremely painful to do 
 Could not get outside “users” (…but many compiler researchers)
 Had to find my own cadre of students (Meng and undergrad)
 Still none of them were domain experts or professional programmers

 This type of evaluation is very rare



Proposal: A National Center for 
Programming Language Evaluation

 A Virtual Center 
 Access to many professional programmers with difference skills
 Infrastructure for scientific and unbiased evaluation

 Evaluation process akin to Drug Trials
 Stage 1:

 Select 20 language/feature projects
 One week evaluation with 5 to 15 programmers
 Write a set of small kernels 

 Stage 2:
 Down select 4 to 5 projects
 3 to 6 month evaluation by 20 to 40 programmers
 In one or two teams, develop a substantial application

 Stage 3:
 Down select 1 to 2 projects
 Provide support to build/improve the tools and the compiler
 One year effort by 50 to 100 programmers to port a real system


	Why Compilers Have�Failed To Support �HPC Programmers�and �What Can We Do About It�
	Impact of Languages �and Compilers
	Impact of Languages �and Compilers in parallelism
	Success Criteria for a Compiler 
	1: Effective
	2: Stable
	3: Portable
	4: Scalable 
	5: Simple 
	A Success Story: Register Allocation
	The Dream:�Automatic Parallelization
	Why Automatic Parallelism Failed
	The Reality: MPI + X
	Why Compilers will not succeed with MPI+X
	If we have a Revolution, what should it be? 
	Selecting between the programmer and the compiler
	Selecting between the programmer and the compiler
	What happens if these are still too hard for the compiler to handle?
	Problem with High Performance Languages
	Why it is hard to evolve a new language (feature)
	Why it is hard to evolve a new language (feature)
	My personal experience 
	Proposal: A National Center for Programming Language Evaluation

