
July 28 2011 ASCR Exascale Programming Workshop

Richard A. Lethin, Reservoir Labs, Inc.

Reconceptualizing to Unshackle Programmers 
from the Burden of Exascale Hardware Issues 

1

Presenter
Presentation Notes
- Reservoir Labs develops high-performance compilers, SAT solvers, and security products, among other products and services



July 28 2011 ASCR Exascale Programming Workshop

• Reservoir team: Benoit Meister, Nicolas Vasilache, David 
Wohlford, Muthu Baskaran, John Ruttenberg, Jordi Ros-
Giralt, Pete Szilagyi, Patrick Clancy, Jonathan Springer, Jim 
Ezick, Ann Johnson, Stefan Freudenberger, Melanie Peters, 
Nicole Bender, Trevor Serfass

• Sponsors:  ACS, DARPA, DOE, DOD, Others

• Primes and Partners (UHPC team): Intel, UIUC, U Delaware, 
ETI, SDSC

2

Acknowledgements



33

The Exascale Hardware
Opportunity
And Burden
For Programmers



4

Runnemede Cores
Pr

og
ra

m
 M

em
or

y CE

Control & Sync

Self Aware

Resiliency

Power 
management

General Purpose
Control Engine

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

Large Regist

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

XE
DP FP x, +, Int

Application-Class 
Execution Engine

Pr
og

ra
m

 M
em

Large Local 
Data Mem

Hierarchical interconnect fabric

Data 
Locality

Low

Medium

High

Large Global 
Data Mem

Borkar, Intel 2011



5

XE XE

Local Local

Global Shared Data Cache

Hierarchical 
interconnect fabric

CE

Local

Control & Status

Block

(c)

Block 0

Block 7
Unit 1

Unit 2 Unit 3

Cluster 1

Cluster 2 Cluster 3

Module (Chip)

(d)

X Int

Double precision
ALU, Multiplier (Vector?)

Local (Large)
RF, Data Mem/CacheInstruction 

Cache

Instruction 
Decode 
& Control

Application Class Execution Engine (XE)

(a)

Integer, 
Boolean, 

String

Local
Register FileI & D 

Cache

Instruction 
Decode 
& Control

General Purpose Control Engine (CE)

(b)

Organization



6

Memory 0.35MB
0.17mm2 (50%)

CE or XE
0.17mm2 (50%)

~0.6mm 20mm
32-128 GB 32-128 GB

256GB/s 64-256b

DRAM 32-128 GB

10 cm

9 cm

Processor Module
Core

Processor Node

Cores/Module 1152

On-die Memory 400 MB

Vdd 0.41 V

Frequency 1.2 GHz

Peak perf. 2.5 TF

Power 26 to 87W

Energy efficiency 96 to 29
GF/Watt

Goal: 80GF/W

Logic transistors 2 M

Core memory 0.35 MB

Vdd 0.41 V

Frequency 1.2 GHz

Peak perf. 2.4 GF

Power 0.24 to 0.46W

DRAM Capacity 128-512 GB

DRAM Bandwidth 1 TB/s

Peak perf. 10 TF

DRAM Power 20 W

Total Power 124 to 368W

Energy efficiency 81 to 27
GF/Watt

Goal: 50GF/W

8nm Process Technology

Hardware Building Blocks
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10 cm

High Density 
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Package

9 cm

(a)Processor Node
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19” PCB

(b) System Node
160 TF Peak

Runnemede Hardware System

4”

16 boards x 4” = 64”
Fits in 72” cabinet

(c) Cabinet
16 boards/cabinet
~1M cores
~2.5 PF Peak
~51 KW
50 GF/Watt
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Voltage Scaling
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Near Threshold Logic
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• Low Power
• Near Threshold Voltage operation => parallelism “1000x” 
• Maximizing locality
• Very high variation in transistor performance
• Explicit communications, synchronization
• Heterogeneous, hierarchical architecture

• Resilience
• More transistors, smaller transistors, operating at margins

• New features
• Reorganized / refactored memory system
• New collectives / programmable operators

10

Extreme Scale Programming Challenges (Part 1)
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• New Execution Model “e.g., Codelets”
• Fine-grained, event-driven, non-blocking
• Fuse “intra-node” and “inter-node” abstractions

– Global memory abstractions, RDMA

• Explicit and implicit communications
– All operands “ready” when codelet fires, results streamed 

out after codelet finishes

• Dynamic load balancing, other advanced schedulers
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Extreme Scale Programming Challenges (Part 2)
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• Not the Programmer!
• Expressing all of these considerations will make the 

program  longer, buggier
• Opaque to any semantic or dependence analysis needed for 

optimization
• Will over-specify the program and bake it to one 

architecture, defeating portability
• Exascale programming will be too complicated – VLIW 

lessons

12

Who/what deals with this complexity?
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• Don’t put it in the libraries!
• Optimization through and across library calls is an essential 

place to get performance 
• Cross call fusion for locality
• Libraries cannot be opaque
• If they have this complexity in their code they will be 

opaque

13

Who/what deals with this complexity?
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It can be done in a compiler
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Sequential C
Kernel 
Source

Your favorite
compiler

here.

OpenMP Cell DataFlow CUDA

Existing Automated 
Optimizations

Parallelization
Locality optimization
Tiling
Placement
Distributed local memory opt
Memory promotion
Corrective array expansion
Layout optimization
Reshaping
Communication (DMA) generation
Multi-buffering
Synchronization generation
Thread generation
Hierarchical targets
Heterogeneous targets
Multiple execution models

VM Abstraction/Back End Compilers

Presenter
Presentation Notes
These optimizations address structural characteristics of emerging architectures.
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Loop transformations as scheduling

iteration space of a statement S(i,j)

j

i

22: ZZ →θ

t1

t2

Schedule θ maps iterations to multi-dimensional time 

Loop transformations/synthesis mean generating code to execution iterations 
of a loop in the lexicographical order of time

A feasible schedule must preserve dependencies
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• Joint parallelization + locality + contiguity optimization
• Can generate nested parallelism (nested OpenMP)
• Explicit management of scratchpad memories
• Virtual scratchpads
• Explicit communication generation and optimization
• Integrated scheduling plus placement/layout optimization
• Hierarchical scheduling
• Placement
• Task formation
• Granularity selection
• Heterogeneous targets
• Hybrid static / dynamic scheduling
• …
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Scheduling state of the art 2011

(Reservoir, UIUC, OSU, PSU, Rice, UCB, USC/ISI, CU …) 
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• High-level, semantics-rich programming approaches
• Math languages, Ptolemy, …
• Specify the “what” not the how
• Commutability, reassociability, …
• Accuracy requirements
• Reformulation algebras
• Numerical methods ontology
• Domain knowledge (symmetry, structure, bounds, …)

• Separate tuning languages from application language
• E.g., Intel Concurrent Collections
• Auto-generate tuning languages

17

The answers
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• Optimizability

• Understandability

• Verifiability

• Longevity

• Portability

• Composability

18

High-level semantics-rich (and architecture-lite) 
expression provides
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• Writing programs in CUDA, OpenMP, … directly, or hybrids.
• Programmers should not touch these forms – they are 

TOXIC to automatic portability, optimization, 
parallelization, and will be costly in the long run.

• These forms should be (and can be EASILY) auto-generated 
(and auto-tuned) from high-level, semantics-rich high level 
form.

19

This is NOT!
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• Semantic pragmas

• Not mapping pragmas

• Selective rewrites to high-level, semantics-rich form

20

Migration path for existing codes
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• High-level semantics rich expression languages.

• Automated transformations to utilize them.

• Automated transformations to address exascale hardware 
issues.

21

Needed exascale research

These benefit all levels of extreme scale
systems – Tera, Peta, Exa -- UBIQUITOUS



July 28 2011 ASCR Exascale Programming Workshop

• Can system check proof that an application’s 
implementation is correct with respect to dynamism, faults, 
precision?

• Use this as a litmus test for the programming language, 
annotation system, tools, runtime, and hardware.

• E.g., should we off-the-bat be reasoning about 
asynchrony?

• Uncertainty Quantification on steroids

• Proof, logic, knowledge

22

Verification as a driver
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• Intel Concurrent Collections (CnC) [Knobe]

• Dynamic single assignment – maximal algorithmic 
parallelism “Domain Expert”

• Separate tuning language “Tuning Expert”
– Granularity selection, placement, scheduling

• Runtimes for multi-core, distributed systems

24

Supporting New Execution Models

[X: i]

<TA: i>

(A: i) [Y: i] (B: i) [Z: i]

<TB: i>
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• We’ve built a proof of concept auto-generator for CnC
• Can express more parallelism than possible with OpenMP
• Get the benefit of adaptive load balancing from runtime
• Expressions in CnC are significantly more succinct than 

OpenMP

• Provides a natural framework to integrate optimization of 
algorithm structure and data structures (irregular, 
unstructured)

• Graphs, sparse matrices, meshes

• Natural implementation that is fault tolerant

25

Why CnC?
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• CnC Hierarchical affinity groups (Knobe, Sarkar)
• Express tuning/mapping as constraints and affinities
• Research question: how can we produce schedules more 

dynamic and less constrained than polyhedral θ

Supporting new directions in tuning languages

(sally: i) [w] (sonia:i, j) (Sanjay: i, j) (Simon: i, j)[x] [y] [z] (sam: i)

<tony: i>

<tom: i, j>

26
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Data Layout / Placement / Format / Notations

Hierarchically Tiled Arrays (HTA)
(Padua/Garzaran)
Format for dense matrix algs
Associated programming notations
Recursive algorithms
Cache oblivious algorithms

Research challenges
Automatic Scheduling + Data 
layout optimization?
Dynamic – Massive Challenge
High level notations->recursive 
formulations
New Data Structures (NDS)
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Improved runtime schedulers

J-Machine 8x8x16 = 1024 “cores”
circa 1990

Questions about regulation of “clouds”
of computation relate to today’s efforts 
to more tightly couple CPU+NW, queues.

Research topic
How can we make modern task scheduler
technology incorporate network 
regulation constraints?

Need compiler
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• You can’t raise the level of abstraction too high.

• Semantics-rich, high-level programming is the way to go.

• Much research to be done, but the right path is clear:

• Each step in the high-level direction facilitates automatic 
compiler and runtime solutions to increase parallelization, 
performance, efficiency, confidence, lifetime…

• …and will save tons of money, ubiquitously.
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Reconceptualizing
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