
Preparing Multi-physics, Multi-scale
Codes for Exascale HPC

July 27, 2011

Richard Barrett
Center for Computing Research (1400)

SAND Number 2011-4805 P

OASCR Programming Challenges Workshop

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Programming model, mechanisms, etc

• How programmer views data and the
computations that operate on it.

• Mechanism: MPI, OpenMP, cuda, opencl, etc

• Critical link: how codesign layers view data and
the computations that operate on it.

• Over-arching goal: science and engineering

AORSA simulation;
movie by Sean Ahern@ORNL

C APPROXIMATE VALUES FOR SOME IMPORTANT MACHINES ARE:
C
C IBM/195 CDC/7600 UNIVAC/1108 VAX 11/780 (UNIX)
C (D.P.) (S.P.,RNDG) (D.P.) (S.P.) (D.P.)
C
C NSIG 16 14 18 8 17
C ENTEN 1.0D75 1.0E322 1.0D307 1.0E38 1.0D38
C ENSIG 1.0D16 1.0E14 1.0D18 1.0E8 1.0D17
C RTNSIG 1.0D-4 1.0E-4 1.0D-5 1.0E-2 1.0D-4
C ENMTEN 2.2D-78 1.0E-290 1.2D-308 1.2E-37 1.2D-37
C XLARGE 1.0D4 1.0E4 1.0D4 1.0E4 1.0D4
C EXPARG 174.0D0 740.0E0 709.0D0 88.0E0 88.0D0

c timing on ncar"s control data 7600, besic takes about
c .32+.008*n milliseconds when z=(1.0,1.0).
c
c portability ansi 1966 standard

Target architectures

• Small clusters: linux, SunOS, IRIX, AIX

• MPP: Red Storm, Red Sky

• New ASC capability: Cielo

and beyond!

1: Revolutionary: programming model

½ : Evolutionary: programming mechanism

Goal :
At most, one and a half code re-writes

Cielo Cray XE6

ALEGRA threading experiment
(Preliminary work)

Cielo Gemini Interconnect

BSP + msg agg
Eg multi-material shock solid mechanics

DO I = 1, NUM_VARS

END DO
DO I = 1, NUM_VARS

END
DO

z
x

y

Dominant Issue

A million lines of code like this:

A (B (I)) = C (D (I))

Nice way to manage unstructured mesh

?

φ

φ

φ

A million lines of code
is not created equally…

Whatever it is, I want:

• Asynchronous movement of data between
distributed memory processes,

• effective movement of non-contiguous data, and

• logical-to-physical map (locality controls).

Summary

• Architectures in flux (but converging?)

• Programming mechanisms in flux (but converging?)

• Revolutionary code re-write a huge undertaking

• Not a computer science exercise (but publications are to be had)

• Science and engineering trust must be maintained throughout

A (B (I)) = C (D (I))

Acknowledgements

• Sandia CSRF

• NNSA ASC CSSE

Thanks

Extra slides

ALEGRA code base*
(project began 1990)

* Excluding some Fortran (58k@121f), python, xml, etc, some uncounted files,
and the Nevada framework.

Programming Model of the Future
(prediction, not a preference)

• SPMD MPI between nodes

• On-node: multiple “views” of the data structure;
eg SIMD, SIMT, MIMD.

• C/C++/Fortran

– With “helper” syntax/semantics, mechanisms, &
libraries

So said I, 8 June 2011, and again July 27, 2011.

Programming Model of the Future
(preference, not a prediction)

const
PhysicalSpace: domain(2) distributed(Block) = [1..m, 1..n],
AllSpace = PhysicalSpace.expand(1);

var
Coeff, X, Y : [AllSpace] : real;

var
Stencil = [-1..1, -1..1];

forall i in PhysicalSpace do

Y(i) = (+ reduce [k in Stencil] Coeff (i+k) * X (i+k));

Programming Model of the Future
(preference, not a prediction)

const
DensPhysSpace: domain(2) distributed(Block) = [1..m, 1..n],
AllSpace = PhysicalSpace.expand(1),
SparseSpace = sparse subdomain (AllSpace);

var
Coeff, X, Y : [SparSpace] : real;

var
Stencil = [-1..1, -1..1];

forall i in SparseSpace do

Y(i) = (+ reduce [k in Stencil] Coeff (i+k) * X (i+k));

Will the next programming model be an
incremental change or a revolutionary change?

It will (mostly) be what we should have been doing (and
wanted to do) with SCOTS.

Like early days of message passing, will probably require
evolutionary changes wrt programming mechanisms
(eg CUDA, OpenCL, HMPP, PGI accel, XYZ, …, and
MPI.)

Do we need to completely rethink our applications or
will incremental approaches suffice?

Perhaps will inspire new algorithms/applications?

Yes.

	Preparing Multi-physics, Multi-scale Codes for Exascale HPC
	Programming model, mechanisms, etc
	Slide Number 3
	Slide Number 4
	Target architectures
	Slide Number 6
	Cielo Cray XE6
	ALEGRA threading experiment�(Preliminary work)
	Cielo Gemini Interconnect
	Slide Number 10
	Slide Number 11
	Dominant Issue
	Nice way to manage unstructured mesh
	A million lines of code �is not created equally…
	Whatever it is, I want:
	Summary
	Acknowledgements
	Thanks
	Extra slides
	ALEGRA code base*�(project began 1990)
	Programming Model of the Future�(prediction, not a preference)
	Programming Model of the Future�(preference, not a prediction)
	Programming Model of the Future�(preference, not a prediction)
	Will the next programming model be an incremental change or a revolutionary change?

