
Composable and modular Exascale Programming Models with intelligent runtime systems

Laxmikant (Sanjay) Kale
Parallel Programming Laboratory (http://charm.cs.uiuc.edu)
University of Illinois at Urbana-Champaign

Exascale machines, and the kinds of applications that are expected to run on them, pose significant
challenges for the programming models community. Significant increase in the degree of parallelism
within a node, heterogeneity, the sheer number of computing elements available, as well as
considerations of power and resilience create challenges and opportunities for the design of a new
generation of programming models. I will outline a few broad imperatives, some of which require
radical changes for such designs.

To begin with, I will argue that it would be beneficial to (almost) eliminate the notion of “processor”
from the ontology of the programmer. The program should be expressed in terms of the work-units
and data-units of the application without reference to which processor they are housed on. This can
be supported by an automated resource management system which can adapt to variations in the
application configurations/evolution, as well as to variations in the machine environment. At
exascale, the programming models will have to depend on novel, highly powerful and intelligent
adaptive runtime systems. These systems will monitor multiple aspects of an ongoing execution, and
take corrective actions in order to optimize multiple criteria such as performance, power, and effect
recovery from component failures. Further, parallel composition of multiple, independently developed
modules must be strongly supported, without explicitly requiring partitioning processors or
sequencing modules. Message-driven execution is a powerful runtime mechanism that, in my
opinion, is essential for supporting such modularity.

Such modularity is impossible without support for interoperability between programming models,
including legacy models such as MPI and OpenMP. The runtime system can tie these modules
together and support communication between disparate models, allowing the programmer to
use whichever model is best suited to each portion of an application. Interoperability between
models will also provide an opportunity to simplify parallel programming by introducing simple,
incomplete programming models which may be incapable of expressing arbitrary parallel interactions
or be limited to specific data structures but which provide increased safety and simplicity without
sacrificing performance. I expect the exascale toolbox to eventually include a small set of
interoperable incomplete models designed to address common
problems encountered in parallel application development. We need to develop new data-structure
specific frameworks, constructed from the point of view of interoperability. Compiler support will be
required, not for automatic parallelization, but for supporting convenient syntax and basic analysis
aimed at optimization.

Finally, I argue strongly against premature standardization of programming models. If we support
interoperability via adaptive runtimes, we will enable the broad experimentation that is necessary to
create a powerful and flexible toolbox of multiple programming models.

--

Laxmikant (Sanjay) Kale http://charm.cs.uiuc.edu
Professor, Computer Science kale@illinois.edu
201 N. Goodwin Avenue Ph: (217) 244-0094
Urbana, IL 61801-2302 FAX: (217) 265-6582

http://charm.cs.uiuc.edu/�
http://charm.cs.uiuc.edu/�
mailto:kale@illinois.edu�

