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New Processors Means New Software

Interconnect
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Processors
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Memory Tech
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« Exascale will have chips with thousands of tiny processor
cores, and a few large ones

« Architecture is an open question:

— Sea of embedded cores with heavyweight “service” nodes
— Lightweight cores are accelerators to CPUs

Software managed memory and interconnect topology?
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Challenges to Exascﬁ’e\

Performance Growth
1) System power is the primary constraint

2) Concurrency (1000x today)

3) Memory bandwidth and capacity are not keeping pace
4) Processor architecture is open, but likely heterogeneous
5) Programming model heroic compilers will not hide this
6) Algorithms need to minimize data movement, not flops
7) 110 bandwidth unlikely to keep pace with machine speed
8) Reliability and resiliency will be critical at this scale

9) Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally
Important across scales, e.q., 1000 1-PF machines




To Virtualize or Not

« The fundamental question facing in the design of parallel
programming models is:

What should be virtualized?

« Hardware has finite resources with complex structures:
— Processor count, register, link topology, is finite
— On chip memory is finite: caches hide this, local stores do not

* Does the programming model expose this or hide it?
E.g., one thread per core, or many?

— Many threads may have advantages for load balancing,
fault tolerance and latency-hiding

— But one thread is better for deep memory hierarchies, i.e.,
a many to few load balancer tends to work better on
shared memory than distributed

« Which level is responsible for virtualizing?




Virtualization of Processors

 Many possible tasks graphs,
depending on how much
parallelism is exposed

 Abstraction can constrain this

* Where does the mapping of the
graph to a particular number of
processors happen?

— The compiler: NESL, ZPL

— The runtime system : Cilk, Charm++,
OpenMP, X10, Chapel

— The programmer: MPI, UPC

 Data decomposition then
computation scheduling?

* Fairness and resource =
management are subtle




Irregular vs. Regular Parallelism

Computations with regular task graphs can be
automatically virtualized / scheduled
— By a compiler or runtime system

Fork/Join graphs (no out-of-band dependencies)
can be scheduled

— By a runtime system (e.g., Cilk)

— A greedy scheduler (stealing or pushing) is optimal time
— Stealing is optimal in space (but slower to load balance)

General DAGs are more complicated
— Either preemption or user awareness is needed
Conclusion: If your computation is not regular, the

runtime system should be dynamic, i.e., virtualize
the processors
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Virtualizing Memory Structure

* Should we hide memory locality or make them
visible to the programmer?
— Can programmers optimize locality? Not in OpenMP
— Must the programmer optimize for locality? MPI
— Can it be optional? PGAS

« Can Cache-oblivious or over-partitioned approaches
work at scale (locality costs at scale)?

« Can we have portable mechanisms for locality
optimization that are good enough?
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Load Balancing with Locality

« UPC uses a static threads (SPMD) programming model
— No dynamic load balancing built-in
 Berkeley compiler has some extensions

— Allows programmers to execute active messages (AMs)

— AMs have limited functionality (no messages except acks) to
avoid deadlock in the network

A more dynamic runtime would have many other uses
— Application load imbalance, OS noise, fault tolerance

« Two extremes are well-studied
— Dynamic parallelism without locality
— Static parallelism (with threads = processors) with locality

 What issues do we run into if we want dynamic threads
with locality?
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Memory Constrained Scheduling
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 Theoretical and practical problem: Memory deadlock

— Not enough memory for all tasks at once.
« (Each update needs two temporary blocks, a green and blue, to run.)
— If updates are scheduled too soon, you will run out of memory
— Allocate memory in increasing order of factorization:
Don't skip any!
— Thread blocks until enough memory available
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What to Virtualize?

* Register count: hide
— Compilers prove this, but need autotuners

« Separate address spaces: hide
— PGAS proves this; Needs to show for GPUs

 Performance-partitioned memory: expose
— For distributed memory needs to be exposed

 Number of cores: depends
— On shared memory, we can virtualize

— Distributed memory mostly not
— Open question for non-SPMD PGAS
10




Aside: Communication-Avoiding

Algorithms
« Sparse lterative (Krylov Subpace) Methods

— Nearest neighbor communication on a mesh

— Dominated by time to read matrix (edges) from DRAM

— And (small) communication and global Vs
synchronization events at each step

« Can we lower data movement costs?-

— Take k steps with one matrix read from

DRAM and one communication phase
« Serial: O(1) moves of data moves vs. O(k)
« Parallel: O(log p) messages vs. O(k log p)
« Can we make communication provably optimal?
— Communication both to DRAM and between cores

— Minimize independent accesses (‘latency’) pom et im

Demmel, Mark
Hoemman, Marghoob

() - Minimize data volume (‘bandwidth’) Mohiyuddin




Optimizing for Communication #

Ignore Running Time

Complexity of 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs
Dense LU N3 N N2 N2
Band LU N2 N N3/2 N
Jacobi N2 N N N
Explicit Inv. N2 log N N2 N2
Conj.Grad. N 3/2 N Y2 *log N N N
RB SOR N 372 N 172 N N
Sparse LU N 3/2 N 1/2 N*log N N
FFT N*log N log N N N
Multigrid N log? N N N
Lower bound N log N N

Good ideas taken to the extreme become bad:

« Don’t use dense LU where something smaller/faster will work

« Don’t use a dense matrix rather than sparse (but do fill in some
zeros if that makes it faster)
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The UPC Experience

Other GASNet-based languages
1991

Active Msgs 1993 2001 2010.
are fast Split-C funding gcc-upc at Hybrid MPI/UPC
DOE) Intrepid
1992 |
First AC 1997 2001 2006
(accelerators + First _UPC First UPC UPC in NERSC
split memory) Meeting Funding procurement
1992 ) ) o
First Split-C best of” AC, 2002 é‘i?fe'ley
(compiler GAS) Split-C, PCP GASNet 0 iior

Spec
release

 Ecosystem:

— Users with a need (fine-grained random access)

— Machines with RDMA (not hardware GAS)

— Common runtime

— Commercial and free software

— Center procurements

— Sustained many-year fupding P




Conclusions

* Solve the problems that must be solved
— Locality (how many levels are necessary?)
— Heterogeneity

— Vertical communication management
» Horizontal is solved by MPI (or PGAS)

— Fault resilience, maybe
 Look at the 800-cabinet K machine

— Dynamic resource management
* Definitely for irregular problems
 Maybe for regular ones on “irregular” machines

— Resource management for dynamic
distributed runtime's




Keeping the Users with Us
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We are both too early and too late for
an exascale programming model

-> Focus in critical general challenges




