Lessons from the past, challenges

ahead, and a path forward

John Mellor-Crummey

Department of Computer Science
Rice University

)\

ASCR Programming Challenges Workshop, July 2011

On Programming Models for the Exascale ...

e Problem: rise of complexity of exascale systems

e |dea: provide a high level of abstraction

—handle mapping onto heterogeneous nodes
— fat multicore + thin manycore

—handle details of data movement and synchronization
—handle details of computation partitioning

A Cautionary Tale ...

A Decade Ago: High Performance Fortran

Partitioning of data drives partitioning of computation,
communication, and synchronization

Fortran program Partition computation Same answers as
+ data partitioning Insert communication sequential program
Manage storage

HPF Program Comp[@

Parallel Machine

Rice dHPF Compiler, circa 2000

Sophisticated data partitionings

—skewed cyclic tilings using symbolically-parameterized tiles of uneven
size with many-one mappings of tiles to processors

Sophisticated computation partitionings
—e.g. partially-replicated computation to reduce communication

Program analysis
—polyhedral analysis of iteration spaces, communication

Communication optimization
—communication normalization, coalescing

—latency hiding

Node performance
—agenerate clean inner loops

—cache optimization (padding, communication buffer mgmt)

Productive Parallel 1D FFT (n = 2%)

subroutine fft(c, n)
implicit complex(c)
dimension c(0:n-1), irev(0:n-1)
'HPFS processors p(number of processors())
'HPF$ template t(0:n-1)
'HPF$ align c(i) with t(i)
'HPF$ align irev (i) with t (i)
'HPF$ distribute t(block) onto p
two pi = 2.0d0 * acos(-1.0d0)
levels = number of bits(n) - 1

irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
forall (i=0:n-1) c(i) = c(irev(i))
do 1l =1, levels ! ———- for each level in the FFT

m = ishft(1, 1)
m2 = ishft(1, 1 - 1)

dok=0,n-1, m ! ——- for each butterfly in a level
do j =k, k + m2 - 1 ! ——— for each point in a half bfly
ce exp (cmplx (0.0, (J - k) * -two_pl/real(m)))

cr = ce * c(j + m2)

cl = c(3)
c(j) = cl + cr
c(j + m2) =cl - cr

end do
end do
enddo
end subroutine fft

Productive Parallel 1D FFT (n = 2%)

subroutine fft(c, n)
implicit complex(c)
dimension c(0:n-1), irev(0:n-1)
'HPFS processors p(number of processors())
'HPF$ template t(0:n-1)
'HPF$ align c(i) with t(i)
'HPF$ align irev (i) with t (i)
'HPF$ distribute t(block) onto p
two pi = 2.0d0 * acos(-1.0d0)
levels = number of bits(n) - 1

irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
forall (i=0:n-1) c(i) = c(irev(i))
do 1 =1, levels ! ——— for each level in the FFT

m = ishft(1, 1)
m2 = ishft(1, 1 - 1)

dok=0,n-1, m ! ——- for each butterfly in a level
do j =k, k + m2 - 1 ! ——— for each point in a half bfly
ce exp (cmplx (0.0, (J - k) * -two_pl/real(m)))

cr = ce * c(j + m2)

cl = c(3)
c(j) = cl + cr
c(j + m2) =cl - cr

end do
end do
enddo
end subroutine fft

Productive Parallel 1D FFT (n = 2%)

subroutine fft(c, n)
implicit complex(c)
dimension c(0:n-1), irev(0:n-1)
'HPFS processors p(number of processors())
'HPF$ template t(0:n-1)
'HPF$ align c(i) with t(i)
'HPF$ align irev (i) with t (i)
'HPF$ distribute t(block) onto p
two pi = 2.0d0 * acos(-1.0d0)
levels = number of bits(n) - 1

irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
forall (i=0:n-1) c(i) = c(irev(i))
do 1 =1, levels ! ——— for each level in the FFT
m = ishft(1, 1)
m2 = ishft(1, 1 - 1)
dok=0,n-1, m ! ——- for each butterfly in a level
do j =k, k + m2 - 1 ! ——— for each point in a half bfly
ce = exp(cmplx(O 0,(3 - k) * -two_pl/real(m)))
cr = ce * c(j + m2)

cl = c(3)
c(j) = cl + cr
c(j + m2) =cl - cr
end do
end do
enddo ks i - i 7
end subsoutine £FE partitioning the j loop is driven

by the data accessed in its iterations

Productive Parallel 1D FFT (n = 2%)

subroutine fft(c, n)
implicit complex(c)
dimension c(0:n-1), irev(0:n-1)

'HPF mb f g . .
it E;;;iiigri(ﬁfﬁ‘_‘l)er—° —processors() hartitioning the k loop is subtle:

'HPF$ align c(i) with t(i) driven by partitioning of j loop
'HPF$ align irev (i) with t (i)
'HPF$ distribute t(block) onto p

two pi = 2.0d0 * acos(-1.0d0)

levels = number of bits(n) - 1

irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
forall (i=0:n-1) c(i) = c(irev(i))
do 1 =1, levels ! ——— for each level in the FFT
m = ishft(1, 1)
m2 = ishft(1, 1 - 1)
dok =0, n-1, m ! ——- for each butterfly in a level
do j =k, k + m2 - 1 ! ——- for each point in a half bfly
ce = exp(cmplx(0.0,(J - k) * -two_pl/real(m)))
cr = ce * c(j + m2)
cl = c(J)

c(j) =cl + cr
c(j + m2) =cl - cr
end do
end do
enddo cpr : . .
end subroutine £ft partitioning the j loop is driven

by the data accessed in its iterations

Productive Parallel 1D FFT (n = 2%)

subroutine fft(c, n)
implicit complex(c)
dimension c(0:n-1), irev(0:n-1)

'HPF mb f e . .
it E;;;iiigri(ﬁfﬁ‘_‘l)er—° —processors() hartitioning the k loop is subtle:

'HPF$ align c(i) with t(i) driven by partitioning of j loop
'HPF$ align irev (i) with t (i)
'HPF$ distribute t(block) onto p

two pi = 2.0d0 * acos(-1.0d0)

levels = number of bits(n) - 1 stride is problematic for
irev = (/ (bitreverse(i,levels), i= 0, n-1) 4 polyhedral methods
forall (i=0:n-1) c(i) = c(irev(i))
do 1 =1, levels L—=-- for each level in the FFT

m = ishft(1, 1)

m2 = ishft(1, 1 --1)

do k =0, n - l,(;§ ! ——- for each butterfly in a level

do jJj =k, k + -1 ! ——— for each point in a half bfly

ce = exp(cmplx(0.0,(J - k) * -two_pi/real(m)))
cr = ce * c(j + m2)
cl = c(J)
c(j) = cl + cr
c(j + m2) =cl - cr
end do
end do
enddo

end subroutine fft

partitioning the j loop is driven
by the data accessed in its iterations

Some Lessons from HPF

e Good parallelizations require proper partitionings
—inferior partitionings will fall short at scale

e Excess communication undermines scalability
—both frequency and volume must be right!

e Must exploit what smart users know
—allow the power user to hide or avoid latency

e Single processor efficiency is critical
—node code must be competitive with serial versions
—must use caches effectively
e Abstraction is good in moderation
—compilation challenges for abstract models can sometimes be daunting

Challenges of Exascale Hardware

Complexity
Concurrency
Scale

Heterogeneity

—architecture
—performance

Failure and resilience

Power
—focus: maximize locality to minimize data movement

Some Exascale Technology Needs

e Programming models, compilers, runtime systems

—communication
— point-to-point, collective, near neighbor, ...

—synchronization
— ordering, mutual exclusion, producer consumer

—partitioning
—placement
—scheduling

e Tools ecosystem

A Hierarchy of Programming Models

Domain specific languages
—e.g., TCE, SPIRAL

Frameworks
—e.g., Chombo

Programming languages

Libraries

Programming Models for the Exascale

e MPI + X is the front runner

e MPI role at exascale [“MPI at Exascale”, Thakur, Scidac 2010]

— “MPI being used to communicate between address spaces”

— “use some other shared-memory programming model (OpenMP,
UPC, CUDA, OpenCL) for programming within an address space”

e Why not just X?
— skeptic: but MPI provides all the things | know and love

communicators for processor subsets
collectives across communicators

— PGAS model can provide those directly instead
... along with compiler support to make it easier to use!

10

Example: Coarray Fortran 2.0

Teams: process subsets, like MPl communicators
— formation using team_split (like MPI_Comm_split)
— collective communication

Topologies

Coarrays: shared data allocated across processor subsets

— declaration: double precision :: a(:,:)[*]
— dynamic allocation: allocate(a(n,m)[@row_team])
— access: x(:,n+1) = x(:,0)[p] (p is a rank in the “default team”)

Latency tolerance

— hide: predicated asynchronous copy, asynchronous collectives
— avoid: function shipping

Synchronization

— event variables: point-to-point sync; async completion
— finish: SPMD construct inspired by X10

Copointers: structured pointers to distributed data (in progress)
Multithreading: compiler and runtime support for work stealing (in progress)

Accelerated computing: map loop nests (semi-)automatically to manycore (planned)

11

Scalable PGAS Programming Model

Issues (see “MPI at exascale,” Thakur, SciDAC 2010)

Scalable bookkeeping state

— maintain little global state per “process”
avoid full knowledge of processor subsets

— CAF 2.0 team construction applied to MPI

- “Exascale Algorithms for Generalized MPI_Comm_Split”
[Moody et al. EuroPar 11]

Very little memory management within MPI
— all memory for communication can be in user space
— consistent with PGAS models

Collectives are useful, scalable, and efficient

“Some parts of MPI are being fixed for exascale” (MPI-3)
— RMA
— non-blocking and (maybe) neighborhood collectives

12

Mapping to Heterogeneous Nodes

 Explicit programming: CUDA, OpenCL?
— too low level and detailed
e Today: Cray’s accelerator pragmas [Levesque, ScCiDAC 2011]

— 1$omp acc_region_loop private(...)
ISomp acc_data acc_copyin(...)

1ISomp end acc_region_loop

1ISomp acc_update host(x)

ISomp acc_update acc(x)
ISomp acc_data present(...)
— benefits: handle detailed synthesis of code for manycore
 Future: preference for more declarative pragmas, if any
— leverage type system: constant variables can be “copyin”
e Challenge: semi-automatically mapping complex codes
— managing irregular data, handling dependences, ...

13

PGAS Data Models at Scale

e Distributed state

e Distributed descriptors

e Scalable data movement
e Scalable synchronization

* Emerging issue: fault tolerance
— persistance
— recoverability

e Approach: all members of a team do the following ...
— agree on a handle
— allocate a piece of the data
— data movement and synchronization: point-to-point or collective

14

Support for Coupling - |

Location service

— locate a component by name, e.g. “ocean simulation component”
* returns a handle, and an identifier for a node
— service must be distributed for scalability

— fault tolerance: no single point of failure
« service implementation could use replication

15

Support for Coupling - I

Scalable binding

— example: CESM
« model coupler must bind to ocean and atmosphere components

« use a handle from a registry to arrange for scalable communication
with each component

— establish appropriate many-many, many-one, or one-many
mapping between corresponding ranks in coupler and target
component

— fault tolerance
 log communication through a binding
* notice when a binding disappears
* be able to re-establish a binding using location service

16

Locality-aware Dynamic Scheduling

* Issues
— incoming work from function shipping
— critical path

e Approaches

— need scalable, locality-aware, priority-aware strategies
— rethink data structures, e.g. recursive array layouts

— support affinity hints

— rethink dynamic scheduling decomposition

* e.g., use traversal orders derived from space filling curves for
hierarchical locality

— provide support for reordering data and computation for irregular
problems

« explicitly represent schedules for irregular work
 recompute schedules on demand, e.g. periodic sorting
* reuse schedules to amortize overhead

— tighter integration with HW
17

Supporting the Tools Ecosystem

e Performance tools will be extremely important for the exascale
 Pinpoint and quantify power consumption for tuning

* Pinpoint inefficiencies
— insufficient parallelism
— power consumption
— data movement
— overhead

18

Cilk: A Multithreaded Language

cilk int fib(n) {

if (n < 2) return n;
else { $

}
}

int x, y;

x = spawn fib(n-1) ; ° °

y = spawn fib(n-2) ;

sync;

return/ (x + y); ° ° ° @

asynchronouls calls
create logical tasks that ’ ’ ..quickly create significant

only block ata sync...

logical parallelism.

19

Cilk Program Execution using Work Stealing

 Challenge: Mapping logical tasks to compute cores

e Cilk approach:
— lazy thread creation plus work-stealing scheduler
e spawn: a potentially parallel task is available
« an idle thread steals tasks from a random working thread

‘y,‘— =~ 2e,
.“"‘ , "-'\
'Possible Execution: | T AN A
thread 1 begins .”"‘.""""" ~. 0 .
thread 2 steals from 1 o N R '
thread 3 steals from 1 R SNy Y . -

! N
o . Y4 ¢
] * \
: " ‘ V4 \ ,
o 4

20

Call Path Profiles with Work Stealing

thread 1]

thread 2
thread 3

Work stealing separates
user-level calling contexts in
space and time

* Consider thread 3: i 0 ‘ ,
— physical call path: I /'

Logical call path profiling: Recover full relationship

between physical and user-level execution)

Attributing Costs: Blame Shifting

* Problem: in many circumstances sampling measures
symptoms of performance losses rather than causes

— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication

e Approach: shift blame for losses from victims to perpetrators
— who is failing to shed parallel work to keep everyone busy
— who is holding the lock and stalling others
— who is delaying progress at a collective call site

e Flavors
— analysis only
— active measurement

22

Barriers to Adopting New Models

 Application codes are long lived
— must run on several generations of architecture

e Developers are conservative
— want to use standard languages

e Moving forward ...
— work with language standards committee to add new features

23

