‘ IBM Research

Is PGAS a viable programming model for
exascale?

George Almasi

07/26/11 © 2011 IBM Corporation

)

Part 1. Assumptions about exascale; state of art
Part 2: A critical examination of PGAS features
Part 3: How HW can support PGAS

Part 4. A biased/uninformed personal view of the
future

07/26/11

)

Floating point oriented architecture
Architecture crammed full of FPUs at expense of sanity
It's not ExaByte or ExaByte/s or ExaOp/s

Low BW/FP, memory/FP ratios
« BLASS3 possible, BLAS2 broken, BLAS1 SOL

Deep memory & execution hierarchies
Multiple levels of cache
Multiple memory domains (limited coherence?)
Multiple levels/types of execution units (!)

Multiple levels/types of network connections (!)
07/26/11

)

It is the law of the land Two solutions for two

roblems - funn
Proven track record P y

Interactions
Millions of LOC MPI thread funneling problem
Well defined roles Linkage conflict:

MPI task-global
OMP thread-local

OpenMP for fine grain Compromises MPI modularity
(communicators)

MPI for coarse grain

How about accelerators?

4 07/26/11

)

A few fat MPI nodes, many wimpy accelerators

Enough cheap performance to lure developers into re-
writing apps (already happening)

 People willing to go back to single precision
 People willing to coalesce mem access

This makes MPI+OpenMP look really good
Accelerator kernels only communicate with host
Perfectly suitable for divide-and-conquer algorithms

Not so good for graph algorithms and chasing pointers
across the system

5 07/26/11

Part 2: PGAS “Too little, too late?”

NO! A lot, and insane

07/26/11

Global uniform shared memory is O Task I:l Address Space
too expensive/power hungry to
bU||d x \\‘ ¥ “q

Modern machines have network Q Q Q Q Q 9
devices, NUMA shared memory
Provide partial illusion of shared N I
memory —

Restricted to certain software

constructs (“shared” vs “local”) Enough rope to hang yourself:
programmer allowed to ignore affinity

Explicit SW control of affinity and hurt performance

(association b/w memory and task)

Encourage coarse grain PGAS languages enlist compiler to
communication: explicit one-sided mitigate effects of locality-naive code.
communication primitives

07/26/11

)

We will now re-examine PGAS features
— Sanity
— Interoperability with MPI
— Fit with machine hierarchy

— Implementability

8 07/26/11

)

One-sided access

— Modeled after shared memory

Global View & Array manipulation

— APL, Matlab, HPF

Pointers to shared

— Modeled after C, C++

Asynchronous execution

— Model: Scala

Collective communication

— Model: MPI

Lock synchronization

— Maodel: POSIX locks
9 07/26/11

)

Good:

Passive participant's
CPU not interrupted

No handshake required

Looks like shared
memory (w/ compiler to
help)

(Almost) implementable
with modern network HW

Bad:

Violates MPI data contract at
a deep level

RAW, WAR etc. conflicts

“Strict” consistency just not
practical with 1-10 usec
sync overhead

Every PGAS language has
its own version of
"relaxed” semantics

Truly scalable fence op very
difficult to implement

10

07/26/11

)

Sequential operation on large blob of data:
“multiply matrix A with matrix B” (A, B distributed)
“sum of A/eigenvalues of B/etc”

HPF, HTAs, Chapel, ZPL, elements of UPC and CAF

Easy to program

Niche player (admittedly a large niche)
Fantastic for regular problems

Useful but not great for irreqgular problems

11 07/26/11

Familiar from C programming
Shared-memory flavor

Allows e.g. pointer chasing

Encourages worst C programming paradigms
Strains type system (local->shared->local conversions)

Strains “array==pointer” dogma to breaking point
Encourages disregard of affinity through ops like “++”

Haunted by asynchrony and relaxed memory consistency

Encourages fine grained remote access
“Fat pointers” are very expensive to de-reference locally

Prominent feature of UPC; disallowed by CAF

12 07/26/11

Reason for existence: The problem:

Mitigate latency (split-C) Split-phase transactions
Allow overlapping of require programmer
PPINS discipline

communication with
anything More discipline than most

programmers have

Split-C, UPC extensions Subtle bugs abound

CAF solution: leave it to compiler!

No asynchronous access in language syntax

Consistency model allows async. impl. of remote accesses

13 07/26/11

The pitfalls of asynchronous access: an example
HPC Challenge code, HPL linpack

root " aux
Operation:
. « Broadcast pivot to everyone
« Copy root to pivot
. Overlap solution:
. . Copy pivot into a temporary (“aux”)
- Broadcast across “aux” array
. « (Overlap) copy from root to pivot
. Copy aux->root
pivot H if (a_piv) memcpy (aux, pivot, blksize);
if (a_piv) v=memget_async (pivot, root, blksize);
. bcast (..., aux, blksize);
if (a_root) memcpy (root, aux, blksize);
. if (v) upc_waitsync(v);

14 07/26/11

)

Patterns for manipulating MPI data contract:

distributed instr & data flow . I
Data Is given to MPI primitive,

Synchronization: returned at end of op; do not

: . touch during operation
Barriers, fences, various

forms of locks and atomic Interoperability trouble:
sections

Dat n _ Difficult notion of “giving” non-
ata exchanges. local data to collective
Broadcast, scatter/gather,

) L Difficult to guarantee data
personalized communication

o _ integrity in the presence of
Distributed computation: remote one-sided data access

Reductions, prefix sums (UPC) profusion of unintelligible
flags fail to control situation

15 07/26/11

)

Asynchronous remote execution
X10, Scala, “CAF 2.0”

Freedom from tyranny of SPMD

End-run around memory consistency
All data is “local” or transferred via asyncs

Problems:

Global termination detection
Niche player
No real thought has gone into integration with MPI (yet)

16 07/26/11

)

Default shared: Default local:
Closer to shared memory Better (I didn't say good!)
ideal iIntegration w/ MPI
Global view objects are Tighter control on what can
always shared be accessed
Encourages overuse of Two classes of objects,
shared objects, makes sometimes necessitating
performance & extra local copies
correctness more difficult UPC. CAF, HPF. X10 etc
ZPL, Titanium

17 07/26/11

Tempting because familiar
To pthreads programmers
Utterly insane to think it scales across network

Lock contention == network congestion
 Ramifications beyond poor lock latency
3 orders of magnitude increase in lock latency

Every PGAS program (that | have seen) that use
has severe scalability issues

Possible solution: limit scope of locks (somehow)

07/26/11

)

— Non-coherent shared memory

— MPI on a network hierarchy

— No hierarchy funneling please

— Collectives on a network hierarchy

— The unbearable fine granularity of access
— Memory fences are hard to implement

— Symmetric allocation and short RDMASs

07/26/11

)

NN N NN T L S S S
Buffer 1: sent from (by CPU0) [l Buffer 2: received into (by CPU 1)
Memory
ﬂ Main processor cannot touch
loop:
Id .., buffer Last iteration:
st .., network branch predictor predicts branch taken
K/ bdnz loop ld executes speculatively

» cache miss causes first line of forbidden buffer area to be fetched into cache

* system executes branch, rolls back speculative loads
» does not roll back cache line fetch (because it’s nondestructive)

Conclusion: CPU 0 ends up with stale data in cache
But only when cache line actually survives before being used

20 07/26/11

)

Ironic: MPIl assumes a flat network

— Is no better equipped to deal w/ exaflop than shmem
IS

MPI could deal with this:
— Multi-device implementations (available today)

— Multiple levels of communicators (a la “EWORLD”)
— MPI_THREAD_MULTI- like guarantees

Do we maintain fiction of any2any communication?

— Network hardware must be connectionless & reliable
« Or SW state machine for each pt2pt connection!

Pa Wi = WAN 1
- U(F~) meimory:

07/26/11

)

Hybrid mode execution: P nodes x T threads/node

UPC processonnoden,0<=n<P

Thread O Thread 1 Thread 2 Thread T-2
Endpoint API
) N
HW window O HW window 1 HW window 2 HW window T-1

Network hardware

07/26/11

)

State of the art;:

HW acceleration for intra-node
Reductions, broadcasts, barriers
Not much of anything done for in-node

PERCS:

27 threads in memory coherence domain -> trouble!
2% nodes in intranode domain -> CAU

Extrapolate: more, and deeper, domains

BTW, how does one chain collectives across networks?

— Extra credit: how does one chain non-blocking collectives across
networks?

07/26/11

)

True one-sided communication (no CPU involvement)
— Remote load/store support (very, very expensive)

— RDMA for very short messages

 Network hardware has to snoop TLBs, inject into
cache; huge risk for HW designers

— HW/SW to assure symmetry in allocations
e Or we build our own allocator (bad!)

HW support for active messages:

— Fire a thread on remote end to execute function

— Trouble with context switches & resource allocation

 Suppose fired thread wants to communicate?
07/26/11

How to not implement PGAS fence support

= Chain of “reasonable” decisions leads to bad performance

= Initial implementation of UPC fences take 200ms

Recv

A\ 4

PAMI fence implementation:

outstanding PUT Issuer counts outstanding messages
Receivers issue ACKs

ACKs retire outstanding messages
Fence complete when outstanding ==

Completion ACK
Default HAL behavior:

Default PAMI behavior: Coalesced packet ACKs
Fence ACKs ride piggyback Lazy delivery of ACKs
on reliability layer (HAL) ACKs Mitigated by timer interrupt

07/26/11

Part 4. Predicting winners & losers

07/26/11

Why I1s PGAS not taking over the world?

" Performance equivalence: \ . 1 ward compatible

~ Necessary; notsufficient 0 operability with MPI is ill-

= Better productivity: defined
— Not proven until used Contortions on both sides
enough

Winning strategies:
— Does anyone actually care

about productivity? Better productivity? ... no

Higher pain treshold for business as

= Portability: usual? ... yes, but ...
— Platforms x compilers Enable business as usual? YES
— Performance portability! New functionality? ... not sure

27 07/26/11

)

_ Performance:
Complicated:
o _ Pointers-to-shared are the graves of
Block-cyclic index computation performance

Most programmers use cyclic UPC pointer arithmetic

(BF=1), blocked (BF=N/Threads) _ _ _
or indefinite (all indices on 1 2 integer divs + 2 modulo ops /index

thread) Mitigated by compiler in loops

There has been talk of abolishing Interoperability

blocking factors
UPC threads vs MPI tasks

Internal consistency: UPC has two classes of objects. MPI does
Type casts are messy not.
This is the factor that trips up most Mixing UPC shared access with MPI 2-

UPC programmers sided comm. leads to chaos.

UPC shared arrays not compatible with
MPI communicators

28 07/26/11

)

1. The MPI forum needs to be involved

PGAS language has to be “advice to users”

We cannot invent yet another language and hope it sticks
2. Composability/interoperability is key

New language has to feel like a natural extension of MPI

No awkward matches, no incomplete fits

Original vision of MPI was to ne RT library, enable compilers
3. The illusion of shared memory is valuable

Need to come to grips with 2 memory populations

4. MPI has failed as a runtime library

The real reason why IBM is working on PAMI

29 07/26/11

)

Global view is a winner
Real progress in last few years
Co-indices yes, blocking factors no, distributions yes
Do not go overboard with syntax! (HPF lurks)

By default let compiler deal with split phase assignment

Leave pointers-to-shared, split phase in the mix

Like “goto”: considered harmful but necessary

Compiler deals with shared data

MPI can touch any data anywhere

30 07/26/11

)

Lose Java. Keep C++/Python. Lose Fortran ...

OO0 framework with remote method invocation

Build a strong, portable standard library
— It can make or break a language

— People distrust compiler magic; willing to trust libraries

31 07/26/11

	Is PGAS a viable programming model for exascale?�� George Almási
	Slide Number 2
	Basic assumptions about exascale architecture
	OpenMP+MPI
	Accelerator boards, GPU computing
	Slide Number 6
	What is Partitioned Global Address Space, really?�Shared memory ... kinda, sorta
	Slide Number 8
	Variations on PGAS languages
	Explicit one-sided data access
	Array languages and the Global View
	Pointers to shared objects
	Asynchronous (aka split-phase) remote access
	The pitfalls of asynchronous access: an example
	Collective communication in global memory
	Non-SPMD programming models
	The PGAS class wars: two populations of memory
	Lock synchronization, atomic sections etc
	Part 3: PGAS and exascale hardware
	Slide Number 20
	Getting MPI to run on a hierarchical network architecture
	Endpoints, aka�system software is frequently neglected
	Collectives on heterogeneous architectures
	Fine-grain one-sided communication
	How to not implement PGAS fence support
	Slide Number 26
	Why is PGAS not taking over the world?
	Interlude: the many faults of UPC
	Is any of PGAS going to make it?
	My own list of favorites (1 of 2)
	My list of favorites (2 of 2)

