
IBM Research

© 2011 IBM Corporation07/26/11

Is PGAS a viable programming model for
exascale?

George Almási

IBM Research

© 2011 IBM Corporation07/26/11

Outline

 Part 1: Assumptions about exascale; state of art

 Part 2: A critical examination of PGAS features

 Part 3: How HW can support PGAS

 Part 4: A biased/uninformed personal view of the
future

IBM Research

© 2011 IBM Corporation07/26/11

Basic assumptions about exascale architecture

 Floating point oriented architecture
– Architecture crammed full of FPUs at expense of sanity

– It's not ExaByte or ExaByte/s or ExaOp/s

– Low BW/FP, memory/FP ratios
• BLAS3 possible, BLAS2 broken, BLAS1 SOL

 Deep memory & execution hierarchies
– Multiple levels of cache

– Multiple memory domains (limited coherence?)

– Multiple levels/types of execution units (!)

– Multiple levels/types of network connections (!)

IBM Research

© 2011 IBM Corporation4 07/26/11

OpenMP+MPI

 It is the law of the land

 Proven track record
– Millions of LOC

Well defined roles
– MPI for coarse grain

– OpenMP for fine grain

Two solutions for two
problems - funny
interactions

MPI thread funneling problem
Linkage conflict:

MPI task-global
OMP thread-local

Compromises MPI modularity
(communicators)

How about accelerators?

IBM Research

© 2011 IBM Corporation5 07/26/11

Accelerator boards, GPU computing

 A few fat MPI nodes, many wimpy accelerators
– Enough cheap performance to lure developers into re-

writing apps (already happening)
• People willing to go back to single precision
• People willing to coalesce mem access

– This makes MPI+OpenMP look really good

 Accelerator kernels only communicate with host
– Perfectly suitable for divide-and-conquer algorithms

– Not so good for graph algorithms and chasing pointers
across the system

IBM Research

© 2011 IBM Corporation6 07/26/11

Part 2: PGAS “Too little, too late?”

NO! A lot, and insane

IBM Research

© 2011 IBM Corporation7 07/26/11

What is Partitioned Global Address Space, really?
Shared memory ... kinda, sorta

Address SpaceTask Global uniform shared memory is
too expensive/power hungry to
build
– Modern machines have network

devices, NUMA shared memory

 Provide partial illusion of shared
memory
– Restricted to certain software

constructs (“shared” vs “local”)

– Explicit SW control of affinity
(association b/w memory and task)

– Encourage coarse grain
communication: explicit one-sided
communication primitives

Enough rope to hang yourself:
programmer allowed to ignore affinity
and hurt performance.

PGAS languages enlist compiler to
mitigate effects of locality-naive code.

IBM Research

© 2011 IBM Corporation8 07/26/11

We will now re-examine PGAS features

– Sanity

– Interoperability with MPI

– Fit with machine hierarchy

– Implementability

IBM Research

© 2011 IBM Corporation9 07/26/11

Variations on PGAS languages

 One-sided access

– Modeled after shared memory

 Global View & Array manipulation

– APL, Matlab, HPF

 Pointers to shared

– Modeled after C, C++

 Asynchronous execution

– Model: Scala

 Collective communication

– Model: MPI

 Lock synchronization

– Model: POSIX locks

IBM Research

© 2011 IBM Corporation10 07/26/11

Explicit one-sided data access

Good:
– Passive participant's

CPU not interrupted

– No handshake required

– Looks like shared
memory (w/ compiler to
help)

– (Almost) implementable
with modern network HW

Bad:
Violates MPI data contract at

a deep level
RAW, WAR etc. conflicts
“Strict” consistency just not

practical with 1-10 usec
sync overhead

Every PGAS language has
its own version of
”relaxed” semantics

Truly scalable fence op very
difficult to implement

IBM Research

© 2011 IBM Corporation11 07/26/11

Array languages and the Global View

 Sequential operation on large blob of data:
– “multiply matrix A with matrix B” (A, B distributed)

– “sum of A/eigenvalues of B/etc”

– HPF, HTAs, Chapel, ZPL, elements of UPC and CAF

 Easy to program

 Niche player (admittedly a large niche)
– Fantastic for regular problems

– Useful but not great for irregular problems

IBM Research

© 2011 IBM Corporation12 07/26/11

Pointers to shared objects

 Familiar from C programming

– Shared-memory flavor

– Allows e.g. pointer chasing

 Encourages worst C programming paradigms

– Strains type system (local->shared->local conversions)

– Strains “array==pointer” dogma to breaking point

• Encourages disregard of affinity through ops like “++”

– Haunted by asynchrony and relaxed memory consistency

– Encourages fine grained remote access

 “Fat pointers” are very expensive to de-reference locally

 Prominent feature of UPC; disallowed by CAF

IBM Research

© 2011 IBM Corporation13 07/26/11

Asynchronous (aka split-phase) remote access

 Reason for existence:
– Mitigate latency (split-C)

– Allow overlapping of
communication with
anything

– Split-C, UPC extensions

The problem:
Split-phase transactions

require programmer
discipline
More discipline than most

programmers have
Subtle bugs abound

CAF solution: leave it to compiler!

No asynchronous access in language syntax

Consistency model allows async. impl. of remote accesses

IBM Research

© 2011 IBM Corporation14 07/26/11

The pitfalls of asynchronous access: an example

if (a_piv) memcpy (aux, pivot, blksize);
if (a_piv) v = memget_async (pivot, root, blksize);
bcast (..., aux, blksize);
if (a_root) memcpy (root, aux, blksize);
if (v) upc_waitsync(v);

HPC Challenge code, HPL linpack

Operation:
 Broadcast pivot to everyone
 Copy root to pivot

Overlap solution:
 Copy pivot into a temporary (“aux”)
 Broadcast across “aux” array
 (Overlap) copy from root to pivot
 Copy aux->root

root

pivot

aux

IBM Research

© 2011 IBM Corporation15 07/26/11

Collective communication in global memory

 Patterns for manipulating
distributed instr & data flow

– Synchronization:
• Barriers, fences, various

forms of locks and atomic
sections

– Data exchanges:
• Broadcast, scatter/gather,

personalized communication

– Distributed computation:
• Reductions, prefix sums

MPI data contract:
Data is given to MPI primitive,

returned at end of op; do not
touch during operation

Interoperability trouble:

Difficult notion of “giving” non-
local data to collective

Difficult to guarantee data
integrity in the presence of
remote one-sided data access

(UPC) profusion of unintelligible
flags fail to control situation

IBM Research

© 2011 IBM Corporation16 07/26/11

Non-SPMD programming models

 Asynchronous remote execution
– X10, Scala, “CAF 2.0”

 Freedom from tyranny of SPMD
– End-run around memory consistency

• All data is “local” or transferred via asyncs

 Problems:
– Global termination detection

– Niche player

– No real thought has gone into integration with MPI (yet)

– “Async” implementation is iffy (but not impossible)

IBM Research

© 2011 IBM Corporation17 07/26/11

The PGAS class wars: two populations of memory

 Default shared:
– Closer to shared memory

ideal

– Global view objects are
always shared

– Encourages overuse of
shared objects, makes
performance &
correctness more difficult

– ZPL, Titanium

Default local:
Better (I didn't say good!)

integration w/ MPI

Tighter control on what can
be accessed

Two classes of objects,
sometimes necessitating
extra local copies

UPC, CAF, HPF, X10 etc

IBM Research

© 2011 IBM Corporation07/26/11

Lock synchronization, atomic sections etc

– Tempting because familiar

– To pthreads programmers

– Utterly insane to think it scales across network

– Lock contention == network congestion
• Ramifications beyond poor lock latency

– 3 orders of magnitude increase in lock latency

– Every PGAS program (that I have seen) that uses locks
has severe scalability issues

– Possible solution: limit scope of locks (somehow)

IBM Research

© 2011 IBM Corporation07/26/11

Part 3: PGAS and exascale hardware

– Non-coherent shared memory

– MPI on a network hierarchy

– No hierarchy funneling please

– Collectives on a network hierarchy

– The unbearable fine granularity of access

– Memory fences are hard to implement

– Symmetric allocation and short RDMAs

IBM Research

© 2011 IBM Corporation20 07/26/11

Non-coherent shared memory is insane

Buffer 1: sent from (by CPU 0) Buffer 2: received into (by CPU 1)
Memory

Main processor cannot touch
loop:

ld …, buffer
st …, network
bdnz loop

Last iteration:
branch predictor predicts branch taken
ld executes speculatively

• cache miss causes first line of forbidden buffer area to be fetched into cache
• system executes branch, rolls back speculative loads
• does not roll back cache line fetch (because it’s nondestructive)

Conclusion: CPU 0 ends up with stale data in cache
But only when cache line actually survives before being used

IBM Research

© 2011 IBM Corporation07/26/11

Getting MPI to run on a hierarchical network
architecture

 Ironic: MPI assumes a flat network
– Is no better equipped to deal w/ exaflop than shmem

is

MPI could deal with this:
– Multi-device implementations (available today)

– Multiple levels of communicators (a la “EWORLD”)

– MPI_THREAD_MULTI- like guarantees

 Do we maintain fiction of any2any communication?
– Network hardware must be connectionless & reliable

• Or SW state machine for each pt2pt connection!
– O(P2) memory!

IBM Research

© 2011 IBM Corporation07/26/11

Endpoints, aka
system software is frequently neglected

UPC process on node n, 0 <= n < P

Thread 0 Thread 1 Thread 2 Thread T-2...

Hybrid mode execution: P nodes x T threads/node

HW window
0 HW window 1HW window 0 HW window 2 HW window T-1...

Network hardware

Messaging Library API
Endpoint API

IBM Research

© 2011 IBM Corporation07/26/11

Collectives on heterogeneous architectures

 State of the art:
– HW acceleration for intra-node

• Reductions, broadcasts, barriers

– Not much of anything done for in-node

 PERCS:
– 27 threads in memory coherence domain -> trouble!

– 214 nodes in intranode domain -> CAU

– Extrapolate: more, and deeper, domains

 BTW, how does one chain collectives across networks?
– Extra credit: how does one chain non-blocking collectives across

networks?

IBM Research

© 2011 IBM Corporation07/26/11

Fine-grain one-sided communication

 True one-sided communication (no CPU involvement)
– Remote load/store support (very, very expensive)

– RDMA for very short messages
• Network hardware has to snoop TLBs, inject into

cache; huge risk for HW designers
– HW/SW to assure symmetry in allocations

• Or we build our own allocator (bad!)

 HW support for active messages:
– Fire a thread on remote end to execute function

– Trouble with context switches & resource allocation
• Suppose fired thread wants to communicate?

IBM Research

© 2011 IBM Corporation07/26/11

How to not implement PGAS fence support

 Chain of “reasonable” decisions leads to bad performance

 Initial implementation of UPC fences take 200ms
– when asymmetric communication pattern followed by upc barrier

Issuer Recv

outstanding PUT

Completion ACK

Default PAMI behavior:
Fence ACKs ride piggyback
on reliability layer (HAL) ACKs

Default HAL behavior:
Coalesced packet ACKs
Lazy delivery of ACKs
Mitigated by timer interrupt

PAMI fence implementation:
Issuer counts outstanding messages
Receivers issue ACKs
ACKs retire outstanding messages
Fence complete when outstanding == 0

IBM Research

© 2011 IBM Corporation07/26/11

Part 4: Predicting winners & losers

IBM Research

© 2011 IBM Corporation27 07/26/11

Why is PGAS not taking over the world?

 Performance equivalence:

– Necessary; not sufficient

 Better productivity:

– Not proven until used
enough

– Does anyone actually care
about productivity?

 Portability:

– Platforms x compilers

– Performance portability!

Not backward compatible

Interoperability with MPI is ill-
defined

Contortions on both sides

Winning strategies:
Better productivity? ... no

Higher pain treshold for business as
usual? ... yes, but ...

Enable business as usual? YES

New functionality? ... not sure

IBM Research

© 2011 IBM Corporation28 07/26/11

Interlude: the many faults of UPC

 Complicated:

– Block-cyclic index computation

– Most programmers use cyclic
(BF=1), blocked (BF=N/Threads)
or indefinite (all indices on 1
thread)

– There has been talk of abolishing
blocking factors

 Internal consistency:

– Type casts are messy

– This is the factor that trips up most
UPC programmers

Performance:

Pointers-to-shared are the graves of
performance

UPC pointer arithmetic

2 integer divs + 2 modulo ops /index
Mitigated by compiler in loops

Interoperability

UPC threads vs MPI tasks

UPC has two classes of objects. MPI does
not.

Mixing UPC shared access with MPI 2-
sided comm. leads to chaos.

UPC shared arrays not compatible with
MPI communicators

IBM Research

© 2011 IBM Corporation29 07/26/11

Is any of PGAS going to make it?

1. The MPI forum needs to be involved
– PGAS language has to be “advice to users”

– We cannot invent yet another language and hope it sticks

2. Composability/interoperability is key
– New language has to feel like a natural extension of MPI

– No awkward matches, no incomplete fits

– Original vision of MPI was to ne RT library, enable compilers

3. The illusion of shared memory is valuable
– Need to come to grips with 2 memory populations

4. MPI has failed as a runtime library
– The real reason why IBM is working on PAMI

IBM Research

© 2011 IBM Corporation30 07/26/11

My own list of favorites (1 of 2)

 Global view is a winner

– Real progress in last few years

– Co-indices yes, blocking factors no, distributions yes

– Do not go overboard with syntax! (HPF lurks)

– By default let compiler deal with split phase assignment

 Leave pointers-to-shared, split phase in the mix
– Like “goto”: considered harmful but necessary

 Compiler deals with shared data
– MPI can touch any data anywhere

IBM Research

© 2011 IBM Corporation31 07/26/11

My list of favorites (2 of 2)

 Lose Java. Keep C++/Python. Lose Fortran ...

– OO framework with remote method invocation

 Build a strong, portable standard library
– It can make or break a language

– People distrust compiler magic; willing to trust libraries

	Is PGAS a viable programming model for exascale?�� George Almási
	Slide Number 2
	Basic assumptions about exascale architecture
	OpenMP+MPI
	Accelerator boards, GPU computing
	Slide Number 6
	What is Partitioned Global Address Space, really?�Shared memory ... kinda, sorta
	Slide Number 8
	Variations on PGAS languages
	Explicit one-sided data access
	Array languages and the Global View
	Pointers to shared objects
	Asynchronous (aka split-phase) remote access
	The pitfalls of asynchronous access: an example
	Collective communication in global memory
	Non-SPMD programming models
	The PGAS class wars: two populations of memory
	Lock synchronization, atomic sections etc
	Part 3: PGAS and exascale hardware
	Slide Number 20
	Getting MPI to run on a hierarchical network architecture
	Endpoints, aka�system software is frequently neglected
	Collectives on heterogeneous architectures
	Fine-grain one-sided communication
	How to not implement PGAS fence support
	Slide Number 26
	Why is PGAS not taking over the world?
	Interlude: the many faults of UPC
	Is any of PGAS going to make it?
	My own list of favorites (1 of 2)
	My list of favorites (2 of 2)

