
Lawrence Livermore National Laboratory

Challenges for Compiler Support
for Exascale Computing

Programming Languages and Compiler Workshop
Concentrate on the challenges advantages and disadvantages of the various approaches

July 2011

Daniel Quinlan

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
Operated by Lawrence Livermore National Security, LLC, or the U.S. Department of Energy,

National Nuclear Security Administration under Contract DE-AC52-07NA27344

2

The Exascale compiler is between a rock and a hard place
(economics)

 Users don’t want to change their code
 The architecture is unknown, but it will be different, maybe very

different, e.g. scratch space instead of cache.
 Users write their code using general purpose (GP) languages

• They are the only languages the vendors support…
• They are the languages that new talent knows…will learn…
• And its where the tools are…(leverage)

 Parallelization History:
• Vectorization hardware demanded local analysis, so the

transition was relatively smooth once the compilers caught up.
• Distributed memory parallelism is a global optimization, so out

of bounds using program analysis on GP languages

Science & Technology: Computation Directorate

User Applications Vendor
Architecture

3

How do we get out of this mess… (preview)

 Make the software more globally analyzable
• Use restrictions to avoid practices that are unsafe or unanalyzable
• Use abstractions with well defined semantics
• Define runtime and/or compiler support for your abstractions…
• Abstractions could have multiple levels of APIs (users, compiler, …)

 Also packaged as DSLs, programming models, new languages

 Good news: you can do this with existing languages (source-to-source)
• The appropriate restrictions and extensions are domain-specific

research topics
• Don’t get hung up on syntax…

Science & Technology: Computation Directorate

Insert favorite
compiler here

4

Modern parallel programming models have a larger design space;
they are more complex and often lag behind hardware nowadays

Diverse
Algorithms

(App. Domains)

Fast-changing
Parallel Machines

Expressiveness

Performance

Programmability

Portability

Complex
Software Stack

...Language

Compiler

Library

…

Conflicting
Design Goals

…

Numerous
• choices/options/tradeoff

• combinations
• interactions

Today’s parallel programming models
are already behind today’s machines.

(e.g. multithreading CPU+GPU)

5

Programming models bridge algorithms and machines and are
implemented through components of software stack

Measures of success:
• Expressiveness

• Performance
• Programmability

• Portability
• Efficiency

•…

Language

Compiler

Library

Algorithm

Application

Abstract
Machine

Executable

Real
Machine

Programming Model

Express

Execute

Compile/link

…

Software Stack

6

Challenges for Compilers and Programming Languages

 Programming Models often have compiler requirements
 Programming model instantiations are supported using a range

from libraries (MPI) to compilers (OpenMP)
 Always a runtime level of support
 Often includes compiler support

 Programming Languages require compiler support
 If you give a mouse a cookie… make the HPC community build a

programming model…

Science & Technology: Computation Directorate

Programming
Models

Instantiations
with Compiler

Support

Runtime SupportCompiler Support

Programming
Languages

Instantiations

Library-based
Programming

Models
Instantiations

7

Exascale will make demands on compiler technology

 Unique one off solutions for specific hardware
 Unique one off solutions for Exascale…
 Demanding schedules will drive manual solutions first

• Compiler technology can only backfill with automated solutions
where possible

• Automated and semi-automated techniques will lag
 Economics will drive different solutions at different levels

 But the codes will be the same…until users have to optimize the
performance

 Resiliency as an example of Exascale specific compiler work

Science & Technology: Computation Directorate

8

Parallel programming models are built on top of sequential ones
and use a combination of language/compiler/library support

CPU

MemoryAbstract
Machine
(overly

simplified) CPU

Shared Memory

CPU
CPU

Memory

CPU

Memory

Interconnect

…

Programming
Model Sequential

Parallel

Shared Memory (e.g. OpenMP) Distributed Memory (e.g. MPI)

…

Software
Stack

General purpose
Languages (GPL)

C/C++/Fortran

Sequential
Compiler

Optional Seq. Libs

GPL + Directives

Seq. Compiler
+ OpenMP support

OpenMP Runtime Lib

GPL + Call to MPI libs

Seq. Compiler

MPI library

9

We could define a programming model framework to address
exascale challenges and beyond

Compiler
Support

…

Runtime
Library

…

Language Ext.

Compiler Sup.

Runtime Lib.

Programming model 1

Programming model 2

Compiler Sup.

Runtime Lib.

Compiler Sup.

Programming model n
…

Language
Extensions

…

A three-level, open framework to facilitate building node-level
programming models for exascale architectures

Tool 1

Tool n

Function 1

Function 1

Directive 1

Directive n
Level 1

Level 2

Level 3

Reuse & Customize

Software Stack

10

Serve both researchers and developers, engage HPC
applications, and targets heterogeneous architectures

 Users:
• Programming model

researchers: explore design
space

• Experienced application
developers: build custom
models targeting current and
future machines

 Scope is a research topic

• HPC applications: scientific computing
• Heterogeneous architectures: CPUs + GPUs

• Building blocks: parallelism, locality, power efficiency, resilience

The programming model framework vastly increases
the flexibility in how the HPC stack can be used for

application development.

Classic Future

11

It is a challenging research & development problem to provide
building blocks in order to address exascale challenges

Parallelism Data Locality Power Efficiency Resilience

Language
Extension

#task
#device
#depend_on

#distribution
#location
#mem_pattern

#turn_off(FPU)
#cpu_freq()
#cache(n-way)

#check_sum
#TMR
#checkpoint

Compiler
Support

outliner
instrumentor
depAnalyzer

dataPartitioning
reuseDistance
arrayAccessPattern

resourceAnalysis
loopTranslation
worstCaseExe

faultDetection
faultInjection
InCacheTMR

Runtime
Library

threadCreate();
barrier();
taskSchedule();

set_affinity();
set_mempolicy();
data_redist();

power_off();
get_enegy_metric();
set_mem_freq();

check_sum();
generate_fault();
checkpoint();

Notes:
• Building blocks in a bold font: planned R&D in this proposal
• Others in an italic font: long term research goals
• #task is used instead of #pragma task for brevity in the table
• #TMR: Triple Modular Redundancy

Building blocks: essential, widely applicable, reusable, customizable
Framework: easy combination of building blocks to explore the design space

12

Summary: Building Blocks Approach

 Leverage the existing languages
 Build Programming model building

blocks
• Compiler support
• Runtime support

 Enable research to instantiate
specific programming models

 Target evolving architectures
quickly…

 Challenges:
• Selection of abstractions
• Description of abstractions

semantics
• Generating transformations

using abstraction semantics

Science & Technology: Computation Directorate

13

Compiler technology has to be easy to use…

END

Science & Technology: Computation Directorate

14

What makes the compiler and runtime support useful?

 Accessibility of compiler support
• Is the compiler support required available?
• Can there be a community to support this?

 Maturation
• It takes many years for compiler support to mature
• How can such work be tested and maintained

 Adaptability
• How can it be extended to suit the needs of HPC (for

Exascale and beyond)

Science & Technology: Computation Directorate

15

Resiliency via Compiler Transformations (soft errors only)

 Processor checking:
• Introduction of Triple Modular Redundancy (TMR)
• Different granularities of synchronization

 Data Integrity
• Communication via noisy channel
• Redundancy of data is unreasonable

Science & Technology: Computation Directorate

16

Exascale will make demands on compiler technology

 Accessible (open source availability)
 Easy to use (documented)
 Robust (must handle full scale DOE applications)

 Maybe this is asking too much…

Science & Technology: Computation Directorate

17

We propose to build a framework for creating node-level parallel
programming models for exascale

 Problem:
• Parallel programming models: important but increasingly lag

behind node-level architectures
• Exascale machines more challenges to programming models

 Goal:
• Speedup designing/evolving/adopting programming models for

exascale
 Approach:

• Identify and implement common building blocks of node-level
programming models so both researchers and developers can
quickly construct or customize their own models

 Deliverables:
• A programming model framework (PMF) with building blocks

at language, compiler, and library levels
• Example node-level programming models built using the PMF

18

Programming models will mostly likely become a limiting factor
for exascale computing if no drastic measures are taken

 Future exascale architectures
• Clusters of many-core nodes
• Abundant threads, deep memory hierarchy, CPU+GPU, …
• Power and resilience constraints, …

 (Node level) programming models
• Increasingly complex design space

 Current situation:
• Programming model researchers: struggle to design/build

individual models to find the right one in the huge design space
• Application developers: stuck with stale models: insufficient

high-level models and tedious low-level ones
 Exascale computing may be well behind schedule because of

lengthy design and adoption of exascale programming models!

19

The 1st level of the framework provides building blocks for
directive-based language extensions of programming models

 Language level building blocks:
• Compiler directives that express additional semantics to address

exascale challenges (parallelism, locality, power, resilience,…)
 Compiler directives: source code annotations that provide

additional information to compilers
• C/C++: #pragma omp parallel ; Fortran: !$omp parallel
• #pragma task, #pragma device(CPU|GPU)

 Research and development issues:
• Unify existing directives
• New directives (what to express, at what granularity, and how?)

 Benefits
• Quick experiment with various language features
• Minimal footprint to existing general purpose languages

− Provide a fast avenue for migrating legacy code
− Separate algorithms from implementation details

20

The 2nd level of the framework provides building blocks for
compiler support of programming models

 Compiler level building blocks:
• Composable software tools with application programming

interfaces (APIs) for implementing compiler support of various
programming models

• Parsing customized directives: parse_expression()…
• Analyses: dependence, resource usage, …
• Transformations: instrumentation, outlining, …
• Optimizations: loop unrolling, auto parallelization,…

 Research and development issues:
• Identify and encapsulate existing common complier support
• Develop new compiler analyses/optimizations for upcoming

challenges

21

The compiler support will be implemented using the ROSE
compiler infrastructure (developed at LLNL)

EDG Front-end/
Open Fortran

Parser

Abstract
Syntax Tree

(AST)

Unparser

ROSE–based source-to-source
programming model compilers

http://www.roseCompiler.org

2009 Award

Generic
Analyses/

Transformations/
Optimizations

Custom
Analyses/

Transformations/
Optimizations

Analyzed/
Transformed/

Optimized
Source Code

Input
C/C++/Fortran
OpenMP/UPC
Source Code

Vendor
Compiler

Machine
Executable

http://www.rosecompiler.org/�

22

The 3rd level of the framework will provide building blocks for
runtime libraries of programming models

 Runtime Library building blocks: generic interface
functions that support the implementation and
execution of programming models
 Thread management, data locality
 Power management, resilience support
 E.g. threadCreate(), taskScheduling(), data_redist(),

power_off()…

 A thin layer on top of existing runtime library functions
 Share same compiler support with multiple libraries (GOMP,

StarPU, etc)
 Provide an actual functionality only if it is not available

otherwise

 R&D issues:
 Unify common runtime support, develop new functions

23

Our framework makes it simpler to evolve existing programming
models (use case #1)

 E.g : evolve the OpenMP programming model
• OpenMP: the most popular node-level model

 We will provide an OpenMP implementation using our
framework
• Building blocks of language directives, compiler, runtime library

support

 Users:
• Insert locality, energy or resilience building blocks into the

OpenMP implementation
• Experiment with combinations and interactions of building

blocks from three levels

24

“Fault Resilience for HPC Applications on Exascale Systems” –
Dan Quinlan, LLNL

ImpactObjectives
 Create an automated compiler transformation to assist programmers

in DOE for integrating memory-related fault resilience in their
applications :
 Creating memory efficient fault resilience technique at compiler

level

 Automatically introduce runtime fault resilience checks with some
support for error correction capability

 Automated approach to addressing the
resilience challenge of exascale computing

 Assist application sustainability in
ExaScale environments where memory
failures may occur every 2 hours [DARPA
ExaScale Study 2008 Report]

 Developed compiler transformation
for instrumenting memory references
in scientific kernels with fault
resilience checks

 Designed a library to support runtime
detection of memory errors

 Implemented a fault resilience
technique with block parity algorithm

Accomplishments 2011

ASCR- Computer Science Highlight

Scientific
Applicatio

n

ROSE
Compiler

Transformation

Instrumented
Application

(Fault Resilience Checks)

Application
Execution

Runtime Support
(Block Parity
Algorithm)

No Error
(Normal output)

Errors Detected
(Exception)

Errors Corrected
(Normal output)

Memory Reference
Hashmap

25

Our framework enables fast prototyping of new programming
models (use case #2)

 E.g. : a multithreading programming model for both
CPUs & GPUs
• Concurrent execution on both processors
• Work-queue threading strategy

 Language (directives):
• C++ with pragmas to identify tasks
• Highly parallel algorithms (kernels) written using CUDA

 Compiler (tools):
• Outline tasks and add them onto a queue
• Transform CUDA kernels into code suitable for x86 machines

using vector extensions

 Runtime library (functions):
• Scheduler dispatches tasks in the queue to CPUs or GPUs

26

Implementing a work-queue threading strategy for CPUs & GPUs
(use case #2 continued)

Language (level 1): Application source code annotated with pragmas
//‘globalData’ is divided into patches. For each patch, perform some work.

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

{
function_1(globalData[idxPatch]);
function_2(globalData[idxPatch]);

}

function_3(numBlock, numThread, globalData[idxPatch]);
}

#pragma threadqueue task for shared(globalData)

#pragma threadqueue task device(CPU) label("doMeFirst")

#pragma threadqueue task device(GPU) depend_on("doMeFirst")

• Tell compiler a parallelizable loop and shared data
• Identify tasks for CPUs

• Identify tasks for GPUs and dependence

27

Implementing a work-queue threading strategy for a CPU & GPU
(use case #2 continued)

Language (level 1): Application source code annotated with pragmas
//‘globalData’ is divided into patches. For each patch, perform some work.

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

{
function_1(globalData[idxPatch]);
function_2(globalData[idxPatch]);

}

function_3(numBlock, numThread, globalData[idxPatch]);
}

#pragma threadqueue task for shared(globalData)

#pragma threadqueue task device(CPU) label("doMeFirst")

#pragma threadqueue task device(GPU) depend_on("doMeFirst")

Compiler (level 2): Compiler transformations

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {
CPUQueue.add(outlined_task1(globalData, idxPatch);
GPUQueue.add(outlined_task2(globalData, idxPatch);

}

2

2 3

2. outline tasks, 3. translate CUDA to x86 AVX,
and 4. push onto queue.

1. parse pragma statements,

28

Implementing a work-queue threading strategy for a CPU & GPU
(use case #2 continued)

Language (level 1): Application source code annotated with pragmas
//‘globalData’ is divided into patches. For each patch, perform some work.

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

{
function_1(globalData[idxPatch]);
function_2(globalData[idxPatch]);

}

function_3(numBlock, numThread, globalData[idxPatch]);
}

#pragma threadqueue task for shared(globalData)

#pragma threadqueue task device(CPU) label("doMeFirst")

#pragma threadqueue task device(GPU) depend_on("doMeFirst")

Compiler (level 2): Compiler transformations
1. parse pragma statements, 2. outline tasks, 3. translate CUDA to x86 AVX,
and 4. push onto queue.
for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

CPUQueue.add(outlined_task_1(globalData, idxPatch);
GPUQueue.add(outlined_task_2(globalData, idxPatch);
}

Runtime (level 3): Runtime library
//A worker thread on the CPU, if idle, obtains a new task from the thread scheduler
while (outlined_task *myTask = CPUQueue.get()) {
myTask->exec();

};
//The GPU is similarly scheduled

29

Our framework allows users to easily target new architectures
(use case #3)

Programming Model
Compiler (ROSE)

Programming Model
• Work-queue/Tasks
• CUDA to x86 AVX*

•C++
•CUDA

•Pragma

Transformed
Code
• C++

• CUDA
• AVX

Transformed
Code
• C++

• Dual FPU

Programming Model
• Work-queue/Tasks
• CUDA to dual FPU

Work-queue threading model
CPU + GPU Node Architecture

Work-queue threading model
Blue Gene/L Node Architecture

Vendor Compiler

Vendor Compiler Vendor Compiler

Application

Machine executableMachine executable Machine executable

Programming Model
Compiler (ROSE)

S
ta

rP
U

sc
he

du
le

r

La
ng

ua
ge

C
om

pi
le

r
R

un
tim

e

*AVX: Advanced Vector Extensions

30

Different types of driving change…

 Geologic Change

 Periodic Change

 Economic Change
HPC is driven by economics

Science & Technology: Computation Directorate

Mount
Evans

Clear
Creek

Golden
Colorado

Mount
Evans

31

HPC is driven by Economics

 Hardware Rules
• How well SW runs on new hardware, drives a lot:

− Applications code focus
−Math algorithms selected
−Computer Science research

 Problems generate opportunities
• Performance
• Architecture Design

 In the coming decade, will there be any fundamental
shifts in how we do computational science?

Science & Technology: Computation Directorate

32

In the coming decade, will there be any fundamental
shifts in how we do computational science?

 Yes, if the hardware changes; No if it doesn’t…

 Large changes in HPC hardware coming…
So, let’s focus on the True branch…

 Algorithms will be more important as machines get more complex
• Performance differences may be dramatic
• Winning and loosing algorithms (harsh reality)
• Algorithm use will be machine dependent (SW complexity)
• But change in hardware can make dramatic shifts in

performance of different algorithms

Science & Technology: Computation Directorate

Hardware Change?

Yes No

True False

33

In the coming decade, will there be any fundamental
shifts in how we do computational science?

 Software will be more expensive as machines get more complex
• Software will be more difficult to write

− Software developers will bear the burden of addressing new
hardware features

− Performance problems will be more complex
• Focus on community codes
• Standards and libraries supporting standards
• Programming Models will be an emphasis

− Economics preclude new programming languages
− MPI + X and other programming models
− But programming models lag hardware (~5 years)
− Not all programming models are focused on HPC

• Requirements for tools will increase

Science & Technology: Computation Directorate

34

In the coming decade, will there be any fundamental shifts in how
we do computational science?

 YES

 Algorithms

 Software

 We are ambitious!

 Let’s not let this
happened to us…

Science & Technology: Computation Directorate

	Challenges for Compiler Support �for Exascale Computing�Programming Languages and Compiler Workshop�Concentrate on the challenges advantages and disadvantages of the various approaches�July 2011
	The Exascale compiler is between a rock and a hard place (economics)
	How do we get out of this mess… (preview)
	Modern parallel programming models have a larger design space; they are more complex and often lag behind hardware nowadays
	Programming models bridge algorithms and machines and are implemented through components of software stack
	Challenges for Compilers and Programming Languages
	Exascale will make demands on compiler technology
	Parallel programming models are built on top of sequential ones and use a combination of language/compiler/library support
	We could define a programming model framework to address exascale challenges and beyond
	Serve both researchers and developers, engage HPC applications, and targets heterogeneous architectures
	It is a challenging research & development problem to provide building blocks in order to address exascale challenges
	Summary: Building Blocks Approach
	Compiler technology has to be easy to use…
	What makes the compiler and runtime support useful?
	Resiliency via Compiler Transformations (soft errors only)
	Exascale will make demands on compiler technology
	We propose to build a framework for creating node-level parallel programming models for exascale
	Programming models will mostly likely become a limiting factor for exascale computing if no drastic measures are taken
	The 1st level of the framework provides building blocks for directive-based language extensions of programming models
	The 2nd level of the framework provides building blocks for compiler support of programming models
	The compiler support will be implemented using the ROSE compiler infrastructure (developed at LLNL)
	The 3rd level of the framework will provide building blocks for runtime libraries of programming models
	Our framework makes it simpler to evolve existing programming models (use case #1)
	“Fault Resilience for HPC Applications on Exascale Systems” –�Dan Quinlan, LLNL
	Our framework enables fast prototyping of new programming models (use case #2)
	Implementing a work-queue threading strategy for CPUs & GPUs (use case #2 continued)
	Implementing a work-queue threading strategy for a CPU & GPU (use case #2 continued)
	Implementing a work-queue threading strategy for a CPU & GPU (use case #2 continued)
	Our framework allows users to easily target new architectures (use case #3)
	Different types of driving change…
	HPC is driven by Economics
	In the coming decade, will there be any fundamental shifts in how we do computational science?
	In the coming decade, will there be any fundamental shifts in how we do computational science?
	In the coming decade, will there be any fundamental shifts in how we do computational science?

