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The Exascale compiler is between a rock and a hard place 
(economics)

 Users don’t want to change their code
 The architecture is unknown, but it will be different, maybe very 

different, e.g. scratch space instead of cache.
 Users write their code using general purpose (GP) languages

• They are the only languages the vendors support…
• They are the languages that new talent knows…will learn…
• And its where the tools are…(leverage)

 Parallelization History:
• Vectorization hardware demanded local analysis, so the 

transition was relatively smooth once the compilers caught up.
• Distributed memory parallelism is a global optimization, so out 

of bounds using program analysis on GP languages

Science & Technology: Computation Directorate
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How do we get out of this mess… (preview)

 Make the software more globally analyzable
• Use restrictions to avoid practices that are unsafe or unanalyzable
• Use abstractions with well defined semantics
• Define runtime and/or compiler support for your abstractions…
• Abstractions could have multiple levels of APIs (users, compiler, …)

 Also packaged as DSLs, programming models, new languages

 Good news: you can do this with existing languages (source-to-source)
• The appropriate restrictions and extensions are domain-specific 

research topics
• Don’t get hung up on syntax…

Science & Technology: Computation Directorate
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compiler here
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Modern parallel programming models have a larger design space; 
they are more complex and often lag behind hardware nowadays

Diverse
Algorithms

(App. Domains)

Fast-changing
Parallel Machines

Expressiveness

Performance

Programmability

Portability

Complex 
Software Stack

...Language

Compiler

Library

…

Conflicting
Design Goals

…

Numerous
• choices/options/tradeoff

• combinations
• interactions

Today’s parallel programming models 
are already behind today’s machines. 

(e.g. multithreading CPU+GPU)
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Programming models bridge algorithms and machines and are 
implemented through components of software stack

Measures of success: 
• Expressiveness 

• Performance 
• Programmability 

• Portability 
• Efficiency

•… 

Language

Compiler

Library

Algorithm

Application

Abstract 
Machine

Executable

Real
Machine

Programming Model

Express

Execute

Compile/link

…

Software Stack
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Challenges for Compilers and Programming Languages

 Programming Models often have compiler requirements
 Programming model instantiations are supported using a range 

from libraries (MPI) to compilers (OpenMP)
 Always a runtime level of support
 Often includes compiler support

 Programming Languages require compiler support 
 If you give a mouse a cookie… make the HPC community build a 

programming model…

Science & Technology: Computation Directorate
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Exascale will make demands on compiler technology

 Unique one off solutions for specific hardware
 Unique one off solutions for Exascale…
 Demanding schedules will drive manual solutions first

• Compiler technology can only backfill with automated solutions 
where possible

• Automated and semi-automated techniques will lag
 Economics will drive different solutions at different levels

 But the codes will be the same…until users have to optimize the 
performance

 Resiliency as an example of Exascale specific compiler work 

Science & Technology: Computation Directorate
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Parallel programming models are built on top of sequential ones 
and use a combination of language/compiler/library support

CPU

MemoryAbstract
Machine
(overly 

simplified) CPU

Shared Memory

CPU
CPU

Memory

CPU

Memory

Interconnect

…

Programming 
Model Sequential

Parallel

Shared Memory (e.g. OpenMP) Distributed Memory (e.g. MPI)

…

Software
Stack

General purpose 
Languages (GPL)

C/C++/Fortran

Sequential
Compiler

Optional Seq. Libs

GPL + Directives

Seq. Compiler 
+ OpenMP support

OpenMP Runtime Lib

GPL + Call to MPI libs

Seq. Compiler
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We could define a programming model framework to address 
exascale challenges and beyond

Compiler 
Support

…

Runtime    
Library

…

Language Ext.

Compiler Sup.

Runtime Lib.

Programming model 1

Programming model 2

Compiler Sup.

Runtime Lib.

Compiler Sup.

Programming model n
…

Language 
Extensions

…

A three-level, open framework to facilitate building node-level 
programming models for exascale architectures

Tool 1

Tool n

Function 1

Function 1

Directive 1

Directive n
Level 1

Level 2

Level 3

Reuse & Customize

Software Stack
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Serve both researchers and developers, engage HPC 
applications, and targets heterogeneous architectures

 Users:
• Programming model 

researchers: explore design 
space

• Experienced application 
developers: build custom 
models targeting current and 
future machines

 Scope is a research topic

• HPC applications: scientific computing
• Heterogeneous architectures: CPUs + GPUs

• Building blocks: parallelism, locality, power efficiency, resilience

The programming model framework vastly increases 
the flexibility in how the HPC stack can be used for 

application development.

Classic Future
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It is a challenging research & development problem to provide 
building blocks in order to address exascale challenges

Parallelism Data Locality Power Efficiency Resilience

Language
Extension

#task
#device
#depend_on

#distribution
#location
#mem_pattern

#turn_off(FPU)
#cpu_freq() 
#cache(n-way) 

#check_sum
#TMR
#checkpoint

Compiler
Support

outliner
instrumentor
depAnalyzer

dataPartitioning
reuseDistance
arrayAccessPattern

resourceAnalysis
loopTranslation
worstCaseExe

faultDetection
faultInjection
InCacheTMR

Runtime
Library

threadCreate();
barrier();
taskSchedule();

set_affinity();
set_mempolicy();
data_redist();

power_off();
get_enegy_metric();
set_mem_freq();

check_sum();
generate_fault();
checkpoint();

Notes: 
• Building blocks in a bold font: planned R&D in this proposal
• Others in an italic font: long term research goals
• #task is used instead of #pragma task for brevity in the table
• #TMR: Triple Modular Redundancy

Building blocks: essential, widely applicable, reusable, customizable
Framework: easy combination of building blocks to explore the design space
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Summary: Building Blocks Approach

 Leverage the existing languages
 Build Programming model building 

blocks 
• Compiler support
• Runtime support

 Enable research to instantiate 
specific programming models

 Target evolving architectures 
quickly…

 Challenges:
• Selection of abstractions
• Description of abstractions 

semantics
• Generating transformations 

using abstraction semantics

Science & Technology: Computation Directorate
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Compiler technology has to be easy to use…

END

Science & Technology: Computation Directorate
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What makes the compiler and runtime support useful?

 Accessibility of compiler support
• Is the compiler support required available?
• Can there be a community to support this?

 Maturation
• It takes many years for compiler support to mature
• How can such work be tested and maintained

 Adaptability
• How can it be extended to suit the needs of HPC (for 

Exascale and beyond)

Science & Technology: Computation Directorate
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Resiliency via Compiler Transformations (soft errors only)

 Processor checking:
• Introduction of Triple Modular Redundancy (TMR)
• Different granularities of synchronization

 Data Integrity
• Communication via noisy channel
• Redundancy of data is unreasonable 

Science & Technology: Computation Directorate
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Exascale will make demands on compiler technology

 Accessible (open source availability)
 Easy to use (documented)
 Robust (must handle full scale DOE applications)

 Maybe this is asking too much…

Science & Technology: Computation Directorate



17

We propose to build a framework for creating node-level parallel 
programming models for exascale

 Problem: 
• Parallel programming models: important but increasingly lag 

behind node-level architectures
• Exascale machines more challenges to programming models

 Goal: 
• Speedup designing/evolving/adopting programming models for 

exascale
 Approach: 

• Identify and implement common building blocks of node-level 
programming models so both researchers and developers can 
quickly construct or customize their own models

 Deliverables:
• A programming model framework (PMF) with building blocks 

at language, compiler, and library levels
• Example node-level programming models built using the PMF
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Programming models will mostly likely become a limiting factor 
for exascale computing if no drastic measures are taken

 Future exascale architectures
• Clusters of many-core nodes 
• Abundant threads, deep memory hierarchy, CPU+GPU, …
• Power and resilience constraints, …

 (Node level) programming models
• Increasingly complex design space 

 Current situation: 
• Programming model researchers: struggle to design/build 

individual models to find the right one in the huge design space
• Application developers: stuck with stale models: insufficient 

high-level models and tedious low-level ones
 Exascale computing may be well behind schedule because of 

lengthy design and adoption of exascale programming models!
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The 1st level of the framework provides building blocks for 
directive-based language extensions of programming models

 Language level building blocks: 
• Compiler directives that express additional semantics to address 

exascale challenges (parallelism, locality, power, resilience,…)
 Compiler directives: source code annotations that provide 

additional information to compilers
• C/C++: #pragma omp parallel ; Fortran: !$omp parallel 
• #pragma task, #pragma device(CPU|GPU)

 Research and development issues:
• Unify existing directives
• New directives (what to express, at what granularity, and how?)

 Benefits
• Quick experiment with various language features
• Minimal footprint to existing general purpose languages

− Provide a fast avenue for migrating legacy code
− Separate algorithms from implementation details
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The 2nd level of the framework provides building blocks for 
compiler support of programming models

 Compiler level building blocks: 
• Composable software tools with application programming 

interfaces (APIs) for implementing compiler support of various 
programming models

• Parsing customized directives: parse_expression()… 
• Analyses: dependence, resource usage, …
• Transformations: instrumentation, outlining, …
• Optimizations: loop unrolling, auto parallelization,…

 Research and development issues:
• Identify and encapsulate existing common complier support
• Develop new compiler analyses/optimizations for upcoming 

challenges
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The compiler support will be implemented using the ROSE 
compiler infrastructure (developed at LLNL)

EDG Front-end/
Open Fortran 

Parser

Abstract 
Syntax Tree 

(AST)

Unparser

ROSE–based source-to-source
programming model compilers

http://www.roseCompiler.org

2009 Award

Generic
Analyses/

Transformations/
Optimizations

Custom 
Analyses/

Transformations/
Optimizations

Analyzed/
Transformed/

Optimized
Source Code

Input
C/C++/Fortran
OpenMP/UPC
Source Code

Vendor
Compiler

Machine 
Executable

http://www.rosecompiler.org/�
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The 3rd level of the framework will provide building blocks for 
runtime libraries of programming models

 Runtime Library building blocks: generic interface 
functions that support the implementation and 
execution of programming models
 Thread management, data locality 
 Power management, resilience support
 E.g. threadCreate(), taskScheduling(), data_redist(), 

power_off()…

 A thin layer on top of existing runtime library functions
 Share same compiler support with multiple libraries (GOMP, 

StarPU, etc)
 Provide an actual functionality only if it is not available 

otherwise

 R&D issues: 
 Unify common runtime support, develop new functions
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Our framework makes it simpler to evolve existing programming 
models (use case #1)

 E.g : evolve the OpenMP programming model
• OpenMP: the most popular node-level model

 We will provide an OpenMP implementation using our 
framework
• Building blocks of language directives, compiler, runtime library 

support

 Users: 
• Insert locality, energy or resilience building blocks into the 

OpenMP implementation
• Experiment with combinations and interactions of building 

blocks from three levels
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“Fault Resilience for HPC Applications on Exascale Systems” –
Dan Quinlan, LLNL  

ImpactObjectives 
 Create an automated compiler transformation to assist programmers 

in DOE for integrating memory-related fault resilience in their 
applications :
 Creating memory efficient fault resilience technique at compiler 

level

 Automatically introduce runtime fault resilience checks with some 
support for error correction capability

 Automated approach to addressing the 
resilience challenge of exascale computing

 Assist application sustainability in 
ExaScale environments where memory 
failures may occur every 2 hours [DARPA 
ExaScale Study 2008 Report]

 Developed compiler transformation 
for instrumenting memory references 
in scientific kernels with fault 
resilience checks

 Designed a library to support runtime 
detection of memory errors

 Implemented a fault resilience 
technique with block parity algorithm 

Accomplishments 2011

ASCR- Computer Science Highlight 

Scientific
Applicatio

n

ROSE 
Compiler 

Transformation

Instrumented 
Application 

( Fault Resilience Checks )

Application
Execution

Runtime Support
( Block Parity 
Algorithm )

No Error
( Normal output)

Errors Detected
( Exception )

Errors Corrected
( Normal output)

Memory Reference
Hashmap
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Our framework enables fast prototyping of new programming 
models (use case #2)

 E.g. : a multithreading programming model for both 
CPUs & GPUs
• Concurrent execution on both processors
• Work-queue threading strategy

 Language (directives):
• C++ with pragmas to identify tasks
• Highly parallel algorithms (kernels) written using CUDA

 Compiler (tools):
• Outline tasks and add them onto a queue
• Transform CUDA kernels into code suitable for x86 machines 

using vector extensions

 Runtime library (functions):
• Scheduler dispatches tasks in the queue to CPUs or GPUs
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Implementing a work-queue threading strategy for CPUs & GPUs 
(use case #2 continued)

Language (level 1): Application source code annotated with pragmas
//‘globalData’ is divided into patches.  For each patch, perform some work.

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

{
function_1(globalData[idxPatch]);
function_2(globalData[idxPatch]);

}

function_3(numBlock, numThread, globalData[idxPatch]);
}

#pragma threadqueue task for shared(globalData) 

#pragma threadqueue task device(CPU) label("doMeFirst")

#pragma threadqueue task device(GPU) depend_on("doMeFirst")

• Tell compiler a parallelizable loop and shared data
• Identify tasks for CPUs

• Identify tasks for GPUs and dependence
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Implementing a work-queue threading strategy for a CPU & GPU 
(use case #2 continued)

Language (level 1): Application source code annotated with pragmas
//‘globalData’ is divided into patches.  For each patch, perform some work.

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

{
function_1(globalData[idxPatch]);
function_2(globalData[idxPatch]);

}

function_3(numBlock, numThread, globalData[idxPatch]);
}

#pragma threadqueue task for shared(globalData) 

#pragma threadqueue task device(CPU) label("doMeFirst")

#pragma threadqueue task device(GPU) depend_on("doMeFirst")

Compiler (level 2): Compiler transformations

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {
CPUQueue.add(outlined_task1(globalData, idxPatch);
GPUQueue.add(outlined_task2(globalData, idxPatch);

}

2

2 3

2. outline tasks, 3. translate CUDA to x86 AVX,
and 4. push onto queue.

1. parse pragma statements,
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Implementing a work-queue threading strategy for a CPU & GPU 
(use case #2 continued)

Language (level 1): Application source code annotated with pragmas
//‘globalData’ is divided into patches.  For each patch, perform some work.

for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

{
function_1(globalData[idxPatch]);
function_2(globalData[idxPatch]);

}

function_3(numBlock, numThread, globalData[idxPatch]);
}

#pragma threadqueue task for shared(globalData) 

#pragma threadqueue task device(CPU) label("doMeFirst")

#pragma threadqueue task device(GPU) depend_on("doMeFirst")

Compiler (level 2): Compiler transformations
1. parse pragma statements, 2. outline tasks, 3. translate CUDA to x86 AVX,
and 4. push onto queue.
for (int idxPatch = 0; idxPatch < numPatch; ++idxPatch) {

CPUQueue.add(outlined_task_1(globalData, idxPatch); 
GPUQueue.add(outlined_task_2(globalData, idxPatch);
}

Runtime (level 3): Runtime library
//A worker thread on the CPU, if idle, obtains a new task from the thread scheduler
while (outlined_task *myTask = CPUQueue.get()) {
myTask->exec();

};
//The GPU is similarly scheduled



29

Our framework allows users to easily target new architectures 
(use case #3)

Programming Model 
Compiler (ROSE)

Programming Model
• Work-queue/Tasks
• CUDA to x86 AVX*

•C++
•CUDA

•Pragma

Transformed
Code
• C++

• CUDA
• AVX

Transformed
Code
• C++

• Dual FPU

Programming Model
• Work-queue/Tasks
• CUDA to dual FPU

Work-queue threading model
CPU + GPU Node Architecture

Work-queue threading model
Blue Gene/L Node Architecture

Vendor Compiler

Vendor Compiler Vendor Compiler

Application

Machine executableMachine executable Machine executable

Programming Model 
Compiler (ROSE)
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*AVX: Advanced Vector Extensions
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Different types of driving change…

 Geologic Change

 Periodic Change

 Economic Change
HPC is driven by economics

Science & Technology: Computation Directorate
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HPC is driven by Economics

 Hardware Rules
• How well SW runs on new hardware, drives a lot:

− Applications code focus
−Math algorithms selected
−Computer Science research

 Problems generate opportunities
• Performance
• Architecture Design

 In the coming decade, will there be any fundamental 
shifts in how we do computational science?

Science & Technology: Computation Directorate
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In the coming decade, will there be any fundamental 
shifts in how we do computational science?

 Yes, if the hardware changes; No if it doesn’t…

 Large changes in HPC hardware coming…
So, let’s focus on the True branch…

 Algorithms will be more important as machines get more complex
• Performance differences may be dramatic
• Winning and loosing algorithms (harsh reality)
• Algorithm use will be machine dependent (SW complexity)
• But change in hardware can make dramatic shifts in 

performance of different algorithms

Science & Technology: Computation Directorate

Hardware Change?

Yes No

True False
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In the coming decade, will there be any fundamental 
shifts in how we do computational science?

 Software will be more expensive as machines get more complex
• Software will be more difficult to write

− Software developers will bear the burden of addressing new 
hardware features

− Performance problems will be more complex
• Focus on community codes
• Standards and libraries supporting standards
• Programming Models will be an emphasis 

− Economics preclude new programming languages
− MPI + X and other programming models
− But programming models lag hardware (~5 years)
− Not all programming models are focused on HPC

• Requirements for tools will increase

Science & Technology: Computation Directorate
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In the coming decade, will there be any fundamental shifts in how 
we do computational science?

 YES

 Algorithms

 Software

 We are ambitious!

 Let’s not let this 
happened to us…

Science & Technology: Computation Directorate
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