
ASCR Programming Challenges
Workshop

William Harrod

Sonia R. Sachs

July 27-29, 2011

Welcome and Goals

• Welcome
• Workshop Goals:

– Define objective criteria for assessing programming models and
language features that enable effective use of diverse Exascale
architectures for important science applications.

– Prioritize challenges for programming models, languages,
compilers and runtime systems for Exascale

– Prioritize options for
• evolutionary path,
• revolutionary path and
• bridging the gap between evolutionary and revolutionary paths

– Create a roadmap, with options, timeline, and rough cost
estimates for programming Exascale systems that are responsive
to the needs of applications and to future architectural
constraints

State-of-the-art Session I

• Presentations on advanced programming models and
languages, describing and comparing capabilities and
advantages and disadvantages of approaches. 20
minutes + 5 minutes for questions.

• Focused Parallel Panel discussions
– Develop objective criteria to assess programming

models considering various models of computation
primitives:

• Communication and Synchronization Primitives Panel
• Scheduling Primitives Panel
• Partitioning and Placement Primitives Panel

• Session I General Panel

Explaining Focused Panels
for Session I

• These primitives apply at all levels of
abstraction:
algorithm execution model programming

model language machine model

• We are focusing today on programming
models

• We are here to explore how these primitives
are defined in Exascale environments

Explaining Focused Panels
for Session I

• Communication:
– describes how work and data are passed from one parallel task to another

(broadcast, multicast, point-to-point, near neighbor, tree, etc.)

• Synchronization:
– describes the control and data mechanisms for coordinating parallel

operations (producer-consumer, barrier, locks)

• Partitioning:
– describes how work and data are split between different physical resources

(what to run as threads, what is the grain size, division of work…)

• Placement:
– describes the location of first class objects throughout the system (where to

run, where to place the data…)

• Scheduling:
– describes the ordering of work (when to run, static or dynamic, user-level or

system-level…)

A Few Words about
Exascale Challenges

• Asynchrony will be needed at all levels in Exascale computing:
 Algorithms execution models programming models
languages machine models.

• The paradigm shift from bulk-synchronous computing to
asynchronous computing appears unsettling and chaotic to many.
– Not to worry:

• From a theoretical, formal methods view point, we have shown1

that one can model asynchrony with a synchronous model.

• On the other hand, this may only apply if the abstractions that we
use in the new asynchronous, massively parallel environment are
good enough so that the theory applies…

1. R.P.Kurshan, M. Merritt, A. Orda, and S.R.Sachs, “Modelling Asynchrony with a Synchronous
Model, Lecture Notes in Computer Science, 1995, Volume 939/1995, 339-352.

A Few Words about
Exascale Challenges

• Concurrent programming is difficult1

• Our physical world is highly concurrent, so why is concurrent
programming difficult?
– Have we chosen incorrect programming abstractions?
– Are threads an example of such incorrect abstractions?

– “achieving reliability and predictability using threads is
essentially impossible for many applications.2”

– Is message passing another example of incorrect
abstraction?

– “Message passing can be made as non-deterministic and
difficult to understand as threads.2”

1. H. Sutter and J. Larus, “Software and the Concurrency Revolution,”
ACM Queue, vol. 3, no. 7, 2005, pp. 54-62.
2. E. Lee, “The Problem with Threads,” Computer, pp. 33-42, May 2006.

A Few Words about
Exascale Challenges

• Do we have examples of good abstractions?
– In embedded systems, actor-oriented

programming1 used in the context of several
models of computation (Kahn Process Networks,
Synchronous/Reactive, and Discrete Events) very
naturally expresses concurrency .

– We hope that at this workshop we will explore
many abstractions to deal with asynchrony.

1. E.A. Lee and S. Neuendorffer, “Clases and Subclasses in Actor-Oriented Design,” Proc.
ACM/IEEE Conf. Formal Methods and Models for Codesign (MEMOCODE), 2004;
http://ptolemy.eecs.berkeley.edu/publications/papers/04/ Classes/

Workshop Organization

• Our Special Thanks to Bob Lucas for hosting this workshop
• Our Thanks to:

– The Workshop Committee
• Saman Amarasinghe (MIT),
• Mary Hall (U. Utah),
• Pat McCormick (LANL),
• Richard Murphy (Sandia),
• Keshav Pingali (U. Texas-Austin),
• Dan Quinlan (LLNL),
• Vivek Sarkar (Rice),
• John Shalf(LBNL).

– The Advisory Committee:
• Bob Lucas (USC/ISI)
• Kathy Yelick (LBNL/UCB)

– Participants who contributed panel questions
– ASCR Website team: Tom Monahan and Ginger Kirkendall
– Support from Sandia, ISI, and ORISE (Larry Godinez, Dolores Cadena,

Jeannie Robinson, and Deneise Terry)

	ASCR Programming Challenges Workshop
	Welcome and Goals
	State-of-the-art Session I
	Explaining Focused Panels for Session I
	Explaining Focused Panels for Session I
	A Few Words about Exascale Challenges
	A Few Words about Exascale Challenges
	A Few Words about Exascale Challenges
	Workshop Organization

