ASCR Programming Challenges Workshop

William Harrod
Sonia R. Sachs
July 27-29, 2011
Welcome and Goals

- Welcome
- Workshop Goals:
 - Define objective criteria for assessing programming models and language features that enable effective use of diverse Exascale architectures for important science applications.
 - Prioritize challenges for programming models, languages, compilers and runtime systems for Exascale
 - Prioritize options for
 - evolutionary path,
 - revolutionary path and
 - bridging the gap between evolutionary and revolutionary paths
 - Create a roadmap, with options, timeline, and rough cost estimates for programming Exascale systems that are responsive to the needs of applications and to future architectural constraints
State-of-the-art Session I

• **Presentations** on advanced programming models and languages, *describing and comparing* capabilities and advantages and disadvantages of approaches. 20 minutes + 5 minutes for questions.

• **Focused Parallel Panel discussions**
 – Develop objective criteria to assess programming models considering various models of computation primitives:
 • Communication and Synchronization Primitives Panel
 • Scheduling Primitives Panel
 • Partitioning and Placement Primitives Panel

• **Session I General Panel**
Explaining Focused Panels for Session I

• These primitives apply at all levels of abstraction:
 ➔ algorithm ➔ execution model ➔ programming model ➔ language ➔ machine model

• We are focusing today on programming models

• We are here to explore how these primitives are defined in Exascale environments
Explaining Focused Panels for Session I

- **Communication:**
 - describes how work and data are passed from one parallel task to another (broadcast, multicast, point-to-point, near neighbor, tree, etc.)

- **Synchronization:**
 - describes the control and data mechanisms for coordinating parallel operations (producer-consumer, barrier, locks)

- **Partitioning:**
 - describes how work and data are split between different physical resources (what to run as threads, what is the grain size, division of work...)

- **Placement:**
 - describes the location of first class objects throughout the system (where to run, where to place the data...)

- **Scheduling:**
 - describes the ordering of work (when to run, static or dynamic, user-level or system-level...)
A Few Words about Exascale Challenges

• **Asynchrony** will be needed at all levels in Exascale computing:
 ➔ Algorithms ➔ execution models ➔ programming models
 ➔ languages ➔ machine models.

• The **paradigm shift** from bulk-synchronous computing to asynchronous computing appears unsettling and chaotic to many.
 – Not to worry:
 • From a theoretical, formal methods view point, we have shown\(^1\) that one can model asynchrony with a synchronous model.

• On the other hand, **this may only apply if the abstractions that we use** in the new asynchronous, massively parallel environment are **good enough** so that the theory applies...

Concurrent programming is difficult\(^1\)

Our physical world is highly concurrent, so why is concurrent programming difficult?

- Have we chosen incorrect programming abstractions?
- Are threads an example of such incorrect abstractions?
 - “achieving reliability and predictability using threads is essentially impossible for many applications.\(^2\)”
- Is message passing another example of incorrect abstraction?
 - “Message passing can be made as non-deterministic and difficult to understand as threads.\(^2\)”

A Few Words about Exascale Challenges

• Do we have examples of good abstractions?
 – In embedded systems, **actor-oriented programming**\(^1\) used **in the context of several models of computation** (Kahn Process Networks, Synchronous/Reactive, and Discrete Events) very naturally expresses concurrency.
 – We hope that at this workshop we will explore many abstractions to deal with asynchrony.

Workshop Organization

- Our Special Thanks to Bob Lucas for hosting this workshop
- Our Thanks to:
 - The Workshop Committee
 - Saman Amarasinghe (MIT),
 - Mary Hall (U. Utah),
 - Pat McCormick (LANL),
 - Richard Murphy (Sandia),
 - Keshav Pingali (U. Texas-Austin),
 - Dan Quinlan (LLNL),
 - Vivek Sarkar (Rice),
 - John Shalf (LBNL).
 - The Advisory Committee:
 - Bob Lucas (USC/ISI)
 - Kathy Yelick (LBNL/UCB)
 - Participants who contributed panel questions
 - ASCR Website team: Tom Monahan and Ginger Kirkendall
 - Support from Sandia, ISI, and ORISE (Larry Godinez, Dolores Cadena, Jeannie Robinson, and Deneise Terry)