
Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for

the U.S. Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.

Execution Models: A Bottom-Up Approach�
(EMBU)

ASCR/ASC Exascale PI Meeting�
Portland, OR�

�
April 17, 2012�

Sandia National Laboratories

Robert Clay

Mike Heroux

Gilbert Hendry

Joe Kenny

Lawrence Berkeley National Laboratory

David Donofrio

John Shalf

Nick Wright

Indiana University

Thomas Sterling

Outline

• Project overview

• Key abstractions

• Our approach

•  Initial results

• Summary

Execution model bottom-up study overview

Examine potential execution models and impact on exascale

Bottom-up approach: start with concrete examples of execution
models and hardware

Split into two phases (synchronized with top-down):

•  Phase 1: rapid co-design iteration to develop a whitepaper in the Feb
2012 timeframe

•  Phase 2: slower, deeper iteration incorporating additional execution
models and applications over following 2.5 years

•  However: output is continuous

•  collaboration tools used to continuously update living documents

•  progress closely shared with DOE and the top-down project

Develop an Execution Model Toolkit (EXEMT)

•  Collection of coarse- and fine-grained components for studying

execution models

Demonstrate and document a methodology that can be applied to
additional execution models

Execution Model Definition

An execution model is a paradigm of computing establishing the
principles of computation that govern the interrelationships of the
abstract and physical components and their functions comprising the
computational process.

Execution models differ by the way they project the abstract

computation on to the physical computing medium guiding:

•  The programming model semantics,

•  The physical machinery structures and mechanisms, and

•  The policies and methodologies resource management and task

scheduling embodied in the system software (runtime and operating
systems).

An execution model is a conceptual tool for the co-design and

interoperability of the system layers exposing the “decision chain” that
establishes the responsibilities of each layer in contributing to the
determination of which actions are performed on what objects, where,
and when.

Key questions EMBU is addressing

At what point do you decide to move the work to the data (or the
reverse)

•  who makes this decision - exec model or programmer?

•  Does PX have sufficient info to make this decision?

Can PDE solves and block structured grids be efficiently

scheduled as a dataflow rather than a SPMD?

Overall, will a new execution model make it easier to map a

problem onto future machines

•  Will mapping be easier to reason about?

•  Will mapping be more performance portable?

•  Will overheads of implementation or hardware requirements undercut

the benefits of the new approach?

Notional multi-scale machine abstract model

• Cores (many simple cores)

•  Flat clock rate

•  Multithreaded (n-threads)

•  SIMD (n-slots)

•  Fat+Thin cores (ratio)

• NoC

•  Constrained Topology (2D)

• Cache Hierarchy (size, type, assoc)

•  Automatic caches

•  Scratchpad/software managed

•  NVRAM

•  Alternative coherency methods

• Non-uniform memory access (NUMA)
between cores and memory channels

•  Topology may be important

•  Or perhaps just distance

• Memory

•  Increased NUMA domains

•  Intelligence in memory (or not)

• Fault Model for node

•  FIT rates, kinds of faults,

granularity of faults/recovery

• Interconnect

•  Constrained Topology (Torus,

Tapered Dragonfly)

•  Bandwidth/latency/overhead

for communication

• Primitives for data movement/sync

•  Global Address Space or
messages only

•  Memory fences

•  Transactions / remote atomics

Node-level models

•  Node-level execution model simulation: Develop a node-

level implementation of an execution model capable of
running the POP and GTC surrogates.
◦  Implement node-level EXEMT: Develop a node-level execution model

toolkit (EXEMT). It will be rich enough to support execution model co-
design exploration, yet simple enough to be implemented in the short
time frame allocated to this task. The work will be performed using the
ACE simulation environment.

◦  Implement mini-app node codes: Implement node-level surrogates for
POP and GTC using the EXEMT suitable for running in the ACE
simulation environment.

◦  [Milestone] Demonstrate node-level mini-app simulations: Demonstrate
that the EXEMT-based application surrogates run in the ACE simulation
environment.

Network-level models

•  Network-level execution model simulation: Develop a

network-level execution model toolkit (EXEMT). It will be rich
enough to support execution model co-design exploration,
yet simple enough to be implemented in the short time frame
allocated to this task. The work will be performed using the
SST/macro simulation environment.
◦  Implement network-level EXEMT: Develop a feature set for off-node

aspects of the execution model. These will be implemented as abstracted
models in SST/macro and must be sufficiently complete to support the
mini-applications used in the EMBU project.

◦  Implement mini-app skeleton codes: Implement the EXEMT-based mini-
application skeleton codes, which can drive the SST/macro simulators.
Models for the on-node portion of computations will be derived from the
node-level effort.

◦  [Milestone] Demonstrate network-level mini-app simulations:
Demonstrate that the EXEMT-based mini-application skeletons run in the
SST/macro simulator.

Mapping of simulation tools into machine
abstract architecture

RAMP/GreenFlash: Chip Level
Simulation

•  Extend GreenFlash/RAMP simulation

for more general proxy model (lego
blocks for rapidly prototyping chip
models)

•  Create parameterized NoC and
memory hierarchy

•  Provides model-checking for energy
models offered by software simulators
(it is a real circuit design… not a
model thereof)

SST: simulation of different
interconnect architectures

•  Driven by input traces or skeletonized

code (either manually or via ROSE)

•  Use reduced node model to bridge

gap between full cycle-accurate
model for the chip

Modeling & Simulation as a Co-design Tool

Ultimate Question:

Do my applications run well on the
machine?�

Intermediate Questions:

Is the application programmed in

the best way?

Is there a good mapping of

hardware support for software�

––––––––––– Evaluation –––––––––––

Constitutive Models – can be powerful,

but hard to investigate new
concepts and complex interactions

Coarse-Grained Simulation – accurate,
predicts trends, can scale

Cycle-Accurate Simulation – highly
accurate, but can only scale so far

Emulation – essentially exact and fast,
but expensive

Crude
guess

Rough
idea

Cause
and effect

Very good
estimates

Exact

hardware model

10
0

101

102

103

104

105

106

107

Si
m

ul
at

io
n

sc
op

e/
pa

ra
lle

lis
m

 Constitutive

Models

Coarse-
Grain

Simulation

Cycle-
Accurate
Simulation

Emulation

Hardware Design
 Software Support

Application

Evaluation

10

Execution Models in the Design Loop

11

Modeling

 Infrastructure

Execution Model
Definition & Impl.

Analyze Application
Requirements

Use Performance
Tools To Identify

Bottlenecks

Validated
Parametric EM

Model

Evaluate Hardware
Design Space
Alternatives

Benchmarking
 Modeling

Predictions: Performance / Power of Applications and Execution Model in Target
Hardware Environment

Simulation

Refine Execution Environment

Refine Application/Algorithm formulation

Refine Hardware Design

Simulate Codes on
Future/Target
Architectures

Hardware
Architecuture

Definition

Application Definition &
Implementation

Programming Environment Definition

Starting with the Gyrokinetic Toroidal Code

“Push”

Fi à vi à xi

Weight particles
to field

(xi ,vi) à (ρ,J)j

“Solve”

(ρ,J)j à (E,B)j

“Gather”
(E,B)jàFj Δt

“Scatter”

•  Grid memory accesses depend on the order
in which particles are processed.

•  In a multithreaded implementation with a
shared grid, multiple threads update grid
locations in parallel.

•  The case of random particle positions and
parallel updates is similar to the GUPS
benchmark. However, implementations
usually exploit the fact that PIC is a physical
many-body simulation method.

•  GTC uses PIC method to simulate
plasma microturbulence for fusion
devices

•  Written in F90 with MPI

•  Scalable to thousands of processors

ζ

θ Ψ$

ζ$

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC

A ParalleX Review

1.  Synchronous Domains

2.  AGAS – Active Global Address Space

3.  ParalleX Processes – with capabilities protection

4.  Computational Complexes – threads & fine grain dataflow

5.  Local Control Objects – synchronization and global

distributed control state

6.  Distributed control operation – global mutable data

structures

7.  Parcels – message-driven execution and continuation

migration

8.  Percolation – heterogeneous control

9.  Micro-checkpointing – compute-validate-commit

10. Self-aware – introspection and declarative management

 13

ParalleX Model

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 14

HPX Runtime Design

Current version of HPX provides the following

infrastructure as defined by the ParalleX execution
model

Complexes (ParalleX Threads) and ParalleX Thread

Management

Parcel Transport and Parcel Management

Local Control Objects (LCOs)

Active Global Address Space (AGAS)

DEPARTMENT OF COMPUTER SCIENCE @ �
LOUISIANA STATE UNIVERSITY
 15

Preliminary experiments show asynchronous
scheduling (HPX) changes the communication
pattern vs. MPI�
.

Asynchronous communication (HPX) uses many
more, much smaller messages, but less
aggregate network bandwidth.

GTC with static MPI vs. dynamically scheduled HPX

16
SOS Workshop ‘12

1000

10000

100000

1000000

10000000

100000000

1E+09

1
 11
21
31
41
51
61
71
81
91
101
111
121
131
141
151
161
171
181
191

Ne
tw

or
k

Ba
nd

w
id

th
 (B

/s
)

Time (s)

MPI

HPX

MPI

HPX

HPX leverages a massive threading model to
hide latency

Threads can be dynamically created and

transmitted across localities

Hard limit of one thread per core

High frequency and widely distributed
communication (compared to MPI)

Central to HPX goal of moving the work to the

data rather than the reverse

Communication consists mostly of small

packets

Keeps total bandwidth requirements

reasonable

What hardware constructs can accelerate

the thread creation and transfer in HPX?

Accelerating HPX

17
SOS Workshop ‘12

MPI

HPX

Option 1: Double Buffering

Load a future thread’s context (in the

background) while the active thread
is executing

Software controlled memory attached
to processor can hold local thread
context

Option 2: Hardware Threads

Build cores with multiple hardware

threads that dynamically context
switch depending on resources

HPX “one thread per-core” model
preserved

Allows greater latency hiding as more
threads will be ready to execute

Accelerating HPX – Thread Management

18

!"
"

#$%&'(")*+*,()(+-." /0(" '%&&(+-" 1)23()(+-*-1$+" $4"
567"2&$819(#"-0("1+4&*#-&%'-%&("4$&"-0("4$33$:1+,"6*&*3;
3(7"'$+'(2-#<"
� =>=?"@*'-18(",3$A*3"*99&(##"#2*'(B"
� 6*&'(3"-&*+#2$&-"*+9"2*&'(3")*+*,()(+-"
� /0&(*9#"*+9"-0&(*9")*+*,()(+-"
� CDE ��!���	�����������
�
���"F"*+9"
� 6*&*33(3"6&$'(##(#."

/0(" 4$33$:1+," #('-1$+#" :133" 9(#'&1A(" 9(#1,+" '$+#19(&*;
-1$+#"*+9"1)23()(+-*-1$+"#2('141'"9(-*13#" 4$&" -0$#("(3(;
)(+-#."
!"# $%$&' �' ()*' $+,-.*' %/012/' $334*55'
&62+*'
/0(" &(G%1&()(+-#" 4$&" 9H+*)1'" 3$*9" A*3*+'1+," *+9" -0("
#%22$&-"4$&"9H+*)1'",&*20"&(3*-(9"2&$A3()#"9(41+("-0("
+('(##1-H" 4$&" *" #1+,3(" ,3$A*3" *99&(##" #2*'(" *'&$##" -0("
#H#-()." /0(" *A#-&*'-1$+"$4" 3$'*31-1(#" 1#" 1+-&$9%'(9" *#" *"
)(*+#" $4" 9(41+1+," *" A$&9(&" A(-:((+" '$+-&$33(9" #H+;
'0&$+$%#"@1+-&*;3$'*31-HB"*+9"4%33H"*#H+'0&$+$%#"@1+-(&;
3$'*31-HB" $2(&*-1$+#." =" 3$'*31-H" 1#" *" '$+-1,%$%#" 20H#1'*3"
9$)*1+F")*+*,1+,"1+-&*;3$'*31-H"3*-(+'1(#F":013(",%*&*+;
-((1+,"'$)2$%+9"*-$)1'"$2(&*-1$+#"$+" 3$'*3" #-*-(."I14;
4(&(+-" 3$'*31-1(#")*H" (J2$#(" 918(&#(" -()2$&*3" 3$'*31-H"
--&1A%-(#." E%&" 1)23()(+--1$+" 1+-(&2&(-#" *" 3$'*31-H" -$"
A("(G%18*3(+-"-$"*"+$9("1+"*"'$+8(+-1$+*3"#H#-()."
K8(&H-01+,"1+"6*&*33(7"+((9#"-$"A(")$8*A3("-$"*"9144(&;
(+-"3$'*31-H":1-0$%-"(8(&"'0*+,1+,"1-#"+*)(."=-"-0("#*)("
-1)(F"'$+8(+-1$+*3"?L6"#H#-()#"$4-(+"��� ���	�
�	���1;
4$&)" *99&(##" #2*'(." /0(" 6*&-1-1$+(9" >3$A*3" =99&(##"
?2*'(" MNO" *#" *" '%&&(+-" *--()2-" -$" #$38(" -01#" 2&$A3()"
3*'P#" -0(" ,3$A*3" 1))%-*A131-H" $4" +*)(#." " /0(" ='-18("
>3$A*3"=99&(##"?2*'("@=>=?B"*##1,+#",3$A*3"+*)(#"@19#F"
%+#-&%'-%&(9" QRS" A1-" 1+-(,(&#B" -$" *33" (+-1-1(#")*+*,(9"
AH"567."T-"2&$819(#"*")(*+#"$4"&(#$381+,"-0(#(",3$A*3"19#"

����� ��
� ����
��������� ���	�� �����	�� 	���
��
�� !��� �"F"
:013("*##%)1+,"+$"'$0(&(+'("A(-:((+" 3$'*31-1(#�� ��� ��
'$+#1#-" $4" -0(" 3$'*31-H" 19F" -0(" -H2("$4" -0(" (+-1-HF" *+9" 1-#"
3$'*3")()$&H" *99&(##." L$81+," *+" (+-1-H" -$" *" 9144(&(+-"
3$'*31-H"%29*-(#"-01#")*221+,F"P((21+,"*33"&(4(&(+'(#"-$"
-0(")$8(9"1-()"8*319.""
E%&" '%&&(+-" 1)23()(+-*-1$+" 1#" A*#(9" $+" '(+-&*31U(9"
#(&8(&V'31(+-" *&'01-('-%&(." =#")(*#%&()(+-#" #0$:(9"
-01#" -$" A(" *" A$--3(+('P" 4$&" 3*&,(&" +%)A(&#" $4" 3$'*31-1(#"
:(" 1)23()(+-(9" *" 3$'*3" '*'01+," 2$31'H")1+1)1U1+," -0("
+%)A(&" $4" &(G%1&(9" +(-:$&P" &$%+9-&12#" *#")%'0" *#"
2$##1A3(." /0(" '%&&(+-" 1)23()(+-*-1$+" *33$:#" -0(" '&(*;
-1$+"$4"��
����
	���������
��� ��	������������ ��� -0(" 3$;
'*31-H" :0(&(" -0(" (+-1-H" 1#" '&(*-(9F" *8$191+," *991-1$+*3"
$8(&0(*9." /0(")$9%3*&" #H#-()" *&'01-('-%&(":133")*P("
2$##1A3(" -0(" 4%-%&(" &(23*'()(+-" $4" -0(" #(&8(&V'31(+-"
*&'01-('-%&(" :1-0" *")$&(" #'*3*A3(" #$3%-1$+" :1-0$%-"
-$%'01+,"*+H"$4"-0("$-0(&"2*&-#"$4"-0("&%+-1)("#H#-().""
!"7 824+*/'(4295604,'293':292;*<*9,'
=+H"1+-(&;3$'*31-H")(##*,1+,"1#"A*#(9"$+"6*&'(3#."T+"6*;
&*33(7F"2*&'(3#"*&("*+"(J-(+9(9"4$&)"$4"*'-18(")(##*,(#."
/0(H"'$+#1#-"$4"!"2*&-#<"-0(",3$A*3"*99&(##"$4"-0(1&"9(#;
-1+*-1$+F" -0(" *'-1$+" -$" 2(&4$&)F" -0(" *&,%)(+-#" -$" 2*##"
$+"-$"-0("1+8$P(9"*'-1$+F"*+9"*"'$+-1+%*-1$+F":01'0"1#"*"
31#-"$4" 3$'*3"'$+-&$3"$AW('-#" -$"A(" -&1,,(&(9"*4-(&" -0("*';
-1$+" 1#" (J('%-(9." /0(" '$+-1+%*-1$+" 1)23()(+-#" 91#-&1;
A%-(9"43$:"'$+-&$3"*#"1-"#2('141(#"-0("#(G%(+'("$4"$2(&*;
-1$+#"*'&$##"3$'*31-1(#.""
6*&'(3#"*&(",(+(&*-(9"*+9"#(+-":0(+(8(&"*+"$2(&*-1$+"
0*#" -$" A(" *2231(9" $+" *" &()$-(" 3$'*31-H" *+9" *&(" (1-0(&"
%#(9" -$")$8(" -0(":$&P" -$" -0(" 9*-*" $&" -$" ,*-0(&" #)*33"
21('(#"$4"9*-*"A*'P"-$"-0("'*33(&."6*&'(3#"(+*A3(")(##*,("
2*##1+," 4$&" 91#-&1A%-(9" '$+-&$3" 43$:" *+9" 9H+*)1'" &(;
#$%&'(")*+*,()(+-F" 1)23()(+-1+,"*"#231-"20*#(" -&*+#;
'-1$+"A#(9"(J('%-1$+")$9(3.""
T+" -0("567" 1)23()(+-*-1$+F"2*&'(3#"*&(" &(2&(#(+-(9"*#"
2$3H)$&201'" DXX" $AW('-#." /0(H" *&(" #(&1*31U(9" *+9" 9(;
#(&1*31U(9" %#1+," *" #$201#-1'*-(9" #(&1*31U*-1$+" #'0()(F"
A1+91+," -0(" *'-1$+#" -$" (J('%-(" *-" '$)213(" -1)(." /01#"
01,03H" $2-1)*3" 1)23()(+-*-1$+" &()$8(#" -0(" +((9" -$"
3$$P"%2" -0(" 4%+'-1$+" -$" 1+8$P("A*#(9"$+" -0("*'-1$+"9(;
#'&12-1$+"#-$&(9"1+"-0("2*&'(3."
6*&'(3#" *&(" #(+-" -$" -0(1&" 9(#-1+*-1$+" %#1+," -0(" 1)23(;
)(+-(9"2*&'(3" -&*+#2$&-" 3*H(&."D%&&(+-3HF" 1-" (#-*A31#0(#"
#H+'0&$+$%#"6R6"'$++('-1$+#"A(-:((+"-0("#$%&'("+9"
9(#-1+*-1$+" 3$'*31-1(#." /0(" 2*&'(3" -&*+#2$&-" 3*H(&" +$-"
$+3H" A%44(&#" 1+'$)1+," *+9" $%-,$1+," 2*&'(3#F" A%-" 1-" *%;
-$)*-1'*33H"&(#$38(#"-0(",3$A*3"9(#-1+*-1$+"*99&(##"$4"*"
2*&'(3"-$"#(+9"-$"-0("19"$4"-0("9(#-1+*-1$+"3$'*31-H."=991;
-1$+*33H"1-"(1-0(&"91#2*-'0(#"-0("1+'$)1+,"2*&'(3#"-$"-0("
3$'*3"-0&(*9")*+*,(&"$&"4$&:*&9#"-0()"1+"'*#("-0("9(#;
-1+*-1$+" (+-1-H" 0*#" A((+")$8(9" -$" *" 9144(&(+-" 3$'*31-H."

=-;>4*'?@':03>/24'5,4>+,>4*'0A' ,)*'+>44*9,'B8C'-<D
6/*<*9,2,-09"'567"1)23()(+-#"-0("#%22$&-1+,"4%+'-1$+*31;
-H"4$&"*33"$4"-0("(3()(+-#"+((9(9"4$&"-0("6*&*33(7")$9(3<"=>=?"
@*'-18(",3$A*3"*99&(##"#2*'(BF"2*&'(3"2$&-"*+9"2*&'(3"0*+93(&#F"
-0&(*�� �	�	�
��� �	�	��
�� ���
	���� �	�	��
�� ����
��
��� ��� ��
@3$'*3" '$+-&$3"$AW('-#BF" *+9" -0(")(*+#"$4" 1+-(,&*-1+,"*2231'*;
-1$+"#2('141'"'$)2$+(+-#.'

•  Co-Design Opportunities:

–  Size of local store required for

complete thread context?

–  DMA engine attached to

memory can support rich thread
transfer commands to reduce
burden on processor

•  We are simulating the performance of ‘complete’ systems, and
are beginning to collect the data needed to make design
decisions for Exascale systems. This is co-design.�

•  These results will allow us to quantify design tradeoffs
associated with technical challenges such as starvation, latency,
overhead, and delays due to contention as well as the practical
constraints of power, reliability, generality, and programmability.�

•  We are building tools and methodology to assess new
paradigms in the form of new execution models to exploit
runtime information, manage asynchrony, co-design processor
architectures and applications, expose untapped logical and
physical parallelism, and ensure continued operation by graceful
degradation.

Summary

19

