
David Skinner, Richard Gerber,
Nick Wright, Karl Fuerlinger

and 4000 others

Application Performance Tools @ NERSC

User demographics at NERSC

• Large scale parallelism and data needs of science teams
• Large number of projects, users, and codes
• (105 tasks)(104 users)*(102 codes) performance threads
• Service oriented systems, ease of use in tools and all things
• Centerwide performance assessment for allocations

ERCAP Question 19.1

Each application for time at NERSC includes both
 algorithmic and performance assessments

ERCAP Question 19.2

Core needs in Production HPC Tools
•  How are ~400 projects going to generate this information without
distraction from their research goals?
•  When there is performance problem or need to tune, what’s the first step?
•  How do you even know when to tune?

NERSC has many Customers and an Extremely
Diverse Workload

One of
~ 400

Research
Projects

To
ta

l A
nn

ua
l C

P
U

*H
ou

rs
 (a

ll
jo

bs
)

Number of MPI Tasks in each job

Back up, what is a performance tool?

1.  An application that users can run to debug the
performance of their code (is this what the
center wants?)

2.  A runtime layer implemented by the center staff
that reports on application performance (is this
what the user wants?)

Can we have both at the same time?

1.  Must allow users flexibility in how they debug
performance

2.  The carrot works. The stick does not.

Ease of use == It gets used

Example from NERSC web docs

Are users reaching for tools?

• NERSC users can elect
to have software loaded
through the modules
environment

– module load toolx
– Counting loads is an
imprecise view into
what’s getting used
and by whom

1035550 PYTHON_2.6.2
 427718 SZIP_2.1
 367930 PARMETIS_12
 287428 SUPERLUO_DIST_20
 192183 IDL_8.0
 146373 GSL_1.13
 126285 LIBTOOL_2.4
 120099 SCALAPACK_180
 90801 PNETCDF_1.0.3
 57376 NCO_4.0.2
 47963 PSPLINE_nersc1.0
 37496 IPM_0982
 36625 TEXLIVE_2008
 36281 NCAR_5.2.0
 35341 PICO_4.64
 33176 IDL_7.1
 31871 HDF_4.2r3
 31657 SPRNG_10
 30751 PNETCDF_1.1.0
 30385 TAU_2.20.2
 29473 DFFTPACK
 28962 DDT_2.6
 28299 PETSC_233-opkgs_O

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

What NERSC users say

•  “We are involved in multiple studies to assess performance
limitations, and often benefit from NERSC performance tools
especially IPM and IPM-I/O profiling”

•  “We have been using a number of performance analysis tools
available at NERSC (IPM, CrayPat, PAPI) to improve the
performance of the code.”

•  “…gets ~12-15% nodal performance on Cray XT5 based on profiling
with Tau, CrayPAT, and other performance monitoring tools.”

•  “Our primary profiling tools are timing routines which are
internal…”

•  “Memory scalability can benefit from NERSC parallel profiling
tools.”

Profiling Tools

• Many tools exist, roughly they vary by

• HPC centers with complex & dynamic workloads
need an easy to use, almost transparent, low
impact profiling layer that provides high level
summaries about job performance.

• More in-depth & detailed tools can be used
subsequently. Use the right tool for the job.

Type of Information
Level of Detail
Runtime Impact on Code
Scalability
Ease of Use

What tool should I use?

Which tool helps to
 answer Question 19?

Profiling Tools Gotchas (what not to do)

• Many performance analysis tools are not scalable.
The volume of data or number of files may
preclude their use. They may write a file per task.

• Does the tool profile the libraries you’re using or
just your own code?

• A code many run differently (or not at all) when
profiled by some tools.

• Getting a lot of people to use the same tool in the
same way is hard, little comparable performance
data between projects or machines.

• Your tool may give you an information headache

State of the practice at
NERSC in performance analysis

300K IPM Application Profiles

13

QCD app
Atomic Physics app

Performance trending in workloads

14

Tmpi/Twall

Imbalanced apps vs walltime

lampps

vasp

Rising interest in figuring out IO

Based on trends in trouble tickets and discussions with users
 IO is now officially a big deal

read
write
compute

•  The general state of performance “awareness” has declined
markedly overthe last ten years

–  Exploding concurrencies
–  Multicore contention
–  Multicore counters < Pentium counters
–  Deeper memory hierachies
–  Memory touch policies

•  At Exascale how will we at least tread water?
–  Something will be broken in a performance sense 100% of the time
–  Monitor at multiple levels (often) to corroborate
–  Need foundational software to inform tools (PAPI for everything)

•  Keep focused on users
–  Performance in principle < performance in practice

Performance Tools at Exascale

•  To your goals
–  Time to solution, Tqueue+Trun

–  Efficient use of allocation
–  Do FLOPs even matter?

•  To the
–  application code
–  input deck
–  machine type/state

Performance is Relative

No Nobel Prize in
FLOPS

