
EXASCALE SOFTWARE CENTER★

TOOLS PERSPECTIVE
John Mellor-Crummey

Tools Planning Team:
 Jeffrey S. Vetter (ORNL) Allen Malony (UO)
 Bronis R. de Supinski (LLNL) Sameer Shende (UO)
 Nathan Tallent (Rice → PNNL) ★RIP

Exascale Tools Scope

 Performance
■ Empirical
■ observation using both instrumentation and sampling
■ offline analysis including problem diagnosis and multi-experiment analysis
■ introspection for autotuning: support for optimization guided by online analysis

■ Analytical modeling
 Correctness and debugging
■ Online
■ execution control: stop, go, conditional breakpoints, data watchpoints
■ state introspection: registers, memory, language & communication runtimes
■ analysis: semantic, relative, behavioral equivalence classes, statistical

■ Formal methods: static analysis, model checking
 Presentation and insight
■ Render correctness and performance results in a scalable, actionable form

 Tools infrastructure and middleware

Exascale Landscape: Hostile for Tools

■ Extreme, multi-level,
heterogeneous parallelism
■ Process, thread, instruction,

vector, accelerator

■ Dynamic execution environment
■ Dynamic threading
■ Adaptive HW and SW systems
■ Hardware failure

■ Massive asynchrony
■ Computation, communication, I/O

Application Evolution
■ New programming models
■ Growing application

complexity
■ Multi-faceted applications
■ Simulations coupled with in-

situ data analysis

Tools face the same issues as applications AND must
consider application evolution as well

Exascale Tool Challenges – I

 Exascale tools: event-based reactive systems of immense scale
■ Must interact with all HW and SW components
■ often at an extremely detailed level

■ Dubbing this an “engineering challenge” is an understatement
 Observation of exascale execution dynamics and system state
■ Tools require access to not only application state but runtime as well
■ requires co-design with programming models, runtime systems, and OS

■ On-the-fly, problem-focused measurement, analysis, and data reduction
■ As always, tradeoff between precision and accuracy

 Fault tolerance
■ Tools must be aware of application checkpoints, faults, and recovery
■ Tools themselves must tolerate faults

Exascale Tool Challenges – II

 Data management
■ Different data organizations are appropriate for measurement, analysis

and presentation
■ thread-centric, resource-centric, time-centric, code-centric, data-centric, …

■ Large data volumes will require careful design of persistent
representations, e.g. dense vs. sparse; consider access patterns

■ All analysis, data transformations, and I/O must be parallel
 Analysis and modeling
■ Cope with the complexity, dynamism, and heterogeneity of exascale

executions
■ Data deluge requires automation of problem identification and diagnosis

 Presentation
■ User interfaces must direct attention, not just provide access to information
■ Automatically scale and focus presentation to render phenomena

(automatically determined) of interest

Key Tool Design Questions - I

 What hardware mechanisms are needed to support effective tools?
■ Support for measurement, attribution, and diagnosis of problems
■ both for correctness and performance

 What language and compiler support is necessary to provide
information required by tools?

 What runtime and OS mechanisms and interfaces are necessary to
support inquiry and control by tools?

 How will tools efficiently and effectively monitor massively parallel
programs executing on heterogeneous hardware with multi-scale,
hierarchical parallelism in which faults may occur?

 What measurements and analyses are necessary to diagnose root
causes of performance bottlenecks and to recommend solutions?
■ Load imbalance, serialization, resource contention, exposed latency, ...?

 How will tools interact with dynamic and fault-tolerant run times?

Key Tool Design Questions - II

 How will tools analyze and mine GB/TB of data and attribute
information to source code in a meaningful way?

 What new tool paradigms can overcome lack of insight from
existing tools?
■ Today: data summary
■ Need: automated problem discovery, diagnosis, and recommendations

Evolution of Current Capabilities?

 Performance
■ Sampling-based methods for measurement and analysis can scale
■ Instrumentation for capturing semantic information is necessary
■ Code-centric, data-centric, time-centric presentation paradigms useful
■ Promising recent developments
■ emerging integration with parallel programming environments
■ emerging measurement infrastructure for accelerator cores

 Debugging / Correctness
■ Vendor tools are marginally usable at current system scales
■ Correctness tools for identifying runtime communication errors do not scale
■ Model-checking and other formal methods limited in scalability,

robustness for mainstream languages and range of programming models
 Tool infrastructure
■ Scalable middleware demonstrated and under continued development
■ Increasing HW support for performance monitoring, watchpoints, ...

New Capabilities Needed

 On-line: measurement, monitoring, control, data reduction
■ Scalable problem-focused measurement to support effective diagnosis
■ resource consumption, inefficiency, power consumption

■ Techniques for extreme parallelism, dynamic threading, and heterogeneity
■ APIs to support introspection & lightweight analysis for adaptation
■ performance, fault-tolerance

■ Programmable thread-based agents for correctness introspection
■ Framework for survivable tools

 Analysis
■ Diagnosing bottlenecks with massive dynamic threading
■ Integration of semantic correctness checking in new programming models
■ Data mining for diagnosis of performance/correctness

 Modeling and prediction for diagnosis
 Scalable presentation
■ Visualize application data, system state, activity & their evolution over time

 Paradigms that drastically reduce the optimization and debugging effort

Essential Component Technologies

 HW, OS support for measurement, especially sampling
 Programmable thread-based agents for scalable online analysis of

data and execution state
 Automatic identification of interesting phenomena within data
 Tool infrastructure API for applications to control, inform, & inquire
 Stateless protocols for fault-tolerant interactions between tool

components
 Idioms for scalable presentation
 Binary analysis to support modeling and instrumentation
 Binary and wrapper instrumentation (measurement, correctness,

control)
 Stack unwinding for attributing costs
 Tool middleware and use of system/library support (e.g., Parallel I/O)

Hardware Co-Design Opportunities

Insight from tools will be limited without HW support
 Need HW measurement interfaces to monitor & attribute
■ Communication, computation, power, data movement, latency, I/O, …

 HW should support both calipers and sampling
 Need efficient access to application state
■ Program counters, thread stacks, …
■ Data state: memory watchpoints, association of memory events with

program counters, etc.
 Design of new HW technologies must consider tool support

required to understand correctness and efficiency
 HW tool assists to improve tool efficiency?

A Few Words About GPUs
 NVIDIA Profiling Roadmap (what they are thinking about)
 Measurement
■ Finer granularity profiling: node → kernel → instruction (pipeline, memory subsystem)
■ Existing hardware limitations are not fundamental, e.g. the following are possible:
■ PC and event-based sampling
■ increased type, size, and number of hardware counters
■ tracing (though time and space overhead can be high)

■ Power, power state profiling
■ Increased profiling scope
■ remote profiling, e.g. node in a cluster
■ multi-process profiling

 Attribution of performance problems and opportunities at source level
 Analysis
■ Automatic identification of common, actionable performance problems
■ e.g. loads with poor memory subsystem behavior

■ Tools to identify algorithms, functions, loops, etc. that are good candidates for GPU
acceleration

 Profiling ecosystem enablement
David Goodwin, NVIDIA Tools Group

Software Co-Design Opportunities

 Exascale tool development must interact with programming
models, compilers, runtime/system software
■ Exascale machine models will be basis for tool design, validation,

and use
■ Identify necessary runtime and OS support for enabling tools
■ Need tool capabilities to meet needs at all levels of software stack
■ Identify points of tool interaction for providing feedback and

controlling tuning knobs
 Exascale software advances could be leveraged in tool

development
■ e.g., data management, visualization

OS and Runtime Co-Design

Usable tools require OS and runtime systems to provide:

 Interfaces for intercepting and modifying operations on key
abstractions
■ Threads, processes, locks, memory allocation, files, communication channels
■ Ability to run tool processes/threads of control
■ Exporting of hardware-measurement interfaces
■ Scalable access to executables and shared objects for online analysis
■ Accurate and complete unwind and line map information
■ Program timer and PMU threshold-based interrupts in repeat mode

 Support for thread-specific asynchronous signals
 Summarization of (thread-specific) signals during system calls vs.

system-wide sampling
 Interface for mapping machine-level to application-level state
■ e.g., recovering application call paths in the context of work stealing

Closing Thoughts

 Exascale tools challenges reflect full range of complexity found in
exascale software/hardware

 A prescription for tools development
■ Interact with all exascale software groups
■ establishes requirements and decision metrics
■ co-design with programming models, OS/runtime, I/O, Viz

■ Identify and select critical technology
■ select tool capabilities to enhance and extend
■ identify necessary new capabilities for investment

■ Research and development/engineering effort focus
■ refining and scaling appropriate existing technologies
■ developing new technologies to address new exascale concerns

Strawman Plan

2

Performance Tools Strawman Plan - E

 Performance data sources
■ Hardware counters for monitoring and attributing time, power, processor

core/uncore activity/idleness, network traffic, data movement,
synchronization

 Performance measurement underpinnings
■ Kernel interfaces for programming & accessing HW counters

■ Kernel support for delivering and handling signals for asynchronous events
■ Instrumentation hooks for key interfaces in libraries, OS in full software

stack
■ e.g. MPIT, one-sided communication, synchronization, I/O, ...

■ Compiler-based instrumentation (e.g. function entry/exit)
■ Binary instrumentation

■ Link-time and/or launch-time library wrapping tools
■ e.g. hpclink, Launchmon, P^nMPI, hpcrun

■ Source instrumentation?

3

Performance Tools Strawman Plan - E

 Performance measurement software
■ High-level interface for programming performance counters
■ e.g., PAPI, CUPTI

■ Introspection API to be used by tools and autotuners
■ e.g., PAPI

■ Attribute metrics to calling context based on synchronous and
asynchronous events using call stack unwinding
■ Components: accurate & complete compiler line maps (vendor buy-in)
■ Run-time library support for unwinding continuations

■ Instrumentation for (problem-focused) measurement and (sometimes)
online analysis, and (sometimes) attribution for key library interfaces
such as communication, I/O, synchronization etc.

■ Profiling infrastructure

4

Performance Tools Strawman Plan - E

 Data management
■ Logging measurement data to files using parallel I/O
■ e.g., SIONLIB, MPI/IO, custom data formats

■ Scalable multi-experiment parallel profile database, e.g. TAU
 Analysis
■ Parallel data analysis
■ Online-analysis to support introspection, e.g. performance assertions

■ Pinpointing scalability bottlenecks; differential profiling, e.g. HPCToolkit
■ Identifying rate-limiting resources for code regions, e.g. Roofline

■ Binary analysis for attribution
■ Data-centric diagnosis, e.g. HPCToolkit

■ Parallel data mining, regression analysis
■ Heterogeneous performance analysis

 Presentation
■ Code-centric, data centric, and time-centric performance metrics

6

Performance Tools Strawman Plan - R

 Performance data sources
■ HW counter support for sampling accelerator performance

 Performance measurement software
■ Measurement approaches for workflows, e.g. coupled codes
■ Support for tool fault tolerance

■ Integrated performance monitoring with feedback support
 Analysis
■ Data mining for automatic bottleneck detection and diagnosis
■ scalable diagnosis of temporal workflow bottlenecks: provisioning, critical path
■ diagnosing node throughput bottlenecks
■ assessing application fault tolerance

■ Analytical and empirical modeling
 Presentation
■ Automatically identify, autoscale & present relevant data

■ Multidimensional or temporal data

7

Correctness Tools Strawman Plan - E

 Correctness data sources
■ Hardware for breakpoints, watchpoints

 Correctness monitoring & control underpinnings
■ Kernel interfaces process control, e.g. ptrace, Topaz teledebugging

 Correctness measurement software
■ Binary instrumentation for monitoring accesses & computation
■ e.g. valgrind, Dyninst

■ Instrumentation library for checking communication, e.g. MARMOT, MUST
 Online analysis & control
■ Data access errors, e.g. valgrind
■ Online data analysis, e.g. relative debugging
■ Online data reduction and control, e.g. MRNet, STAT
■ Scalable breakpoint debugging

 Presentation
■ Code-centric presentation of correctness metrics, e.g. HPCToolkit, STAT

8

Correctness Tools Strawman Plan - R

 Correctness measurement software
■ High performance race detection

 Online analysis & control
■ Better techniques for command, control, and feedback at scale for

debugging
 Online presentation of data
 Offline analysis
■ Statistical techniques; cooperative bug isolation
■ Static analysis for proving correctness; e.g. MPI checkers

