EXASCALE SOFTWARE CENTER*
TOOLS PERSPECTIVE

John Mellor-Crummey

Tools Planning Team:
Jeffrey S. Vetter (ORNL) Allen Malony (UO)
Bronis R. de Supinski (LLNL) Sameer Shende (UO)

Nathan Tallent (Rice = PNNL)




Exascale Tools Scope

Performance
Empirical
observation using both instrumentation and sampling

offline analysis including problem diagnosis and multi-experiment analysis
introspection for autotuning: support for optimization guided by online analysis

Analytical modeling
Correctness and debugging

Online

execution control: stop, go, conditional breakpoints, data watchpoints
state introspection: registers, memory, language & communication runtimes

analysis: semantic, relative, behavioral equivalence classes, statistical

Formal methods: static analysis, model checking
Presentation and insight
Render correctness and performance results in a scalable, actionable form

Tools infrastructure and middleware



Exascale Landscape: Hostile for Tools

Tools face the same issues as applications AND must
consider application evolution as well

Extreme, multi-level,
heterogeneous parallelism

Process, thread, instruction,
vector, accelerator

Dynamic execution environment

Dynamic threading
Adaptive HW and SW systems

Hardware failure

Massive asynchrony

Computation, communication, | /O

Application Evolution

New programming models
Growing application
complexity

Multi-faceted applications

Simulations coupled with in-
situ data analysis



Exascale Tool Challenges — |

Exascale tools: event-based reactive systems of immense scale
Must interact with all HW and SW components

often at an extremely detailed level

Dubbing this an “engineering challenge” is an understatement

Observation of exascale execution dynamics and system state

Tools require access to not only application state but runtime as well
requires co-design with programming models, runtime systems, and OS
On-the-fly, problem-focused measurement, analysis, and data reduction

As always, tradeoff between precision and accuracy
Fault tolerance

Tools must be aware of application checkpoints, faults, and recovery
Tools themselves must tolerate faults



Exascale Tool Challenges — |l

Data management

Different data organizations are appropriate for measurement, analysis
and presentation

thread-centric, resource-centric, time-centric, code-centric, data-centric, ...

Large data volumes will require careful design of persistent
representations, e.g. dense vs. sparse; consider access patterns

All analysis, data transformations, and | /O must be parallel

Analysis and modeling

Cope with the complexity, dynamism, and heterogeneity of exascale
executions

Data deluge requires automation of problem identification and diagnosis

Presentation

User interfaces must direct attention, not just provide access to information

Automatically scale and focus presentation to render phenomena
(automatically determined) of interest



Key Tool Design Questions - |

What hardware mechanisms are needed to support effective tools?
Support for measurement, attribution, and diagnosis of problems
both for correctness and performance

What language and compiler support is necessary to provide
information required by tools?

What runtime and OS mechanisms and interfaces are necessary to
support inquiry and control by tools?

How will tools efficiently and effectively monitor massively parallel
programs executing on heterogeneous hardware with multi-scale,
hierarchical parallelism in which faults may occur?

What measurements and analyses are necessary to diagnose root
causes of performance bottlenecks and to recommend solutions?

(3]

Load imbalance, serialization, resource contention, exposed latency, ...

How will tools interact with dynamic and fault-tolerant run times?



Key Tool Design Questions - |l

How will tools analyze and mine GB/TB of data and attribute
information to source code in a meaningful way?

What new tool paradigms can overcome lack of insight from
existing tools?

Today: data summary
Need: automated problem discovery, diagnosis, and recommendations



Evolution of Current Capabilities?

Performance

Sampling-based methods for measurement and analysis can scale
Instrumentation for capturing semantic information is necessary
Code-centric, data-centric, time-centric presentation paradigms useful
Promising recent developments

emerging integration with parallel programming environments

emerging measurement infrastructure for accelerator cores
Debugging / Correctness
Vendor tools are marginally usable at current system scales
Correctness tools for identifying runtime communication errors do not scale

Model-checking and other formal methods limited in scalability,
robustness for mainstream languages and range of programming models

Tool infrastructure

Scalable middleware demonstrated and under continued development

Increasing HW support for performance monitoring, watchpoints, ...



New Capabilities Needed

On-line: measurement, monitoring, control, data reduction
Scalable problem-focused measurement to support effective diagnosis
resource consumption, inefficiency, power consumption
Techniques for extreme parallelism, dynamic threading, and heterogeneity
APIs to support introspection & lightweight analysis for adaptation

performance, fault-tolerance
Programmable thread-based agents for correctness introspection
Framework for survivable tools
Analysis
Diagnosing bottlenecks with massive dynamic threading
Integration of semantic correctness checking in new programming models
Data mining for diagnosis of performance /correctness

Modeling and prediction for diagnosis

Scalable presentation

Visualize application data, system state, activity & their evolution over time

Paradigms that drastically reduce the optimization and debugging effort



Essential Component Technologies

HW, OS support for measurement, especially sampling

Programmable thread-based agents for scalable online analysis of
data and execution state

Automatic identification of interesting phenomena within data
Tool infrastructure API for applications to control, inform, & inquire

Stateless protocols for fault-tolerant interactions between tool
components

|dioms for scalable presentation
Binary analysis to support modeling and instrumentation

Binary and wrapper instrumentation (measurement, correctness,
control)

Stack unwinding for attributing costs

Tool middleware and use of system/library support (e.g., Parallel 1 /O)



Hardware Co-Design Opportunities

Insight from tools will be limited without HW support
Need HW measurement interfaces to monitor & attribute
Communication, computation, power, data movement, latency, I/O,
HW should support both calipers and sampling
Need efficient access to application state

Program counters, thread stacks, ...

Data state: memory watchpoints, association of memory events with
program counters, etc.

Design of new HW technologies must consider tool support
required to understand correctness and efficiency

HW tool assists to improve tool efficiency?



A Few Words About GPUs

NVIDIA Profiling Roadmap (what they are thinking about)

Measurement

Finer granularity profiling: node — kernel = instruction (pipeline, memory subsystem)
Existing hardware limitations are not fundamental, e.g. the following are possible:
PC and event-based sampling
increased type, size, and number of hardware counters
tracing (though time and space overhead can be high)
Power, power state profiling
Increased profiling scope
remote profiling, e.g. node in a cluster

multi-process profiling
Attribution of performance problems and opportunities at source level
Analysis
Automatic identification of common, actionable performance problems

e.g. loads with poor memory subsystem behavior

Tools to identify algorithms, functions, loops, etc. that are good candidates for GPU
acceleration

Profiling ecosystem enablement
David Goodwin, NVIDIA Tools Group



Software Co-Design Opportunities

Exascale tool development must interact with programming
models, compilers, runtime /system software

Exascale machine models will be basis for tool design, validation,
and use

|dentify necessary runtime and OS support for enabling tools
Need tool capabilities to meet needs at all levels of software stack

|dentify points of tool interaction for providing feedback and
controlling tuning knobs

Exascale software advances could be leveraged in tool
development

e.g., data management, visualization



OS and Runtime Co-Design

Usable tools require OS and runtime systems to provide:

Interfaces for intercepting and modifying operations on key
abstractions

Threads, processes, locks, memory allocation, files, communication channels
Ability to run tool processes/threads of control
Exporting of hardware-measurement interfaces
Scalable access to executables and shared objects for online analysis
Accurate and complete unwind and line map information
Program timer and PMU threshold-based interrupts in repeat mode
Support for thread-specific asynchronous signals
Summarization of (thread-specific) signals during system calls vs.
system-wide sampling
Interface for mapping machine-level to application-level state

e.g., recovering application call paths in the context of work stealing



Closing Thoughts

Exascale tools challenges reflect full range of complexity found in
exascale software /hardware

A prescription for tools development
Interact with all exascale software groups
establishes requirements and decision metrics
co-design with programming models, OS/runtime, | /O, Viz
|dentify and select critical technology
select tool capabilities to enhance and extend
identify necessary new capabilities for investment
Research and development/engineering effort focus
refining and scaling appropriate existing technologies

developing new technologies to address new exascale concerns



Strawman Plan



Performance Tools Strawman Plan - E

Performance data sources
Hardware counters for monitoring and attributing time, power, processor
core /uncore activity /idleness, network traffic, data movement,
synchronization
Performance measurement underpinnings
Kernel interfaces for programming & accessing HW counters
Kernel support for delivering and handling signals for asynchronous events
Instrumentation hooks for key interfaces in libraries, OS in full software
stack
e.g. MPIT, one-sided communication, synchronization, | /O, ...
Compiler-based instrumentation (e.g. function entry /exit)
Binary instrumentation
Link-time and/or launch-time library wrapping tools
e.g. hpclink, Launchmon, PAnMPI, hpcrun

Source instrumentation?



Performance Tools Strawman Plan - E

Performance measurement software

High-level interface for programming performance counters
e.g., PAPI, CUPTI
Introspection APl to be used by tools and autotuners
e.g., PAPI
Attribute metrics to calling context based on synchronous and
asynchronous events using call stack unwinding
Components: accurate & complete compiler line maps (vendor buy-in)

Run-time library support for unwinding continuations

Instrumentation for (problem-focused) measurement and (sometimes)
online analysis, and (sometimes) attribution for key library interfaces
such as communication, 1/O, synchronization etc.

Profiling infrastructure



Performance Tools Strawman Plan - E

Data management

Logging measurement data to files using parallel /O
e.g., SIONLIB, MPI /IO, custom data formats

Scalable multi-experiment parallel profile database, e.g. TAU
Analysis
Parallel data analysis
Online-analysis to support introspection, e.g. performance assertions
Pinpointing scalability bottlenecks; differential profiling, e.g. HPCToolkit
|dentifying rate-limiting resources for code regions, e.g. Roofline
Binary analysis for attribution
Data-centric diagnosis, e.g. HPCToolkit
Parallel data mining, regression analysis
Heterogeneous performance analysis
Presentation

Code-centric, data centric, and time-centric performance metrics



Performance Tools Strawman Plan - R

Performance data sources

HW counter support for sampling accelerator performance

Performance measurement software
Measurement approaches for workflows, e.g. coupled codes
Support for tool fault tolerance
Integrated performance monitoring with feedback support
Analysis
Data mining for automatic bottleneck detection and diagnosis
scalable diagnosis of temporal workflow bottlenecks: provisioning, critical path

diagnosing node throughput bottlenecks

assessing application fault tolerance
Analytical and empirical modeling
Presentation
Automatically identify, autoscale & present relevant data

Multidimensional or temporal data



Correctness Tools Strawman Plan - E

Correctness data sources

Hardware for breakpoints, watchpoints

Correctness monitoring & control underpinnings

Kernel interfaces process control, e.g. ptrace, Topaz teledebugging

Correctness measurement software

Binary instrumentation for monitoring accesses & computation

e.g. valgrind, Dyninst

Instrumentation library for checking communication, e.g. MARMOT, MUST
Online analysis & control

Data access errors, e.g. valgrind

Online data analysis, e.g. relative debugging

Online data reduction and control, e.g. MRNet, STAT

Scalable breakpoint debugging

Presentation

Code-centric presentation of correctness metrics, e.g. HPCToolkit, STAT



Correctness Tools Strawman Plan - R

Correctness measurement software
High performance race detection
Online analysis & control

Better techniques for command, control, and feedback at scale for
debugging

Online presentation of data
Offline analysis

Statistical techniques; cooperative bug isolation

Static analysis for proving correctness; e.g. MPI checkers



