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Abstract 

This report details the findings and recommendations of the DOE ASCR Exascale Mathematics 
Working Group that was chartered to identify mathematics and algorithms research opportunities 
that will enable scientific applications to harness the potential of exascale computing. The working 
group organized a workshop, held August 21-22, 2013 in Washington, D.C., to solicit input from 
over seventy members of the applied mathematics community. Research gaps, approaches, and 
directions across the breadth of applied mathematics were discussed, and this report synthesizes 
these perspectives into an integrated outlook on the applied mathematics research necessary to 
achieve scientific breakthroughs using exascale systems. 
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Executive Summary 

High fidelity modeling and simulation of physical systems is a critical enabling technology area 
for the U.S. Department of Energy (DOE), required for addressing some of the most challenging 
problems in energy, the environment and national security. The importance of continued advances 
in this area cannot be overstated. As a result, DOE is aggressively pursuing an exascale com-
puting program that includes applied mathematics research focused on the unique challenges and 
opportunities present at this scale. 

Exascale capabilities promise unprecedented potential for high fidelity, high confidence, and 
optimal solutions to complex multiscale, multiphysics problems at the heart of DOE’s mission. 
Unlocking the potential of exascale computing requires the development of the next generation of 
computational models in order to satisfy the accuracy and fidelity needs for targeted problems. 
Specifically, more complex physical models must be developed to account for more aspects of the 
physical phenomena being modeled. Furthermore, for the physical models being used, increases in 
the resolution of the system variables are needed in order to improve simulation accuracy, which in 
turn places higher demands on computational hardware and software. 

In order to meet DOE’s science, design, and decision support needs, the computational capa-
bility of the fastest supercomputers must continue to grow. However, the transition from current 
sub-petascale and petascale computing to exascale computing will be at least as disruptive as the 
transition from vector to parallel computing in the 1990s. Driven mostly by power constraints, 
exascale-class machines (capable of 1018 floating-point operations per second or more) will see a 
massive increase in the number of computing units (into the millions), in the form of homogeneous 
cores or heterogeneous mixtures of multipurpose CPUs and specialized processing units. Memory 
and bandwidth will not increase as quickly as core count, and data transfer latencies will be further 
exposed. The shear number of components increases the potential for more frequent faults and 
failures. 

In preparation for exascale systems, the DOE Office of Science Advance Scientific Computing 
Research (ASCR) program has sponsored a series of workshops leading to comprehensive reports on 
many of the challenges and opportunities. Nevertheless, the role of applied mathematics in the ex-
ascale computing effort has not been sufficiently explored. It is widely recognized that, historically, 
numerical algorithms and libraries have contributed as much to increases in computational simu-
lation capability as have improvements in hardware. Mathematics permeates simulation; and the 
expected developments in computer systems will require a holistic reconsideration of all aspects of 
solving a problem, including formulation, discretization, scalable solvers, analysis, and software. In 
addition, applied mathematics has a role to play in exascale system software, providing algorithms 
and models for capabilities such as dynamic resource allocation. 

This report details the findings and recommendations of the DOE ASCR Exascale Mathematics 
Working Group that was chartered to identify mathematics and algorithms research opportunities 
that will enable scientific applications to harness the potential of exascale computing. The working 
group organized a workshop, held August 21-22, 2013, in Washington, D.C., to solicit input from 
over seventy members of the applied mathematics community. Research gaps, approaches, and 
directions across the breadth of applied mathematics were discussed. This report synthesizes these 
perspectives into an integrated outlook on the applied mathematics research necessary to achieve 
scientific breakthroughs using exascale systems. 

Concisely, the DOE Advanced Scientific Computing Research Program needs to take action 
to build a more explicit research program in applied mathematics for exascale computing. The 
necessary actions are summarized in five key recommendations: 

Applied Mathematics Research for Exascale Computing iii 



1. DOE ASCR should proceed expeditiously and with high priority with an exascale mathe-
matics initiative so that DOE continues to lead in using extreme-scale computing to meet 
important national needs. 

2. A significant new investment in research and development of new models, discretizations, 
and algorithms implemented in new science application codes is required in order to fully 
leverage the significant advances in computational capability that will be available at the 
exascale. Many existing algorithms and implementations that have relied on steady clock 
speed improvements cannot exploit the performance trends of future systems. 

3. Not all problems require exascale computation, and yet these problems will continue to require 
applied mathematics research. Thus, a balance is needed in the DOE Applied Mathemat-
ics Research portfolio that provides sufficient resources to realize the potential of exascale 
simulation while preserving a healthy base research program. 

4. An intensive co-design effort is essential for success, where computer scientists, applied mathe-
maticians, and application scientists work closely together to produce a computational science 
discovery environment able to exploit the computational resources that will be available at 
the exascale. 

5. DOE ASCR must make investments to increase the pool of computational scientists and 
mathematicians trained in both applied mathematics and high-performance computing. 

The majority of this report makes the case for these recommendations, based on a detailed ex-
planation of the role of applied mathematics in scientific simulation and the associated research 
challenges motivated by the drive toward exascale computing. 

Applied mathematics research is a critical component of the overall exascale computing enter-
prise in DOE. Enhancing the national capabilities in advanced mathematical modeling, numerical 
algorithms, and software will have a major impact on our future national research capacity and 
an international impact in the ever-increasing number of domains within which high-performance 
computing is, or is set to become, a core activity. It is essential that DOE make strategic invest-
ments now in high-performance computing algorithms and software in order to enable successful 
use of exascale resources in support of its mission and to safeguard our ability to continue to lead 
the world in this field. 
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1 Introduction 

The U.S. Department of Energy (DOE) is tasked with addressing some of the most challenging 
problems in energy, the environment, and national security. Addressing these challenges requires 
simulation of complex multiscale, multiphysics phenomena and may also involve mathematical 
optimization and uncertainty quantification to answer broader design and decision questions. How-
ever, even with today’s mathematical algorithms and petaflop supercomputers, many extreme-scale 
science problems are still intractable. 

A science-based case for investment in exascale computing has been established [21]. Over the 
past five years, the Scientific Grand Challenge Workshop Series has produced a string of reports 
on the open research questions in climate science [23], high energy physics [22], nuclear physics [30] 
and energy [29], fusion energy [27], materials science and chemistry [24], biology [26], and national 
security [28]. Advancing science in these key areas requires the development of the next-generation 
computational models to satisfy the accuracy and fidelity needs of targeted problems. The potential 
impact of these models on computational science is twofold. First, scientists will be able to account 
for more aspects of the physical phenomena being modeled. Second, increases in the resolution of 
the system variables, such as the number of spatial zones, time steps, or particles, will improve 
simulation accuracy. Both of these impacts will place higher demands on computational hardware 
and software. 

To meet these science needs, the computational capability of the fastest supercomputers must 
continue to grow. However, the transition from current sub-petascale and petascale computing to 
exascale computing will be at least as disruptive as the transition from vector to parallel computing 
in the 1990s. Driven mostly by power constraints, exascale-class machines will see a massive 
increase in the number of computing units, whether homogeneous cores or heterogeneous mixtures 
of multipurpose CPUs and specialized processing units. Memory and bandwidth will not increase 
as quickly as core count, and data transfer latencies will be exposed further. The shear number of 
components—for instance, millions of cores—increases the potential for more frequent faults and 
failures. The proposed exascale architectures will present significant challenges for scalable software 
development and deployment. 

Accordingly, the DOE Office of Science Advance Scientific Computing Research Program (ASCR) 
has started to prepare for the exascale computing challenges. Workshops have been held and reports 
have been written on many of the computer science challenges, including architectures [25, 32], oper-
ating and runtime systems [37], programming challenges [34], fault management [36], development 
and performance measurement tools [35], data management and analysis [33], and performance 
modeling and simulation [38]. The 2010 Advanced Scientific Computing Advisory Committee (AS-
CAC) Exascale Report [21] found that an integrated “co-design” effort will be essential for success, 
where system architects, application software designers, applied mathematicians, and computer sci-
entists work closely together to produce a computational science discovery environment that fully 
leverages the significant advances in computational capability that will be available at the exascale. 

Nevertheless, the role of applied mathematics in the exascale computing effort has not been 
sufficiently explored in and of itself. It is widely recognized that, historically, numerical algorithms 
and libraries have contributed as much to increases in computational simulation capability as have 
improvements in hardware. The expected developments in computer systems will place an even 
greater focus on algorithms as a means of increasing our computational capability. Significant 
new model development, algorithm redesign, and science application code reimplementation will 
be required in order to exploit effectively the power of exascale architectures. Some of these issues 
have been identified in previous reports [3, 31, 33], but, to date, no assessment has focused solely on 
the challenges and opportunities for research in applied mathematics for exascale simulation. This 
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report addresses this deficiency by examining the role of applied mathematics research throughout 
the modeling and simulation process and by identifying important topics in need of more research. 

1.1 Charter and Goals 

In January 2013, ASCR formed an Exascale Mathematics Working Group (EMWG) to identify 
mathematics and algorithms research opportunities that will enable scientific applications to harness 
the potential of exascale computing. 

The EMWG charter, written by the working group and approved by ASCR, was to do the 
following: 

• Analyze potential gaps in current thinking about applied mathematics for the exascale; 

• Identify new algorithmic approaches that address exascale challenges; 

• Identify mathematics to address new scientific questions accessible at exascale, especially 
through integration across applied mathematics subdisciplines; 

• Identify a holistic, co-design approach for applied mathematics exascale research that more 
directly involves a dialogue with application scientists and computer scientists; and 

• Submit a report of the findings to the DOE Office of Science. 

This charter reflected the desire of the working group to consider the breadth of applied mathematics 
activities necessary for extreme-scale science, from mathematical modeling through discretization 
and solvers to analysis and decisions. 

1.2 Membership 

The EMWG comprised ten research scientists from the DOE national laboratories: 

Name Affiliation 

John Bell 
Luis Chacón 
Jack Dongarra∗ 

Rob Falgout 
Michael Heroux 
Jeff Hittinger∗ 

Paul Hovland 
Esmond Ng 
Clayton Webster 
Stefan Wild 

Lawrence Berkeley National Laboratory 
Los Alamos National Laboratory 
Oak Ridge National Laboratory 
Lawrence Livermore National Laboratory 
Sandia National Laboratories 
Lawrence Livermore National Laboratory 
Argonne National Laboratory 
Lawrence Berkeley National Laboratory 
Oak Ridge National Laboratory 
Argonne National Laboratory 

*co-chairs 

Karen Pao, an ASCR program manager for the applied mathematics subprogram, also participated 
as the ASCR point of contact for the working group. 

1.3 History and Timeline 

The EMWG was formed in early January 2013 at the request of William Harrod, director of the 
ASCR Division of Computational Science Research and Partnerships. The initial meeting of the 
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working group occurred in late January via teleconference; the initial effort was to define a charter 
and to plan a course for gathering information. Most meetings were held as teleconferences, but the 
first face-to-face meeting of the working group occurred at the SIAM Conference on Computational 
Science and Engineering in late February 2013. To obtain information, the working group decided 
to solicit white papers from the applied mathematics community and to host a workshop to engage 
the community further. In addition, the EMWG decided to engage in a series of fact-finding 
teleconferences with domain sciences from Office of Science areas; these teleconferences occurred 
from April through June. Position papers were selected in May 2013; and the workshop, organized 
around these papers, was held August 21–22, 2013, in Washington, D.C. This report was written 
during the fall of 2013 and submitted to ASCR in February 2014. 

1.4 Fact-Finding Meetings 

Solvers and solver libraries are a mainstay of scientific computing and justifiably a core emphasis of 
applied mathematics research. However, mathematics plays a pervasive role extending “upsteam” 
in the modeling process. The mathematical formulation of the problem and its discretization are 
also important steps in simulation that impose constraints and challenges on the “downstream” 
linear and nonlinear solvers. Thus, the EMWG decided to investigate model formulation within 
the context of the problems facing DOE science application areas. The goal was to better under-
stand the science needs—the open questions different science domains are trying to answer through 
simulation—driving the push to exascale, without limiting consideration to current practices. Many 
previous grand challenge reports focus heavily on building from the current state of the art without 
questioning whether that state is an artifact of the evolution of the field. The push to exascale not 
only may be an opportunity to change this but also may benefit from a fundamental rethinking of 
how the problems are posed. 

The EMWG hosted six teleconference presentations by scientists representing the following 
areas: 

Topic Speaker Affiliation 

Nuclear (Fission) Energy Marvin Adams Texas A&M University 
Atmospheric Science William Collins LBNL 
Correlated Electron Systems Thomas Maier ORNL 
Fusion Energy Martin Greenwald MIT 
Biofuels Jeremy Smith ORNL 
Materials Science Paul Kent ORNL 

Perspectives formed from these discussions are the basis of Section 2 of this report. 

1.5 Workshop 

To stimulate a dialogue with the greater applied mathematics community, in May 2013, the EMWG 
issued a call for position papers on exascale computing research challenges in applied mathemat-
ics. Seventy-five position papers were received, and from these forty were selected for presen-
tation. Workshop details, including the position papers, agenda, and attendees, are provided 
in the appendices. Electronic versions of the position papers are available for download from 
https://collab.mcs.anl.gov/display/examath. 

The EMWG’s Exascale Mathematics Workshop was held August 21–22, 2013, in Washington, 
D.C., with over seventy DOE laboratory researchers, academics, and government program managers 
participating. Several members of the European applied mathematics community were also present. 
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Position papers addressed topics such as scalable mesh and geometry generation, multiphysics and 
multiscale algorithms, in situ data analysis, adaptive precision, asynchronous algorithms, optimiza-
tion, uncertainty quantification, and resilience. Each position paper was allotted ten minutes for 
presentation, and a substantial amount of time was devoted to group discussions about the ideas 
and issues raised by the presenters. After the workshop, a web-based survey was created to obtain 
additional feedback from the workshop attendees. 

1.6 Report Organization 

In the following section, we consider three motivating examples of the types of extreme-scale sci-
ence problems that exascale computing may enable researchers to address; these exemplar science 
needs represent the forces from above that will affect the mathematics involved in scientific sim-
ulation codes. In Section 3, we briefly review the challenges of exascale computing as imposed 
by the expected changes in computational hardware; these challenges represent the forces from 
below on the mathematics involved in scientific simulation codes. We use a top-down analysis in 
Section 4 to identify research opportunities in applied and computational mathematics for exascale 
computing. The interdependencies between mathematics research and other exascale computing 
research activities are discussed in Section 5. The report concludes in Section 6 with findings and 
recommendations. Information on the workshop that informed this report, including the submitted 
white papers, workshop attendees, and workshop agenda, are provided in the appendices. 

2 Motivating Science and the Role of Applied Mathematics 

The science challenges that motivate the need for exascale-class computing resources have been 
well-documented [22–24, 26–30]. Two common themes of these science challenges are the extreme 
ranges of temporal and spatial scales and the complex nonlinear interactions of multiple physical 
processes. Predictive simulation capabilities are the goal, so that computational results can be used 
not only to increase scientific knowledge and understanding but also for design and decision. For 
context, we briefly review three such science areas of relevance to the DOE—combustion, climate, 
and materials—and highlight the associated mathematical challenges within each area. 

2.1 Combustion 

One area where exascale computing can make significant impact is the design of next-generation 
combustion systems such as high-efficiency, low-emission diesel engines that can burn new biodiesel 
fuels. On the surface, modeling the combustion process in a diesel engine involves the simulation 
of high-pressure turbulent reacting flow in a complex moving geometry. While this is certainly a 
requirement, a number of additional physical processes need to be modeled in order to simulate 
a diesel engine. Fuel is injected into the engine in a high-pressure, high-velocity liquid jet. The 
dynamics of this jet, which plays a critical role in engine performance, is a complex multiphase 
phenomenon where extremely fine-scale effects play a key role in the breakup and atomization of the 
fuel. The combustion process forms particulate soot as an intermediary in the combustion process. 
The formation and subsequent burnout of soot are other multiphase effects in which molecular-level 
processes govern the behavior of the system. Because soot is optically thick, radiative processes 
enter into the picture as well, combining with conductive heat transfer to the walls to define the 
thermal environment within the cylinder. High-fidelity simulation of this type of system is beyond 
the capability of current petascale systems. 
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These elements represent one aspect of diesel engine simulation; however, a number of other 
issues also play a critical role in predictive simulation of an engine. Diesel fuels are complex hydro-
carbons whose chemical, thermodynamic, and transport properties are needed to perform a simula-
tion. Reaction kinetics and thermodynamic properties for these types of complex molecules are not 
well known. Furthermore, even if the kinetics were fully understood, simulations with a comprehen-
sive chemical mechanism would be infeasible. Transport properties are also not well understood, 
particularly in the high-pressure environment associated with diesel combustion. Quantifying the 
fidelity of a diesel engine simulation will require detailed uncertainty quantification to elucidate the 
uncertainty in predictions resulting from uncertainties in the fluid properties used in the simulation. 
These issues are further complicated by the need to model a variety of candidate biodiesel fuels 
in addition to traditional diesel fuel. Ensembles of simulations will be required in order to link 
experimental data to fuel properties and improve the predictive capability of simulations. 

The simulation of a diesel engine is a complex multiphysics problem that needs to incorporate 
the effect of uncertainty across a range of different submodels and establish linkages between models 
and experimental data. However, the ability to perform simulations of a diesel engine with quan-
tified uncertainty is only one step toward the actual goal, which is the design of a better engine. 
Designers would like to find optimal designs for fuel injectors and their placement in the cylinder, 
the shape of the cylinder bowl, and the placement and geometry of valves. These design problems 
are multiobjective: they need to balance fuel efficiency with emissions across a range of potential 
fuels and operating conditions. In addition, there are inherently stochastic because of cycle-to-cycle 
variability in the engine and of variations in the fuel characteristics. Solving these optimization 
problems will require methodologies for constructing rich hierarchies of models of quantified fidelity, 
combined with optimization algorithms that can utilize models of varying fidelity during the opti-
mization process. The issues in diesel engine design are not simply computational power. A rich 
set of new mathematical tools is needed to enable the design of next-generation engines. 

2.2 Climate 

Climate modeling is another application where exascale computing has the potential to make sig-
nificant impact. At a basic level the goal of climate modeling is to estimate the response of global 
temperature to increases in greenhouse gases. The full complexity of the problem becomes manifest 
when one tries to quantify how the climate system would respond to an increase in temperature. 
Climate scientists would like to answer questions such as what temperature rise is required to trig-
ger a major climatic event (e.g., melting of the Antarctic ice cap or an irreversible shift in ocean 
circulation); how extreme weather patterns will change; and how large stores of carbon will respond 
to global warming. 

As with combustion, answering these questions is not just a matter of harnessing more computer 
cycles; substantive mathematical advances are needed to address these problems. Climate models 
are complex multiphysics problems. They combine models for atmospheres, oceans, ice sheets, land 
surfaces, and the biosphere. Each of these models poses a challenging mathematical problem in its 
own right. In many cases, asymptotic convergence of the models has not been established. Further-
more, important questions arise about how to couple these models computationally. What are the 
key requirements to ensure that the combined model produces a stable and accurate prediction? 
How do errors in one model impact the fidelity of other components of the model? How accurately 
must each component be treated to ensure the fidelity of climate predictions? 

Of equal if not greater importance is the multiscale character of many of the models used for 
climate simulation. In many cases, the basic physical processes are understood at small scales, but 
reliable techniques for representing those processes are larger scales are not known. For example, 
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the fundamental processes for moisture physics in clouds are well understood, but it is not known 
how to represent ensembles of clouds at the scales required for climate simulation. There is no 
analog of statistical mechanics for clouds. Currently, it has proven challenging to link models 
of processes operating at the scale of climate models to benchmark models and measurements of 
these same processes operating at their native scales. The lack of systematic methodology for 
deriving representations of key processes as a function of scale is a fundamental barrier to progress. 
Developing the mathematical tools to address these types of scale-dependent models will require 
significant advances. Many of the processes that need to be modeled are highly nonlinear, and 
there is often no clear scale separation. Consequently, models based on a Markovian assumption 
will not be adequate. Models that can represent the physics across a range of scales are likely to 
be stochastic and include memory effects. 

Another mathematical challenge in climate modeling is how to most effectively utilize observa-
tional data to improve predictions. Can we develop data assimilation schemes that improve model 
performance? What does a given set of observations tell us about the underlying physical pro-
cess? What are the most effective quantities to measure to understand the connections amongst 
the different components of an earth system model? Answering these questions will require the 
development of new ideas at the interface of Bayesian statistical analysis, sampling methodologies, 
and optimization. 

Climate models are not only used for basic scientific studies; they are also used for assessments 
needed by policy makers. However, precise deterministic prediction of long-term climatic trends 
is not feasible. In this type of setting, a single computation is not sufficient. Rather, climate 
scientists need to quantify the potential range of possible behaviors. In some cases, the goal is not 
an estimation of mean behavior but an assessment of the possibility of rare but catastrophic events. 
Obviously, these types of studies need to include estimates of uncertainties in the predictions. 

2.3 Materials Science 

The development of new novel materials plays a key role in solving technological challenges in 
areas such as artificial light harvesting to produce liquid fuels, energy storage in next-generation 
battery technologies, metal organic frameworks, zeolites, and organic photovoltaics. Advances in 
computational materials approaches are making inroads predicting material properties, identifying 
novel and potentially useful materials, and guiding the functional materials design process at an 
atomistic scale using petascale-computing resources. The need for exascale within computational 
materials sciences is driven by the need to predict and understand the behavior of new materials 
from the atomistic scale to the device level itself. Computational materials science at exascale will 
be key to enable advances in high-tech materials that will move us toward a sustainable, safe, and 
renewable energy future. 

Predicting the behavior of heterogeneous materials with significant structural disorder and 
chemical complexity in macroscopic devices requires the modeling of emergent (mesoscale) proper-
ties and processes that bridge the many length (nanometer to microns) and time (femtoseconds to 
minutes) scales. Modeling the emergent properties and the multiphysics nature of various processes 
of complex systems at disparate length and time scales calls for a multiscale approach that can 
describe transport of ions and electrons, synthetic self-assembly of structures, electrochemical re-
actions at interfaces, heat generation and transfer, and structural deformation and stress. In order 
to bridge various length scales, it is essential to link continuum and other microscale models with 
atomistic and even electronic descriptions by providing correct up-scaling of interactions for coarse 
graining as well as down-scaling to perturb nanoscale and electronic environments. 

Furthermore, in order to predict the transient behavior of materials, such as their structure 
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and electrical, chemical, and thermal properties, it is essential to understand their behavior under 
real-world conditions. For example, modeling the behavior of lithium from the nanoscale to the 
microscale during the charging and discharging cycles of lithium-ion batteries can provide insight 
into the modes of failure and degradation of battery materials and can drive the design of better 
batteries. charge carrier diffusion, crack formation, and significantly longer timescales. Although 
a number of mathematical models have been developed to accomplish these goals, the numerical 
solution of the underlying equations in these models remains challenging. 

Accurate approaches for describing the large, complex, heterogeneous nature of materials and 
the physical processes at the mesoscale are expected to be a truly exascale computing challenge [24]. 
To capture mescoscale properties of complex materials requires scientists to study systems consisting 
of millions of atoms. Another driving force in computational materials science requiring exascale 
resources is the enormous size of the search space from which optimal materials can be chosen. If 
one considers hundreds of thousands of potential materials that each need to be modeled accurately 
using teraflop or sub-petaflop simulations, the need for exascale becomes clear. The many-body 
nature of microscopic models makes the complexity of the computation grow rapidly with respect 
to the number of degrees of freedom. For ground state calculations, approaches based on density 
functional theory typically scale cubically with respect to the number of atoms, n. The scaling 
for wavefunction methods, such as the coupled cluster method, is even higher. For excited states 
calculations, methods for both extended systems and molecules have at least O(n4) complexity and 
in many cases can go up to O(n6). For n = 1, 000, which is still relatively small, this complexity 
amounts to O(1018) operations for a single calculation. 

As an example of the many mathematical issues that enter into these multiscale, multiphysics 
materials problems, consider coupling a microscopic model to an atomistic or continuum model 
using a microscopic simulation to fit or estimate parameters contained in a higher-level model. The 
estimation process may require solving a system of tightly coupled nonlinear differential/integral 
equations iteratively. It may also require collecting information from multiple instances of micro-
scopic simulations that can be carried out in parallel. Furthermore, uncertainty quantification and 
sensitivity analysis are important tools that could be brought to bear for tuning model parameters 
and making them adaptive to configuration and environment changes. Iterative solver accelera-
tion techniques that can take advantage of physics-motivated preconditioner are highly desirable 
for solving both the coupling equations and nonlinear equations used in a microscopic model. In 
order to elucidate the dynamic behavior of the material, efficient and stable time-evolution schemes 
are necessary. In order to bridge the gap among different scales, multiresolution and multiscale 
methods based on asymptotic expansion, coarse graining, and statistical sampling are frequently 
used. All these mathematical techniques must be able to take advantage of the vast amount of 
computational resources and extreme concurrency available at the exascale. 

Challenges at Exascale 

Exascale will provide the computational power needed to address the important science challenges 
in DOE’s mission, but that capability will come at an expense of a dramatic change in architectures. 
Numerous reports over the past five years have documented the technical challenges and the non-
viability of the existing computer designs to reach exascale [25, 32, 57]. For context, we briefly 
summarize these challenges here. 

Power: Power is the driving force behind the changes in supercomputer architecture. In 
some sense, exascale computing should really be thought of more as “low-power, high-performance 
computing.” To continue to design supercomputers using standard commodity technologies is not 
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sustainable; the power requirements of such a machine rapidly become prohibitive [57]. The goal 
has therefore been set to achieve exaflop performance with a power limit of 20 MW. This restriction 
has direct implications for the structure and organization of the hardware components as well as 
algorithms. It is conceivable that the energy used by a simulation may replace the CPU time as 
the cost metric for supercomputer use; hence, numerical algorithms may need to become more 
power-aware. 

Extreme Concurrency: From hand-held devices to supercomputers, processor clock speeds 
have stagnated because of power density limitations. Instead, increased performance is being 
obtained by increasing the number of processing elements on a chip (multiple cores) and supporting 
threading. It is estimated that exascale machines will have two to three orders of magnitude of 
parallelism over petascale computer levels, with much greater parallelism on nodes than is available 
today. The bulk-synchronous execution models that dominate today’s parallel applications will 
not scale to this level of parallelism. New algorithms need to be developed that identify and 
leverage more concurrency and that reduce synchronization and communication. One approach 
will be through dynamically scheduled task parallelism; but this will introduce a new challenge, 
reproducibility, that will make determinations of code correctness more difficult. 

Limited Memory: Without a significant change in technology, memory density is not expected 
to increase at the same rate as the number of processing units. Again, power is a limiting factor; 
current volatile RAM technology, for example, consumes a great deal of power to maintain its state. 
Thus, while the amount of memory per node will increase, the amount of memory per core will 
decrease. Many current algorithms will thus be memory constrained and will need to be redesigned 
to minimize memory usage. 

Data Locality: Similarly, memory bandwidth is not expected to increase at the same rate 
as the number of processing units. Consequently, on-node memory bandwidth will increase, but 
the bandwidth per core will actually decrease. Interconnect transfer rates are also not expected to 
increase at the same rate as the number of cores. In addition, the energy used for a double-precision 
flop is expected to decrease by roughly an order of magnitude, which will expose differences in the 
energy cost not just of off-chip data motion but of on-chip transfers as well. Future systems may 
use a variety of different memory technologies including nonvolatile memory, stacked memory, 
scratchpad memory, processor-in-memory, and deep cache hierarchies to try to ameliorate some of 
these challenges. Algorithms will need to be more aware of data locality and seek to minimize data 
motion, since this will be a more significant energy cost than will computation. 

Resilience: Because of the shear number of components, hardware failures are expected to 
increase on exascale computers. Traditional checkpoint-restart recovery mechanisms are too ex-
pensive in terms of both the time and energy with bulk synchronization and I/O with the file 
system. Such global recoveries could conceivably take more time than the mean time between 
failures. Local recovery mechanisms are required that leverage the mathematical properties of 
the algorithms in the application. In addition, efforts to reduce power by computing with lower 
threshold voltages and other environmental disturbances may lead to more soft errors that may 
not be caught by the hardware. Increased fault rates will affect all hardware in the stack, but 
in particular applications may need to be fault-aware and use algorithms to make them tolerant 
to certain types of faults. The nondeterministic nature of failure and recovery, if occurrences are 
sufficiently frequent, will lead to nonreproducibility and make code correctness difficult to assess. 

These are the key architectural changes expected to be necessary to build an exascale machine. 
Such architectural changes will force changes throughout the software stack in ways that can-
not be completely hidden from the application and its associated numerical algorithms. Through 
model and algorithm development and design, mathematicians will need to address the new con-
straints these changes will affect. Particular constraints include the presence of distinct comput-
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ing/architectural layers, leading to multiple levels of parallelism; severe penalization of data motion 
across architectural layers; the lack of hardware resiliency (in the form of both soft and hard errors) 
in some or all of the computing layers; the maximum exploitation of asynchrony in the implemen-
tation; the utilization of mixed-precision floating-point operations; and the maximization of the 
operational intensity. 

Current and Future Research Directions 

Several scientific applications within the DOE mission space require resources at the exascale (and 
potentially beyond). As demonstrated by the examples in Section 2, some of these needs arise 
from the desire to solve on larger-scale simulation domains, to solve for longer simulation times, 
or to solve with greater accuracy or resolution of finer spatial scales. Other needs stem from the 
desire to add additional or more detailed physical phenomena to increase the physical fidelity. Still 
other requirements stem from the need for meta-analyses such as sensitivity analysis, uncertainty 
quantification, and mathematical optimization. 

What must be recognized, however, is that mathematics permeates the activities from the 
formulation of the problem to the analysis of the results (and, in fact, beyond). The realm of math-
ematical research necessary to make exascale computing a successful endeavor is not merely isolated 
to numerical solvers as implemented in software libraries. Computers do not “solve physics”; after 
all, computers fundamentally perform only a small set of logical operations. 

Physical principles and problems are first expressed as mathematical models that are not, in 
general, in a suitably discrete algebraic form. Thus, these models must be discretized, typically 
leading to coupled nonlinear algebraic systems of equations, which then require robust numerical 
solvers. Efficient analysis of the resulting discrete solutions and verifying their correctness both 
require the application of additional mathematical techniques. Thus, analogous to the concept of 
the software stack, there is effectively a mathematics stack for simulation: 

• Problem Formulation, or Defining the question(s) to be answered 

• Mathematical Modeling, or Expressing the problem mathematically 

• Discretization, or Expressing the mathematical model discretely 

• Scalable Solvers, or Solving the discrete system 

• Data Analysis, or Understanding the results 

• Resilience and Correctness, or Trusting the results 

In addition, there are common operations required for system management, such as dynamic re-
source allocation, that can be posed mathematically, for example, as optimization problems. 

We will use this framework to organize our discussion of potential research directions for exascale 
computing. We emphasize that models and associated algorithms are not selected in isolation but 
must be evaluated in the context of the intended computer hardware environment. Specifically, 
we will discuss each of the above topics, the ways in which the challenges introduced by exascale 
architectures hardware (Section 3) will need to modify the current approaches to each, and some 
promising ideas that can address some or all of the exascale challenges. 
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4.1 Problem Formulation 

Exascale computers offer a dramatic po-
tential to change the questions we ask, im-
proving our simulation capabilities from 
providing a single solution for a given set 
of boundary and initial conditions to pro-
viding an optimal solution with error bars. 
Future leadership-class computers will of-
fer several orders of magnitude in poten-
tial performance improvement. How to 
best use this increased capability varies 
greatly across problem domains of inter-
est to DOE. In some areas, the entire 
exascale system can be consumed by in-
creased fidelity of a single forward simu-
lation, whether that is through increased 
resolution (e.g., DNS of turbulent flows) 
or through more physically accurate (and 
complex) models that perhaps were previously considered infeasible. In other areas, forward sim-
ulations are already efficient and high-fidelity, leading naturally to the next simulation maturity 
levels [63] of optimization and uncertainty quantification (UQ), as depicted in Figure 1. Because of 
the new challenges and opportunities provided by these latter use cases, we choose to discuss them 
in more detail; higher-fidelity forward simulations will still represent a significant component of the 
workload on exascale machines, requiring very fast turnaround and support for new formulations, 
but this use case is better understood. 

Mathematical optimization and UQ will increasingly be used in the exascale era, especially 
formulations in which these broader problems are tightly coupled to the underlying forward simu-
lation model. Instead of UQ and optimization implemented as outer loops around the traditional 
forward simulation, techniques more tightly coupled to the forward solution strategy could provide 
opportunities for reuse, communication hiding, and even vectorization across multiple solutions. 
However, such formulations demand more from the underlying forward problem solvers, for exam-
ple, leading to problems with multiple, simultaneous right-hand sides or to families of related linear 
systems with similar structure and spectral properties. In order to impact future codes, research 
is required now to develop, explore, and understand the myriad algorithmic design trade-offs. 

4.2 Mathematical Modeling 

With the goals of simulation well-defined, the first challenge is the mathematical formulation of the 
problem. In the context of scientific simulation, this necessitates the formulation of one or more 
mathematical models of the physical processes that dictate the physical system behavior. These 
physical laws and phenomena are expressed as well-posed systems of equations. In many simple 
cases, these equations are well-established (e.g., Navier-Stokes, Maxwell’s equations); in more com-
plex problems, a suitable mathematical model may be an open research question. As highlighted in 
Section 4.1, exascale will also bring increased scope for optimization and uncertainty quantification 
and mathematical formulations of the questions asked in optimization and uncertainty quantifica-
tion. Selecting the appropriate mathematical model of the physics for and the level of coupling 
with these higher-level algorithmic demands is itself a modeling challenge. 
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Figure 1: One depiction of the relationship between simulation 
capabilities. Each stage requires greater performance and error 
control of prior stages. 
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4.2.1 Modeling Physical Processes 

Within the DOE mission space, mathematical models often involve coupled physical phenomena— 
they are inherently multiphysics. In addition, there are many potential levels of description from 
the atomic up to cosmological scales. The level of fine-grained physical fidelity in models depends 
on the importance of the details of the finest-scale processes on the macroscopic time and length 
scales, but it is often limited by the available computational resources. 

In the DOE applications that drive the need for exascale computing, nonequilibrium effects 
at the atomic scale and microscale (e.g., non-Maxwellian distributions of particles in plasmas, or 
cracks and voids in materials) are important. Fundamentally, we have classical and quantum mod-
els of atoms and molecules and could, in principle, attempt to simulate from this scale. However, 
such a model is an N-body problem with far too many degrees of freedom to simulate at macro-
scopic (engineering) scales, even with exascale resources. To manage the level of complexity and 
scale disparity of first-principles models, one must resort to dividing and conquering the scales by 
formulating reduced (or coarse-grained) models that target the appropriate level of description for 
a given set of dynamics. This approach naturally leads to multiscale or scale-bridging models, in 
which a coupled hierarchy of models is considered. Coarser-grained representations can be coupled 
sequentially or concurrently with finer-grained ones. Many approaches are available to derive such 
coarse-grained descriptions; we provide examples later in this section. 

The advent of exascale computing is an opportunity to rethink the formulation and implementa-
tion of mathematical models to simulate physical systems. Exascale resources will make realizable 
the use of some models that were previously considered intractable (i.e., more complex, but more 
physically correct models). Systematic techniques that can construct coarse-grained models when 
such models are unknown can lead to stochastic partial differential equations, a field in which 
many opportunities exist for numerical algorithms research. Multiscale models that incorporate 
and couple descriptions across scales will also become more prevalent. Such multiscale models may 
provide novel opportunities for accelerating numerical solution by leveraging the many levels of 
description. We will discuss in more detail these topics, as well as the trade-offs between particle 
and continuum representations. Before proceeding, however, we comment on the limitations on 
mathematical models imposed by physical constraints. 

Models must respect the physics. The mathematical properties of the models that make 
them difficult to solve numerically and in parallel most often derive from the physics. Hence, when 
considering a suite of model formulations for a given physical problem in the context of exascale 
computing, one must be careful not to trade physical relevance for parallel expediency. For instance, 
the propagation of information through a system is dictated by the underlying physics. If the details 
of this propagation are important, they must be resolved. If the details are unimportant, other 
mathematical models or numerical techniques can be used, but these models still capture the correct 
physical asymptotics. 

A classic example is conductive heat transfer, which is typically described macroscopically by 
the parabolic heat equation. In a parabolic model, information propagates with apparent infinite 
speed. Numerically, the discrete system is globally coupled. Of course, this is an asymptotic 
approximation. Physically, the information propagates at a finite speed, but it appears effectively 
infinite over the scales considered. Alternative hyperbolic-relaxation models exist; but in order to 
take advantage of their locality (which benefits their parallel implementation), either the very fast 
time scales would need to be resolved (an expensive proposition) or a clever asymptotic-preserving 
scheme would be required to step over these fast time scales (generally a nontrivial exercise). 

Alternative models may have advantages over those commonly used today, but the trade-offs 
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need to be considered carefully. In the end, important physical processes must be respected, a 
requirement that constrains the behavior of the solutions to the mathematical models and ultimately 
the numerical techniques used to approximate these solutions. 

Scale-bridging models. A class of mathematical models particularly suitable for exascale 
computing is scale-bridging algorithms. Such algorithms attempt to bridge disparate time and 
length scales in various ways, while at the same time avoiding a brute-force approach that would 
render the problem unmanageable. By nature, these scale-bridging algorithms exploit the sepa-
ration of scales to devise optimal formulations at different levels of description of the problem. 
This naturally leads to a layered or hierarchical problem description, which can be beneficial when 
matched with the expected hierarchical nature of upcoming exascale computing architectures. 

Hierarchical algorithms exploit nested levels of description (or layers) for solving multiscale 
problems. These layers may correspond to different description levels of the same physical system 
or to descriptions of different (but coupled) physical systems. Furthermore, the hierarchy of models 
may be applied globally across the simulation domain or locally, as in adaptive mesh and algorithm 
refinement, to restrict consideration of the finest scale to only those regions where such a description 
is important. The benefits of a layered algorithmic arrangement for exascale computing originate 
in the expected layered architectural arrangement of upcoming exascale computers. Often, differ-
ent layers of a hierarchical algorithm will require vastly different computational resources. This 
requirement, in turn, allows one to target those levels of architectural parallelism that are most 
suitable for the description of interest. 

From a solver standpoint, exascale computing will demand as much asynchrony as available. 
This, in turn, will demand both fine partitioning of the algorithm into simple tasks or kernels and 
taking full advantage of modern task-scheduling approaches such as directed acyclic graphs, which 
can automatically and on the fly schedule tasks according to prespecified dependencies among 
different tasks. In the context of hierarchical scale-bridging algorithms, however, partitioning and 
asynchrony as key organizational principles for the implementation of any given algorithm are not 
necessarily in conflict with a tight-coupling solution strategy. In particular, the layered arrangement 
of hierarchical algorithms, together with careful orchestration of the nonlinear solution strategy 
via nonlinear enslavement, allows the consideration of each layer as a separate entity from an 
implementation standpoint. 

In general, the choice for the less computationally intensive layers in the algorithm will be fairly 
unconstrained by exascale architectures, since these will not be dominating the overall performance 
of the algorithm. However, the constraints imposed by exascale architectures will strongly influ-
ence the choice of representation for fine-scale physical models, which will represent the bulk of 
the computational work. As before, the general principles to consider are the ability to achieve 
fine-grained parallelism, resiliency (to both soft and hard faults), asynchrony, and floating-point 
precision. Based on these considerations, a general design principle for the representation of fine-
scale physical models is minimum coupling between degrees of freedom. 

Coarse graining. Hierarchical scale-bridging models require a method for coarse graining to 
arrive at a systematic hierarchy of models. In some cases, we know how to derive such a hierarchy; 
in other cases, the scale-bridging is more ad hoc and potentially prone to errors and inconsistencies 
between the levels of the description. More research on systematic techniques is required for well-
posed hierarchical models. However, the need for coarse graining is more fundamental and needed 
for a wider range of problems. 

Coarse graining is ubiquitous in numerical modeling and will continue to play an important role 
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at the exascale. Whenever it is impossible to represent all of the degrees of freedom in a problem, one 
must resort to a coarse-graining approach. Classical partial differential equations describing fluid 
flow, solid mechanics, plasmas, and a variety of other problems are coarse-grained representations 
of particle systems. When these systems are solved numerically, one imposes another form of coarse 
graining, namely, the representation of continuous fields with finite-dimensional approximations. 
Analogous forms of coarse graining arise when modeling particle systems where it is infeasible to 
model all the particles needed to represent the system. 

Another form of coarse graining arises when representing fine-scale behavior in terms of a coarse-
grained representation. Examples of this type include mesoscopic models for fluids at micro-scales, 
models for crack propagation in solids, and models for clouds in climate models. The impact of 
unresolved degrees of freedom on the overall dynamics is the key question in these types of settings. 
In some cases, such as linear problems, a Galerkin-type approximation in which one simply truncates 
the effect of unresolved degrees of freedom is appropriate. However, this is not the case in general. 

Many approaches to coarse graining have been developed, including averaging, homogeniza-
tion, moment-based coarsening, renormalization group methods, and the Mori-Zwanzig formalism. 
While continued research is needed in general, we focus on two approaches that are particularly 
relevant to DOE: moment-based coarsening, which is intimately related to kinetic models, and the 
Mori-Zwanzig formalism, which is a more general strategy that often leads to macroscopic models 
expressed as stochastic partial differential equations. 

Moment-based coarsening. In moment-based coarsening, coarse physics models are gener-
ated from a fine-scale model by recursive integration over one or several degrees of freedom. As 
a result, the coarse model features a reduced dimensionality but remains physically consistent at 
all scales. An example of such a process is the derivation of the hydrodynamic equations from the 
Boltzmann kinetic transport equation, where the integration is performed over velocity space. 

The rigorous moment-based coarsening procedure provides well-defined restriction operators 
to communicate across the model hierarchy. Prolongation operators are not needed, since the 
fine description coexists with coarse ones. However, this coexistence raises questions regarding the 
impact of discrete consistency across the hierarchy, the preservation of conservation laws, and solver 
strategies. It also presents challenges in the context of mesh adaptivity: how to deal, for instance, 
with creation and destruction of patches in adaptive mesh refinement. 

The development of hierarchical algorithms via moment-based model coarsening has many ad-
vantages for exascale computing. Coarse and fine models communicate only via moments, which 
live in a much-restricted dimensional space (e.g., 3D vs. 6D in most kinetic transport applications) 
and thus offer immediate benefits from the data motion standpoint. Asynchrony may be exploited 
in the way coarse and fine models are coupled; for instance, one can predict a fine closure and ad-
vance the coarse problem while computing a closure correction from the fine model. Moment-based 
models naturally allow the use of mixed precision, since coarse and fine models can use different 
floating-point precision; typically, the fine model is able to use a lower precision without overall loss 
of accuracy, since the effects of a lower precision are ameliorated by the moment integration pro-
cedure. Moreover, coarse and fine models may use completely different representations, targeting 
the most beneficial aspects of the intended architectural layer. 

Stochastic systems. In a more general setting, the Mori-Zwanzig formalism from nonequilib-
rium statistical mechanisms [69] provides insight into the impact of unresolved degrees of freedom 
on the resolved dynamics. Within this framework, unresolved degrees of freedom enter the evolu-
tion of the resolved degrees of freedom as noise terms. The importance of these noise terms depends 
on the system and the scales being considered. In continuum models for fluids, for example, the 
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hydrodynamic variables representing mass, momentum, and energy, which are obtained from the 
underlying particle description of the fluid, fluctuate. The amount of fluctuation depends on the 
scale being considered. At macroscopic scales, this effect is often negligible and can be ignored; 
but at mesoscopic scales, it can have a significant impact on the dynamics. For example, at small 
scales, mixing resulting from fluctuations dominates diffusive mixing. 

Thus, at a fundamental level, coarse-grained systems are inherently stochastic. Traditionally, 
this aspect of the dynamics is either ignored or modeled with a deterministic term that represents 
the average of the stochastic behavior. Turbulence models attempt to model the effect of unresolved 
eddies with a deterministic diffusion term. Typical Arrhenius models for kinetics are phenomeno-
logical average models of finer-scale behavior. Since exascale enable simulations at higher fidelity, 
one must be cognizant of the effects of unresolved dynamics. Capturing the full range of behavior 
of the system may require inclusion of stochastic terms in the model. When a clear separation of 
scales exists, these stochastic terms can be Markovian; however, in a general case, the noise reflects 
a complex interplay with the history of the system. 

These issues are particularly important for multiscale or hierarchical algorithms. In such set-
tings, representation of the noise at coarser levels in the hierarchy is essential for accurate coupling 
between levels. Failure to capture this coupling can destroy the accuracy of the model at both 
coarse and fine scales. 

We must allow for models of coarse-grained systems and hybrid multiscale algorithms to con-
tain stochastic terms. These types of coarse-grained models can typically be written formally as 
stochastic partial differential equations. Even in fairly simple settings, however, these equations 
fall outside the scope of the mathematical theory of stochastic differential equations. Fundamental 
work is needed to establish approaches to analyze the basic properties of such systems. 

Particle-based versus continuum representations. Two dominant mathematical repre-
sentations of the model degrees of freedom are often used: particle models, where the dynam-
ics of individual or collections of discrete entities in space are followed in a Lagrangian fashion, 
and continuum models, where functions on a continuous domain are numerically represented by a 
finite-dimensional representation associated with a mesh. There are also hybrid techniques (such 
as particle-in-cell methods), where some fields are discretized on a mesh and others by particles. 
The particle models are generally more fundamental and often can describe a broader range of 
(nonequilibrium) behavior but are noisy and can become prohibitively expensive at macroscopic 
scales. Continuum models are not noisy, and their convergence properties are much better under-
stood; but they can become prohibitively expensive if used at microscopic scales (e.g., continuum 
representations of kinetic equations such as Boltzmann). 

In some ways, particle-based models are well-suited for exascale computing. Particles can be 
processed independently until synchronization occurs at the next time-step level, which provides 
arbitrarily fine-grained parallelism and allows the exploitation of asynchrony. Because of their 
statistical nature, particle models can effectively use single precision, since the accuracy impact 
of lower precision is much smaller than the associated statistical noise. The statistical nature 
of particles also makes them resilient to both soft and hard faults. With regard to soft faults, 
given that particle orbits are independent from one another, one may check for corruption at the 
individual particle level and decide a course of action (e.g., rerun the orbit or remove the particle) 
independently from other particles in the ensemble. To recover from hard faults, one only needs 
to produce a statistically equivalent local reconstruction of the particle distribution, which in turn 
allows for significant data compression. Methods in this category include Monte Carlo, smoothed-
particle hydrodynamics, and particle-in-cell techniques. 

Applied Mathematics Research for Exascale Computing 14 



However, particle models have potential limitations as well. While they can provide high con-
currency, particle methods tend to be low-order accurate and, in explicit algorithms, may fail 
to provide sufficient operational intensity (operations per bit transferred) to get beyond the band-
width limitations that prohibit full floating-point utilization of node; this limitation is removed with 
modern implicit methods, which allow particle subcycling. In addition, particle methods are not 
well-suited for all problems. If the problem is near-equilibrium, for instance, continuum formula-
tions represent an extreme compression of the data and thus are much more efficient at macroscopic 
scales; one would not use a particle model where moment equations are sufficient. Furthermore, 
the stochastic and interpolation noise may degrade accuracy in long-term simulations, and particle 
models make it much harder (but not impossible) to enforce local and global conservation laws. For 
these properties, continuum models are best suited. Of course, the latter increase coupling among 
degrees of freedom and thus are more constrained with regard to the exascale design principles 
previously outlined. 

These general considerations suggest that in the context of hierarchical scale-bridging models, 
an a priori attractive choice is the use of continuum models for coarse-grained physical descriptions 
and of particle models for fine-grained ones. Some well-known methods (such as particle-in-cell) 
are formulated in this way by construction. Others, such as Monte Carlo for radiation and neutron 
transport, have been recently shown to gain significant accuracy and efficiency when coupled in 
this way. This recipe is particularly attractive for a large class of problems of interest to DOE that 
require the solution of kinetic transport equations. Kinetic transport models have been successfully 
used for years via particle formulations that efficiently represent the high-dimensional kinetic phase 
space. Their moment descriptions, however, typically benefit for a continuum treatment. Potential 
applications include radiation transport, neutron transport, plasmas (e.g., thermonuclear fusion), 
aerosol transport in climate, and combustion. 

4.2.2 Uncertainty Quantification 

Uncertainty quantification is a broad term for a variety of methodologies, including uncertainty 
characterization and propagation, parameter estimation and model calibration, and error estima-
tion. The common goal of these activities is to address a fundamental question, namely how do 
the uncertainties ubiquitous in all modeling efforts affect our predictions and understanding of 
complex phenomena? Examples include both epistemic (lack of knowledge) and aleatoric (intrinsic 
variability) uncertainties, which encompass uncertainty coming from inaccurate physical measure-
ments, bias in mathematical descriptions, as well as errors coming from numerical approximations 
of computational simulations. Because it is essential for dealing with realistic experimental data 
and assessing the reliability of predictions based on numerical simulations, advanced research in 
UQ ultimately aims to address these challenges. 

The motivating science applications, described in Section 2, involve systems that describe phys-
ical and biological processes exhibiting highly nonlinear, or even worse, discontinuous or bifurcating 
phenomena at a diverse set of length and/or time scales. Hence, simulating the entire complex sys-
tem at the level of resolution necessary to represent this behavior accurately is extremely difficult 
for many problems of national interest. Moreover, predictive simulation of these systems requires 
significantly more computational effort than do high-fidelity deterministic simulations, particularly 
in the case of climate models, where both the subgrid closure approximations and the input data 
(coefficients, forcing terms, boundary conditions, geometry, etc.) are affected by large amounts of 
uncertainty. Even for these high-dimensional stochastic problems, simulation code and calculation 
verification, model calibration, validation and bias correction, and a complete quantification of all 
uncertainties are indispensable tasks required to justify a predictive capability in a mathematically 
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and scientifically rigorous manner. Figure 2 illustrates how these tasks are tightly connected. Un-
fortunately, current approaches for implementing these processes remain computationally taxing, 
making accurate predictive simulation of most complex stochastic systems exceptionally difficult. 
Confidence in simulation results is typically founded on a mix of intuition and an extensive sensitiv-
ity analysis. As such, it is critical to organize and design computational simulations and physical 
experiments that ensure that the right type of data, and enough of it, is available not only to 
quantify uncertainties, but also to understand and ultimately reduce their effect on quantities of 
interest (QoIs). 

As the complexity of these systems in-
crease, scientists and engineers are relied 
upon to provide expert analysis and to in-
form decision makers about the behavior 
of and the risk associated with predictive 
simulations. Many UQ approaches have 
been developed, including random sam-
pling (see [44] and the references therein), 
stochastic polynomial methods, such as 
interpolatory collocation approaches [62, 
68], and Galerkin projections [6, 46], that 
have been extensively utilized on large-
scale applications. However, numerous 
changes in scientific computing at extreme 
scales are expected to challenge the current 
UQ paradigm, wherein the stochastic loop 
is typically wrapped around a black-box 
simulation. Expected decreases in single-
core performance and memory per core, massive increases in the number of cores, and the emergence 
of novel accelerator-based architectures will require the development of new methodologies that in-
tegrate uncertainty analysis into computational simulations [3, 19, 28, 31]. In working toward this 
goal, several challenges arise when applying UQ methodologies to the DOE mission science areas. 

• Detection and quantification of high-dimensional stochastic QoIs with a specified certainty 

• Reducing the computational burden required to perform rigorous UQ 

• Efficient strategies for UQ that exploit greater levels of parallelism provided by emerging 
many-core architectures 

• Systematic assimilation of the uncertainty in measured data for validating and correcting 
model bias, calibrating parameter interrelations, and improving confidence in predicted re-
sponses 

To address these challenges requires a transition from currently used, nonintrusive algorithms 
and standard intrusive implementations to a truly architecture-aware, predictive capability. In what 
follows, we highlight several possible UQ research directions related to extreme-scale computing: 
adaptive hierarchical methods for high-dimensional approximation; multilevel methods for solution 
acceleration and complexity reduction; architecture-aware UQ paradigms; and adaptive and robust 
methods for combining computational simulations and experimental data. 

Adaptive hierarchical methods for high-dimensional approximation. It is widely rec-
ognized that rigorous uncertainty quantification at the extreme scale will dramatically improve our 
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understanding of physical and engineering problems [28, 31]. Indeed, a thousandfold increase in 
computing power would facilitate orders of magnitude more simulation realizations. However, 
enhancing the accuracy of stochastic QoIs requires the computational simulation to increase the 
number of random variables (dimensions), and expend more effort approximating the the solution 
in each individual dimension. The resulting explosion in computational effort is a symptom of 
the curse of dimensionality. To combat the computational cost, several methods that use sparse 
polynomial or sparse grid approximations in high-dimensional parameter, have gained considerable 
attention in the past decade (see [19, 48] and the references therein). 

However, when the parameter space is truly high-dimensional or when the random solution 
exhibits steep gradients, sharp transitions or bifurcations, or jump discontinuities, all stochastic 
polynomial-based methods converge slowly or even fail to converge. Also, these approaches attempt 
to construct highly accurate, approximate solutions over the entire parameter domain (so that the 
approximation achieves the same accuracy everywhere); yet, building such a surrogate in the low-
probability region of a joint probability density function (PDF) (i.e., using samples that contribute 
very little to the QoI) dramatically wastes computational resources. An ideal alternative is to 
construct solutions whose accuracy decreases as the PDF approaches zero, effectively approximating 
the solution only in the high-probability region. Moreover, the a posteriori PDF obtained when 
calibrating the input parameters can be highly irregular, not necessarily separable into a product of 
one-dimensional PDFs, making it extremely challenging to construct polynomial bases. To address 
these difficulties requires the invention of adaptive hierarchical approaches for low-discrepancy 
sampling with sufficient volumetric coverage of the input density; interpolation and approximation; 
and detection of events, in high-dimensional parameter spaces. 

Advanced multilevel methods for solution acceleration and complexity reduction. 
In any UQ approach, the dominant cost of quantifying uncertainty in simulations lies in the solution 
of the underlying deterministic model. Indeed, many high-fidelity, multiphysics models can exhaust 
the resources on the largest machines with a single instantiation and thus are not practical for the 
most advanced UQ techniques. Moreover, future increases in computational resources will be 
accompanied by continuing demands from application scientists for increased resolution and the 
inclusion of additional physics. Consequently, new approaches are needed in order to decrease 
simulation computational costs within the UQ context. Such techniques will be required to harness 
both the underlying model hierarchy and the stochastic hierarchy. 

Acceleration through multilevel methods using model hierarchies. Given the complex-
ity of extreme-scale applications, multilevel surrogates will be needed that simultaneously utilize 
a hierarchical approach in both physical and parameter spaces. As opposed to existing work in 
principal orthogonal decomposition (POD)-type reduced-order models, more advanced hierarchical 
models will be needed involving variational methods for preserving important mathematical struc-
tures of highly resolved solutions; asymptotic expansions that take advantage of scale separation 
for highly accurate multiscale; and Mori-Zwanzig formulations, mean-field theory, and moment 
methods for high-order closure approximations. These methods can be used to develop multilevel 
formulations of the deterministic problem that will be used to elucidate common solution struc-
tures across multiple UQ levels, including structures induced by multiscale dynamics and scale 
separation. However, in order to minimize the total cost for the prescribed error, a general strat-
egy must be developed to balance the contributions from approximation error in the stochastic 
space with model error in the deterministic space. Such a strategy will require analysis of both the 
deterministic model errors and the stochastic polynomial or sampling errors. 
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Acceleration through exploitation of the stochastic hierarchy. The bulk of the compu-
tational cost of extreme-scale computer simulations is usually associated with linear or nonlinear 
iterative solvers. One possible way in which the convergence of such methods can be dramatically 
improved is to “seed” the solver with a good initial starting point. Hierarchical UQ approaches 
produce multilevel sequence of approximations (e.g., interpolants), where, at each level, one intro-
duces new sample points. Taking advantage of the hierarchical structure, one can accelerate the 
solution of the deterministic system at each level by using the stochastic approximation from the 
previous level to determine the new initial iterates. In essence, the iterative solver has to resolve 
only the correction at each level, resulting in a significant reduction of the computational burden. 
This idea will need to be extended in order to enable the use of existing preconditioners at each 
level to inform solvers at the next level of the hierarchy. New preconditioners also will be needed 
to accelerate the convergence of additional sampling/collocation points or polynomial bases. In-
corporating these ideas into the multilevel framework, based on model hierarchies described above, 
will allow for further reduction in the total computational cost. 

Architecture-aware UQ paradigms. Nearly all existing uncertainty propagation method-
ologies wrap around deterministic simulation codes. A typical example is nonintrusive implemen-
tations of traditional sampling-based methods that repeatedly call a deterministic simulation code 
for different values of the stochastic model inputs (usually according to a joint PDF). These ap-
proaches have been effective at producing software and algorithms relying on modest numbers of 
simulations that scale well on existing petascale architectures. However, future exascale comput-
ers are not likely to provide enough concurrency for a thousandfold increase in petascale sample 
evaluations for uncertainty propagation applied in this manner. Power and cooling limitations will 
favor compute nodes with dramatically increased floating-point capacity through increased node-
level parallelism rather than increased clock speed or node counts [25]. Thus, increasing concurrent 
sample evaluation will require executing each sample on a smaller number of compute nodes or 
executing multiple samples simultaneously on each compute node. 

In order to leverage the increase in node performance and other likely exascale characteristics, 
it may become beneficial to evaluate samples in parallel through a multilevel embedded propagation 
scheme whereby collections of samples are executed asynchronously and samples within each col-
lection are propagated simultaneously at the node and processor core levels. The ability to embed 
portions of the “uncertainty loop” at the lowest levels of the simulation code requires replacing each 
scalar datum in a calculation with an array for the uncertainty representation of that datum, such as 
samples in a stochastic collocation-type method or polynomial coefficients in a stochastic Galerkin-
type method. One possible path to accomplish this is to use code transformation techniques based 
on automatic differentiation [47]. Any operations on that datum can then be translated to parallel 
operations on the uncertainty array, both improving locality and exposing additional fine-grained 
parallelism. Since the messages for multiple realizations are incorporated into one message for 
the ensemble, total communication time should be reduced. Moreover, such an approach enables 
new algorithms that reuse data and calculations across uncertainty representations to reduce ag-
gregate simulation cost, for example, reuse of mesh calculations that do not depend on uncertain 
input data and reuse of solvers and preconditioners across an ensemble. Of course, the concept of 
propagating multiple samples simultaneously at the scalar level of the simulation is predicated on 
the assumption that the code paths for these samples do not diverge greatly; otherwise no benefit 
or possibly a negative result is achieved. Careful research is needed that connects these ideas to 
high-level adaptive uncertainty propagation methods that decide when and how to group samples 
for co-propagation. 
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Adaptive and robust methods for fusing computations with experiments. Exascale 
computing will offer an unprecedented ability to assimilate the uncertainty in measured data for 
validating mathematical descriptions and correcting model bias, calibrating parameter interrela-
tions, and improving confidence in predicted responses. Computer simulations can be used to 
quantify the uncertainties in complex physical systems, and physical experiments can be used to 
validate the computer simulations. Innovative adaptive and robust experimental design strategies 
are needed that intelligently gather data from both computer simulations and physical experiments 
in order to reduce variability in the estimate of the unknown parameters and the uncertainty in 
QoIs. However, these approaches must go beyond the standard Gaussian process modeling, or 
kriging [65], that require the solution of an inverse covariance matrix, which becomes computa-
tionally intractable as the parameter dimension increases. Possible research directions include the 
integration of generalized Bayesian techniques, as well as PDE-constrained parameter identification 
approaches, with the paradigms and approaches described previously. Such an integration would 
allow efficient generation of surrogate approximations for extreme-scale simulations for use within 
the calibration procedure, so as to reduce variability in the estimate of the unknown parameters 
and the uncertainty in QoIs. Of course, both approaches rely heavily on numerical optimization, 
either to determine the number of significant modes of a distribution or to assist in solving an 
adjoint problem. These techniques are discussed in detail in Section 4.2.3 below. 

4.2.3 Mathematical Optimization 

Mathematical optimization involves finding the best value(s) of an objective function, subject to 
constraint functions characterizing the feasible design/decision space. When physical or simulated 
phenomena are involved, these constraints necessarily include the space of realizable solutions from 
a simulation code. To date, optimization primarily has played the role of a sequential “outer loop,” 
and hence research has focused on parallelizing the underlying linear algebraic operations within 
an optimization step and/or parallelizing the forward evaluation of objective and/or constraint 
functions. For many problems, the exascale will bring an abrupt end to savings based on such 
parallelism, especially as scalable evaluation of the objective and constraint functions becomes in-
creasingly complex and difficult. Algorithmic-based approaches to fault tolerance are also expected 
to have an increased scope for optimization algorithms at the exascale. 

Furthermore, the sustained increase in computational capabilities will enable the solution of 
new classes of optimization problems (see, e.g., Section 2) and bring mathematical optimization 
to new scientific and engineering domains. In particular, exascale resources open up new possibil-
ities at the intersection of optimization and UQ in areas such as optimization under uncertainty, 
robust optimization, and optimization-based model calibration. Exascale computing will begin to 
provide the necessary resources to facilitate optimization and UQ for complex multiphysics codes; 
however, significant research is needed in order to design algorithms that address the challenges 
outlined in Section 3. Here, we consider four exascale research topics in mathematical optimization: 
concurrent-point methods; mixed-integer, simulation-based, and global optimization; multifidelity 
hierarchies; and robust optimization and optimization under uncertainty. Also considered is the 
optimal design and coupling of experiments. 

Concurrent-point methods. A fundamental, unresolved challenge for optimization is the 
development and analysis of “concurrent-point methods.” Such methods determine multiple, dis-
tinct (but possibly related) design/decision points for concurrent evaluation, where the evaluation 
may be done asynchronously or at differing levels of fidelity. Such methods represent a substan-
tial shift from practices in traditional mathematical optimization, where optimization loops are 
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inherently sequential, and objective and/or constraint functions (and the corresponding deriva-
tives) are evaluated at a single point per iteration/loop step. Research to date on concurrent 
and asynchronous evaluation has focused largely on zero-order (“derivative-free”) methods, which 
require more iterations than derivative-based counterparts; techniques are needed for more gen-
eral, derivative-based methods. Analysis should provide approximation bounds for the complex-
ity of these new algorithms, and classes of problems where concurrent-point methods can result 
in provable/substantial savings will need to be established. Related work includes s-step and 
communication-hiding Krylov methods, which can be viewed as solving a specific form of uncon-
strained optimization problem. Decomposition-based approaches may be a promising avenue (e.g., 
determining points in families of subspaces), provided that global reductions occur infrequently. 

Mixed-integer, simulation-based, and global optimization. One example where such 
concurrent-point methods may admit excellent scalability is when there exists a combinatorial 
structure in the design/decision space. For example, when performing PDE-simulation-based opti-
mization when discrete decisions are also present, relaxations corresponding to PDE-constrained, 
continuous optimization solves can be viewed as treelike structures. Disjoint leaves of such trees 
provide natural sources of distinct design/decision points for concurrent evaluation, but partition-
ing such combinatorial structures in order to obtain savings from the concurrent evaluations (e.g., 
by grouping related PDE solves and data structures in order to exploit reuse and minimize data 
movement) requires substantial algorithmic research. 

Grouping related solves, whether optimization subproblems or forward simulations, may also 
fundamentally alter the tree structures encountered in global optimization. Finding a global 
solution—that is, the best of among all local minimizers—is an NP-hard task in general, but exas-
cale may present new opportunities for global optimization algorithms with theoretical guarantees 
for special classes of problems. 

Another potential way to reduce the number of iterations in an optimization loop is to exploit 
high-order derivatives of the simulation output with respect to the design/decision parameters. 
Current practices have focused on matrix-free application of Jacobians or Hessians; but for some 
problem structures, increased arithmetic intensity can be achieved by considering higher-order 
derivatives. However, research will be needed on scalable computation and/or application of these 
derivatives as well as concurrent adjoint calculations based on ensembles of related points. Effi-
ciently exploiting sparsity structures also becomes increasingly critical as ensembles of derivatives 
and higher-order derivatives are considered. 

Multifidelity hierarchies. As with UQ, research is also needed on optimization algorithms 
that can exploit multiple levels of fidelity and algorithmic-based approaches to resiliency. In the 
context of optimization, such methods acknowledge and embrace the principle that far from the 
solution, one need not perform expensive (e.g., because of high-fidelity or resilience considerations) 
evaluations. Optimization algorithms will thus need to select points for evaluation along with 
corresponding fidelity levels, possibly informed by knowledge (e.g., architecture-based, performance 
model-based) of the expense associated with performing that set of evaluations (due to data motion 
or otherwise). Work on multilevel optimization techniques has focused primarily on problems with 
an underlying grid structure, and determining appropriate coupling across a complex algorithmic 
hierarchy remains an open challenge. Potential adaptivity of the algorithmic hierarchies (e.g., as 
the set of active constraints changes or as a result of adaptive refinement) is also expected to present 
a challenge to scalable performance. 
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Robust optimization and optimization under uncertainty. Many problems of DOE 
interest require making decisions whose consequences cannot be fully determined. Uncertainty 
in data, parameters, and models can have deleterious effects on “optimal” solutions that do not 
account for such uncertainty, especially in nonlinear optimization problems where the constraint or 
objective values are highly sensitive to such uncertainty. 

Fundamental differences in problems in this area can often be attributed to the way the uncer-
tainty is modeled. In stochastic optimization the uncertainties are captured through distributions, 
whereas in robust optimization a min-max approach is followed using a compact uncertainty set. 
Determining the proper nesting order and level of coupling for the uncertainty and optimization 
(or min and max problem) hierarchies will likely be critical to achieving scalable performance. 

Methods for stochastic optimization have natural tie-ins with ensemble-based UQ approaches 
and share similar challenges to scalability. For example, evaluating many scenarios concurrently can 
mitigate variance and uncertainty, but overall savings may result only if such fidelity is truly useful 
and if the scenarios admit scalable/resource-constrained evaluation. Provable guarantees, such as 
convergence and error bounds, for stochastic optimization methods using more general forms of 
ensembles (e.g., based on performance considerations) are needed. General strategies with looser 
dependence on the number of independent scenarios are also needed in order to enable scalable 
decision making and design under uncertainty. 

Optimal design and coupling of experiments. As experiments become increasingly auto-
mated, operating computational experiments at leadership computing facilities and physical exper-
iments at DOE user facilities in tandem is expected to become more frequent [21]. Such coupling 
can be characterized as computation-driven or physical-experiment-driven. Possible computation-
driven scenarios include optimal design and model construction, and possible experiment-driven 
scenarios include experiment refinement based on computational analysis. 

Currently, optimal design typically assumes a mathematical model for a physical system and 
employs numerical optimization on this model to identify an optimal configuration or set of param-
eter values; the resulting design is then validated by a physical experiment. Multifidelity methods 
use multiple mathematical models of varying fidelity and computational cost, alternating among 
the models to reduce the cost of finding an optimal set of parameters for the high-fidelity model; 
but again, validation through physical experiments is performed sequentially. With closer coupling 
between computation and physical experiment, we expect promising designs to be evaluated during 
the course of the optimization, with the experimental results informing subsequent optimization 
iterations. Realizing this capability will require mathematical innovation. It is possible that mul-
tifidelity methods can be adapted to this new context by treating the physical experiments as the 
highest-fidelity model, but they will need to be modified in order to account for experimental error 
and the typically more limited set of quantities that can be measured in a physical experiment 
versus a computational experiment. 

In the construction of computational models using data from physical experiments, it is typ-
ically assumed that the physical data is collected and then the model is constructed. At best, a 
“design of experiments” methodology is used to determine which physical experiments to perform 
in order to provide the most useful data. With close coupling between computation and physical 
experiment, however, it becomes possible to take an active learning approach to model construc-
tion and choose which experiments to perform based on their expected impact on the accuracy of 
the model. Mathematical research in areas such as optimal sequential design of experiments and 
optimal stopping problems, at the intersection of optimization and uncertainty quantification, is 
required to facilitate this new paradigm. 

Applied Mathematics Research for Exascale Computing 21 



4.2.4 Related Position Papers 

Many position papers related to mathematical modeling were submitted to the Exascale Math-
ematics Workshop. These include papers on modeling physical processes [WP1, WP25, WP28, 
WP31, WP36], uncertainty quantification and data fusion [WP9, WP10, WP13, WP20, WP21, 
WP25, WP26, WP29, WP30, WP32, WP37, WP44, WP47, WP53, WP63, WP72, WP74, WPA1] 
and mathematical optimization [WP15, WP51, WP52, WP64, WP65, WP74]. Additional position 
papers incorporating these topics include [WP24, WP33, WP54, WP60, WP66, WP69, WP73] and 
position papers related to combinatorial and graph-based problems [WP42, WP43, WP48, WP49, 
WP67]. 

4.3 Model Discretization 

Typically, the mathematical formulation of the problem cannot be directly solved by a digital 
computer, and so the problem must be approximated with a finite-dimensional representation. 
Continuous independent variables must be subdivided into discrete mesh points, cells, elements, 
time levels, etc. In the case of particle models, the spatial representation is already discrete, but 
the temporal independent variable requires discretization. In addition, the physical models, equa-
tions (operators), and dimensions may be split into submodels that are easier to discretize and 
solve. Especially in multiphysics applications, such splittings require careful coupling approaches 
to preserve temporal accuracy and to respect nonlinear processes. For multiscale models, coupling 
procedures are also paramount. 

The choices made during the discretization will directly affect the properties of the resulting 
algebraic systems and will therefore affect the solvers used to obtain the approximate solution. 
Thus, discretization must be considered when addressing the challenges of exascale. Here, we 
discuss several of the exascale-relevant topics related to discretization, motivated both by the models 
requiring exascale resources and by the challenges posed by exascale architectures. Specifically, 
we address issues involved in coupling and partitioning, the advantages of high-order algorithms, 
adaptivity of mesh and models, and issues associated with computational geometry and mesh 
generation. 

4.3.1 Model Coupling and Partitioning 

The coupling of physically distinct physical models and/or of multiple scales will be a pervasive 
issue in exascale simulation. It is important to note that whether a physical model is weakly 
or strongly coupled depends on the time scale of interest. Thus, most physical models can be 
considered weakly coupled when fast time scales of the involved physics are respected. However, 
if integrating these systems over slower time scales is of interest, the same models may become 
strongly (and nonlinearly) coupled. 

Accordingly, the solution strategy for multiphysics, multiscale models will depend largely on the 
physics of interest or the willingness to respect fundamental scales. Often, when well-verified models 
for distinct physical processes or scales have been developed for a particular purpose, computational 
scientists seek to reuse and combine these codes or modules in an attempt to model multiphysics or 
multiscale effects in a different regime. This type of composite discretization (which, following [56], 
we refer to as a loosely coupled solution strategy) is pervasive but can have stability or consistency 
problems, particularly in very long simulations. For strongly coupled systems, the particular loosely 
coupled solution strategy of choice may be either ill-posed or ill-behaved. Nonlinearly converging 
physics modules or models (a tightly coupled solution strategy) usually result in more stable and 
robust formulations. However, a global nonlinear solve will in general not be attractive at the 
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exascale, and other approaches must be pursued. Furthermore, in scale-bridging applications, 
even tight coupling does not guarantee nonlinear stability. For instance, numerical truncation 
errors generated at different scales may amplify as these errors propagate through the hierarchy 
of models. For a recent survey of multiphysics modeling, associated implementation issues, and 
example applications, see [56]. 

Exascale computing provides an opportunity to rethink and to improve how models should 
be coupled across scales and physical processes. Various types of partitioning will be necessary 
for exascale simulation of multiphysics, multiscale models, and many opportunities arise for re-
search into partitioning techniques. A critical issue is to develop tightly coupled solution strategies 
that ensure nonlinear convergence. Given the complexity of the anticipated exascale computers 
and questions about their reliability, verification of coupled models will require a much sounder 
theoretical understanding of the stability and accuracy of coupling techniques. 

Partitioned algorithms. Partitioning can be geometric, operational, and model-based. In 
geometric partitioning, one splits the equations into separate subdomains (e.g., as in fluid-structure 
interaction [2]). In operational partitioning, one splits the equations or operators into subsets 
applied in some sequential or iterative fashion in (pseudo-)time (e.g., traditional operator splitting). 
In model-based partitioning, one segregates different code sets based on the physics model at hand. 

Partitioning has the advantage that modular, efficient solvers for each domain or operator can 
be applied to that subproblem (e.g., an implicit treatment of a parabolic operator and an explicit 
treatment of a hyperbolic operator). In addition, partitioning can provide opportunities for task 
parallelism and reduced synchronization. Partitioning does not, however, necessarily imply a loosely 
coupled strategy. For instance, one can formulate tightly coupled nonlinear residuals by nonlinearly 
eliminating a (partitioned) physics module. If loose coupling is favored, the challenge again is to 
couple the subproblems in a way that accurately and stably captures the true nonlinear coupling of 
the original governing equations. Suitable compatibility conditions must be determined, whether in 
the form of modified boundary conditions or scale-bridging prolongation and restriction operations. 

The preferred method of choice will generally be application dependent, where the strength and 
nature of the coupling must be considered. Some physical models may be more tightly coupled, and 
partitioning those models will require a greater degree of care than has been done previously in more 
ad hoc code coupling. Coupling may be volumetric or interfacial ; in the former, the subproblems 
coexist in overlapping regions, while the latter couple through (possibly evolving) boundaries. 
Similarly, coupling may be global, where all models coexist everywhere in the domain (e.g., MHD), 
or localized, where models may be relevant on disjoint spatial (e.g., fluid-structure interactions) or 
temporal (e.g., nonlinearly switching models as the solution evolves) domains or on small regions of 
overlap (e.g., hybrid models that transition from fluid to kinetic models near material interfaces). 
Although the specifics may vary, in all cases the desire is to maintain consistency, accuracy, and 
stability while obtaining increased computational efficiency from the splitting. The challenge stems 
from the strength of coupling between the models/scales. Failure to respect strong coupling can 
lead to numerical difficulties. Proper partitioning is an important area for research as multimodel 
(multiphysics/multiscale) codes are designed for the exascale. 

One topic, in particular, that deserves further investigation is high-order, partitioned time 
integration algorithms suitable for multiscale, multiphysics problems. Broadly, multimethod and 
multirate methods are two general approaches to dealing with multiple time scales. Implicit-
explicit (IMEX) integrators, which include the many variants of multistage (e.g., Runge-Kutta), 
multistep (e.g., BDF), and hybrid (i.e., generalized linear methods [16, 17]) schemes, are perhaps the 
more familiar of the multimethod approaches. There are also multimethod and multirate spectral 
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deferred correction (SDC) schemes [39], such as semi-implicit SDC [60] or multi-explicit SDC [12]. 
An alternative approach to dealing with stiffness introduced by fast time scales is based on the 
exponential propagation iterative methods [50, 51]. All of these methods partition the equations, 
operators, or spatial domain into subsets, each to be integrated by a time integrator best-suited for 
that subset; as such, each plays an important role in multiscale, multiphysics problems. Classically, 
for multimethod schemes, an implicit integrator would be used for a numerically stiff subset and 
an explicit integrator for the nonstiff part, thus allowing the entire system to be integrated at the 
larger, nonstiff time step. Of course, implicit discretizations trade stability for temporal accuracy, 
a useful trade-off when the details of evolution of the fast time scales are unimportant. Partitioned 
schemes provide systematic means to combine and interleave the results of the subintegrators 
to preserve accuracy and stability, including not just implicit-explicit coupling but also explicit 
subcycling (in the case of multirate schemes). Partitioned time integrators are and will continue to 
be important for solving multiphysics and multiscale problems. By partitioning the original model, 
these techniques may provide opportunities for task parallelism and asynchrony; but methods 
will need to be designed with minimal memory requirements, data reuse, and resilience in mind. 
Accurate long-time integration of multiscale, multiphysics models is another area requiring research. 

Trade-offs will arise in the treatment of multiphysics and multiscale coupling; one solution will 
not be suitable for all problems. An important paradigm that should be followed, however, is 
that all problems should be considered “coupled until proven uncoupled.” In other words, instead 
of starting with submodels and trying to patch them together, one should begin by considering 
the entire mathematical model and first understand the nature of the coupling within it. Any 
partitioned discretization must be consistent with this full model, and understanding the coupling 
in the model will help determine whether loosely coupled or tightly coupled solution strategies are 
required for different partitionings of the problem. The generation and propagation of numerical 
error caused and potentially amplified by operationally partitioning a strongly coupled nonlinear 
system must then be understood before using such an approach in an application. For scale-
bridging applications, for example, a tight-coupling strategy is probably essential unless there is 
good understanding of the accuracy impact of a more loosely coupled approach. This is not, 
however, an unqualified endorsement of tightly coupled approaches. Much more research is needed 
into understanding how and when to partition nonlinear, multimodel systems accurately and stably. 

Nonlinearly converged strategies. Given the multiscale nature of the problems of interest 
at the exascale, it will often be of interest to step over fast time scales to evolve the system on a 
slower manifold. This approach will likely lead to strongly coupled nonlinear systems, which will 
demand nonlinearly converged solution strategies. 

Nonlinearly converged approaches attempt to advance the fully discrete model as a simultaneous 
inversion of coupled equations. For time-dependent problems, the discrete model is often implicit 
because of numerical stiffness (usually a result of the spatial discretization or fast time scales in the 
original problem). The nonlinear implicit system must be iterated to convergence. Done properly, 
nonlinear convergence ensures nonlinear consistency among physics components and is the “gold 
standard” for solving strongly coupled nonlinear systems. 

However, the sheer size of target physics problems at the exascale, combined with the expected 
hardware limitations of exascale computing in terms of memory and resiliency, will severely restrict 
practical nonlinear solution strategies. For instance, in scale-bridging applications, nonlinear solu-
tion approaches attempting to converge on a nonlinear residual in which all variables of all levels of 
the hierarchy are listed explicitly will likely become prohibitive. Nevertheless, the benefits of non-
linear convergence in terms of accuracy and robustness suggest that nonlinear iterative approaches 
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will continue to play an important role at the exascale (Section 4.4). In order to meet exascale 
needs, further research into nonlinear solvers will be required that limits global communication, 
that minimizes memory footprints, and that can take advantage of acceleration via precondition-
ing. One important focus of future nonlinear solver research should be enabling these algorithms 
to exploit the benefits of algorithmic partitioning (as described earlier in this section) in terms of 
memory frugality, modularity, task parallelism, and asynchrony. 

Another important research topic for the exascale is practical preconditioners. The resources 
made available by exascale computers provide new directions for preconditioner research. For in-
stance, when multiscale models are globally coupled, the less expensive coarse-grained model can be 
used as a preconditioner for the finer-scale problem. An example was demonstrated in the context 
of the hierarchy of models obtained through moment-based model coarsening as discussed in Sec-
tion 4.2. The kinetic and moment models can be viewed as a “two-grid” multilevel approach, and 
the relatively inexpensive moment model calculations can be used to accelerate the convergence of 
the fine-scale solution using well-defined restriction (moment integrals) and well-posed prolonga-
tion (constraining kinetic descriptions by moment quantities) operators. An alternative strategy 
that leverages the additional computational power at the exascale may be to use a coarsely parti-
tioned model with correct compatibility constraints (e.g., a partitioned approach to fluid-structure 
interactions) as a preconditioner for a better-resolved, fully coupled system. 

Stability and consistency. Exascale computing will not change the fundamental tenet that 
discrete algorithms must be stable and consistent. Stability and consistency will continue to be 
essential for algorithms that couple nonlinearly disparate scales or physical models for exascale 
computing. 

With regard to stability, one must go beyond linear stability analysis and consider nonlinear 
stability as well. Important elements in this regard are the nature of the numerical coupling 
(e.g., tight vs. loose), the preservation of conservation laws, the asymptotic well-posedness of the 
formulation, and the analysis and characterization of nonlinear stability through the use of nonlinear 
analysis tools such as modified equation analysis and variational formulations (when available). 
Many of these analysis techniques are related. For instance, variational formulations are intimately 
connected to the preservation of conserved quantities, and the latter provide constraints to ensure 
nonlinear stability. 

With regard to consistency, the constraints of exascale computing will favor high-order, compute-
intensive, and memory-frugal formulations. However, one must ensure not only that design order 
of accuracy is obtained for sufficiently small discretization parameters (e.g., time steps and mesh 
spacings) but also that the formulations are asymptotic-preserving [54] when these parameters get 
large with respect to some characteristic scale in the system (either temporal or spatial), as they 
will in scale-bridging applications. In particular, one must ensure that the proper physical asymp-
totic limit is achieved by the discretization of choice when time steps or mesh sizes do not resolve 
microscopic physical phenomena. Much work has been done recently in this area, in the context 
of both temporal and spatial discretizations. However, asymptotically well-posed discrete formu-
lations often tend to feature low orders of accuracy in resolved scales. Thus, the development of 
high-order, asymptotically well-posed numerical formulations will be a key area of mathematical 
research in the exascale era. 

Another sense of consistency is expected to play a role at the exascale: the discrete preservation 
of solution invariants (e.g., conservation laws), at both the local and the global levels. Locally, 
such invariants may be useful to detect soft faults. For instance, if one expects a local quantity 
to be conserved discretely and it is not after a given computation, the offending operation may be 
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repeated. Globally, invariants limit the solution manifold and thus prevent solution drift over long 
simulations when exactly satisfied. This property is particularly important for conservation laws 
that apply across scales in scale-bridging algorithms. Discrete consistency with solution invariants 
must be designed into the discretization if these properties are to be leveraged to ensure correctness. 

Particle-based approaches bring challenges in both stability and consistency [9, 20, 67]. Despite 
the success of some of these approaches in obtaining first-of-their-kind simulations, there is still 
much to be understood about the generation, propagation, and nonlinear interaction of errors due 
to interpolation and stochastic noise, as well as the impact of this noise on the overall accuracy 
of the simulation for long-time integration. Research on the development of low-noise techniques 
that treat collisions and remapping techniques that preserve conservation laws will be important 
components of the exascale mathematics portfolio. 

Stability and consistency for stochastic systems are difficult questions in general. Numerical 
treatment of stochastic systems is not simply a matter of adding stochastic forcing to an existing 
method. In some cases, capturing the stochastic structure of the system places stringent demands on 
how deterministic terms are discretized. Numerical methods for stochastic systems retain all of the 
complexity of methods for deterministic problems and have additional requirements for capturing 
the probabilistic structure of the system. Although considerable research has been done in this 
area, numerical methods tend to lag behind their deterministic counterparts. A need exists for 
both richer classes of algorithms and a deeper understanding of convergence behavior for stochastic 
systems. 

4.3.2 Parallel-in-Time Discretizations 

Since clock speeds are no longer increasing, a significant challenge for the computational science 
community on future computer architectures is to overcome the sequential nature of current time 
integration methods. At first thought, this seems an impossible task. But development of parallel-
in-time methods actually dates back almost 50 years [61], and significant speedups over traditional 
time marching approaches have already been demonstrated. Relative to standard time integration 
methods, however, the volume of research and development done in this area is extremely small 
and certainly not enough to move us into the exascale era. For most practitioners, the move to a 
parallel time integration setting will be a major paradigm shift that will have a huge impact on ex-
isting codes, the algorithms used, and even the way simulations are visualized and computationally 
steered. 

One way to understand how parallel-in-time algorithms work is to consider the fully discretized 
space-time system. Traditionally, the system is solved by marching from one time step to the next, 
much as is done in a forward solve for a lower-triangular matrix. This approach is computationally 
optimal, but sequential. The idea is to instead solve the same space-time system by computing 
multiple time steps at once in an iterative fashion. If the iterative method is also computationally 
optimal and exhibits enough concurrency, then additional parallel resources can be used to achieve 
a speedup. Note that, in practice, it is not necessary to solve the full space-time system at once, 
just one space-time slab at a time. 

There are many interpretations of parallel-in-time algorithms that may prove useful in devel-
oping efficient, robust formulations. For instance, methods such as parareal [58] can be viewed as 
classical two-level nonlinear multigrid algorithms (even though they were not originally introduced 
as such), and recent work has generalized this idea to fully multilevel methods in space and time. 
Since multilevel algorithms have been shown to be optimal (see Section 4.4.2) and have a high de-
gree of concurrency, such parallel-in-time approaches are ideal, at least for large enough problems. 
Other perspectives treat the method as an extension of multiscale, multiphysics schemes in time or 
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as a sophisticated nonlinear iteration for a space-time discretization. Some approaches to parallel-
in-time attempt to be discretization agnostic, while others exploit specific discretization strategies 
such as the interesting work done on spectral deferred correction schemes and on first-order system 
least squares. 

In all cases, one of the main research issues is achieving optimal convergence of the itera-
tion, a major component of which is formulating an appropriate coarse-scale problem. Relatively 
straightforward approaches may work in some cases, while in other cases more elaborate ideas may 
be needed. For example, three ideas presented at the exascale workshop were the use of a least 
squares shadowing problem for solving chaotic systems [WP37], the use of the slow time-scale com-
ponent of the underlying PDE for oscillatory systems [WP1], and the use of different governing 
equations on different levels [WP46]. In general, significant research remains to be done. 

4.3.3 High-Order Discretizations 

Many multiphysics applications in use today use low-order discretizations (first- or second-order). 
Higher-order discretizations have been less used for several reasons, but chief among them are 
numerical stability, difficulty of implementation, and perceived computational expense. By design, 
high-order methods have little implicit numerical dissipation to stabilize the scheme, particularly 
at boundaries, and so their implementation requires careful analysis and consideration. High-order 
discretizations also require more floating-point operations than do their low-order counterparts; 
thus, on the same mesh, high-order methods require more CPU time. 

In the exascale realm, however, floating-point operations will effectively be free relative to the 
cost of data motion. Furthermore, high-order discretizations use fewer nodes, elements, or cells to 
achieve a required level of accuracy, provided that the features to be represented are well-resolved. 
This is just an inversion of the definition of a high-order discretization: higher-order methods 
asymptotically have a smaller error for a given mesh size. Of course, unless the discretization is 
compact, high-order methods have larger stencils or more degrees of freedom within each element, 
which can lead to additional data transfer and/or denser linear algebra problems. If properly 
managed, there is potentially less data motion for high-order methods than for low-order, which will 
have benefits for exascale performance. On node, high-order methods will have higher operational 
intensity than low-order methods, that is, will do more operations per byte of data loaded, and so 
will be better able to reach the performance limit of the node. In practice, the actual operational 
intensity is limited by the implementation details, so research is needed into structuring high-
order algorithms to achieve, as much as possible, the theoretical operational intensity. In contrast, 
low-order schemes are typically bandwidth-limited, that is, because there is less computational 
work, the floating-point performance is limited by the data transfer speeds, and no amount of 
reimplementation will ever reach the maximum on-node performance. 

In addition, the move to high-order methods raises further applied mathematics research ques-
tions that require research. Much analysis is needed to devise stable interior and boundary dis-
cretizations. Scalable, high-order temporal discretizations will be needed that avoid global syn-
chronization. Splitting schemes (model partitioning) will need to be coupled in a high-order way, 
particularly at boundaries where the compatibility conditions must be respected. High-order meth-
ods lead to more coupled linear algebra problems (denser matrices) that will require suitable solvers. 
Moreover, high-order methods will require improvements in techniques to handle high-order com-
putational geometry representations and meshes. 
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4.3.4 Adaptivity 

Just as in petascale computing, adaptive mesh refinement (AMR [11]) will continue to be an im-
portant algorithmic component at exascale. When solution features are isolated in space, AMR 
reduces the amount of data and provides a natural partitioning of the simulation domain into 
regions requiring greatest resolution. For semi-structured AMR techniques, the underlying mul-
tilevel structure provides a natural and efficient hierarchy that should be favorable for scalable 
algorithms. Thus, AMR promotes concurrency and reduces memory usage. The availability of 
more concurrency should help reduce the overhead associated with refinement, regridding, and 
interlevel communications. Nevertheless, exascale introduces design constraints, such as limiting 
data motion and favoring compute-intensive kernels, that will encourage the consideration of com-
plementary strategies such as local order adaptivity, which introduces different challenges in load 
balancing and asynchronous execution. 

Model adaptivity, where the model changes locally in a region of the domain, will also play 
an important role in exascale computing. In fact, model adaptivity will be most effective when 
combined with adaptive mesh and algorithm refinement techniques [45]. These models can de-
scribe the same physics at different levels of fidelity at the same location (e.g., fine-grained models 
that replace constitutive relations) or can describe different physics altogether (e.g., fluid-structure 
interactions, multiphase simulations). Model adaptivity features several advantages for exascale 
computing: it can potentially exploit different levels of parallelism, asynchrony, and mixed preci-
sion and can minimize communication across layers. Model adaptivity (as well as AMR) could be 
tied to error control and uncertainty management to apply the finer-grained models only in those 
regions where the extra expense improves the solution accuracy. Model adaptivity still presents 
important challenges, however, particularly with regard to the nature of the coupling across differ-
ent physical descriptions, the criteria governing the choice of model, dynamic load balancing, the 
preservation of conservation laws, and the impact on fidelity of the prolongation of information from 
coarser descriptions to finer ones. There are clearly opportunities in developing scalable adaptive 
algorithms, but more research is needed. 

Real-world simulations can also transition between regimes of coupling strength, and this fea-
ture will likely be more pronounced in exascale multiphysics simulations. Detecting these tran-
sitions and devising adaptive discretizations that minimize error relative to fully coupled models 
could provide substantial savings by using more sophisticated (and expensive) coupling procedures 
only when necessary. Using metrics that determine the strength of coupling between operators 
in multiphysics models, dynamically adaptive discretizations could adjust solution approach (e.g., 
explicit or implicit) per component, the coupling accuracy, and/or the splitting method during the 
course of long-running simulations. Research will be required to ensure a consistent solution from 
such algorithms as well as to develop verification approaches that accommodate the solution- and 
time-dependent discretization. 

4.3.5 Scalable Computational Geometry and Mesh Generation 

To date, a gap has remained in the exascale discussion regarding issues related to defining and 
constructing complete simulation workflows. The execution of a simulation workflow begins with 
the domain geometry and includes many aspects, from meshing and discretization to solvers, error 
estimation, adaptive refinement, data transfer between meshes, UQ, optimization, and visualiza-
tion. The interactions among these components are complex, can be tightly coupled, and occur 
throughout the entire solution process. Thus, when executed on massively parallel computers, 
parallel structures and services are required for all aspects of the simulation workflow. Moreover, 
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different workflow components are often developed by different work groups. In order to allow 
simulations to leverage the best available tools in each category, it is important that the parallel 
structures be based on well-described functional interfaces that form the backbone of an interop-
erable infrastructure. 

The two key technical issues discussed in this section are parallel methods for interacting with 
high-level descriptions of complex geometries and generating and adapting high-quality, high-order, 
curvilinear meshes. Both these workflow steps are an integral part of the solution process and 
must be done by using in-memory linkages among geometry, mesh, simulation fields, and adaptive 
control. Without additional research and development, these areas will be a critical bottleneck 
in next-generation DOE science applications that require high-order methods to solve multimodel 
problems over complex, high-dimensional domains. 

Computational geometry. Historically, the simulation domain was defined directly in terms 
of the discretization (e.g., the computational mesh) used by the analysis procedures. Unfortunately, 
such a definition does not adequately support the automation needed in multimodel and/or adap-
tive simulations. A higher-level domain representation is required that can support the complete 
specification of the simulation attributes and all the geometry operations required by the simulation 
components. These operations include automatic generation and adaptation of meshes to the true 
geometry, geometry interrogations for analysis, and geometry modifications to account for large 
deformations, fracture, shape optimization, and adaptive control of geometric simplifications. 

Clearly, the geometric operations described above require that the geometric information be 
available throughout the simulation process. However, when the geometric model contains large 
numbers of boundary entities or extensive shape information, maintaining a copy of the entire 
geometry on each process becomes problematic. It is not unusual for a moderately complex CAD 
model to be 1 GB of data, which is a significant percentage of the expected size of local memory in 
future computer systems, and therefore a possibly unacceptable storage overhead. In addition, the 
I/O associated with copying this amount of data to each process creates a bottleneck on massively 
parallel machines. In cases when the geometry input has millions of features (e.g., full models 
of integrated circuit), it is also important to generate the original, complete geometric model in 
parallel for the basic design data (e.g., GDSII layout files for integrated circuits). The development 
of parallel geometric modeling has received little consideration, but one approach that appears 
promising is a flexible, parallel spatial decomposition of the domain based on an octree for which 
parallel implementations have been developed for mesh generation. 

When a parallel mesh has already been constructed for a given geometric model, one can 
distribute the model based on the distribution of the mesh, colocating the geometric model entities 
with their associated the mesh entities. The key to proper parallel operation is maintaining proper 
model entity adjacencies. As an example, consider the partitioned mesh and geometry shown in 
Figure 3. The upper image is the partitioned mesh, while the lower image shows the mesh on four 
of the sixteen parts and the geometric model entities (in gray) that are stored with those meshes. 
Tests show that the total memory to store the model entities in a distributed fashion is generally 
independent of the number of partitions and only up to 1.5 to 2 times more than storing the entire 
model a single time. 

Additional research is required in a number of areas including understanding how to best par-
tition a geometrical domain without the pre-existence of an associated parallel mesh, how to han-
dle evolving geometry (e.g., in shape optimization and damage modeling); geometrical coarsen-
ing/refinement operations to match the level of accuracy required by the simulation; lossy and 
lossless compression schemes for geometrical information; and efficient, fast migration of geometric 
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Figure 3: Parallel geometry for a distributed mesh. Geometry included with each part is shown as translucent. 

information to different processors as the simulation proceeds. 

Parallel mesh generation and adaptation. The majority of parallel simulations rely on an 
initial serial mesh, which introduces a bottleneck when the meshes have many millions of elements. 
The bottleneck is due to the cost of file transfer from the large-memory machines (typically used 
to generate the mesh) to the parallel computers used to execute the simulation. Alternatively, the 
initial meshes should be generated and adapted, in parallel, on the same parallel computer that 
executes the analysis. Methods to support distributed mesh generation and adaptation have been 
developed and are available for many types of meshes; but as meshes reach very large sizes, such 
methods become scarce. The bulk of this work supports MPI-based programming models, although 
current research efforts are increasingly investigating methods and programming models for hybrid 
parallelism and mixed GPU/CPU support. 

Additional research is needed in a number of areas to ensure that this critical component of 
the simulation workflow supports the needs of high-order simulations and can run efficiently on 
exascale computers. While high-order discretization methods have been developed and studied 
extensively, the overall solution approaches have often used low-order (e.g., linear) representations 
of the computational mesh. These can limit the accuracy and convergence rates achieved by 
the simulations. Many fundamental, open questions remain that are related to the generation, 
quality control, and adaptation of high-order, curvilinear meshes, both in serial and in parallel. For 
example, new methods are needed for high-order mesh transformations (e.g., mesh smoothing or 
swapping) and dealing with moving meshes that contain high-order elements. 

For the complex multiphysics applications that will be enabled by exascale computers, new 
methods of mesh generation and data partitioning are required. Dynamic partitioning methods for 
mesh adaptation must themselves be fast and scalable and must directly consider the needs of each 
simulation workflow step. It is often unclear what the partitioning objective function should be 
to maximize performance, and trade-offs among load balancing, maximizing memory bandwidth, 
and minimizing communication costs must be considered. Furthermore, since exascale computers 
will often be used for ensemble simulations (e.g., for uncertainty quantification or design studies) 
those scenarios must leverage information across as many runs as possible. For mesh and geometry 
information, it is unclear, for example, which information can be leveraged, what optimizations can 
be made, and whether any memory compression schemes can be achieved. 
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4.3.6 Related Position Papers 

Many position papers related to discretization were presented at the Exascale Mathematics Work-
shop. These included papers on multiscale and multiphysics coupling [WP14, WP25, WP27, WP28, 
WP40, WP73], high-order discretizations [WP17], time discretization [WP53], and computational 
geometry [WP19]. Additional position papers related to these topics include [WP2, WP33, WP44, 
WP60, WP61]. 

4.4 Scalable Solvers 

In our top-down view of the role of applied mathematics in exascale computing, discussion has 
moved from the specific (i.e., formulations and models specific to the problem at hand) to the more 
general. With an appropriate mathematical model chosen and discretized, the original problem is 
approximated (in general) by a finite-dimensional, coupled, nonlinear or linear system of algebraic 
equations. Nonlinear solvers, eigensolvers, and linear solvers, appropriate to the properties of the 
algebraic system, are then employed to obtain the approximate solution. Many of these solvers are 
provided in numerical solver libraries, which have been optimized over the years for a variety of 
platforms. 

Moving to the exascale will put heavier demands on these algorithms in at least two areas: 
the need for increasing amounts of data locality in order to perform computations efficiently and 
the need to obtain much higher factors of fine-grained parallelism as high-end systems support 
increasing numbers of compute threads. Consequently, parallel algorithms must adapt to this 
environment, and new algorithms and implementations must be developed to capitalize on the 
computational capabilities of the new hardware. Here, we discuss several key research topics in 
numerical solver development for exascale computing. While the discussion focuses mostly on the 
solution of linear systems, many of the issues and challenges identified are applicable to nonlinear 
solvers and eigensolvers. 

4.4.1 Direct and Iterative Solvers 

The solution of sparse linear systems is often the most time-consuming computation in large-scale 
science and engineering simulations. Although iterative methods have become more and more 
prevalent for solving many of these systems, direct solvers are still widely used and will continue to 
play an important role at the exascale. The primary advantage of direct solvers is their robustness. 
Direct solvers are guaranteed to terminate after a finite number of steps. Moreover, with appropri-
ate pivoting for numerical stability, direct solvers are often the method of choice for solving highly 
ill-conditioned linear systems. The main drawbacks of direct methods are their memory require-
ment and computational cost. Pinpointing the complexity of direct methods is difficult because 
of fill (which refers to the zero entries of the matrix that become nonzero during the factorization 
process). For matrices arising from certain two-dimensional finite-element/finite-difference meshes, 
the number of nonzero entries in the triangular factors and the number of operations required to 
compute the factors are bounded below by O(n log n) and O(n3/2), respectively, where n is the num-
ber of unknowns. In three dimensions, these numbers are much larger. In general, the complexities 
are significant for large problems compared with iterative methods, particularly O(n) solvers such 
as multigrid (discussed below). 

For iterative methods, the primary kernel in an iteration is typically a matrix-vector multipli-
cation, the cost of which is generally proportional to the number of nonzeros in the matrix. On 
the other hand, the convergence of iterative methods can vary widely across applications and even 
within a single code or simulation. The number of iterations required depends on the linear system 
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being solved. The iteration count can be affected by applying preconditioning to the linear systems, 
although the choice of preconditioners is often application dependent. Attempts have been made to 
employ techniques developed for sparse direct solvers to compute incomplete factorizations, which 
are then used as preconditioners for iterative methods. Such approaches have varying degrees of 
success. 

In addition, effective iterative methods often have subcomponents that require direct solvers, 
both dense and sparse. For example, dense solvers are used to build smoothers in multigrid methods 
for PDE systems, and sparse direct solvers are sometimes needed to solve the coarse system of 
equations. In domain decomposition, a linear system is permuted so that it has a bordered block 
diagonal form. Direct solvers (and iterative solvers too) are ideal for solving the diagonal blocks 
because these blocks are smaller. Processing the border results in the Schur complement, which 
can be dense, and can be solved by using iterative methods, since the Schur complement needs 
not be formed explicitly. Several implementations of such hybrid methods have been proposed and 
applied to large-scale problems. In other variants, direct and iterative methods are combined to 
produce efficient hybrid solvers. 

In general, dense and sparse linear algebra represent fundamental building blocks that are 
ubiquitous and used in a variety of applications. Although they will be rarely used on a full 
exascale system, dense operations frequently occur on smaller scales ranging from a single multicore 
processor to accelerators and terascale/petascale clusters of such components. For all these reasons, 
research and development in both direct and iterative solvers will be essential for future exascale 
simulation science needs. 

4.4.2 Multilevel Algorithms 

For many problems, the fastest and most scalable solver approaches are multilevel methods, because 
they are both mathematically optimal and highly parallel. As a result, multilevel solvers are already 
widely used in DOE scientific simulation codes, and we argue that their importance only increases 
in the exascale setting. Consider the simplest setting of multigrid methods for linear systems (the 
basic comments and conclusions carry over to the general setting). Multigrid methods are called 
optimal (order) methods because the work required to solve a linear system is linearly proportional 
to the number of unknowns. That is, they are O(n) methods, where n is the number of unknowns. 
This property gives them the potential to solve ever larger problems on larger parallel machines in 
(nearly) constant time. Multigrid methods achieve this optimality by employing two complementary 
processes: smoothing and coarse-grid correction. In the classical setting [7, 13, 43] of scalar elliptic 
problems, the smoother (or relaxation method) is a simple iterative algorithm such as Gauss-
Seidel that is effective at reducing high-frequency error. The remaining low-frequency error is then 
accurately represented and efficiently eliminated on coarser grids via the coarse-grid correction 
step. Applying this simple multigrid idea to get a scalable method often involves considerable 
algorithmic research, however. One has to decide which iterative method to use as a smoother, 
how to coarsen the problem, and how to transfer information between the grids. When designed 
properly, a multigrid solver is algorithmically scalable; it uniformly damps all error frequencies 
with a computational cost that depends only linearly on the problem size. In addition, a well-
designed multigrid algorithm has a high degree of concurrency. Specifically, its computational task 
dependency graph has a depth that depends at most logarithmically on the problem size. In other 
words, the size of the sequential component of the algorithm (the part that cannot be parallelized) 
is only O(log n), which is often the minimum-order size achievable because of the underlying physics 
being simulated. 

Because of their optimality and high concurrency properties, multilevel methods will continue 
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to play a critical role for exascale computing. In addition, at least one parallel algebraic multigrid 
code has already been shown to exhibit a natural resilience to soft faults when applied to diffu-
sion problems, with the vast majority of solver failures being due to pointer corruption and not 
mathematical frailty. This result may indicate that multilevel methods are a good starting point 
for building fault-tolerant algorithms as well. Finally, multilevel techniques will also likely play an 
important role for computing multiple time steps in parallel, as discussed in Section 4.3.2. 

Although multilevel methods have many desirable properties, any given algorithm generally 
has somewhat narrow applicability. As a result, there are many approaches for solving different 
classes of problems, and in some cases optimal-order methods have yet to be fully developed (for 
example, Helmholtz equations). In addition, exascale computing restricts algorithmic choices, 
eliminating the use of important techniques such as lexicographic Gauss-Seidel smoothing (too 
sequential) and W-cycles (too much communication). Hence, a high-level multigrid research agenda 
basically involves the development of optimal algorithms that address at least one or more of the 
following: (1) new application areas; (2) removal of sequential subcomponents (e.g., smoothers that 
follow characteristics in CFD applications); or (3) communication reduction (e.g., additive methods, 
non-Galerkin coarse operators, multilevel domain decomposition approaches). Another important 
research goal is the pursuit of methods that are broadly applicable. Algebraic multigrid (AMG) 
[14, 64] is an example of such a research topic that has paid dividends to date. In practice, AMG is 
tailored for specific applications to achieve the best performance, usually by way of many adjustable 
parameter choices. But, the basic AMG goal of developing an O(n) method that depends only on 
the coefficients of a general matrix has helped further our overall knowledge and understanding of 
multilevel methods and has led to breakthroughs in areas such as lattice quantum chromodynamics, 
where the development of optimal multigrid methods had been illusive. 

4.4.3 Numerical Solver Exascale Research Issues 

While the anticipated changes in architecture, as discussed in Section 3, will have effects across the 
“math stack,” it is in numerical solvers that the necessary adaptations may be most explicit. Here 
we discuss several strategies and techniques that should help achieve high performance but that 
require further investigation: communication-avoiding algorithms; synchronization reduction; data 
compression; mixed-precision algorithms; randomization and sampling algorithms; adaptive load 
balancing; scheduling and memory management for heterogeneity; energy-efficient algorithms; and 
autotuning. These ideas will also be useful in considerations of problem formulation, modeling, 
and discretization, since the requirements driven by the science needs will inevitably be tempered 
by the constraints of the computer architecture. 

Communication avoiding. Algorithmic complexity is usually expressed in terms of the 
number of operations performed rather than the quantity of data movement to memory. This 
is antithetical to the expected costs of computation at the exascale, where memory movement 
will be very expensive and operations will be nearly free. When solving very large problems on 
parallel architectures, the most significant concern becomes the cost per iteration of the method— 
typically because of communication and synchronization overheads. This is especially the case for 
preconditioned Krylov methods, for example, which are the most popular class of iterative methods 
for large sparse systems. 

To address the critical issue of communication costs, researchers need to investigate algorithms 
that minimize communication. New bandwidth and latency lower bounds must be derived for 
various numerical algorithms on parallel and sequential machines (e.g., for dense linear algebra 
algorithms where the well-known lower bounds for the usual O(n3) matrix multiplication algorithm 
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should be extended). New algorithms that attain these lower bounds, at least in many cases, must 
be invented. Another example of needed research is in Krylov subspace methods such as GMRES, 
CG, and Lanczos, where one should devise means to take k steps of these methods with the same 
communication costs as a single step. 

One method that should be exploited more is the fast multipole method (FMM) algorithm, 
which exploits local regularity to achieve significant reductions in both computation (asymptotically, 
from O(n2) to O(n)) and communication. This algorithm has been named one of the most important 
algorithms of the 20th and 21st centuries, yet strangely it has seen little adoption, perhaps because 
of its initial perceived complexity. However, a growing community of algorithms experts are finding 
that the future success of the exascale era may go hand in hand with the ability for researchers 
to develop new, fast direct solvers and adaptations to the FMM. The route to this may involve 
using kernel-independent approaches that remove the need for FMM solvers to be hand-crafted 
for particular applications. The breadth of application of FMM is not limited to such solvers; one 
important application will be its ability to reduce communications of large FFTs by close to a 
factor of 3. 

Synchronization reduction. Often one must synchronize the computation in an algorithm. 
A good example is the parallel computation of dot products. Synchronization is needed after such 
global reductions. However, synchronizations can become bottlenecks. Thus, one must design 
algorithms that have as few synchronization points as possible. Attempts have been made to 
restructure existing algorithms so that the number of synchronizations is reduced. An example 
is the conjugate gradient algorithm. By using some mathematical identities, one can produce 
versions of the conjugate gradient algorithm that have just one synchronization rather than two in 
the conventional description of the algorithm. 

The idea of restructuring the algorithm to reduce the number of synchronizations, and in general 
the amount of communication, will become more important in the exascale era. However, not all 
the variants of an algorithm may have the same numerical behavior. In the case of conjugate gra-
dient, some variants may not be numerically stable. Thus, in restructuring an algorithm to reduce 
synchronization and communication, the stability of the variants is an important consideration. 

Data compression. Another way to reduce the volume of communication is to consider data 
compression. If the compression rate is high, then this can result in a significant reduction in the 
amount of data to be communicated in an algorithm. In some cases, data compression can also 
result in an improvement in the execution time despite the fact that time is needed to perform the 
compression. 

An example of data compression is the recent work on matrix factorizations using compact 
representation. For matrices arising from self-adjoint elliptic operators, for example, submatrices 
in the factors exhibit low ranks. Thus, one can store these low-rank submatrices by using compact 
representations, such as singular value decompositions, rather than the conventional matrix repre-
sentation. Results have shown significant reduction in the storage requirement, and naturally this 
also leads to reduction in the amount of data to be communicated in a parallel setting. Further-
more, the cost of the factorization is often reduced because less data has to be manipulated, even 
though time is needed to compute the compact representations. 

The idea of low-rank representations can be extended further by allowing lossy compression. 
Using the matrix factorization as an example again, one can truncate the singular value decompo-
sition to obtain a low-rank approximation. This results in an approximate factorization, which can 
then be used, for example, as a preconditioner in an iterative method. 
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A number of research problems should be investigated. First, what is the extent of compression 
possible for a given class of problems? Second, what is the tradeoff between the increased cost due 
to compression and the possible reduction in cost due to reduction in communication? Third, when 
lossy compression is enabled, what is the impact on the reliability and accuracy of the algorithm? 

Multiple-precision algorithms. Algorithms and applications are becoming increasingly 
adaptive, and we have seen that various adaptivity requirements have become an essential, key 
component of their roadmap to exascale computing. Another aspect of this quest to adaptivity is 
related to the development of libraries that recognize and exploit the presence of mixed-precision 
mathematics. A motivation comes from the fact that, on modern architectures, the performance of 
32-bit operations is often at least twice as fast as the performance of 64-bit operations. Moreover, 
by using a combination of 32-bit and 64-bit floating-point arithmetic, the performance of many 
linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of 
the resulting solution. This approach can be applied not only to conventional processors but also 
to other technologies, such as GPUs, and thus can spur the creation of mixed-precision algorithms 
that more effectively utilize heterogeneous hardware. 

Mixed-precision algorithms can easily provide substantial speedup with little coding effort 
mainly by taking into account existing hardware properties. Earlier work has shown how to derive 
mixed-precision versions for various architectures and for a variety of algorithms for solving general 
sparse or dense linear systems of equations. Typically, a direct method is first applied in single 
precision in order to achieve a significant speedup compared with using double precision. Then an 
iterative refinement procedure aims at retrieving the lost digits. Iterative refinement can also be 
applied for eigenvalue and singular value computations. 

Of current interest is to extend and incorporate this approach in applications that do not nec-
essarily originate from linear algebra and to study the robustness of mixed-precision algorithms on 
large-scale platforms. Indeed, the convergence of the mixed-precision iterative refinement solvers 
strongly depends on the condition number of the matrix at hand. The conditioning can be deter-
mined at run time, and proper precision can be selected. Ideally, the user could specify the required 
precision for the result, and the algorithm would choose the best combination of precision on the 
local hardware in order to achieve it. The actual mechanics would be hidden from the user. 

Randomization and sampling algorithms. Randomized and asynchronous algorithms 
have been successful in several areas of computer science and have received a growing amount 
of interest in recent years in linear algebra, in particular linear least squares (dense) and general 
sparse linear systems. On future exascale systems, randomization algorithms and algorithms based 
on sampling may become more important in reducing synchronization and data movement. This 
approach may outperform deterministic algorithms for standard problems such as solving linear 
systems. Randomized algorithms have the advantage that they are often simple to implement and 
often require little synchronization; some versions may run completely asynchronously. However, 
randomized algorithms often raise concerns. Are they sufficiently accurate? Do they converge too 
slowly for a given tolerance? What if they fail? Success “with high probability” is not acceptable 
in many cases. One place where randomized algorithms may play an important role is as pre-
conditioners in iterative methods. For preconditioners, which try to accelerate convergence, it is 
acceptable to have low accuracy and occasionally fail to return a correct answer, since there is an 
outer iteration to guarantee convergence. 
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Adaptive response to load imbalance. As we move to architectures with billions of 
threads, even naturally load-balanced algorithms on homogeneous hardware will present many 
of the same load-balancing problems that are observed in current adaptive codes. For example, 
software-based recovery mechanisms for fault tolerance or energy-management features will create 
substantial load imbalances as tasks are delayed by rollback to a previous state or correction of 
detected errors. Dynamic scheduling based on directed acyclic graphs (DAGs) has been identified 
as a path forward, but this approach will require new approaches to optimize for resource utilization 
without compromising spatial locality. 

Scheduling and memory management for heterogeneity and scale. Extracting the 
desired performance from environments that offer massive parallelism, especially where additional 
constraints (e.g., limits on memory bandwidth and energy) are in play, requires more sophisticated 
scheduling and memory management techniques than have heretofore been applied to linear algebra 
libraries. Confronting the limits of domain-decomposition in the face of massive, explicit parallelism 
introduces another form of heterogeneity. Feed-forward pipeline parallelism can be used to extract 
additional parallelism without forcing additional domain-decomposition, but it exposes the user to 
dataflow hazards. Ideas relating to a data-flow-like model, where parallelism is expressed explicitly 
in DAGs, allows for dynamic scheduling of tasks, support of massive parallelism, and application 
of common optimization techniques to increase throughput. Approaches for isolating side-effects 
include explicit approaches that annotate the input arguments to explicitly identify their scope 
of reference and implicit methods, such as using language semantics or strongly typed elements 
to render code easier to analyze for side-effects by compiler technology. New primitives for mem-
ory management techniques are needed that enable diverse memory management systems to be 
managed efficiently and in coordination with the execution schedule. 

Energy-efficient algorithms. Emerging constraints on energy consumption are expected to 
have pervasive effects on HPC; power and energy consumption must now be added to the traditional 
goals of algorithm design, namely, correctness and performance. The emerging metric of merit is 
performance per watt. Consequently, it may be essential to build power and energy awareness, 
control, and efficiency into the foundations of our numerical libraries. In order to accomplish such 
a goal, first and foremost, standardized interfaces and APIs for collecting energy consumption data 
should be developed, just as PAPI has done for hardware performance counter data. Accurate 
and fine-grained measurement of power consumption underpins all tools that seek to improve such 
metrics; anything that cannot be measured cannot be improved. Second, these tools must be used 
to better understand the effects that energy saving hardware features have on the performance of 
linear algebra codes. Third, parameters and alternative execution strategies must be identified for 
each numerical library that can be tuned for energy efficient executions, and to enhance schedulers 
for better low-energy execution. 

Autotuning algorithms. Numerical algorithms and libraries need the ability to adapt to 
the possibly heterogeneous environment in which they operate. Such adaptation must deal with 
the complexity of discovering and applying the best algorithm for diverse and rapidly evolving ar-
chitectures. An automated process would be best, both for productivity and for correctness, where 
productivity refers both to the development time of the implementation and to the user’s time to 
solution. The objective is to provide a consistent library interface that, independent of scale and 
processor heterogeneity, can achieve good performance and efficiency by binding to different under-
lying code, depending on the configuration. The diversity and rapid evolution of today’s platforms 
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mean that autotuning of libraries such as the BLAS will be indispensable to achieving good perfor-
mance, energy efficiency, and load balancing across the range of systems. In addition, autotuning 
has to be extended to frameworks that go beyond libraries, such as optimizing data layout (e.g., 
blocking strategies for sparse matrix/SpMV kernels), stencil autotuners (since stencils kernels are 
diverse and not amenable to library calls), and even tuning of the optimization strategy for multi-
grid solvers (optimizing the transition between the multigrid coarsening cycle and bottom-solver 
to minimize runtime). Adding heuristic search techniques and combining these with traditional 
compiler techniques will enhance the ability to address generic problems extending beyond linear 
algebra. 

4.4.4 Role of Numerical Libraries 

Many numerical solvers for high-performance computing are made available through libraries, and 
DOE has historically supported the development of such libraries. LAPACK, ScaLAPACK, PETSc, 
hypre, Trilinos, SuperLU, SUNDIALS, Chombo, BoxLib, SAMRAI, and TAO are well-known ex-
amples of the results of this investment. Numerical libraries will continue to play an important 
role at the exascale; once genuinely exascale-suitable algorithms for a class of discrete problem have 
been identified and developed for a particular platform, libraries provide an efficient means to share 
these implementations across applications with similar characteristics. Of course, libraries alone 
cannot provide all the advances needed for exascale. Expert knowledge on the algorithms and how 
to use them effectively within the context of the problem, mathematical model, and discretization 
will continue to be important. 

A critical issue for exascale computing, therefore, will be to develop numerical libraries for exa-
scale architectures in order to share this wealth of experience efficiently, but this library development 
will face challenges. For instance, programming models and hardware architectures are still in a 
state of flux, and this uncertainty will slow down the development of extreme-scale solver libraries 
as new configurations and abstractions are tried. It seems most reasonable to build on top of 
existing libraries instead of developing entirely new libraries; this will amortize some of the software 
maintenance costs, provide backward capability, and make transition for applications easier. Many 
applications will need to be run on at least capacity up through leadership-class machines, if not 
down to even smaller-scale clusters and workstations. Libraries that can handle all of these scales of 
computing with consistent interfaces will aid in the development and portability of DOE application 
codes; autotuning is an obvious approach to pursue. Finally, the development of exascale-suitable 
extensions of numerical libraries will require more than just research into improved algorithms— 
it will also require significant investment into substantial software development and support that 
cannot (and should not) be a hidden cost of discrete solvers research. 

4.4.5 Related Position Papers 

Many position papers related to discrete solvers were presented at the Exascale Mathematics Work-
shop. Topics of presented papers included multilevel algorithms [WP9, WP16, WP17, WP20, 
WP21, WPA1], direct/iterative methods [WP34, WP45, WP56, WP59, WP65], eigensolvers [WP18], 
the use of compression techniques [WP45, WP47, WP65], communication/synchronization avoid-
ing [WP3, WP22, WP68], randomization and sampling [WP47, WP59], partitioning and load bal-
ancing [WP43, WP44], and the use of mixed-/adaptive-precision arithmetic [WP25, WP54, WP65]. 
Additional positions papers related to this topic include [WP11, WP63]. 
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4.5 Data Analysis 

Undeniably, the exascale era will usher in unprecedented volumes of scientific data, including data 
captured at experimental facilities and data generated at leadership computing facilities. However, 
without efficient and effective methods for data analysis, the scientific advances—whether planned 
or fortuitous—buried in this data will be delayed or remain undiscovered. 

Data analysis cuts across and/or has implications for all branches of the exascale mathematics 
stack detailed in this report. Computer simulations can be used to quantify the uncertainties in 
complex physical systems, and physical experiments can be used to validate the computer simula-
tions. For example: Section 4.2.2 discusses advances in UQ that could enable scalable data fusion, 
and using experimental data and simulation to quantify the uncertainties in QoIs; developments 
in optimal experimental design (see Section 4.2.3) could change the data we capture and inform 
which experiments should be run physically and which should be run computationally; Section 4.4.3 
underscored opportunities for data compression to reduce time to solution, while this discussion 
focused on numerical solvers, the fundamental questions are the same for more general analysis 
paradigms. Furthermore, many data analysis problems can be posed as problems in UQ or opti-
mization or determined as solutions to differential and/or algebraic equations. In the remainder of 
this section we highlight opportunities for data analysis not covered in the rest of the report. 

4.5.1 Concurrent Analysis 

The traditional workflow for many data-intensive tasks arising from physical or computational 
experiments is that analysis is done offline, typically as part of a post-processing step. Steady 
improvements in both physical detectors and computing resources are enabling ever more enhanced 
experiments, but I/O constraints are already impeding the impacts of these improvements. For 
example, despite increases in temporal resolution, the gap between time steps saved to disk keeps 
increasing. This compromise in fidelity makes it impossible to track features with timescales smaller 
than that of I/O frequency. Such discrepancies will become more pressing on future architectures 
as increases in computational power significantly outpace I/O capabilities and will motivate a 
fundamental shift away from postprocess-centric data analyses. 

Concurrent analysis frameworks are a promising direction wherein raw data is processed as it 
is generated, decoupling the analysis from I/O. Both in situ analysis frameworks, where operations 
share the primary resources used in data generation, and in-transit analysis frameworks, involving 
asynchronous data transfers to secondary resources, store only the results, which are typically 
several orders of magnitude smaller than the raw data. This reduction mitigates the effects of 
limited disk bandwidth and capacity. Since these solutions involve the sharing of resources, they 
face significant challenges because analysis and simulation algorithms must be redesigned to operate 
within tight memory, communication, and I/O constraints. A further challenge is performing several 
analyses simultaneously, within these constraints and in a coordinated fashion. 

4.5.2 In Situ Data Reduction and Transformation Techniques 

A shortcoming of concurrent analysis frameworks is that they require a priori knowledge of the 
questions one wants to ask of the data, thus limiting one to the study of anticipated phenomena. In 
many cases, unexpected results lead to new questions, which call for iterative exploration that may 
be most effectively done by postprocessing. Traditional compression techniques reduce the amount 
of data written to disk but, since the data must be decompressed prior to analysis, ultimately still 
require scalable analysis algorithms. 

Applied Mathematics Research for Exascale Computing 38 



(a) (b) 

Figure 4: (a) Isomap uses geodesic distances on a weighted graph to identify a lower-dimensional 
embedding of high-dimensional data (image courtesy of [8]); (b) Merge trees segment data according 
to the level-set behavior of a field of interest (image courtesy of [10]). 

An alternative solution is the use of in situ data transformations that create reduced repre-
sentations while maintaining the properties of interest, thus minimizing the impact on subsequent 
analyses. Statistical feature extraction is one possible approach to identify a reduced representation 
of data. Such techniques—including dimensionality reduction algorithms such as principal compo-
nent analysis and its variants, Isomap, and locally linear embeddings—define a lower-dimensional 
representation that still captures the data with sufficient accuracy (see Figure 4a). In contrast, 
segmentation-based feature extraction techniques focus on the identification of relevant subsets of 
a spatial domain. Typically, the subsets of the domain are defined in terms of one or more of the 
observables in the spatial fields and the resulting coherent structures correspond to physical phe-
nomena of interest. Segmentation algorithms include those commonly used in the image analysis 
community (e.g., as used in analyzing medical scans) and topology-based, multiscale algorithms 
based on level-set or gradient behavior of a function defined on a spatial domain (see Figure 4b). 

4.5.3 Memory- and Compute-Efficient Algorithms 

Whether because of the need to share computational resources with a data-generating process or 
because of the sheer volume of required data, data analysis algorithms will need to operate under 
tight memory, communication, and I/O constraints. Not all analysis algorithms scale in such an 
environment, and significant algorithmic shifts will be required to achieve the necessary scalability. 

We expect sampling-based algorithms to play an important role in this area. Sublinear algo-
rithms are particularly interesting, since they are designed to estimate properties of a given function 
over a massive discrete domain, by accessing a tiny fraction of the domain. Sublinear algorithms 
have been used in graph analysis and the application-independent generation of colormaps; under-
standing in what settings these algorithms admit quantification of the error due to sampling is a key 
research question. Another class of memory-efficient algorithms that require further mathematical 
analysis is streaming techniques, which progressively process and visualize large scientific datasets 
by leveraging progressive multiresolution data structures. 

Efficient implementation of data analysis algorithms on today’s high-performance computing 
platforms often requires detailed knowledge of the network, memory hierarchies, and computing 
architecture. The extreme concurrency and resilience requirements of exascale computing create 
an even more pressing need for abstractions and frameworks to support the development of new 
data analysis algorithms. Effective paradigms will support decomposition of the analysis. Candi-
dates include new constructs to operate on a fine granularity of data, building blocks for portable 
and efficient parallel analysis algorithms, system-tailored kernel functions, and MapReduce-style 
problem decomposition. 
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4.5.4 Related Position Papers 

Position papers related to data analysis that were presented at the Exascale Mathematics Workshop 
include [WP43, WP55, WP62]. Additional positions papers related to this topic include [WP34, 
WP48, WP49]. 

4.6 Resilience and Correctness 

Computing an incorrect answer quickly is of no use to a scientist. Yet computing with exascale 
hardware poses several challenges in assessing and assuring the correctness of numerical simulation 
results. Resilience to faults has been identified as a critical need for future HPC systems [57]; 
the thousandfold increase in computational capabilities expected over the next decade, along with 
incorporation of techniques for reducing energy consumption, is predicted to increase the error rate 
of the largest systems. DOE has several critical mission deliverables, including annual stockpile 
certification and safety assurance for the NNSA and future energy generation technologies for the 
Office of Science. Computer simulations are key to meeting these deliverables and must be resilient 
enough to complete in time and correctly, in order to meet the respective critical mission need. In 
many cases, these simulations can take days, weeks, or even months to complete, which increases 
the computation’s exposure to faults. 

Both hard and soft faults are expected to occur with much greater frequency than on previous 
hardware. Uncorrected soft faults have the potential to corrupt computed solutions. Hard faults 
will need to be handled on the fly; halting and restarting an entire application because of the loss of 
a node, for instance, will be prohibitively expensive at the exascale. Dynamically recovering from 
either type of fault will introduce nondeterministic variability in resource usage, as will dynamic 
scheduling of tasks. Because of the nonassociativity of floating-point arithmetic, such nondetermin-
ism will make bitwise reproducibility difficult at best and will complicate code correctness testing 
procedures, including code verification, where reproducible execution behavior is assumed. 

Preventing all faults during exascale simulation will be impossible, and nondeterministic execu-
tion is likewise unavoidable without potentially severe performance penalties. Fault management 
will require developments in hardware, programming environments, runtime systems, and pro-
gramming models; but mathematics will play an important role as well. The issue of correctness is 
ultimately a mathematical one and will require mathematics-informed solutions. Research will be 
required in order to devise efficient application-level fault-tolerance mechanisms and new procedures 
to verify code correctness at scale. 

4.6.1 Resilient Algorithms 

Mathematical algorithms have typically been designed under the assumption that the computer 
system is a reliable digital machine, although lack of floating-point arithmetic associativity has 
been a regular concern. Computer system faults certainly occur but have typically been handled 
by a checkpoint/restart (CPR) mechanism that lives outside the scope of algorithmic concerns. 

Even so, a large body of work, commonly referred to as algorithm-based fault tolerance (ABFT), 
is concerned with detecting and correcting floating-point error by means of knowledge about the 
algorithm and use of metadata, or reconstituting lost state via the same mechanisms. A seminal 
paper in this area is [53]. 

Currently, we expect that the frequency of failures, size of data, and cost of checkpointing 
and restarting will lead us to further consider models and algorithms for resilience beyond CPR. 
Applications and the numerical engines that drive them will need to take a more active role in the 
detection or recovery from errors, or both. 
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In addition to classical ABFT approaches, we need to develop, as part of the design of resilient 
algorithms, computing models that support expression and execution of these algorithms. Beyond 
CPR, models that have emerged include the following: 

• Skeptical Programming 
If we no longer assume that our computing systems are reliable digital machines, one ap-
proach to mitigating the impact of failure is to be “skeptical” of results that are produced 
by introducing simple, inexpensive validation tests. Often these tests can be derived from 
metaknowledge about the problem being solved, such as a conservation principle, orthogo-
nality property, or valid range specification. Although skeptical programming cannot detect 
or correct all faults, it can help reduce the number of faults. Furthermore, some faults may 
only slow progress to solution and can be tolerated instead of halting execution. 

• Relaxed Bulk-Synchronous Programming (RBSP) 
One of the first impacts of reduced reliability is performance variability. As low-level system 
failure rates increase, error detection and correction happen more frequently in the hardware 
and system software layers. These events preserve the reliable digital machine model but 
introduce variability in execution time. Many scalable applications are designed under the 
implicit assumption that equal work implies equal execution time, so that if the work of a 
parallel application is balanced, then the application should scale well on a parallel computer 
even if processors must be synchronized across during execution. Performance variability, 
when coupled with frequent collective operations, leads to severe limitations in scalability, 
especially as one reaches a million or more processes. 

With the introduction of MPI-3 [59], asynchronous neighborhood and global collectives now 
enable a “relaxed” bulk-synchronous programming model (RBSP). Given RBSP capabilities, 
one can now develop algorithms that potentially hide latency. Data from some applications 
(e.g., [WP39]) show measured variability in real settings. 

• Local Failure, Local Recovery 
For parallel applications based on MPI, the current approach to dealing with the loss of a single 
process is to kill all remaining processes and restart the application. Since computational runs 
now regularly use hundreds of thousands to more than a million processors, this approach is 
not feasible. Instead, a local failure should permit a local recovery. 

One local-failure-local-recovery (LFLR) model permits the user to store specific data persis-
tently for each MPI process and allows a recovery function to be registered, such that if a 
process fails, a new process is started and assigned to the rank of the failed process. The 
user’s recovery function is then called, giving access to the persistent data of the old process 
as well as the neighbors’ persistent data. Using LFLR, one can develop new algorithms for 
many types of problems. 

• Selective Reliability Programming 
Selective reliability programming is another potential programming model in which the pro-
grammer has the ability to declare specific data and to compute some regions to be more 
reliable than the “bulk” reliability of the underlying system (alternatively, the default could 
be highly reliable with selectively less reliable regions). By distinguishing between what needs 
to be highly reliable or not, new algorithms can be developed that store most data and do most 
computations with low reliability while retaining the robustness of a fully reliable approach. 

Although the costs of high reliability will impact the practicality of some approaches, the 
details the implementation of reliability are not fundamentally important to reasoning about 
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new algorithms. In some cases, even very expensive approaches, such as triple modular 
redundancy, can still be much faster than a fully unreliable approach. 

Resilient computing models enable reasoning about and implementing a large collection of new 
algorithms, while also making existing ABFT approaches easier to implement. These kinds of 
models permit us to address the perceived resilience concerns of future computing systems. Prelim-
inary work shows that expertise in applied mathematics, numerical algorithms, and floating-point 
arithmetic is essential to designing effective new algorithms. 

4.6.2 Reproducibility 

Today, many DOE applications use bitwise reproducibility as a surrogate for rigorous verification 
and validation, often at the behest of regulatory agencies. Bitwise reproducibility will be expensive 
if not impossible to achieve on exascale machines because it requires deterministic behavior, which 
is difficult to achieve in the presence of fault recovery and dynamic task scheduling. Requirements 
for bitwise reproducibility will need to be relaxed and will most likely need to be replaced with 
statistical concepts. Research into characterizations of expected variability in computed results will 
be necessary both to enable debugging at scale and to satisfy regulatory constraints. With regard to 
the former, one cannot overstate the usefulness of strict local and global conservation theorems, at 
least in some simplified geometries (e.g., periodic domains). The availability of such mathematical 
theorems in a discrete context is an invaluable tool to root out coding mistakes and thus to provide 
an important measure of correctness. Global sensitivity analysis, design of experiments, and other 
ingredients from uncertainty quantification (see Section 4.2.2) can also be expected to play a role 
in characterizing the expected variability in a given algorithm or computation. 

4.6.3 Verification 

Simulation codes must undergo code verification tests to provide confidence in the computed re-
sults, even before considering additional concerns such as validation and uncertainty quantification. 
Verification, as defined in [28], is “the process of determining, as completely as possible, whether a 
computer code correctly implements the intended algorithms, and determining the accuracy with 
which the algorithms solve the intended equations.” While correctness might be seen as primar-
ily a computer science concern, part of the appeal of bitwise reproducibility is that it provides a 
transference mechanism from one implementation whose correctness has been established to a new 
implementation, as in the case where a parallel implementation is required to exactly reproduce the 
results of a sequential implementation. In the absence of bitwise reproducibility, a new mechanism 
to efficiently establish the correctness of new implementations of floating-point computations must 
be developed. Analyses of solution accuracy should demonstrate not only that the code converges 
to the correct answer but also that the code converges at the expected rate; both are invaluable in 
code debugging. 

Important for multiphysics and multiscale simulations are mechanisms for establishing the cor-
rectness of complex, integrated applications constructed from individual components whose cor-
rectness has been established. Code (order) verification is the preferred approach to demonstrating 
correctness, but this requires a known solution and therefore often fails to test the more complex 
interactions in the code. The method of manufactured solutions can generate more complex, in-
tegrated tests, but tools are needed to automate its use and codes must be developed with the 
necessary infrastructure to support this approach. This more systematic approach has not gen-
erally been attempted for non-mesh-based methods, so this represents a potential area for new 
research. Further, for multiscale applications using scale-bridging algorithms, one must perform 
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verification across the model hierarchy, both as standalone models (to isolate errors in each level) 
and as a coupled system. The latter, however, may prove problematic unless one ensures that de-
scriptions are discretely consistent across levels, namely, that different levels of the model hierarchy 
do not pollute the solution with separate truncation error contributions, for instance by enslaving 
numerical truncation errors across the hierarchy to reproduce that of a chosen level of the hierarchy. 
Early work in this area indicates that discrete consistency is in fact a major element of long-term 
nonlinear stability in scale-bridging algorithms and will likely prove essential in verification as well. 

Even once a suitable set of test problems is established, the error still needs to be measured. 
Such measurement is often done by mesh convergence studies where all other code behavior is meant 
to be held fixed. The execution of such studies at scale is difficult now; but at the exascale will be 
even worse because of dynamic scheduling, dynamically changing multiphysics modules and models, 
and fault handling. Results will be difficult to interpret. Techniques to assess code convergence 
should be considered in order to understand dynamic code behavior and the effectiveness of test 
problems. Certain studies can be done at smaller scale and on individual components, but these 
will not necessarily characterize the behavior of the full code with the many complexities meant to 
optimize exascale performance, in particular, the effects of coupling errors. 

New approaches to verification must be considered. Theoretically justifiable statistical ap-
proaches to convergence studies may be necessary. The exascale-motivated rewrite of applications 
is an opportunity to build a posteriori error estimation techniques into application codes, but these 
techniques need further research in order to be applicable to the anticipated multiscale, multiphysics 
models. The effects of possible faults in these error estimators must also be investigated. 

4.6.4 Related Position Papers 

Position papers related to resilience and correctness that were presented at the Exascale Mathe-
matics Workshop include [WP70] and [WP56]. 

4.7 Mathematics for Exascale System Software 

The impacts of mathematics research will not be confined to applications designed for exascale 
computing; the operation of the exascale machines will also benefit from new mathematically 
motivated approaches. As the system software stack becomes more adaptive and self-aware, the 
need for mathematical analysis and algorithms increases. No longer can ad hoc heuristics be 
expected to work reliably; methods with a solid theoretical foundation should be employed wherever 
possible. Mathematical and statistical techniques, particularly from optimization, can contribute 
to these dynamic system management challenges. Here we discuss four areas in which additional 
research is needed. 

4.7.1 Autotuning Search as Derivative-Free Optimization 

The search phase of autotuning can be posed as a derivative-free optimization problem and solved 
with existing optimization algorithms adapted to this new context or with wholly new algorithms 
developed to account for discrete design variables and hidden constraints. However, additional 
research is required in order to deal with the likely characteristics of exascale computing systems. 
In particular, new algorithms are needed to address multiple objectives such as (expected) execution 
time, memory footprint, resilience, and power demands. Furthermore, autotuning methods already 
struggle in situations that exhibit high variance in the stochastic response, often due to contention 
for shared resources. As power limits and other design and operational constraints lead to greater 
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contention among and within jobs, we can expect this challenge to become more pronounced. 
Stochasticity will have to become a more explicit aspect of the autotuning process. 

4.7.2 Adaptive Runtime Systems as Optimal Control Problems 

Self-aware runtime systems monitor job performance and allocate more or fewer resources based 
on the job’s performance goals and behavior, subject to constraints on available resources. To op-
timize performance, such systems rely on adaptive feedback control systems and machine learning. 
New research is required in order to address the case of additional, possibly interdependent, perfor-
mance goals, such as power, time, and energy. In addition, scaling up to large computing systems 
demands decentralization and autonomy among the self-aware runtime agents. Understanding and 
controlling the expected behavior of such systems of agents will require game theoretic analysis and 
the development of distributed, multilevel optimization algorithms. 

4.7.3 Mathematically Grounded Scheduling 

Current batch scheduling systems frequently rely on fast heuristics to schedule normal jobs and per-
form backfilling. As scheduling becomes increasingly complicated, with a requirement to map jobs 
to heterogeneous resources subject to power and energy constraints, simple heuristics will likely not 
provide the level of system utilization demanded for leadership-class computing systems. Instead, 
it is likely that advanced job schedulers will rely on techniques from operations research to perform 
job scheduling and to estimate the actual resource requirements of jobs. New scheduling algorithms 
will, however, need to account for the highly adaptive and self-aware execution environments in 
which jobs are expected to execute, as well as the complex work flows typical of high-level analyses 
such as uncertainty quantification. Schedulers also need to account for the notoriously unreliable 
user estimates of execution time (even when incentives are provided for supplying an accurate ex-
pected value in addition to an upper bound). Consequently, effective scheduling algorithms can be 
expected to include statistical and machine learning models. 

4.7.4 Stochastic Performance Models 

Current performance models are typically deterministic or exhibit low variance when evaluated at 
configurations where experimental performance data has been collected. However, as algorithms 
and runtime systems become increasingly asynchronous and adaptive, we anticipate a greater de-
mand for stochastic performance models. Such models can be used as a surrogate during au-
totuning, for extrapolation to predict performance and diagnose performance problems, and for 
use in anomaly detection. However, the construction of useful, mathematically justified perfor-
mance models will require a close collaboration between computer scientists and applied mathe-
maticians/statisticians. 

4.7.5 Related Position Papers 

Although important, the mathematics behind the dynamic management of exascale systems was 
not discussed explicitly at the Exascale Mathematics Workshop. One related position paper on 
fault detection that was not presented but is related is [WP4]. Several position papers from the 
Exascale OS/R Workshop are relevant to this discussion, including papers on optimization, optimal 
control, and machine learning [40, 52, 55], and a paper on machine learning from the performance 
modeling and simulation workshop [66]. 
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5 Interdependencies with Other Efforts 

Efforts to advance mathematics for exascale will not occur in a vacuum; other efforts sponsored 
by DOE ASCR and NNSA exist that either are directed toward the exascale computing goal or 
are relevant to some of the issues an exascale mathematics research program will address. In 
order to make the most effective use of the limited funding resources expected to be available, new 
research directions advocated in this report must be closely aligned and coordinated with other 
activities in the developing exascale ecosystem. Mathematicians will need to work with domain 
scientists and computer scientists to develop compatible, integrated approaches that leverage the 
latest development in hardware and software technologies while maintaining the overarching goal 
of enabling innovative science and engineering. 

5.1 Existing DOE Efforts 

Primarily led by DOE ASCR, there has been an increasing investment in the United States over 
the past five years in efforts that are both directly and indirectly relevant to exascale computing: 

• Exascale Co-Design Centers: Co-design is a holistic design process where integrated teams 
of hardware architects, system software developers, domain scientists, computer scientists, 
and applied mathematicians work together to collaboratively develop compatible software 
and hardware solutions. It is an opportunity not only for the software and application side to 
reason about how to leverage emerging architectures and technology but also for the hardware 
developers and vendors to better understand the needs of DOE scientific computing. DOE 
ASCR has funded three exascale co-design centers, each organized around a specific DOE-
relevant science area: combustion [41], materials [42], and nuclear reactors [18]. The applied 
mathematics community can learn from context provided by the co-design centers, and the 
co-design centers will benefit from advances in numerical algorithms developed by applied 
mathematics research efforts. 

• X-Stack: Many issues need to be addressed for the exascale across the software stack. The 
ASCR X-Stack program supports nine projects [5] exploring innovative solutions to improve 
the programmability of exascale systems. Research areas include support for domain-specific 
languages, hierarchical programming models, compilers and compiler optimizations, adaptive 
runtime systems, execution models, autotuning frameworks, and support for resilience and 
fault containment. Applied mathematics efforts to develop new algorithms for the exascale 
will fundamentally rely on these technologies, and the X-Stack projects must understand the 
needs of numerical algorithms and application developers. 

• Exascale Operating and Runtime Systems: The scale and complexity of exascale plat-
forms are expected to require radically new functions and interfaces for system control, man-
agement of resources, communications, thread management, synchronization, power man-
agement, fault recovery, configuration, monitoring, and load balancing. These changes are 
being addressed in the Exascale Operating and Runtime Systems (OS/R) initiative launched 
in FY13 with the goal of developing a complete, platform-neutral prototype exascale OS/R. 
Two three-year projects were funded: Argo [4] and Hobbes [49]. 

• FastForward and DesignForward: The objective of the FastForward and DesignForward 
initiatives is to build partnerships between DOE and multiple computer hardware vendors in 
order to accelerate the research and development of critical technologies needed for extreme-
scale computing. Research in these two-year projects involves all aspects of computer hard-
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ware, including innovative processor, memory, file system, and interconnect design, with 
goals to minimize energy use, maximize parallel performance, and ensure reliability. Applied 
mathematics research projects need to be aware of these advances in new technologies that 
may mitigate some of the anticipated exascale challenges. Similarly, the FastForward and 
DesignForward projects need to be informed about the needs of numerical algorithms and 
applications. 

• SciDAC Institutes: The current SciDAC program is a five-year program that began in 2011 
and is funded by DOE ASCR. SciDAC is not an exascale research program, but it is a major 
source of interaction in DOE computational science between the applied mathematics and 
science applications communities. Institutes are one component of SciDAC, and these have 
a mission to develop tools and resources that will enable and accelerate scientific discoveries 
through the use of advanced computing. The development is intended for the next five years 
of computer systems at the Oak Ridge and Argonne leadership computing facilities and at 
the National Energy Research Scientific Computing Center. While the SciDAC Institutes are 
focusing on computing platforms that are available near term, the research and development 
within these institutes may be relevant to the exascale machines being considered in this 
report; the current generation of petascale machines already introduce, to a lesser extent, some 
of the challenges of exascale, such as heterogeneous architectures, the availability of multi-
and many-core systems, relatively small memory per core, resiliency, and power consumption. 

Two SciDAC Institutes are concerned primarily with applied mathematics research: 

– FASTMath (Frameworks, Algorithms, and Scalable Technologies for Mathematics): The 
FASTMath SciDAC Institute develops and deploys scalable mathematical algorithms 
and software tools for reliable simulation of complex physical phenomena and collabo-
rates with DOE domain scientists to ensure the usefulness and applicability of FAST-
Math technologies. 

– QUEST (Quantification of Uncertainty in Extreme-Scale Computations): The QUEST 
SciDAC Institute focuses on uncertainty quantification in large-scale scientific compu-
tations. The overarching goal is to provide modeling, algorithmic, and general uncer-
tainty quantification expertise, together with software tools, to other SciDAC Institutes, 
SciDAC applications, and Office of Science projects in general—thereby enabling and 
guiding a broad range of uncertainty quantification activities in their respective contexts. 

• ASCR Applied Mathematics Subprogram Initiatives and Projects: In the past few 
years, many of the initiatives within ASCR’s Applied Mathematics subprogram have required 
some consideration of future HPC architecture challenges or have considered the solution of 
increasingly complex multiscale, multiphysics problems, particularly in the context of larger 
design and decision questions. 

– Mathematical Multifaceted Integrated Capability Centers: To address grand challenges of 
increasing complexity within DOEs mission areas, ASCR established three Mathematical 
Multifaceted Integrated Capability Centers (MMICCs) to foster new integrated, iterative 
research processes across multiple mathematical disciplines. Started in FY12, these 
centers address holistically mathematics for scientific discovery, design, optimization, 
and risk assessment. The application targets for these centers are mesoscale modeling for 
materials, chemistry, and biofuels; complex energy systems such as the power grid; and 
multiscale, multiphysics modeling of subsurface flow and materials for energy storage. 
While exascale was not a primary focus of this call, sensitivity to next-generation HPC 
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resources was considered. The greater relevance of this call is that it provides examples 
of integrated mathematics research activities across the “math stack,” from problem 
formulation to analysis. Additional details can be found in the report [1]. 

– Resilient Extreme-Scale Solvers: To enable scientific discovery on the supercomputers 
expected to come online in the next 5–10 years and to lay the foundation for research in 
numerical algorithms for extreme-scale scientific computing, ASCR initiated the Resilient 
Extreme-Scale Solvers program in FY12 (although the projects did not officially start 
until late in FY13). The goal of this solicitation was to fund basic research that advances 
the state of the art in scalable, resilient, extreme-scale numerical algorithms. Four 
projects were funded, addressing topics in linear algebra solvers, nonlinear solvers, Monte 
Carlo algorithms, and high-order discretizations and related solvers (including hyperbolic 
and particle methods). Additional details can be found in the report [3]. 

– Uncertainty Quantification Methodologies for Enabling Extreme-Scale Science: ASCR’s 
Uncertainty Quantification Methodologies for Enabling Extreme-Scale Science initiative, 
which was launched in FY13, focuses on basic research in methodologies and tools that 
will deliver advanced UQ capabilities for DOE-mission science while also anticipating the 
changes and challenges of using extreme-scale computing systems. Six projects funded in 
this solicitation address a variety of UQ topics, such as Bayesian inference, Markov-Chain 
Monte Carlo, multilevel methods for UQ of multiscale, and stochastic expansions, within 
the context of the anticipated challenges of the next-generation HPC architectures. 

5.2 International Exascale Efforts 

Internationally, the European Union, Japan, and China are also actively ramping up activities 
in exascale computing research. All three have independent funded efforts to build an exaflop 
machine by 2020, although Europe and Japan likely have the edge in developing the algorithms and 
software necessary to obtain exascale performance. In particular, the European Union’s European 
Exascale Software Initiative (EESI) is a consortium of more than thirty academic institutions, 
government research laboratories, and private corporations organized to provide recommendations 
on strategic European actions with a particular focus on software improvement, cross-cutting issues 
advances, and gap analysis. The EESI is organized into eight working groups including Education 
and Strategic Coordination (including Co-Design), Applications, Enabling Technologies (including 
Numerical Libraries, Solvers, and Algorithms), and Cross-Cutting Issues (including Resilience). 
Two more specific goals of interest are to (i) produce a roadmap for transition of numerical libraries, 
the software eco-system, scientific software engineering, and programmability and (ii) promote an 
International Exascale Software Initiative within the international community. A clear connection 
exists between the EESI and the still-organizing U.S. exascale effort, and opportunities should be 
found to coordinate U.S. efforts with international activities where it makes sense to do so. 

5.3 Areas of Collaboration with Other Exascale Efforts 

Mathematics research for the exascale cannot proceed independent of other exascale activities. 
The applied mathematics community requires technical information, models, tools, and infrastruc-
ture from other research efforts within the DOE exascale ecosystem, and these efforts should not 
proceed without feedback and requirements from the applied mathematics community. Here we 
consider seven areas represented within the DOE exascale research activities and highlight the 
interdependencies of each area with applied mathematics research. 
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5.3.1 Architectures and Performance Modeling 

To design numerical algorithms better suited for exascale simulation, the applied mathematics 
community needs information about those architectures or at least representations of them. No one 
has access to an exascale system yet. Therefore, new abstract machine models, such as those used 
in roofline analyses, are needed to guide thinking about the various trade-offs between algorithms 
and implementations; it is no longer adequate to consider crude estimates of operation complexity 
and memory usage. In order to demonstrate that performance gains are not merely theoretical, 
simulators that incorporate the latest exascale architectural concepts must be made available to 
numerical algorithm developers. In the area of resilience, any capabilities in hardware that can 
help detect soft faults will be beneficial in reducing fault tolerance to a problem of rapid recovery. 

In the opposite direction, system architects and performance modelers need to better understand 
how exascale machines will be used. Applied mathematicians must provide clear descriptions of the 
nature of the discrete problems to be solved. Essential and negotiable characteristics of the prob-
lems and resulting algorithms must be identified. For instance, it is unlikely that stencil operations 
on multidimensional arrays can be completely abandoned. Thus, hardware support in the form of 
sophisticated prefetchers and advanced memory concepts that facilitate access to mutidimensional 
array sections can be expected to pay dividends. A dialogue is critical: today’s data access pat-
terns represent a particular design choice, and future choices will be dictated by a combination of 
algorithmic requirements and hardware constraints. Similarly, the coupling and communication of 
simulations often reflect fundamental physical constraints imposed on the problem. Where these 
couplings are artificial, they should be removed, but in many cases they must remain. Exascale 
architectures cannot assume that mathematical models will be found that completely eliminate 
global communication. 

5.3.2 Operating and Runtime Systems 

Operating system and runtime systems (OS/R) are the layers that insulate applications from the 
detailed complexity of the hardware through abstractions. It is extremely important that these 
abstractions provide interfaces that enable the more complex mathematical algorithms expected 
for good exascale performance. Applications will most likely depend on dynamic software composi-
tion, load balancing, and task scheduling throughout the execution of a simulation. Various levels 
of APIs for resource management (e.g., power, resilience, memory, fine-scale thread management) 
will need to be made available to numerical algorithms in order to allow for as little or as much 
user control as desired. Standardized APIs and interoperability of programming models are bene-
ficial for mathematical algorithm and software development, but mathematicians must make their 
requirements known to the computer scientists developing these abstractions. 

The input from applied mathematics to OS/R efforts, however, should go beyond needs and 
requirements for interfaces and capabilities. As explained in Section 4.7, applied mathematics 
can provide optimization techniques for autotuning of software and adaptivity of runtime systems 
and operations research approaches to dynamic scheduling. A very tight collaboration between 
computer scientists and applied mathematicians in OS/R research may prove very beneficial. 

5.3.3 Programming Environment 

A mathematical algorithm is only truly useful if it can be expressed in the form of efficient and 
maintainable software. The shape of the programming environment for the exascale is in flux, with 
numerous ideas about programming models, domain-specific languages, and compiler optimizations 
being proposed and investigated. Ideally, the developer of mathematical software would not need 

Applied Mathematics Research for Exascale Computing 48 



to deal with the complexities of memory layout, code fusion, transfer to and from accelerators, 
and so forth. Code could be developed in a maintainable, modular way by using portable parallel 
library interfaces (with machine-specific implementations hidden behind consistent interfaces) and 
intelligent compilers that would transform the code from its maintainable implementation into 
a formulation for efficient execution. Applied mathematicians must work with the designers and 
developers of the programming environments to help them understand the use patterns in numerical 
software, to help define suitable APIs, and to help define suitable compiler or precompiler commands 
that will allow the numericist to express optimization directives as easily and concisely as possible. 
Even if the ideal is not achieved in all cases, close collaboration between mathematicians and 
computer scientists can help ensure that mathematical software is as maintainable and performant 
as possible. 

5.3.4 Development and Performance Tools 

The complexity of exascale systems and application software makes it difficult to understand code 
(mis)behavior. Indeed, without an appropriate set of tools, once a simulation launches, it is dif-
ficult to understand the code execution and where the code might be failing or underperforming. 
Debugging at scale (perhaps with a million or more cores) of an application that is dynamically 
task-scheduled is even hard to conceptualize. Applied mathematicians will need a suite of exascale 
tools, not only for debugging, but also for understanding power usage, dynamic memory layout 
across deep memory hierarchies, data transfer patterns, and so on. Mathematicians must work 
with these tool developers to help them understand what types of diagnostics are necessary, which 
types may be specific to different classes of algorithms, and how the diagnostic information will be 
used, so that appropriate visualizations and data exploration tools can be devised. 

5.3.5 Fault Management 

Fault management touches on all aspects of exascale machine use. At many levels—the hardware, 
the OS, the runtime, the libraries, and the application itself—there are roles and responsibilities 
for fault management. Fault detection can occur at any level; by default, faults should be detected 
at the lowest possible level, ideally in hardware. However, when faults can be easily detected 
or tolerated at higher levels, it is desirable that low-level detection can be disabled in order to 
save time and energy. Once faults are identified, responsibility for dealing with the fault could 
occur anywhere throughout the stack. In some cases the application may choose to recover; in 
other cases the algorithms may be robust to the fault, making recovery unnecessary. Clearly, some 
kind of backplane for fault handling at various levels is necessary, and applied mathematicians 
must influence its design and development based on the tolerance or recovery characteristics of 
the algorithms and models used. In addition, applied mathematicians need software tools to aid 
in local restart and recovery; mathematics may provide techniques that allow local reconstruction 
or rollback without loss of accuracy, but the underlying software to change the execution path 
dynamically and locally and/or to execute recovery from some distributed checkpoint data must 
be provided by the computer science community. 

5.3.6 Data Management 

Of course, the point of simulation for DOE-relevant problems is to generate useful data to help 
understand or solve important science and engineering problems. Schemes must be developed for 
handling this data efficiently and without losing important artifacts. Data management includes 
workflow systems; metadata generation and capture; data representations; data movement on and 
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between machines; and the ability to manipulate, annotate, archive, and share data. At the ex-
ascale, these activities will be challenging. More data, from both higher resolutions and ensemble 
simulations, and the increasing disparities between computational capacity and I/O infrastructure 
performance will necessitate new data-processing modes, in particular, in situ data staging and 
processing, that complement traditional data postprocessing. a 

From the applied mathematics perspective, through analysis and visualization, applied math-
ematics is already well entwined with data management. In situ mathematical analysis and data 
reduction techniques will help address some of the data management challenges. These same algo-
rithms will rely on the APIs and infrastructure developed for exascale data management. 

5.3.7 Applications and Co-Design 

Applied mathematics provides the mapping from a physical model to computer hardware. This 
mapping is accomplished through a set of choices at each level of the mathematics stack. Applied 
mathematicians must select the mathematical model to use, including UQ and optimization for-
mulations; the discrete representation; suitable solvers and algorithms; and the data analysis to be 
performed. At a basic level, many of these choices must be informed both by the application re-
quirements and by the underlying hardware. A holistic co-design cycle must involve applied math-
ematicians and consider the interplay among applications, algorithms, and architectures. There 
must be a close collaboration between the applied mathematics community and application co-
design activities so that the former better understand the needs of domain scientists and so that 
the latter are aware of new advances in exascale mathematics. 

6 Common Themes, Findings, and Recommendations 

Historically, advances in computational mathematics have contributed as much to increases in high-
performance computing as have improvements in hardware. In the move to exascale computing, this 
situation will not change. Mathematics is intimately involved in numerical simulation and in design 
and decision problems, from the problem formulation and modeling, through discrete algorithms 
and data analysis, to system operations. From our consideration of the role of mathematics in 
exascale computing research, we present here the common themes, high-level conclusions, and 
recommendations for a path forward for the DOE ASCR program. 

6.1 Themes 

Three common themes emerged from the information that the working group collected: hierarchies, 
integrated and holistic approaches, and adaptivity and automation. We expect these three themes 
to permeate exascale mathematics research, and we review them here as useful paradigms to guide 
thinking about approaches for simulation on exascale computers. 

Hierarchies. The idea of hierarchies in exascale computing is pervasive. The architecture of 
exascale machines will be hierarchical: multiple nodes connected by an interconnect, where each 
node comprises multiple processing units and/or accelerators with multiple types and levels of mem-
ory. Similarly, multilevel or hierarchical models and algorithms are expected to play a significant 
role in the formulation and efficient solution of science problems on exascale architectures. Mul-
tiscale models can and should be formulated in hierarchical ways; this structure can be harnessed 
to allow for asynchrony, to communicate information efficiently across the solution, to accelerate 
the fine-scale solution, and to map different models to the most congruent architectural layer (e.g., 
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moment models on CPUs and particle models on GPUs). Multilevel methods for linear algebra 
are mathematically optimal; for many DOE applications, these methods form the basis for the 
only truly scalable solvers. Hierarchical representations of solutions also provide natural opportu-
nities for algorithmic-based fault tolerance. Collective operations, which are common in scientific 
applications, may be most efficiently implemented through tree-based hierarchical algorithms. 

Integrated and holistic approaches. The challenges of exascale computing cut across tra-
ditional discipline domains. For this reason, DOE has already established three exascale co-design 
centers, which are meant to bring together application scientists, applied mathematicians, and com-
puter scientists and engineers to solve the exascale design problem collaboratively while respecting 
the requirements and constraints of the problems, the algorithms, and the hardware. In a similar 
way, the mathematical areas represented in the math stack, from problem formulation through 
data analysis, should be considered holistically because there are interdependencies throughout 
the stack. Choices made in formulations, models, and discretizations, for instance, constrain the 
possible solution methods and parallel implementations, while the availability of scalable solver 
algorithms places limits on problem formulation and model choices. 

Adaptivity and automation. Exascale machines will be architecturally more complex, as 
will the operating systems and runtime environments, which will need to ensure reliability and 
promote efficient machine usage (power, throughput, etc.). Given the vast number of components 
(e.g., millions to billions of cores and deep memory hierarchies), this complexity cannot be managed 
manually by human operators. The systems and their software will therefore require a great deal 
of adaptivity and automation. 

Similarly, adaptivity and automation will play key roles in scientific simulations and the al-
gorithms that enable them. Adaptive mesh and model refinement will reduce problem size and 
concentrate resources where better fidelity is required. Comparable adaptivity will likely occur in 
optimization and UQ algorithms in order to reduce the search time and/or size of the parameter 
space. Resilience will likely require simulations to migrate or restart locally and on the fly, instead 
of the traditional fail-stop model. All these examples present dynamically changing, heterogeneous 
workloads that will require automated, dynamic load balancing to maximize parallel efficiency. 

Automation will also play an important role in numerical software portability. Portability will 
increasingly be a challenge as different hardware configurations are tried on the path to achieve 
exaflop-capable machines. Maintaining software optimized for any given architecture, and opti-
mizing for each new architecture, will be cost-prohibitive. Libraries of numerical algorithms can 
address this challenge through autotuning. 

6.2 Findings 

Based on our inquiry, the Exascale Mathematics Working Group reports the following six findings. 

Finding 1: Exascale computing will enable us to use computation to solve problems in ways that 
are not feasible today and will result in significant scientific breakthroughs. However, the transition 
to exascale poses numerous scientific and technological challenges. 

Reaching exaflop performance on a limited power budget will come at the cost of a dramati-
cally altered computer architecture that will require substantial reconsideration of the algorithms 
involved in simulation. However, one must avoid the trap of focusing solely on the architectural 
challenges associated with exascale computing and of forgetting the prime reason to pursue it: 
the new science that will be enabled. DOE has a mission to solve some of the most challenging 
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scientific problems our nation faces, and algorithmic research is needed in order to address these 
extreme-scale problems. Examples include designing novel materials and chemical processes at 
the nanoscale to produce specified macroscale behavior, incorporating information about fine-scale 
environmental processes into models of climate, and designing next-generation energy generation 
and conversion technologies to meet growing energy demands. 

Finding 2: Without a close collaboration between applied mathematicians, computer scientists, and 
application scientists, we will not be able to develop a computational science discovery environment 
capable of exploiting the computational resources that will be available at the exascale. 

In simulation, the choice of problem formulation and mathematical model is in part motivated 
by the science objectives, but it is also constrained by the computer hardware and the set of known 
available algorithms. Understanding the breadth of the requirements and constraints and finding 
solutions that balance these will require multidisciplinary teamwork. Domain scientists must work 
with mathematicians to formulate problems, models, and discretizations that are tractable for 
discrete solvers. Mathematicians must work with computer scientists and engineers to develop 
new algorithms and implementations that can efficiently harness architectural features. Computer 
scientists must collaborate with domain scientists and mathematicians to ensure that programming 
environments, runtime environments, and performance measurement tools provide functionality 
relevant to their needs. Exascale computing is forcing an end-to-end reconsideration of high-
performance computing, and close collaboration will be necessary to converge more rapidly on a 
useful simulation environment. 

Finding 3: Advances in applied mathematics, in areas such as mathematical modeling, numerical 
analysis, and adaptive algorithms, will be essential in order to produce high-performance exascale 
applications and will provide key input to application scientists and computer scientists. 

A great task before us is to determine those models and algorithms that will be successful for 
use in exascale computing, including existing models and algorithms and new ones yet to be de-
vised. The performance of current algorithms on hypothetical exascale systems must be understood 
in order to find improved implementations and to motivate new algorithms. Opportunities must 
be provided to explore new problem formulations and discretization approaches. New discretiza-
tions that provide higher order, tighter coupling, and the discrete preservation of invariant and 
asymptotic properties will be needed. Adaptivity in models, mesh, sampling, and configuration 
will be needed in order to make best use of the exascale computers, and new algorithms must be 
devised that make use of adaptive procedures. Furthermore, it is not enough to devise schemes that 
produce answers quickly; indeed, it is of no use if these answers are wrong. Numerical analysis, 
which provides proof (or at least justification) of the consistency, accuracy, and stability of numer-
ical algorithms, must be advanced to address the more advanced algorithms expected for exascale 
computers. Simulation, at its core, is applied mathematics; and the results of this applied mathe-
matics research will inform and modify the thinking of domain scientists and computer scientists 
who will use advances in computational mathematics to develop exascale-capable applications and 
to motivate new capabilities in the development and runtime environments. 

Finding 4: Exascale computing will enable a more holistic treatment of complex problems. 

Exascale provides an opportunity to move beyond the loosely coupled, forward-simulation 
paradigm that has driven much of scientific computing up through petascale. This change con-
tains the “revolution” in mathematics needed for exascale computing: not a “new mathematics,” 
but a rethinking of the way we design algorithms and codes for better physical fidelity and to 
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address new questions. Because of the architectural challenges, we anticipate a need to invest in 
a new generation of codes, and this opportunity should be seized to incorporate better algorithms 
and support for UQ and optimization. For application domains that are prepared for these ad-
vanced formulations, exascale platforms offer the first concrete opportunity to improve the value 
of simulation qualitatively. 

Finding 5: Because computer architectures will be altered from supercomputers down through per-
sonal computers, some advances in algorithms devised for the exascale likely will benefit computation 
across the range of resources. 

Computer architectures are changing across the board with the capability to add more cores to 
computer chips and a desire for low-power computing from cell phones up to the exascale. Design 
improvements at both ends of the hardware spectrum can have far-reaching impacts. Accordingly, 
some algorithms intended to address the challenges of exascale computing will be relevant to ma-
chines at smaller scales of computing, and fundamental algorithmic research at small scale could 
also have unexpected impact on exascale simulation. 

Finding 6: In addition to fundamental research into new algorithms, resources will be needed for 
more applied research and development to extend the large collection of existing DOE mathematics 
libraries so that they make better use of exascale architectural features. 

Libraries are powerful means of sharing verified, optimized algorithms; accordingly, DOE has 
invested in the development of numerous numerical libraries. Such investments must continue, and 
these investments must go beyond funding the development of new algorithms. Substantial software 
engineering costs must be borne in the extension of existing libraries to the exascale. Furthermore, 
autotuning of libraries will play a more significant role at the exascale, since libraries will need 
to support a wider variety of platforms and automated empirical discovery and optimization will 
accelerate scientific computing workflows. Developing autotuning capabilities will require additional 
up-front investment, with the promise of long-term savings in user and computer time. 

6.3 Recommendations 

Our findings indicate that the DOE Advanced Scientific Computing Research program needs to take 
action to build a more explicit research program in applied mathematics for exascale computing. 
We summarize the necessary actions in five key recommendations. 

Recommendation 1: DOE ASCR should proceed expeditiously and with high priority with an 
exascale mathematics initiative so that DOE continues to lead in using extreme-scale computing to 
meet important national needs. 

This report demonstrates a clear need for research in applied mathematics specifically for ex-
ascale computing. The promise of exascale computing will not be realized without advances in 
computational mathematics. Research in applied mathematics often takes years to produce re-
sults, and the implementation of those results requires additional time. The R&D that leads to 
those advances can and must start now. We cannot wait until the first exaflop machine exists; only 
with preparation and investment will we be able to make efficient use of such a machine soon after 
its arrival. 

Recommendation 2: A significant new investment in research and development of new models, 
discretizations, and algorithms implemented in new science application codes is required in order 
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to fully leverage the significant advances in computational capability that will be available at the 
exascale. 

The move to exascale will be a more disruptive transition than the previous moves to terascale 
and petascale because of the significant changes in computer architecture. Many existing algo-
rithms and implementations that have relied on steady clock speed improvements cannot exploit 
the performance trends of future systems. Current algorithms will need to be evaluated and ei-
ther modified or abandoned; alternative algorithms will need to be invented or rediscovered. The 
promise of exascale resources will also provide opportunities for other models and problem formu-
lations, but how and when to use such models are open questions. Much investigation needs to be 
done on specific classes of models and algorithms. Because of the complexity of the problem and 
the numerous trade-offs, it is too early to designate any one technology or approach as superior; 
therefore, a diverse research portfolio is the most robust investment strategy at this point. In order 
to establish such a diverse program, a broad segment of the applied mathematics community must 
be engaged, and hence funding opportunities must be created that enable broad participation. 

Recommendation 3: Not all problems require exascale computation, and yet these problems will 
continue to require applied mathematics research. Thus, a balance is needed in the DOE applied 
mathematics research portfolio that provides sufficient resources to realize the potential of exascale 
simulation while preserving a healthy base research program. 

Most science and engineering are not done at the most extreme scale of computing, yet nev-
ertheless require sophisticated algorithms, improved time to solution, and better model fidelity. 
We expect that because of some similarities in future architectures, new approaches for the ex-
ascale will improve smaller-scale applications. However, this trickle-down benefit cannot be the 
only support provided to scientists not working at the exascale. Resources must continue to be 
invested in applied mathematics areas that are not focused on exascale computing. In addition to 
supporting the whole mission of DOE, fundamental research at small scale may result in models 
and algorithms that have unexpected impacts on exascale computing. Thus, new funding must 
be obtained to support an exascale mathematics research program, while preserving the current 
applied mathematics base program. The so-called Brown Report [15] identified priority areas of 
research in applied mathematics to support the DOE. 

Recommendation 4: An intensive co-design effort is essential for success, where computer sci-
entists, applied mathematicians, and application scientists work closely together to produce a com-
putational science discovery environment able to exploit the computational resources that will be 
available at the exascale. 

While research is needed into individual models and algorithms at the exascale, aspects of the 
problem suggest that a holistic approach should also be pursued. Many of the opportunities in 
exascale computing will come from reconsidering the entire problem—from formulation through 
analysis and co-designing models, discretizations, and solvers that work together. Of course, more 
fundamental research into each of the components is necessary so that options and trade-offs are well 
understood. Nevertheless, no single domain can work in isolation; in particular, mathematicians 
must understand the needs of the domain scientists and the computational environments in which 
simulations will be run. Like the challenge of putting a man on the moon, assembling a diverse 
team to focus on a well-defined goal, such as a scientific grand-challenge problem, has advantages 
over attempting to solve more general and therefore vaguely defined problems. This is true not 
just between the domain science, mathematics, and computer science disciplines but also within 
the applied mathematics specialties (i.e., across the math stack). Co-design and MMICCs-like 
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projects should be pursued. However, in order to promote diversity in approaches and to engage 
as much of the applied mathematics community as possible, the DOE ASCR research portfolio 
cannot be limited to end-to-end projects; the limited number of such projects will limit the number 
of participating researchers. 

Recommendation 5: DOE ASCR must make investments to increase the pool of computational 
scientists and mathematicians trained in both applied mathematics and high-performance comput-
ing. 

In order to advance mathematics for exascale computing, a well-trained workforce is critical. 
Substantial research in applied mathematics is necessary for exascale computing, and so new re-
search funds are required. There will be a corresponding need to grow the community capable 
of executing this new research program. Such researchers will require a breadth of understanding 
beyond applied mathematics. Exascale computers will introduce changes in system operation and 
program execution that, at least for some time, will not be hidden behind programming abstrac-
tions. Computational mathematicians will therefore need a better understanding of the computer 
science issues involved. Furthermore, the science needs that drive exascale computing, combined 
with the HPC system changes, present opportunities to rethink how and what we simulate. Progress 
in exascale simulation will be driven by integrated, holistic approaches that will require knowledge 
throughout the mathematics stack and beyond, into both the applications and the computer sci-
ence. Efforts such as co-design will require multidisciplinary teams but will operate most effectively 
when those teams comprise researchers with interdisciplinary skills and knowledge. Thus, invest-
ments will be needed to develop the workforce necessary to execute an applied mathematics research 
agenda for exascale computing. This workforce development should provide opportunities both for 
new researchers (e.g., through interdisciplinary graduate fellowships) and for existing researchers 
in DOE and the greater applied mathematics community. 

6.4 Impact 

Applied mathematics research is a critical component of the overall exascale computing enterprise. 
Enhancing the national capabilities in advanced mathematical modeling, numerical algorithms, and 
software will have a major impact on our future national research capacity and an international 
impact in the ever-increasing number of domains within which high-performance computing is, 
or is set to become, a core activity. It is essential that DOE make strategic investments now in 
high performance-computing algorithms and software in order to enable successful use of exascale 
resources in support of its mission and to safeguard our ability to continue to lead the world in this 
field. 
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