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1 Executive Summary 

Today’s computational, experimental, and observational sciences involve growing science 
collaborations that require interactive, collaborative access to data analysis and visualization 
services. Experimental instruments generate increasing amounts of data that necessitate on-
the-fly processing. Applications involve computationally-intensive codes that also generate large 
amounts of data and adopt in situ analysis methodologies. Often, the computations are 
conducted as a workflow of many related tasks. The success of the U.S. Department of Energy 
(DOE) scientific mission hinges on the computer automation of these workflows. In April 2015, a 
diverse group of domain and computer scientists from National Laboratories supported by the 
Office of Science, the National Nuclear Security Administration, from industry, and from 
academia assembled in Rockville, Maryland, to review the workflow requirements of DOE’s 
science and national security missions, to assess the current state of the art in science 
workflows, to understand the impact of emerging extreme-scale computing systems on those 
workflows, and to develop requirements for automated workflow management in future and 
existing environments. 

The mission of this workshop was to develop requirements for workflow methods and tools in a 
combined high-performance computing (HPC) and distributed-area instruments and computing 
(DAIC) work environment, in order to enable science applications to better manage their end-to-
end data flow. Data may be generated by scientific instruments, distributed sensor systems, 
simulation or analytical output, or a combination of these sources. HPC and DAIC workflows will 
be defined more carefully in the next section; but for the time being, a workflow in this context is 
the composition of several computing tasks. An HPC workflow is one whose tasks are coupled 
by exchanging information over the memory/storage hierarchy and network of current 
leadership-class DOE supercomputing architectures and future extreme-scale machines. A 
DAIC workflow is one whose tasks are more loosely coupled, for example, through files, and 
that execute on geographically distributed clusters, clouds, and grids, or that link multiple 
computational facilities and/or scientific instruments at user facilities. 

The workshop had the following high-level objectives: 
● Identifying the workflows of representative science use cases in HPC and DAIC 
● Understanding the state of the art in existing workflow technologies, including creation, 

execution, provenance, (re)usability, and reproducibility 
● Addressing emerging hardware and software trends, in both centralized and distributed 

environments, as they relate to workflows 
● Bridging the gap between in situ HPC and DAIC workflows. 

Two categories of extreme-scale drivers were investigated: 
● Application requirements of science workflows. Workflows used by computational 

sciences, observations from sensors and other instruments, experiments at user 
facilities, and the collaborations that such teams need to conduct those activities were 
studied. 

The Future of Scientific Workflows 6 



      
 

      
           

        
 

 
               

         
          
      

  
            

      
          

   
             

           
             

       
        
          

         
           

     
      

         
 

             
           

  
 

              
       
       

    
 

               
      

    
      

          
       

          
      

● Extreme-scale computing systems. The hardware and software subsystems in current, 
next-generation, and extreme-scale HPC and DAIC systems, to the extent that they 
interact with workflow systems. Also identified were gaps and opportunities to influence 
those systems as they are being designed. 

As a result of the trends listed above, the workshop identified five main research areas: 
● System design and execution. The most important factors in designing the workflow 

management system (WMS) are scalable and robust control and data flow, data 
management and triage, workflow management and monitoring, provenance capture, 
and fault tolerance and recovery. 

● Programming and usability. Lack of support on DOE platforms of interest impede 
adoption of workflow technologies. Programming models, design patterns, the user 
interface, task communication, and portability of individual task modules are potential 
areas for improvement. 

● Provenance capture. Provenance is the key to validation and reproducibility of any 
scientific process, and the WMS is the natural place to capture much provenance data. 
Relevant topics include the content and format of provenance data (including the ability 
to customize to scientists’ needs), capture mechanisms, communication of metadata 
across system software levels, short-term storage and long-term archival, and data-
mining algorithms to distill raw provenance data to its essentials. 

● Validation. The validation of a workflow execution enables being able to reproduce the 
workflow on the same or another computing environment and involves (a) comparing 
performance of the entire execution and of each component against predictions based 
on models, (b) comparing the output with provenance captured during the execution, 
and (c) comparing the science results with expectations (models, auxiliary methods, 
invariants). 

● Workflow science. The formalism of theories, models, and experiments in workflows may 
be embodied in a new field, similar to data science, called workflow science. Training will 
enable the next generation of workflow scientists to conduct research in workflows. 

An investigation into the drivers and workflow research areas above resulted in the following 
high-level findings. Sections 3 and 4 of this report present a detailed explanation of these 
findings, including state of the art, research challenges, and specific recommendations of 
research and development activities. 

● As the complexity and heterogeneity of scientific workflows increases, there is a need to 
characterize and study the processes surrounding simulations, instruments (experiments 
and observations), and collaborations in order to be able to design workflow 
management systems (WMSs) that facilitate those processes. 

● Research is needed to understand extreme-scale architectures and their impact on the 
design of workflow management systems. On the other hand research is needed to 
characterize and predict the needs of future scientific workflows and how they will 
influence the design of future architectures. 

The Future of Scientific Workflows 7 



      
 

              
        

         
           

           
          

   
              

 
             

   
     

      
 

                
        

 
  

● Workflow systems interact with system software and live within the systems (in situ). As 
the demand for data-awareness in workflow and system software grows, the interactions 
between the two will become more complex. Thus, research is needed to define the 
relationship between the WMS and the operating system/ runtime (OS/R) and how the 
WMS fits into the software ecosystem of HPC platforms. Resource management, 
scheduling, and provenance capture are potential areas where the WMS and other 
software systems share responsibilities. 

● The design of control and data flows, data models, and programming interfaces needs 
further research in the general area of WMS design. 

● During and after the workflow execution, the capture of provenance information and its 
use to validate performance and correctness and to support data reuse and repurposing 
are areas where much research is needed. 

● Benchmarks and community data sets are needed to drive workflow research. 

Many of these efforts can be systematically studied in a new body of research called workflow 
science, which studies the theory, simulation, experimentation, and benchmarking of workflows. 

The Future of Scientific Workflows 8 
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2 Introduction 

A large-scale science campaign often consists of several interrelated workflows. For example, 
Figure 1 shows a science workflow to integrate simulations with experiments through data 
analytics.1 The entire process consists of three (sub)workflows: the measurement and 
reconstruction of experimental images, the modeling and in situ analysis of simulation data, and 
the comparison of the two. 

Figure 1: Science workflow for the comparison of a molecular dynamics simulation with a 
high-energy X-ray microscopy of the same material system includes three interrelated 
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computational and experimental workflows. 

Although a scientist’s workflow can include all the steps in the science discovery process, from 
forming hypotheses to disseminating results, we limit the scope of the term workflow to mean a 
subset of those tasks involving the collection, generation, and processing of numerical data that 
can be automated with computer systems. The term workflow, therefore, refers to sequencing 
and orchestrating operations, along with moving data among those operations. Systems that aid 
in the automation of these processes, freeing the scientist from the details of the process, are 
called workflow management systems (WMSs). 

1 http://tpeterka.github.io/maui-project/ 
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In the context of scientific computing, a workflow is therefore the orchestration of multiple tasks 
or programs. Examples are computational simulations and data analysis and visualization 
software. To use a programming analogy, workflows can be considered “programming in the 
large”: workflows are to programs what programs are to functions or subroutines. In other 
words, the workflow is the outer structure that ties together the individual programs. 

Workflows manage the execution of constituent programs and the information exchanged 
between them. Therefore, an instantiation of a workflow must represent both the operations and 
the data products associated with a particular scientific domain. It should be assumed that 
individual operations and data products were developed independently, potentially by different 
scientists or communities. Workflows must be usable by the target audience (e.g., 
computational scientists) on target platforms (i.e., computing environments and networks), while 
being represented by abstractions that can be reused across sciences and computing 
environments and whose performance and correctness could be modeled and verified. 

Workflows may have high-performance and distributed-area computing components. In this 
report, we will refer to these modes as HPC and DAIC, respectively. Figure 1 contains two DAIC 
workflows and one HPC workflow. HPC workflows are executed on one or more clusters or 
supercomputers in the same physical computing facility. DAIC workflows are executed across 
systems that are geographically more widely distributed, including grids, clouds, and 
experimental facilities. One of the goals of the workshop is to share information between the 
HPC and DAIC workflows, as shown in Figure 1. In the past, research in these areas was 
funded, conducted, and disseminated separately. Realizing that a scientist’s complete workflow 
may include both modes, another goal of the workshop is to identify the needed research to 
develop an interface between HPC and DAIC subworkflows when they are parts of a larger 
workflow that spans both execution environments. 

In situ workflows. Extreme-scale workflows face particular challenges, especially workflows 
designed for current- and next-generation leadership-scale HPC environments. These 
challenges include power, performance, resilience, and productivity: heterogeneous computing 
cores, increasingly complex hierarchical memory systems, and small or no growth in bandwidth 
to external storage systems are some of the main hurdles for HPC workflows at scale. The 
challenges motivate an important category of HPC workflows: in situ workflows. The term in situ 
has different meanings to different people; but in this report we simply mean multiple tasks 
running on the same supercomputer within a fixed time interval (e.g., a job submission). A 
concrete example is an analysis running on the same supercomputer where the simulation is 
currently running. We do not differentiate between various “flavors” of this definition such as 
whether the tasks execute in the same or separate resources (nodes, cores, etc.) within the 
supercomputer. Rather, we use the term in situ to describe any data processing, triage, filtering, 
analysis, or visualization that occurs while the simulation is running prior to moving data off the 
supercomputer to a storage system for further post hoc analysis. 

10 The Future of Scientific Workflows 



      
 

             
       

        
              

         
             

           
          

               
                 

                
            

           
 

 
            

              
              

           
             

      
               

     
                

           
              

              
 

 
          

            
            

             
             

             
      
            

                
            

            
          

  
 

In situ workflows are a coupling of very large-scale tasks, containing hundreds of millions of 
processes, operating in a specialized environment that is comparatively compute-rich but data-
movement-poor, despite specialized interconnection fabrics and parallel storage systems. One 
motivation for in situ workflows is to minimize the cost of data movement by exploiting data 
locality, operating on data in place. A second reason is to support human-in-the-loop interactive 
analysis. The third driver for in situ HPC workflows is the need to capture provenance for 
interactive data analysis and visualization, as well as any computational steering that results. 
We have to support publication of results, validation of results, and sharing data; and interactive 
analysis is the element that makes a WMS essential for these tasks, as well as for the potential 
reuse and/or repurposing of the tiny stream of data that will be saved for post hoc use. The in 
situ use case is so critical to the success of HPC workflows that, in the remainder of this report, 
the two terms—in situ workflow and HPC workflow—can be used interchangeably unless 
otherwise noted. When we do not qualify the type of HPC workflow (e.g., post hoc), we mean in 
situ. 

Many other challenges obstruct the deployment of production workflows at extreme scale. One 
is performance: in the past, DAIC WMSs were designed for smaller platforms and higher latency 
than what is needed for exascale. Research into HPC WMSs is still in its infancy, and 
performance is untested. In the HPC world today, scientists use Python or shell scripts to 
specify workflows, or they integrate the workflow directly into their simulation code. In these and 
other workflow programming models, we need to understand the best methods of interfacing 
WMSs and their tasks. For example, it is unclear how best to present “locality” in the context of 
a deep memory hierarchy so that decisions can be made regarding whether to move 
computation to data or data to computation or whether to further partition computation or data in 
order to facilitate a mix of approaches. In such cases, the WMS may need to communicate 
requirements to the operating and runtime (OS/R) systems, which would execute on behalf of 
the WMS. More research is needed to understand the interface between WMS and HPC OS/R 
systems. 

Another challenge arises from multiple intermediate representations of data. Significant 
improvements in data abstractions and their representations are required in order to support 
scientists’ specialized data uses. The data also must be augmented with provenance 
information, which is important for validation of results. DAIC workflows currently capture a great 
deal of relevant provenance information, but it is unclear how this information from workflows 
can best be captured and managed at the exascale. Since an exascale machine may have 
billion-way concurrency, determining the provenance of data computed on one billion 
interrelated parallel tasks will be exceptionally complex, if not infeasible. Even if this information 
exists in system log files, a key issue is whether scientists want that level of detail for their use. 
Workflows spanning multiple systems also must capture provenance information about all the 
steps executed on all systems. The WMS presumably has a record of what was done in an 
individual system, but there needs to be a way to construct, capture, and manage 
heterogeneous provenance data in an interoperable manner; none currently exists. 
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The overlap between “big data” programming models and scientific data programming models is 
another challenge. MapReduce is an important big data model, and initial activities have 
explored its utility for scientific data; but deeper study of programing models for big data 
workflows is required for use in scientific workflows. 

Together with other parts of the computing ecosystem, the following features must be 
addressed in future HPC and DAIC systems as part of, or in support of, extreme-scale 
workflows. 

• Data movement between and within workflow components. Efficient, scalable, parallel, 
and resilient communication that allows flexible coupling of components with different 
data and resource needs and that utilizes extreme-scale architectural characteristics 
such as deep memory/storage hierarchy and high core count. 

• Programming models for workflows and their components. Managing various and 
possibly heterogeneous software stacks, expressing tasks and their relationships 
productively and portably, and defining data models and their semantics. 

• Resource selection and provisioning. Allocation of various types of resources for the 
generation, movement, analysis, and retention of data in a workflow, with particular 
attention to heterogeneity (nodes vs. cores, virtualization, memory hierarchy), power and 
time costs of moving data, and centralized and distributed systems for storage and 
staging data. 

• Scheduling. Coordination of task launching and data transfers over all of the above 
resources during the staging and execution of a workflow. 

• Fault tolerance and performance monitoring at runtime. Monitoring the infrastructure and 
applications, understanding workflow behavior (modeling, anomaly detection, and 
diagnosis), detecting, isolating, and recovering from hard and soft errors, and 
maintaining security. 

• Provenance tracking validation, and use. Capturing the high volume, velocity, and 
variety of provenance data and querying, mining, and analyzing these data to validate 
accuracy of results, compare with expected performance, and ensure reproducibility. 

In order to better understand the scope of challenges such as those above, the workshop 
focused on the following five major topics. For each topic, some of the driving questions that 
were used to seed discussions are listed below. Prior to the workshop, we also invited 
participants to submit white papers on these same issues. Those white papers are included in 
the workshop website.2 

Science applications and use cases of workflows. What are the needs of science communities 
in terms of managing large-scale workflows? What are the current practices? How are the 
technological trends (better instruments, bigger data, different computing capabilities) expected 
to affect future work? 

2 http://extremescaleresearch.labworks.org/events/workshop-future-scientific-workflows 
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State of the art in DAIC and HPC workflow management systems. What is the state of the art in 
DAIC and in HPC? What are the strengths and weaknesses of the DAIC and HPC workflows? 
What are the common functions in DAIC and HPC workflows? 

Impact of emerging architectures on workflow systems. How do new extreme-scale 
architectures affect the DAIC and HPC workflows? Considerations include power, concurrency, 
heterogeneity, changing network architecture, system bottlenecks, scheduling and use policies 
including potentially supporting interactive exploration of data, and the severe data triage 
needed for HPC workflows. 

Future needs for extreme-scale DAIC and HPC workflows. What are the challenges for DAIC 
and HPC workflows going forward? These include high-performance data movement, data 
management (including how to select the small percentage of data that can be saved to 
persistent storage), computation scheduling, usability, verification, provenance, fault tolerance, 
and performance. 

Interface between DAIC and HPC workflow systems. In an overall science campaign, what is 
the interface between HPC and DAIC workflows? How can the gap be bridged? How is 
information (data, computation, and metadata products) transferred between HPC and DAIC 
systems? Considerations include the interface between different types of WMSs, different 
software and hardware environments, different communities of users, and different objectives of 
the workflows. 

The Future of Scientific Workflows 13 



      
 

 

   
 

 
          

        
          

         
              
       

 
             

         
        

        
       

          
      

        
         

       
         
              

 
 

           
            

       
       

       
            

        
 

        
         
         

       
       

            
            

         

                                                
  

3 Extreme-Scale Drivers 

Summary 
Two categories of extreme-scale drivers motivate the future of science workflows. Science 
applications (Section 3.1) include computational science, experimental and observational data, 
and collaborations in support of those activities. Extreme-scale computing systems (Section 3.2) 
include the hardware and software subsystems in current, next-generation, and extreme-scale 
HPC and DAIC systems, to the extent that they interact with workflow systems. Also identified 
are gaps and opportunities to influence these systems as they are being designed. 

One must understand the present state of scientific workflows before studying their future. 
Hence, existing workflows for both computational and experimental sciences are described. In 
computational science, workflows are used to link multiphysics codes together, to perform 
parameter sweep studies that take into account different initial conditions, and to link 
simulations with analysis or visualization tasks. Observational and experimental science face 
exponentially growing data volume and velocity, increasing the need for workflows to coordinate 
data collection with processing. Such workflows may be widely distributed because the scientific 
instruments and computing resources are seldom collocated. Simulations and experiments may 
also be combined; for example, synchrotron light source imaging experiments have recently 
been coupled with molecular dynamics simulations.3 Simulations may be used to design 
experiments or observations, to fill in gaps in data, and to test hypotheses. Experimental and 
observational data may be used to seed a simulation with starting conditions. The relationships 
are complicated and becoming more so. 

Some workflows also support collaboration. Collaborations range anywhere from a small team 
of scientists using a custom set of software tools, to large international science teams working 
on decadal long problems. They also include projects with significant levels of public 
contributions or web-based citizen-science projects. Sharing workflows, migrating workflows 
between different computing environments, accommodating different user roles (e.g., biologist, 
computer scientist, data analyst), and combining different languages and software tools used by 
various users are the challenges. How to address those challenges are open questions today. 

Changes in hardware for extreme-scale supercomputing systems pose major challenges for 
workflows in terms of power, performance, resilience, and productivity. These changes require 
significant planning and investment in system software, programming environments, 
applications, and WMSs. Workshop participants identified heterogeneous computing, new 
memory systems including nonvolatile memory, and small or no growth in bandwidth to external 
storage systems or networks as the main hurdles that must be cleared in order to deploy 
workflows at scale. Arguably, the biggest challenge for science is the worsening I/O bottleneck. 
I/O rates are expected to be flat for the next decade. Some hardware designs can still be 

3 http://www.anl.gov/imaging/project/maui-modeling-analysis-and-ultrafast-imaging 
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influenced by research: vendors are eager to include proxy applications representative of 
workflows in their design activities and machine acceptance tests. 

Some perceived challenges, such as NVRAM to extend the traditional system memory, may 
actually be opportunities in disguise, provided the right interfaces exist to use them. Other 
hardware trends, such as decreased storage bandwidth relative to the compute rate, require 
scientists to change their usage patterns: for example, by selecting in situ workflows as opposed 
to post hoc ones. One of the surprising outcomes from the discussion about managing 
resources is that human productivity is arguably still the most expensive resource, trumping 
power, performance, and other factors. While the focus of the workshop was not scientific 
productivity per se, the usability of new hardware and software technologies and the gap 
between their research and mainstream use merits continued research. Programmability and 
usability of workflows are addressed in the following section. 

The software systems on HPC machines pose a different set of challenges for workflows. First, 
HPC systems are still intended to run single-program batch jobs. Even though they run many 
such jobs simultaneously, those jobs are intentionally separated in both hardware (different 
partitions of nodes) and software (different address spaces and software stacks). Workflows by 
definition are collections of multiple coordinated programs. Interactivity is a key emerging 
feature that is seldom used in HPC systems today. Human interaction with the workflow (for 
example, to steer a computation based on partial results) is inconvenient in a batch-scheduled 
machine because jobs have unpredictable start times and fixed duration. Some of these hurdles 
require technological innovations, while others are matters of policy (for example, current 
requirements to maximize core occupancy or impose storage quotas per job). Detecting and 
responding to faults and other unexpected occurrences in hardware and software layers are 
active areas of research in HPC systems. Workflows compound the difficulty in detecting errors 
because of the collocation of heterogeneous tasks and the addition of extra layers in the 
software stack. On the other hand, as orchestrator of the workflow the WMS has the potential to 
dramatically ameliorate the process of responding to errors. 

Schedulers and resource managers must treat storage, I/O, and network capacity as first-class 
resources to be allocated, managed, and measured to the same degree as computing capacity 
is today. When the workflow consists of several subworkflows spanning multiple systems, 
scheduling resources over several systems will require cooperative schedulers that can 
coordinate with the WMS to manage the individual machines’ schedules. 

At the end of the day, the role of the OS/R is to provide well-understood, predictable, and 
reproducible services to the WMS and, in turn, to the scientist. Predictability can be improved by 
effective resource allocation or adaptation to conditions. In order to facilitate reproducibility, 
system components such as batch schedulers, resource allocators, and file systems will need to 
be sufficiently transparent such that provenance data can be extracted at runtime, whether by 
the OS/R or the WMS. 
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Findings 
● Application requirements 

○ Research is needed in the areas of automation, human-computer interaction, 
provenance, and validation in order to support in situ workflows. 

○ To address the challenges of experimental and observational workflows, the 
WMS must coordinate the end-to-end workflow life cycle, including real-time 
scheduling and execution of measurement instruments and analytic platforms, 
which may include supercomputers. 

○ Workflows also need to be more adaptive. Their resource needs may change 
during the course of a computation or experiment, even to the point of triggering 
entirely new tasks based on the evolution of certain phenomena. 

○ Collaborative workflows are characterized by heterogeneous users and 
resources, and WMSs must be portable, shareable, and reproducible across a 
diverse set of environments in order to be usable by all members of a 
collaboration. 

● Hardware systems 
○ Metrics are needed for enabling management of performance, power, and 

productivity. How to measure productivity is an open question. Benchmarks and 
proxy applications to test workflow workloads are needed to measure such 
metrics. 

○ Mechanisms for passing data between tasks without unnecessary data 
movement should be investigated. 

○ Memory management systems that support scratchpad and NVM are needed for 
workflows. Increasing the number of computing tasks in the same memory 
footprint (given that DRAM memory per core is expected to decrease in extreme-
scale machines) will increase the likelihood that workflows will need to extend 
memory to NVM. Moreover, the potential for more complicated analyses that 
manage more state (for example, several time steps of data) offered by 
workflows will further require the extended footprint offered by NVM. 

● Software systems 
○ Efficient low-overhead scheduling of multiple cooperative tasks, various forms of 

communication (messages, interrupts, publish-subscribe, etc.) between 
independent tasks, and provisioning of shared resources (e.g., shared storage) 
among tasks are needed from the OS/R to support the WMS. 

○ The WMS needs the OS/R to move from its traditional role of managing single 
tasks to managing global (i.e., internode, distributed) services. True, a 
supercomputer usually runs more than one application at a time, and those jobs 
are managed at some level of global system software. Today, however, user-
space jobs are isolated from the others by design, and even OS instances are 
isolated, with each job booting a new image of the OS (micro)kernel. Research is 
needed to develop services and expose them to higher levels of the software 
stack so that the WMS and users can access them. Such global management 
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may be through a hierarchy of resource groupings (enclaves), with 
heterogeneous programming models / runtimes managing the resources within a 
given enclave or task. 

○ The WMS needs to negotiate with the OS/R through a well-defined interface on 
behalf of the entire application workflow. The OS/R must provide the WMS with 
the interfaces to coordinate various tasks (such as the simulation and data 
analysis codes) and capture the provenance that scientists need to support 
writing papers and validating scientific results, including capturing any changes 
from the initial workflow that result from human-in-the-loop interactive analysis 
and steering. 

3.1 Application Requirements 

In this section, we examine a few key application characteristics from the DOE Office of Science 
in order to understand the state of the art, challenges, and R&D needed for simulations, 
experiments, observations, and collaborations. 

3.1.1 Simulations 

State of the Art: 
Today, HPC workflows are usually constructed from Python scripts or from hard-coded 
functions embedded directly in simulation code. The use of workflow tools for DAIC varies 
widely across communities. Some communities have used existing workflow tools to compose 
and execute their workflows. For example, the Kepler WMS [1] is used by the Center for Edge 
Physics Simulation for monitoring and guiding a particular simulation. The Pegasus WMS [21] is 
used to execute climate modeling workflows and material science analysis of Spallation Neutron 
Source data. On the other hand, many communities have developed specific tools or 
infrastructure to manage their workflows (e.g., LSST, JGI). These tools often support monitoring 
and provenance collection. Workflows in ad hoc scripts are also fairly commonly developed and 
used. Figure 2 shows the Accelerated Climate Modeling for Energy (ACME) workflow for climate 
modeling. 

Many simulation workflows are complex and consist of multiple simulation codes with many 
tunable parameters and input data sets. The complexity of the applications coupled with the 
complexity of the underlying hardware often means that much human effort goes into setting up 
these workflows on HPC machines. In addition, many simulation codes—e.g., in materials 
science—require human intervention to arrive at converged, reliable results; otherwise mesh 
tangling or over-relaxation can cause the simulation to fail. Increased automation to replace 
some of the human intervention or to support it when absolutely necessary can improve such 
workflows. 
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Workflows today are able to capture static task graphs. However, users often have to rely on 
their own codes to manage conditional and/or dynamic execution. For example, the lattice QCD 
vacuum gauge configuration workflow, in addition to a resource-intensive generation step and 
an overall campaign management level, has decision points where additional paths in the 
workflow may be taken. 

Challenges: 
Constrained I/O bandwidth in exascale architectures will necessitate in situ analysis and 
visualization. Workflows provide an opportunity to accelerate in situ coupling in the HPC 
ecosystem. However, complex interactions with the HPC resources—batch queues, burst 
buffers, storage and network resources—present new challenges for workflow automation. 
Many services must be designed in the context of workflows affecting multiple tasks: launching 
tasks, coordinating information in data flows, allocating short- and long-term buffering space, 
providing resilience to faults, and capturing provenance will need to become systemwide 
services to which tasks can subscribe. 

R&D Needed: 
The following key research challenges need to be addressed in order to support effective and 
efficient simulation workflows. 

1. Automation: Simulation workflows still rely heavily on user intervention for setup, 
convergence, and failure recovery. Research is needed into methods (e.g., machine learning 
algorithms) that leverage knowledge of the simulation and resources, in order to increase the 
level of automation in these workflows and to minimize user intervention. 

2. Human in the loop: While it is important to increase automation, it is impossible to replace 
human knowledge and input. Human-computer interaction research is needed to study and 
identify human-in-the-loop scenarios and devise methods and user interfaces that allow 
seamless interaction with the workflow-based applications. 

3. Provenance and validation: Today, DAIC WMSs support provenance collection as part of the 
workflow. However, one must also consider whether the provenance collected is sufficient for its 
intended purpose—whether to validate the workflow, the scientific process, or to document it for 
publication—in either case, scientists may want to control provenance capture by specifying 
what is collected and how. Provenance collection is largely absent today in HPC workflows. 

18 The Future of Scientific Workflows 



      
 

  

  
 

    
            

        
              

         
         

       
         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
       

          
 

Figure 2: Top: ACME diagnostics and analysis workflow. The workflow is used to quickly 
evaluate models and validate their results. The Python scripts from UV-CDAT produce 
climatology files and static HTML and plots (gif, jpg, etc.) Bottom: Data storage workflow of 
the DOE Earth system model. 

3.1.2 Instruments 

State of the Art: 
Scientific facilities and associated instruments are increasingly generating large amounts of data 
thanks to improvements in underlying hardware and software technologies. For example, recent 
improvements in detector resolution and speed have resulted in unprecedented data rates at 
national light- and neutron-source facilities. Beamlines generate terabytes of raw and derived 
data each day and serve thousands of researchers each year. Similarly, new technologies are 
enabling the detection, transmission, and storage of astrophysics data; consisting of 
electromagnetic, gravity, and particle spectra, at scales never seen before. Currently four large-
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scale photometric and spectroscopic sky surveys are under way, each generating and/or 
utilizing hundreds of terabytes of data per year. 

These instruments increasingly rely on HPC centers such as the Argonne Leadership 
Computing Facility (ALCF), Oak Ridge Leadership Computing Facility (OLCF), and the National 
Energy Research Scientific Computing Center (NERSC) for their computational and analytic 
requirements. For example, both Advanced Light Source (ALS) and Palomar Transient Factory 
(PTF) data are processed at NERSC. In the PTF, data taken with the camera are transferred to 
automated pipelines at NERSC using the Energy Sciences Network. Figure 3 shows an 
example of imaging workflows for materials science where beam lines at Argonne’s Advanced 
Photon Source (APS) rely on HPC capability at the ALCF. 

Many of the instrument-based workflows have been developed for specific use cases. The 
workflow system provides data access, management, and analysis and integration with 
simulation codes, and often has web interfaces for publishing data. Workflow systems drive the 
automated, near real-time processing, and user-triggered actions. Typically, they also provide 
extensive monitoring of distributed workflows for system operators, resource providers, and end 
users. 

Select 
experiments 

Simulated Simulated 
structure scattering

Evolutionary optimization 

Experimental Sample 
scattering 

Material 
composition 

La#60%# 
Sr#40%# 

Detect errors 
(secs—mins) 

Knowledge)base) 
Past#experiments;# 

simula6ons;#literature;# 
expert#knowledge# (mins—hours) 

Knowledge-driven 

Contribute to knowledge base 

Simulations driven by 
experiments (mins—days) 

decision making 

Figure 3: Materials structures workflows can include both instruments and computations. 

Challenges: 
Instrument workflows need to seamlessly incorporate the scientific instrument, the network, 
storage, and compute resources to provide scientists with real-time access to data and 
processing. However, a number of challenges arise in realizing this vision. For example, 
collecting provenance of all the artifacts of the workflow is difficult. Data analysis should match 
the rates at which data are generated. In some experiments, for example at synchrotron light 
sources, it would be ideal if scientists could inspect results while their beamline is active and 
make immediate decisions in order to modify the analysis or the instrument. However, HPC 
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systems have limited support for real-time processing, potentially resulting in precious time lost 
at the beamline. 

R&D Needed: 
Several research areas need in-depth investigation to address the challenges of experimental 
workflows. 

1. End-to-end workflow lifecycle. The scientific workflow needs to seamlessly incorporate the 
instrument, the HPC center, and the network in order to provide convenient and efficient access 
to scientists. It will be necessary to investigate how the end-to-end workflow that encompasses 
the traditional computational workflow is represented and executed. Critical points in the 
infrastructure will need to be identified for provenance collection, verification, and validation of 
the workflow execution. Additional research is needed to develop capabilities that will allow 
users to seamlessly transition between development and production workflows, and to share 
workflows among researchers and students. 

2. Real-time resource scheduling. It is important to investigate how resources can be scheduled 
in real-time in order to allow users to interact dynamically and adaptively with their instruments 
based on the results of their computations. HPC resource management systems and schedulers 
will need to accommodate interactive and real-time workloads in order to satisfy the needs of 
experimental user facilities. 

3. Execution modalities. Instrument workflows often harness resources at one or more 
computational facilities. It will be necessary to define the interface between DAIC and HPC 
workflows: where will the workflow be managed and at what time scales? The coupled 
experiment-computation system provides a rich source of research opportunities in organizing, 
moving, analyzing, sharing, and tracking large quantities of data. 

3.1.3 Collaborations 

State of the Art: 
Scientific collaborations such as the LHC and the International Thermonuclear Experimental 
Reactor (ITER) involve scientists with different roles at different geographic locations and at 
different points in time. Often, one team of scientists is present at the instrument site to monitor 
the progress of the ongoing data collection and adjust the control settings, while other scientists 
analyze the data generated, and still others use the output of the analysis to draw conclusions 
and publish findings. 

Projects such as Integrated Microbial Genomes and the Metagenomics RAST server (MG-
RAST) provide access to the analysis and simulation results through web interfaces to 
databases that are viewed and used by thousands of scientists. Projects such as the Systems 
Biology Knowledgebase (KBase), Accelerated Climate Modeling for Energy (ACME), and 
Palomar Transient Factory (PTF) provide an analysis workflow environment where users can 
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run their own workflows on the data products generated from other workflows. For example, 
Figure 4 shows an example of different science teams and facilities connected with the PTF 
project. 

Figure 4: Approximately 100 GB of raw optical imaging data is taken every night at Palomar 
Observatory. A database of nearly 1 TB containing over 1.5 billion objects is scoured to 
compare this event with previous detections at that location on the sky. The results are 
published on the web in 40 minutes after an individual image is taken at Palomar. 

Challenges: 
Scientific teams face numerous challenges in the context of developing, verifying, sharing, and 
managing collaborative workflows. It is difficult for users to seamlessly transition between 
environments and share their workflows, computation, and data resources. 

R&D Needed: 
1. User roles. Data producers, data analysts, and data consumers each have a unique set of 
requirements in the global workflow. Scientific collaborations need a way to capture these 
relationships among the users and the workflows. Additional research is needed to identify 
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these roles, examine the interplay between them, and define adequate representations of the 
people, resources, and data in the global workflow. 

2. Shared resource environments. Existing workflow tools rely on web servers, data publication 
tools, and database servers that are not part of the traditional HPC environment. Scientific 
collaborations often struggle with providing an infrastructure that can be shared across 
geographically separated sites. New container and virtualization technologies (e.g., Docker) 
attempt to bridge this gap. However, more research is needed to create portable, provisionable, 
and shared resource environments for scientific collaborations. 

3. Shared workflows. Research is needed to understand how workflows are shared in a 
collaboration, how changes to the workflow are captured, and how provenance metadata are 
made available to users. Provenance is the key to enabling re-use of data: it allows others to 
reproduce workflows, to repurpose data generated elsewhere, for example, as teaching aids, 
and it enables scientists and students to construct new workflows based on existing ones. 
(Section 4.5 discusses training the next generation of workflow scientists.) 

3.2 Computing Systems 

Future computing systems will be very different from today’s infrastructures, and so will 
scientists’ use of them. Billion-way concurrency, deep memory hierarchy, hardware 
heterogeneity, reduced memory per core, and limited network and I/O bandwidth will be the 
norm (see Table 1).4 

Software systems will feature hierarchical organization of the global operating system in local 
units called enclaves that will be tailored to the hardware requirements of a subset of nodes 
(e.g., fat nodes, thin nodes, GPUs, FPGAs, burst buffer nodes). Programming models are also 
evolving from bulk-synchronous to task-based approaches. 

Workflow systems will need to evolve in light of these changes. In situ data reduction and 
analysis will be essential in order to mitigate the I/O and network bottlenecks. Determining how 
to save the important and essential data to allow meaningful post hoc analysis and reuse are 
critical challenges for future workflow systems. In addition, interactive guiding of in situ analytics 
and simulations will become more prevalent as real-time uses increase. The provenance of the 
entire HPC + DAIC workflow (the in situ and post hoc operations) will need to be captured so 
that it can be used to share, validate, and reproduce published results. 

4 http://extremescaleresearch.labworks.org/events/workshop-future-scientific-workflows 
Lucy Nowell presentation, data courtesy Al Geist and Susan Coughlin. 
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           Table 1: Future HPC architectures (courtesy Al Geist and Susan Coughlin). 

Some of the hardware and software changes are welcome additions from the standpoint of 
workflow execution. The 2015 “Storage Systems and Input/Output to Support Extreme Scale 
Science” (SSIO) report [25] says, “The ongoing integration of SSD devices into compute 
infrastructures, both as burst buffers and as extended memory, offers opportunities to enhance 
science workflow productivity.” Likewise, there is a natural mapping of partitions of sets of 
resources (a.k.a. “enclaves”[2]) in the OS/R to the management of tasks in workflows. However, 
innovations such as NVRAM and software enclaves need to have appropriate interfaces in 
order for them to be useful for workflows. The following sections outline the state of the art, 
research challenges, and R&D needed in hardware and software systems in support of 
workflows. 

3.2.1 Hardware Systems 

Technology trends are being driven by a belief that power limits system size and performance. 
Workshop discussions, however, indicate that scientists value productivity above all. 
Furthermore, systems must be designed to account for science workflows, not only running one 
benchmark on one platform. 

State of the Art: 
The scientific computing community is facing major challenges in the next decade: power, 
performance, resilience, and productivity. Although these challenges have been with us for 
some time, they are growing more acute as facilities and scientists are confronted with a new 
level of complexity and required investment, derived from the complex new architectures with a 
multitude of features and dynamics. One need look no further than the contemporary extreme 
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scale systems being deployed and procured today, as illustrated in Table 2.5 Titan, MIRA, 
Aurora, and Summit have entirely new features and configurations that have not be present in 
earlier systems. These changes require significant planning and investment in system software, 
programming environments, applications, and workflow management systems. 

Table 2: DOE Systems expected through 2022 (courtesy Al Geist and Susan Coughlin). 

In particular, several trends are already emerging: heterogeneous computing, new memory 
systems including nonvolatile memory, and small or no growth in bandwidth to external storage 
systems or networks. 

Heterogeneous computing is apparent in many of today’s top HPC systems. In earlier systems, 
such as Titan and Tsubame2, the addition of GPUs to systems gave performance 
improvements while keeping power constraints satisfied. As these capabilities evolve, we see 
tighter integration of heterogeneous and special purpose capabilities onto general processors. 
For example, over the past several years, Intel has integrated GPUs, compression and 
encryption engines, random number generators, and other capabilities directly onto their main 

5 http://extremescaleresearch.labworks.org/events/workshop-future-scientific-workflows 
Lucy Nowell presentation, data courtesy Al Geist and Susan Coughlin. 
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processors. Although this functionality may be exposed to users in a number of ways, it will be 
imperative to provide portable solutions to HPC users. As seen in Table 2, both Titan and 
Summit will have heterogeneous instruction set architectures within the node. Meanwhile, the 
same applications will be expected to port and run efficiently on Mira and Aurora. 

Nonvolatile memory (NVM) systems, in addition to alternative memory architectures, are 
emerging as a solution to the limits of dynamic random-access memory (DRAM) scaling, power, 
and cost. Depending on the architectural solution, this change to the memory system could be 
more disruptive to applications teams than the change to heterogeneous computing. NVM 
devices have major differences from DRAM: lower write durability; higher latencies and power 
costs for writes relative to reads; and persistent state without the need for standby power. 
Again, as with heterogeneous systems, programming systems, and system software, workflow 
management systems will need to hide these often subtle differences from applications while 
taking advantage of the particular capabilities. Although NVM devices have been transparently 
introduced into existing systems as replacements for hard-disk drives, they typically use existing 
I/O block-oriented interfaces, although the software stacks have been optimized. In the Summit 
and Aurora configurations, we must prepare applications for potentially tighter integration of 
these NVM devices with main memory and processors, bypassing the I/O interface. In both of 
these cases, a number of open research questions about high-level system design remain. 
These questions include the amount of NVM versus DRAM memory, the number of latency-
tolerant cores versus the number of throughput cores, and the extent to which application data 
structures are a good fit for the characteristics of NVM when compared with DRAM? 

As noted in Table 2, storage systems and connections to external networks will continue to see 
the aggregate storage bandwidth plateau or increase slowly. This trend will force users to 
consider other strategies for defensive checkpointing of application state (e.g., burst buffers), 
and postprocessing and analysis of application output (e.g., in situ analysis). While these 
changes could force major changes in application design and architectures (e.g., increasing the 
amount of NVM for in situ analysis of time-series data), workflow management systems must be 
improved in order to recognize these dramatic differences within HPC systems. 

Challenges: 
Technology trends can still be influenced; therefore computational and computer scientists must 
work together to determine future architectures. The resulting systems are likely to be more 
heterogeneous and diverse than today’s. Systems will have increasing scratchpad and NVM. 
The increased heterogeneity, for example in the memory/storage hierarchy, means that 
managing data movement is a complex problem in both HPC and DAIC WMSs. There is a lack 
of workflow codesign benchmarks (e.g., mini-apps) that could be used to measure the 
performance different data movement algorithms on proposed architectures. 

R&D Needed: 
1. Metrics. There is a need to define metrics for valuing performance, power and productivity. 
How do we measure productivity? 
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2. Scheduling. Research is needed to develop efficient, low-overhead, and robust task 
scheduling on heterogeneous systems and across systems. 
3. Data movement. New mechanisms need to be developed for using the capabilities of 
emerging networks to transfer data between tasks efficiently. 
4. Memory management. Research is needed in memory management systems that support 
scratchpad and NVM. 
5. Mini workflows. There is a need for a library of proxy or mini applications and benchmarks to 
test workflow systems. 

3.2.2 Software Systems 

Today’s HPC software systems are designed to support the execution of monolithic jobs in 
batch scheduling mode. This mode of operation contrasts with workflows consisting of multiple, 
coordinated, individual tasks. DAIC software systems are perhaps better equipped to manage 
workflows, but their loosely coupled decentralized design (e.g., communicating through files) 
limits performance and scalability. One finding of the workshop is the recognition that system 
software for workflows at extreme scale is a severe challenge for both HPC and DAIC. 

State of the Art: 
Security concerns. Today’s large machines [3], [4] are generally engineered to assume that the 
client is an interactive user that connects to the head node in order to submit jobs, transfer data, 
and perform other tasks at the command line. This approach translates into security 
requirements constructed around interactive users, such as the requirement for short-lived 
Kerberos passwords, and S/Key authentication. Unfortunately, this assumption often conflicts 
with the design of long-running workflows that require submitting jobs, transferring files, and 
taking other actions on behalf of the users while they are not present. A common occurrence is 
that a user will log into a machine manually to start a workflow, then log out, only to discover 
hours later that the workflow has failed because the user’s time-limited credential has expired 
[5]. 

The solution to this involves both policy and technology. First, security policy must be developed 
with the understanding that workflows are an important use-case for these machines, and hence 
appropriate login mechanisms and long-lived credentials should be supported where 
appropriate. Second, workflow technology must be developed to explicitly support security 
constraints: when necessary, the WMS can notify a human to approve an action or renew 
credentials or to halt activities in an orderly manner. 

Reasoning about robustness in the distributed setting. In current systems, there is little guidance 
or understanding how to deal with unexpected situations across software layers. For example, 
there are approaches to deal with individual component failures [6], [7] as well as generalized 
algorithms for fault detection and recovery [8]–[10]. However, simple recovery techniques do not 
scale up: components that always retry failures will accidentally cause denial- of-service attacks, 
while components that always return failures to the user will be perceived as unreliable. A one-
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hour system outage might be reasonably considered a fatal event for a workload that is 
expected to take five minutes but would be considered a mere hiccup for a workload that is 
expected to run for days. A methodology for understanding failures and proportionate response 
within the context of the larger system should be developed and widely applied across all 
relevant components. 

Storage management. Despite system-wide monitoring services such as Darshan [11], [12], no 
mechanism is available to allocate storage capacity or bandwidth for a particular task, much 
less a workflow of multiple tasks. As a result, it is easy for a process to overflow storage quotas 
with temporary data or for a workflow manager to overflow a shared storage space by running 
too many tasks at once. The inability of supporting dynamic storage allocations results in 
unnecessary failures. 

Many use cases for runtime management of intermediate storage were discussed at the 
workshop, including those proposed by [13]–[23]. For example: applications may attempt to 
access remote data via the network and cache it locally during a run. This capability requires 
allocation of local storage as well as careful garbage collection upon completion. Applications 
may “park” data for medium time scales (days to weeks) in order to pass data from one task to 
the next, while other users access computational resources. This requires explicit allocation of 
storage for a given time period and arbitration of storage consumption between different users. 
Data might also be migrated up and down the storage hierarchy as needs dictate. It is becoming 
more common to couple different software services together at runtime. A complete application 
might consist of an HPC message-passing task, a high-throughput task, and a commodity 
database, all of which must be co-allocated and linked via storage. 

Challenges: 
Because the machine itself will be (relatively) CPU-rich and I/O-poor, success will depend on 
managing data movement, which will drive the design and evaluation of WMSs that are 
currently designed to optimize CPU performance. Execution of data-intensive tasks with 
acceptable performance will require advanced data sharing mechanisms within the machine 
itself, without using the global file system. This involves solving problems of both coordination 
(naming and rendezvous) and resource management (allocation, enforcement, garbage 
collection) so that intermediate storage resources are best utilized to achieve application-, 
system-, and facility-level goals. 

To the extent that unexpected events happen within a machine, it must be possible to either 
over-provision or re-provision storage resources as necessary. For example, if two processes 
are to be connected as producer and consumer using intermediate storage, a delay in starting 
up the consumer process entails either increasing the intermediate storage allocation, or 
delaying writes by the producer. The multiplicity of memory and storage technologies may result 
in a variety of communication and storage mechanisms, which requires that users be given 
information and tools to select the appropriate mechanism. Experience in the distributed 
computing realm suggests that constructing one large meta-scheduler through hierarchical 
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queues is not effective, because the interaction of scheduling policies does not serve any party 
well. 

WMSs need the OS/R to move from its traditional role of managing single tasks to managing 
global (i.e., internode, distributed) services. In OS/R research projects such as Argo [24] and 
Hobbes [25], the global management is through a hierarchy of resource groupings (i.e., 
enclaves) with some global resource management and scheduling, and various programming 
models and runtimes managing resources within a given enclave or task. However, to date 
there is no clear delineation of who owns scheduling on these systems. The WMS can negotiate 
with the OS/R on behalf of the entire application workflow to enable task placement, data 
movement among the tasks (such as the simulation and data analysis codes) and capture of 
various types of provenance that scientists need to support writing papers and validating 
scientific results. In particular, the WMS needs to capture any changes from the initial workflow 
that result from human-in-the-loop interactive analysis and steering. Such capability is not 
handled in the programming model or OS/R. The WMS can also provide portability across 
different hardware platforms. 

Naturally, end users want predictable performance, but predictability is hard to achieve in the 
presence of contention for resources: for example, an over-commitment of the network may 
have cascading effects on the performance of all other components. Effective resource 
allocation or adaptivity to conditions may be effective at improving performance predictability. To 
understand such interdependent effects in a complex system requires a good set of modeling 
and simulation tools to represent and evaluate workflows. The workflow community has 
considerable experience in recording and evaluating provenance data generated by workflow 
systems. To proceed in this direction, we will need system components such as batch 
schedulers and file systems to be sufficiently transparent so that provenance data can be 
extracted at runtime. A significant challenge will be the management of these provenance data: 
for machines with high component counts, the recording of provenance data may present 
problems of performance and capacity in and of itself. 

R&D Needed: 
1. Collaborative WMS and OS/R provisioning, planning, and scheduling. An open research and 
engineering challenge here is the intersection of provisioning, planning, and scheduling across 
the OS and WMS software stacks. Currently, these tasks are performed independently: The 
user provisions appropriate resources, a planning tool constructs a suitable plan, and then a 
workflow manager executes it with some handoff to the OS/R but without feedback on progress 
unless provided by the application. Clearly the tasks are connected: the appropriate quantity of 
resources to provision depends on the structure and performance of the workflow. There is a 
research question to understand the interconnections, and an engineering/design question to 
construct tools that can perform all three without overwhelming complexity. We need to examine 
the interplay of workflow management, resource provisioning, and OS/runtime systems. 

2. Data management. Research and development is needed to address integration of in-system 
storage and campaign storage with traditional parallel file systems and archive as well as 
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metadata, name spaces, and data provenance in the context of workflow management systems. 
This research direction was echoed in the 2015 SSIO report [26]. 

3. Co-design “at scale” modeling and simulation tools. Because of the stringent up-time 
demands placed on current leadership-class supercomputer systems, it is infeasible for them to 
serve as WMS test beds, especially where the OS/R and/or core system schedulers might need 
to be modified. Yet, how a WMS behaves can impact whole leadership-class supercomputer 
systems at large scale. Thus, research and development is needed in models and simulation 
tools that allow research investigations on large-scale systems to identify the relationships 
between the WMS and various software and hardware components. 

The community needs good benchmarks, conceptual models of applications, mini-apps that 
stand-in for real applications, system simulations, performance archives, and similar tools that 
enable the performance evaluation of complex system designs. 
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4 Extreme-Scale Workflow Systems 

Summary 
The efficient management of DAIC and HPC 
workflows present challenges at multiple levels of Workflow Definition 

WMS software shown in Figure 5. At the base Scripts Tools 
layer are the underlying transport or 
communication mechanisms provided by the 
OS/R or other libraries. The middle layer provides Dataflow Definition and Runtime 

coupling control and data flow between Data Data Flow Resilience model distribution control heterogeneous components. Doing so entails 
expanding the links between nodes in a workflow 
graph into dataflows that can buffer, prefetch, Transport Layer 
aggregate, and distribute data. Data models need Network Message Filesto be defined in a uniform way so they can be protocols libraries 

managed in the data flow. Moving to the top Figure 5. WMS software layers. 
layer, the workflow graph can be defined in a 
variety of ways such as languages or graphical 
interfaces. Managing the workflow (top and middle layers) must address concurrency, locality, 
system topology, and resilience if data movement is to be optimized at extreme scale. 

In terms of programming and usability, a lack of standardization between numerous 
programming models for both tasks and workflows of tasks, the interconnection between the 
programming of individual tasks and entire workflows, and the portability of both code and data 
across different locations in a potentially heterogeneous workflow that spans both HPC and 
DAIC resources were identified as challenges. 

WMSs must be designed with monitoring mechanisms in place so that provenance can be 
captured and analyzed and faults (both hard and soft errors) can be mitigated. The scale and 
complexity of components in extreme scale workflows complicate provenance capture. No 
uniform format exists to trace, validate, and reproduce both HPC and DAIC operations. The 
velocity of provenance data generated at extreme scale is another bottleneck—to the extent that 
provenance data can easily outpace scientific data—requiring new methods to subset, 
compress, mine, analyze, store, and share it. 

The reason for capturing provenance data is to be able to validate and reproduce science 
results. The increasing scale and complexity of hardware and software systems, however, 
coupled with the composition of multiple tasks by workflows, complicate those validation steps. 
Validation of data accuracy is no longer as simple as bitwise difference, and validation of 
expected performance is a complex system of a high-dimensional space of metrics over a 
heterogeneous computing architecture. Important research directions include extending single-
application performance validation tools to workflows of applications. All of the above can be 
considered part of a new field—workflow science—that studies the formal theory and design 
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principles of workflow systems, develops analytical models for their performance and validation, 
and empirically measures the predicted behavior through experimentation. 

Findings 
● System design and execution 

○ Coupling control and data flow between heterogeneous components requires 
research in dataflows that can buffer, prefetch, aggregate, and distribute data. 

○ Data management research must solve challenges in the transport, layout, 
attributes, and provenance of data 

○ The convergence of DAIC and HPC workflows into a single, possibly hierarchical, 
WMS presents challenges in managing nonuinform latency, task granularity, and 
reliability. 

○ System introspection is needed to understand complex system behaviors. 
● Programming and usability 

○ DOE applications have a diverse set of workflow needs. In addition, there are 
many different ways to express workflows that span the range from simple to 
complex. Research to identify common needs and expression patterns (akin to 
design patterns in software engineering) in workflows with respect to a number of 
properties including data management, error control, reproducibility, 
programmability, and mapping to physical resources are needed. 

○ Research is needed to determine appropriate levels of abstraction to define the 
user interface for workflow systems and their component modules, including an 
interface for the human in the loop in interactive workflows. 

○ Many commonalities exist between HPC and DAIC workflows. Although there 
exist several examples of workflow applications that work across HPC and DAIC 
boundaries, most are specific to a particular computing environment. WMSs that 
operate with good performance across heterogeneous platforms are needed. 
Understanding the role of containers, virtualization, and security—features found 
in DAIC—is needed in HPC. Understanding the effect of disruptive HPC 
architectures such as deep memory hierarchies and NVRAM is needed as well. 

● Provenance capture 
○ Research is needed into new provenance models suitable to support new usage 

models. Integrating provenance from multiple sources in the workflow requires 
new research. 

○ The capture and utilization of provenance information across system software 
levels and distributed systems will require investigations at many different levels. 
Needed are effective capture and communication mechanisms and effective 
selection, storage, and delivery approaches for provenance objects that support 
fast runtime storage, search and retrieval, in situ triage, and analysis. 

○ Mining of provenance data has emerged as a key approach for its analysis, for 
both relational and graph databases. 

● Validation 
○ The increasing complexity of workflows and their computational environments 

makes it critical to provide the science community with the approaches, methods 
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and tools to ensure workflow execution correctness and to validate that 
workflows are executed with sufficient reproducible accuracy and performance to 
meet their scientific goals. 

○ Exascale systems with their higher degrees of concurrency will further 
accentuate this community need. 

○ Validation is expanding from a post hoc to a runtime function that can enable 
mitigation and optimization. 

● Workflow science 
○ Research is required to develop the science of workflows to fully understand how 

workflows behave. Did the workflow behave as expected? Did the infrastructure 
(computer, instrument, network, storage) behave as expected? Can the data or 
metadata be trusted? Is the experiment repeatable? 

○ One role of workflow science is to develop and execute theoretical models that 
describe the expected behavior of workflows. 

○ Workflows can be modeled computationally. The community should strive to 
design and execute computational simulations and models that describe the 
workflow behavior. 

○ More research is needed to design and execute experiments to validate the 
function of scientific workflows and the facility resources (computers, storage 
devices, networks, instruments) used by these workflows. 

4.1 System Design and Execution 

The design of WMS for extreme-scale DAIC and HPC workflows presents multiple challenges; 
some such challenges are unique to each class of workflows, while others are common across 
different classes. Furthermore, the increasing exploration of end-to-end workflows that combine 
both DAIC and HPC aspects means that solutions for efficient management of these workflows 
must be able to seamlessly support both classes. As a result, their development results in a 
challenging research agenda, which is discussed below. 

4.1.1 Control and Data Flow 

State of the Art: 
Managing control and data flow during workflow execution is critical to workflow’s enactment, 
and the design of solutions largely depends on both the nature of the workflows (e.g., 
coordination/coupling requirements, data volumes) and the execution environment. While DAIC 
solutions have addressed the latencies, unreliability, and heterogeneity of distributed systems, 
HPC solutions have focused on optimization for performance and scalability. HPC workflows 
have an additional focus on the coupling of workflow components via different data sharing 
mechanisms. For example, DAIC solutions have largely relied on files for control and data flow 
[1], [27], while HPC solutions have explored in-memory staging and RDMA [28], [29]. 
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The nature of the programming and execution environments has also impacted the abstractions 
presented for specifying these workflows. For example, while DAIC WMS support more dynamic 
and service-oriented compositions, HPC WMS typically tend to be more static and closely 
coupled in their specifications. HPC workflows also tend to make stronger assumptions about 
the compatibility of workflow components compared with DAIC workflows, that is, whether 
components were designed to work together and how much they share with each other (e.g., 
data formats). Recent research in HPC is, however, exploring how service-oriented architecture 
(SOA)-type compositions can be supported on extreme-scale systems [13]. 

Another important issue is the “links” that connect the component applications of the workflow 
and the semantics associated with these links. For example, link components can be used for 
buffering, prefetching, and aggregating data but may also be used for transforming and 
redistributing data so that it is more compatible with the needs of the consumer. Staging-based 
approaches for specifying these links and their semantics for HPC workflows have been 
explored by recent projects [30], [31]. Lofstead [32] has also proposed the use of “glue 
components” that encapsulate such link semantics and can be defined as part of a workflow. 

A related issue is allocating and managing resources to achieve these link semantics. Because 
the resources requirements can be dynamic and may not be known a priori (e.g., they may 
depend on the volume/type of data, the type of transformation, the network state), adaptive 
runtime resource allocation and management become critical. Furthermore, this resource 
management must be able to effectively address and respond to technical issues, such as 
failures. Efforts such as [33], [34] have explored such adaptive runtime management schemes 
for DAIC and HPC workflows, respectively. 

Challenges: 
Scalable control and data flow management. As DAIC and HPC workflows are integrated into 
end-to-end application workflows, providing abstractions and mechanisms that can effectively 
support control and data flow requirements in a consistent and scalable manner becomes a 
critical challenge. For example, moving across the HPC-DAIC interface entails not only moving 
data products, but also control information about the state of the workflow. Other important 
concerns include providing support for specifying the coupling between tasks in a workflow 
graph with meaningful semantics for both DAIC and HPC workflows, as well as effectively 
managing these components in an adaptive and autonomic runtime. 

R&D Needed: 
1. Abstractions. Abstractions and mechanisms for control and data flow that can effectively 
support integrated DAIC and HPC workflows in a seamless and scalable manner. 
2. Primitives. A catalog of data/control flow (link) semantics that can meet the needs of 
emerging application workflows, as well as the efficient implementation of such components that 
can be used as part of DAIC and HPC workflows. 
3. Runtimes. Adaptive/autonomic runtimes for managing the behavior of control and data flows 
between tasks. Issues requiring further research are automatic placement and allocation of 
intermediate link resources, handling faults in these resources, executing user code in these 
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resources for filtering, aggregation, reduction, etc. of data, and managing the flow control 
between coupled tasks with buffering at various levels in the memory/storage hierarchy. 

4.1.2 Data Management 

State of the Art: 
Emerging workflows incorporating both DAIC and HPC aspects are generating unprecedented 
amounts of data. Furthermore, such data are being created and consumed in new and intricate 
ways because of the complexity of such workflows. As a result, fast and efficient management 
of these data is a critical concern of next-generation workflow management systems, in order to 
translate data into scientific insight in a timely manner. 

Recent research in data management for DAIC and HPC workflows has addressed issues such 
as data transport (e.g., GridFTP [35], DART [36]), data distribution and layout (e.g., D2Worm 
[37]), data staging (e.g., DataSpaces [29], DataStager [13]), data replication (e.g., adaptive data 
placement Pd-Loc [38]), data models, and metadata management including logs and 
provenance. Each of these topics presents its own challenges and research issues, which are 
outlined as follows. 

Challenges: 
Research challenges include providing more stringent quality-of-service (QoS) guarantees for 
end-to-end workflows, including DAIC and HPC, as well as developing abstractions for 
applications to express QoS requirements. Furthermore, application-driven mechanisms, aware 
of relative importance of data, can utilize various transport QoS levels in order to optimize 
performance. Visibility of expected performance and QoS (e.g., using models) is important. 
Addressing QoS issues across multiple concurrent transfers with different requirements is also 
important. 

Executing end-to-end data exchanges between the component applications in the workflow 
requires understanding and representing their associated data models and data distributions. 
Schemas to represent attributes such as data lifetime, reliability, and security, can serve as 
additional elements of user/application intent. These aspects may be used to optimize data 
placement or manage resources. These attributes can also be used as a basis for developing 
cost models that can be used to evaluate and prioritize associated tradeoffs. 

Interfaces and mechanisms must support capturing, curating, querying, and managing possibly 
distributed provenance information (system and application) so that it can be effectively used for 
audit, replay/regeneration, reproducibility, and publication. Capturing, managing, and linking job 
logs, RAS data, and performance data on different systems can support data-driven problem 
diagnosis and forensics. These data may be distributed. 
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R&D Needed: 
1. Quality of service. Develop mechanisms to formalize and standardize better communication 
of QoS, throughput, latency, deadline, and priority are required. We need to develop methods 
for associating properties, such as lifetime, with data. Also needed is a data-centric view in 
which data are not just tokens in a graph but first-class objects. 
2. Data layout. Investigate ways to represent, reason over, and manipulate the layouts of data 
structures to optimize performance for different settings. 
3. Data semantics. Investigate ways to represent, reason over, and manipulate the semantics of 
data structures to optimize performance for different settings 
4. Data models. Conduct research on the intended purposes and the type of data needed for 
those purposes. 
5. Data provenance. Policies and methods for linking logs of different types and resources in a 
way that preserves privacy and permits distributed querying. 

4.1.3 Workflow Management 

State of the Art: 
Even though workflow management systems for DAIC and HPC workflows are conceptually 
similar, they address different design points. While the overarching objective of both DAIC and 
HPC workflows is to satisfy science goals, DAIC WMSs were traditionally motivated by 
automation and productivity perspectives and HPC workflows by I/O limitations and 
performance requirements. 

The two WMSs also typically implement different design tradeoffs. For example, the latencies 
involved can be very different. Similarly, mapping and scheduling solutions for DAIC and HPC 
represent different design points and optimizations. While concurrency, locality, system topology 
awareness, and minimizing data movement are key concerns for HPC and DAIC workflows [39], 
[40], DAIC workflows additionally address issues related to security, crossing administrative 
domains, and so forth that do not exist in HPC. Monitoring the execution progress of HPC 
workflows and adapting the execution also tends to be harder, largely because of restrictions 
from the system. 

A related concern is dealing with failure. Although being able to detect and handle unreliable 
resources and failures has been an integral part of DAIC WMSs, only recently have HPC WMSs 
started to address failures [41], [42]. 

Challenges: 
Emerging extreme-scale systems are expected to exhibit many of the characteristics of 
distributed systems (e.g., heterogeneity, failures, non-uniform access latencies). Similarly, the 
applications in Section 3.1 demonstrate that workflows are expected to combine aspects of both 
DAIC and HPC. As a result, exploring crosscutting solutions that can integrate these design 
points is a critical research challenge. This includes support for workflow specification and 
enactments. Several challenging implications arise. For example, can a single WMS support 
both design points effectively, or how can failures be handled in a consistent manner across the 
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execution modes? Furthermore, DAIC and HPC tend to work at different time scales and task 
granularities, so multilevel, multiscale decision-making is needed. 

DAIC and HPC may have different optimization considerations. For example, analytics may be 
scheduled in situ or on a different system depending on the relative costs of the latencies 
associated with data movement and the loss in performance due to the repurposing of some 
compute nodes for analytics. Several research efforts are already exploring such a 
convergence. For example, Wide-Area-Staging [43] is extending data staging abstractions to 
distributed environments, and DataSpaces-as-a-Service is exploring persistent staging and 
SOA models on extreme-scale systems. 

R&D Needed: 
1. Design patterns. Understand patterns for integrating DAIC and HPC workflows, and define 
execution semantics for integrated DAIC plus HPC workflows. 
2. Resilience. Define consistent semantics for handling failures and recovering from faults for 
integrated DAIC plus HPC workflows. 
3. Integration. Develop methods for composing DAIC and HPC workflows, possibly to include 
integrated WMSs or collaboration between WMSs managing different aspects. 
4. Scheduling. Develop mapping and scheduling strategies that can handle DAIC and HPC 
resources in a consistent and integrated manner and can optimize execution across these 
executions. 
5. Monitoring. Develop integrated tools for monitoring the execution state and progress of 
workflows, possibly adapting executions as needed. 
6. Resource provisioning. Examine the interplay of resource provisioning and workflow 
management. 

4.1.4 Monitoring 

State of the Art: 
Workflows are playing an increasingly important role in orchestrating complex scientific 
processes in extreme scale and highly heterogeneous environments. To date, however, we 
cannot reliably predict, understand, or optimize workflow performance. Sources of performance 
variability and, in particular, the interdependencies of workflow design, execution environment, 
and system architecture are not well understood. While there is a rich portfolio of tools for 
performance analysis, modeling, and prediction for single applications in homogeneous 
computing environments, these are not applicable to workflows because of the number and 
heterogeneity of the involved components and their strong interdependencies. 

To date, workflow performance studies are usually focused on a specific workflow or WMS. 
Many different approaches are used for these investigations; most commonly provenance-
based descriptions of the workflow are utilized to describe the executed tasks. These 
descriptions are then linked to performance measurements such as execution time, average 
memory access, and I/O load [44]–[49]. 
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Challenges: 
Workflow performance variability. Management systems for extreme-scale systems, including 
exascale, are optimized to support single application performance, based on the fundamental 
understanding of their performance characteristics. Unfortunately, these capabilities have not 
been brought to bear on complex workflows. The reason is that these workflows differ from 
single applications executed in one homogeneous environment in a number of significant ways: 
they combine multiple different programming/execution models and heterogeneous execution 
platforms. As discussed above, the number of workflow and system components, coupled with 
their heterogeneity and strong interdependencies, provides key challenges in understanding 
workflow performance variability. Furthermore, their ability to react to hardware and software 
systems and user-created events at runtime adds another level of complexity. 

R&D Needed: 
1. Performance variability. Identify and quantify sources of workflow performance variability as 
they relate to different performance goals, taking into account the workflow tasks, the workflow 
management system, the execution environments, and system architectures. 
2. Event handling. Investigate the impact of system, scientific data, and user events on workflow 
performance. 
3. Tools. Develop suitable performance analysis and modeling tools. 
4. Optimization. Investigate runtime optimization strategies and methodologies, including 
suitable interactions between the workflow management system and the system software stack 
including resource provision, runtime system, SSIO, and software defined networking. 

4.1.5 Fault Tolerance and Recovery 

State of the Art: 
With increasing scale and complexity, fault tolerance and recovery are key challenges for both 
DAIC and HPC workflows. Many existing WMSs handle task and system failures and 
incorporate fault-tolerant mechanisms (e.g., task re-execution or rollback from checkpoints). 
Research efforts are addressing these issues by extending existing programming systems to 
support fault tolerance (e.g., ULFM). Emerging task DAG-based programming models also 
include resilience features [50]. 

Recent research is exploring online mechanisms for resilience, for example, [42], [51]. In order 
to protect against data corruption in workflows, verification is commonly done by using simple 
replication. Comparing outputs of both replicas of the same workflow can help detect corruption, 
but replication is expensive; and because all the replicas are identical, systematic errors 
affecting all replicas cannot be detected. Research by Croubois et al. [41], [52] introduces a new 
generic method that provides efficient error detection using an external algorithmic observer. 

Challenges: 
Workflow resilience and fault detection. As system scales increase and the mean time between 
failures (MTBF) become smaller, process and node failures become important. These failures 
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are often recovered by terminating the job and restarting from the last checkpoint in stable 
storage. However, it is unclear whether this approach will work when the MTBF approaches the 
time needed to execute the checkpoint. Online, application-aware, and local recovery 
mechanisms are possible alternatives. In addition to addressing system and process failures, 
there is an increasing need for data validation mechanisms. Data corruption, whether occurring 
as a result of bugs, attacks, or background radiation will be more likely in workflows running on 
increasingly complex hardware and software systems than in past. 

R&D Needed: 
1. Online recovery. Research is required into developing automatic, online, and possibly local 
recovery mechanisms that can handle the scales, complexities, and failures rates of emerging 
systems. Exploring application-aware mechanisms will be critical. 
2. Resilience management. Programming and runtime support for cross-layered power and 
resilience management is needed so that application programmers can choose the minimum 
level of resilience required in each code segment, as well as control the knobs to balance 
tradeoffs and meet power budgets. 
3. Silent data corruption. Develop a generic method that provides efficient error detection 
capabilities for both systematic and nonsystematic errors. For example, models to detect silent 
data corruption in a pipeline of several application tasks operating on a single time step of data, 
without requiring a time series of multiple time steps, can be used to develop new adaptive and 
resilient WMSs. 
4. Software stack vertical error propagation. Explore error propagation and failure recovery 
across software layers in a way that enables users to understand application and system 
behavior and that makes online recovery possible. 

4.2 Programming and Usability 

Programming and usability were identified as key factors determining the extent of adoption of 
workflow methods at extreme scale. The relationship between programming models for the 
workflow and those used for individual tasks in the workflow is one aspect of programmability. 
How to define multiple types of information to be transferred between workflow tasks is another. 
The definition of workflow graphs can be aided by re-using workflow design patterns or 
templates. The nature of the WMS user interface, whether textual or graphical, also affects 
usability. This section addresses how to meet these challenges in a portable way between HPC 
and DAIC workflows. 

4.2.1 Programming Models 

State of the Art: 
Although many HPC workflows are hand-constructed through shell scripts, batch scheduling, 
and human intervention, there exist programmable tools such as Swift [53], Tigres [54], Kepler 
[1], Trident [55], Weaver [56], Triana [57], Pegasus [27], Galaxy [58], and Taverna [59] to better 
manage complicated workflows. The Open Provenance Model (OPM) [60] is an open standard 
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specification of a provenance data model with multiple existing compliant implementations [61]– 
[63]. Programming models for cloud, web service, and other big data applications are abundant. 
The programming model for MapReduce [64] is probably the most well known, but many others 
exist [65]–[67] Many of these models may be leveraged for use in high-performance computing. 

Challenges: 
Workflow and OS/R interactions. As leadership-class machines and the workflows applied to 
them increase in complexity, the division between workflow and programming model becomes 
blurred. The workflow system’s representation of a mix of coarse data- and task-parallelism 
mirrors the finer-grained task-parallel computations that are predicted for increasing parallelism 
on extreme-scale systems beyond the common data-parallelism in applications today. It is 
unclear where the line between responsibilities of workflow and programming model should lie 
or indeed if there should be a separation at all. A combined hierarchical representation of tasks 
characterizing the spectrum of parallelism from coarse-grained jobs to fine-grained processing 
threads may be most effective. 

In addition to better understanding the relationship between workflows and programming 
models, several other challenges exist. The workflow exists in its own abstract model. This 
workflow abstraction must be mapped to the physical compute, network, and storage resources 
while taking into account an accurate model of their relative costs. These decisions may define 
how workflows are composed. The capture of provenance is critical for future analysis and 
reproducibility in workflow systems. It is important to capture all relevant information including 
that available only after a workflow completes (such as user information regarding the quality of 
the solution). Just as science teams exhibit different workflow patterns, their modes of 
interaction with systems, the data they use and generate, and their rate of adoption of workflow-
related tools will vary. 

R&D Needed: 
Because both workflows and programming models address high concurrency, dynamic 
application execution, dynamic resource availability, architectural diversity, and new forms of in-
system storage in extreme-scale architectures, research must manage the gaps in increased 
complexity. 

1. Horizon and coordination. Since the resource allocation responsibilities of workflows and 
programming models overlap, integration and coordination become fruitful and perhaps 
necessary. Programming models and system introspection could provide knowledge to the 
workflow manager or even to the programmer. 
2. Mapping. Based on the application context, domain-specific workflow systems could be used 
to exploit proposed programming systems that assemble applications composed of different 
algorithms or implementations. Compared with a more general workflow system, domain 
specificity could potentially simplify the mapping of workflows to diverse resources. 
3. Provenance. For workflows that change dynamically as a result of system resource allocation 
or user steering, we need to capture runtime decisions that affect execution, even if it is not 
possible to replicate the exact execution. 
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4. Pragmatics. Workflow systems must provide productive and bidirectional interfaces, and 
workflow tools should be decomposed in such a way that science teams can iteratively adopt 
components into their existing work practices. 

4.2.2 Design Patterns 

State of the Art: 
The basic mental model for a workflow is a directed acyclic graph (DAG) representing the tasks 
to perform and the dependencies between the tasks. Workflow management tools such as Swift 
[53] and Tigres [54] center their API on building DAGs and internally manage parallel execution 
and dependencies within them. Other tools such as AVS [68], SCIRun [69], and VisTrails [70] 
allow users to build and view workflow DAGs visually with a graphical representation and user 
interface. Wings [71] uses the idea of templates to represent the overall workflow structure and 
then automatically fills out the template based on user needs. 

Many scientists build workflows by example, which is an informal use of design patterns; they 
iteratively construct one workflow using a previous one as a template. This incremental use 
simplifies the process of building and running workflows. This iterative modification of existing 
workflows shortens the development time and can also be integrated in software design to 
accelerate workflow tool development [72]. 

Some recent tools use patternlike structures as part of the creation and execution of workflows. 
For example, Tigres has a collection of templates that can be applied when building workflow 
structures [73]. VisTrails can collect the provenance of many previously built workflows to find 
common patterns that can automatically assist users in other endeavors [74]. 

Challenges: 
Workflow design mechanisms. Many workflows, particularly those from the same research 
group, are similar. These can potentially be defined as patterns with data, error control, and 
reproducibility. They can be characterized by their resource access—network traffic, high 
throughput, and so forth—to take the best advantage of resources while being portable. Science 
teams exhibit a variety of different workflow patterns, particularly across communities. 
Understanding these patterns can aid in the design of workflows and workflow systems. 
However, it is unclear that any single WMS would be effective for supporting such a variety of 
patterns. Scientific workflow needs can change depending on the domain or the mode of 
operation, such as batch versus real time versus interactive. 

Although a DAG is the fundamental model used to describe workflows and their patterns, 
interdependencies among tasks result in cycles in the dependency graph. Such 
interdependencies are common in, for example, multiphysics codes where independent tasks 
communicate with each other and take turns to converge to the appropriate solution. Such 
cycles can sometimes be handled by conditionals or dynamic scripting in the workflow tool, but 
better descriptions of the workflow could be made. 
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R&D Needed: 
1. Design patterns. It is important to understand and classify various workflow and workflow 
needs through user studies. Identifying common patterns, akin to design patterns in software 
engineering [75], for next-generation in situ and distributed workflows, is needed to address 
programmability and usability concerns. 
2. Cycles. Workflows need to correctly and more formally handle task dependency loops. Part of 
this effort requires workflows to understand and manage time and data that change over time, 
as demonstrated in the similar VTK dataflow network [76]. 
3. Templates. Research is needed into ways to help users easily develop high-level templates 
and to instantiate them for concrete problems. 
4. Ensembles. Scientists often use ensembles of workflows to represent and overall analysis. 
Research in ensemble management is needed to support the end-to-end computational 
methods. 

4.2.3 User Interface 

State of the Art: 
Most workflow management tools use a scripting language to define tasks and dependencies 
and to manage execution [1], [27], [53]–[59]. Within the scripting language is an API that scripts 
use to define and execute a workflow. There also exist examples of workflow building tools that 
use a graphical interface [69], [70]. Such interfaces provide a tradeoff between simplicity and 
expressiveness. 

Challenges: 
Workflow user interface designs. Today, workflows are modeled in many different ways 
including scripts and application/programming models. The boundaries and interactions 
between the representation of workflow constructs and application interaction such as loops and 
parameter convergence/divergence are not well understood. A constant tension exists between 
generalizing and specializing the workflow user interface. A generalized interface provides a 
greater amount of expression that can address more application domains and more anomalous 
cases, whereas a specialized interface tends to be easier to use and could provide more 
opportunities to optimize the workflow process. 

The human-in-the-loop model occurs in many different types of workflows including exploration 
and failure recovery in production pipelines. The real-time status of the workflow needs to be 
accessible to users. Many simulations require human monitoring for erroneous conditions such 
as the entangling of a mesh. Real-time status is also important for observational and 
experimental data. For example, a human may be required to determine whether missing 
telescope data is a result of a cloudy night or failures in the hardware or software. Similarly, light 
source experiments can benefit from real-time feedback to improve experimental decisions. 
Today, only limited support is provided to integrate the human in workflows and to automatically 
track the provenance from such activities. 
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R&D Needed: 
1. Abstraction. The appropriate level of abstraction for workflows is unclear. Indeed, this level of 
abstraction may not be uniform for all use cases; different domains may require different 
abstractions. Having different levels of abstractions for early and advanced users could also be 
advantageous. Given a level of abstraction, what hints can a user provide to better map 
theworkflow to the available resources? 
2. Human in the loop. Providing the interface for human-in-the-loop workflows is critical, but as 
yet no way exists to properly capture the provenance of human interaction. To preserve 
repeatability, we must find ways to capture when a human makes changes, what changes were 
made, and the reason for the changes. It may be advantageous to study how business workflow 
models and techniques [77] can be helpful in this regard. 

4.2.4 Task Communication 

State of the Art: 
Many workflows have used files to transmit data between programs. For such an interface to 
work seamlessly, the programs must understand each other’s file format. Thus, many HPC file 
formats are “self-describing” in that arrays are organized using names, attributes, and 
hierarchies [32], [78]. Similar organization is present in array databases [79] and NoSQL 
databases [80]. This organization, however, has little meaning without an agreement on the 
semantics. Thus, conventions [81] and schemas [82]–[84] are often applied. 

Other work has focused on providing a unified interface to data that can come from a variety of 
storage implementations. For example, ADIOS can support numerous I/O backends and switch 
between them at runtime [32]. Tools such as Google Dremmel [85] and Apache Drill provide a 
unified interface to multiple data backends. 

Challenges: 
Data Exchange Today’s workflows and workflow systems have limited support for considering 
data sources, storage needs, and data models. As workflows integrate ever-varying tasks, it 
becomes more challenging to communicate data between software that uses different data 
models. Solutions attempting to provide a unified data model have often been unsuccessful. 
Many file and database systems provide successful mechanisms for declaring data format, but 
these mechanisms need to be expanded and applied to inter-task communication within a 
workflow. 

R&D Needed: 
1. Data heterogeneity. We need to develop appropriate infrastructure that allows seamless 
integration of various data sources including streaming, data management across the memory-
storage hierarchy of next generation systems, and data semantics in user workflows. 
2. Data independence. Greater understanding is needed about how data can be communicated 
among tasks that are developed independently and have different data models. 
3. Data sources. Data can be thought of as stored or streamed in from multiple sources. The 
mechanism for connecting these sources and the ability to identify, convert, and verify data 
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models must be well established. This communication will need to take place over a variety of 
levels in a deep memory hierarchy. 

4.2.5 Portability 

Many analysis codes are run as in situ processes, meaning that all tasks run within a local 
supercomputer’s resources, and sometimes run as distributed area processes where tasks are 
coordinated across multiple independent systems that may be physically distant from each 
other. These workflows should not be implemented twice. Therefore, their interface needs to be 
designed to work in either in situ or in distributed area modes. For example, the same code may 
need to point to data in memory, read data from a file, output data to memory or a file, run in 
serial or parallel, compute a small-scale or large-scale job, process data in core or out of core, 
and be built as a library or as an executable. All of this ought to be uniform so that data and 
control can seamlessly flow between HPC and DAIC environments. 

State of the Art: 
No widely adopted general-purpose workflow tools are available that work seamlessly across 
both HPC and DAIC. However, many specific applications are designed to work in both 
domains. CyberShake, a seismic hazard model from the Southern California Earthquake Center 
[86], combines components that use high-performance computing and high-throughput 
computing. The Advanced Photon Source coordinates high-performance computation with 
detector hardware and other processing systems [87]. Likewise, the National Synchrotron Light 
Source II has initial processing in situ; the results then are sent to remote users. The HACC 
cosmology simulation can interface its high-performance computation with analysis codes on 
other systems through the CosmoTools analysis framework [88]. KBase, the DOE systems 
biology knowledgebase, contains in situ modeling and reconstruction tools as well as offloading 
to cloud-based distributed-area systems [89]. 

Challenges: 
Workflow portability. To address workflows across HPC and DAIC boundaries and over multiple 
applications, we need to find a common language for building workflow tools. This may be a job 
for the emerging field of “workflow science,” which is related to data science. 

We expect steering and human interaction to become more important. Therefore, better tools 
are needed to express and enable dynamic control within the workflow execution. Many 
problems require a human-in-the-loop because the most complex decisions cannot be 
programmed. Furthermore, scientists need real-time feedback on simulation progress and 
perhaps need to decide what to do in case of failures. It is not clear how human interaction can 
be accommodated in situ and ex situ. 

Portability is difficult on complex, heterogeneous systems. Part of the solution falls to other 
areas of research such as programming models, but workflows can also help. Workflows can 
help match tasks to the architecture best suited to run them; this situation is more common in 
DAIC workflows, but it is still an area of research for HPC. Containers such as Docker, with 
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workflows operating above the container level, are a possible solution for some distributed area 
and in situ workflow issues. 

R&D Needed: 
1. Performance portability. How can we build WMSs and common application components that 
operate with good performance in both HPC and DAIC? 
2. Containerization. What is the role of containers and other virtualization technologies in 
workflows? Virtualization can have a profound effect both for workflow components (tasks) and 
for the workflow systems themselves. 
3. Security. Security for in situ workflows often relies on the access controls of the system, 
whereas distributed area workflows must be more cognizant of security since they run across 
different systems in different security domains. Often the security policies between HPC, DAIC, 
and the compute facilities conflict with each other. How can security be unified across all these 
elements to allow application workflows to best be developed, deployed, and executed? 
4. Architecture portability. Can workflows be leveraged to manage deep memory hierarchies? 
Given an appropriate decomposition of the problem, as workflows orchestrate tasks, they can 
manage the movement of data up and down this memory hierarchy. For example, workflows 
could potentially manage movement of data between out-of-core and in-core, between NVM 
and main memory, and between main RAM and high bandwidth RAM. 
5. Human interaction. As high-performance computing and workflows become more complex, 
the interaction between human and system becomes more important. For large-scale 
applications, it is not feasible to continually monitor tasks and restart jobs when problems occur 
or when steering is necessary. Rather, tasks need a real-time communication channel to a 
human who can interact, modify, or correct behavior when necessary. The human interaction 
can become even more complex as we mix HPC and DAIC in the same workflow. 

4.3 Provenance Capture 

WMSs offer a unique opportunity for provenance capture because they encapsulate the process 
of solving a computational problem. They are the managers of many different operations and, at 
the same time, interact closely with many other relevant components and resources related to 
the execution of the workflow. However, the number of components, the complexity of their 
connections, and the rate of execution complicates provenance capture in workflows. 

4.3.1 Content, Format, and Level of Detail 

Today, provenance usually represents a simple directed graph, describing one level of 
abstraction of an environment or process (e.g., a single workflow representation [90], [91]). 
Some systems such as Pegasus provide details about the environment in which the workflow is 
executed. Workflows are treated as black boxes irrespective of their internal complexity. 
However, scientific discovery rarely follows a straight path and instead is characterized by trial 
and error of different approaches and reuse of partial prior results and methods. Science is 
inherently collaborative, with the processes of different researchers aligning and intersecting at 
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different intervals. We can see similar collaborative behaviors in complex, extreme-scale 
computing environments, where the interactions of applications, workflows, system software, 
and hardware intersect and align at different times in different ways. Because these interactions 
can have a profound impact on workflow performance, accuracy, and traceability, it is important 
to adequately capture these interactions to support prediction, optimization, and validation. In 
terms of provenance, such interactions can be seen as independent streams of provenance that 
need to connect, interact, and align. 

State of the Art: 
Before 2011, the community developed a range of workflow provenance models including tool-
specific solutions (e.g., Vistrails in UVCDAT [92]) and more standardized formats such as D-
PROV [93]. To enable greater interoperability between provenance models, a working group for 
the World Wide Web Consortium (W3C) defined the core specification for an open provenance 
model (OPM) [60] in 2011. Subsequently, a range of OPM-compliant workflow provenance 
models have been developed, such as OPMW [62], D-OPM [61], and the work of Lim et al. [63]. 
All these models focus exclusively on the description of the workflow, usually in graph form, 
describing its components and the data utilized [58], [94]–[96]. Some of the existing provenance 
models can account for decisions made by the workflow; few capture information such as 
resource scheduling. All models treat workflow tasks as black boxes, with few details attached 
and none of them captures details of the execution environment. 

Challenges: 
With the advent of complex workflows in extreme-scale computing environments, new 
opportunities for provenance usage are emerging, such as validating workflow performance, 
traceability of workflow execution, and workflow reproducibility. Addressing these tasks requires 
the additional capture of more detailed information about the tasks, the execution environment, 
and WMS itself. Furthermore, we need to be able to account for the interconnected nature of 
different levels of the system software, application stack, distributed systems, hierarchical 
workflows, and scientific collaboration itself. These developments require a fundamental shift in 
how we describe provenance: moving from solutions for one abstraction level to a time series of 
different states, with different components and resource needs that are potentially 
interconnected during certain time ranges. 

With increasing costs of data movement and I/O bottlenecks at extreme scale, workflows for 
computational science must shift from saving data for post hoc analysis to incorporating various 
forms of data analysis and visualization in situ. A key challenge is the development of 
sufficiently descriptive and detailed provenance models to capture adaptive data reduction 
processes at runtime to enable further processing, validation, and interpretation post hoc. 
Today, provenance captures what the workflow has done, but it might be worthwhile considering 
whether the same models could express what is likely to happen. If so, they could be used to 
express future resource needs to the workflow’s execution environment. 
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R&D Needed: 
1. Scalability. Research will be needed into new provenance models that are suitable for 
supporting new usage models. This work will need to consider the tradeoffs between the 
required expressivity and level of detail versus the volume of information produced. 
2. Heterogeneity. We need to investigate how to move from one provenance model with one 
stream of provenance (i.e., from a workflow) to a system where we have many streams that 
align and intersect at certain time intervals. 

4.3.2 Capture 

Workflow provenance to date is captured through a variety of mechanisms; few have, however, 
been designed to work efficiently in extreme-scale environments for complex workflows. 

State of the Art: 
The methods for provenance collection generally fall into three categories: workflow event 
listeners, application logs, and direct calls to a provenance vocabulary-based API. Workflow 
listeners provide a means to directly collect and record workflow events such as start/stop time 
stamps and parameters/data used. Workflow provenance is typically asynchronously collected, 
and workflow events are ordered by the calling order, making transitive closure possible. For 
application provenance vocabulary APIs, provenance is collected through API calls at 
application execution time; any provenance collected relies on the developer making calls to the 
API [97], [98]. For log files, event history is derived from logs at runtime and reconstructed as 
provenance by using a provenance vocabulary API [99]. Logger APIs support logging at 
different granularities: fatal, error, warn, info, debug, and trace. Interpretation of the log file 
entries is done through a monitor application that analyzes the log files and creates the 
provenance entries [100], [101]. The majority of the available solutions focused on the collection 
of relatively low velocity and volume provenance data; only a few projects have started to 
explore high-volume, high-velocity capture mechanisms. One approach is the use of messaging 
services such as Apache Axis2/RabbitMQ [102] or Apache Kafka/AVRO [103] to facilitate high-
velocity provenance transmission. In distributed or extreme-scale computing environments, 
provenance capture can at times be unreliable [104] and lead to incomplete provenance 
records. 

Challenges: 
Existing workflow provenance capture solutions are effective for low-volume capture 
requirements. If the community wants to support new provenance applications that require high-
velocity provenance capture, then new approaches, in particular for extreme-scale systems with 
deep memory hierarchies, have to be found. 

The structure and content of provenance records can be incomplete [105], in particular in 
extreme-scale environments. Dropped messages can result in missing nodes or edges in the 
provenance graph. Soft, hard, or silent errors can lead to missing or incorrect content in 
provenance messages. Furthermore, interrupted or failed workflow processes due to system 
errors can lead to incomplete provenance graphs. 
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R&D Needed: 
1. Velocity. Research is needed in high-velocity provenance capture mechanisms in extreme-
scale HPC and DAIC environments. 
2. Completeness. Reliable capture of complete and correct provenance data in extreme-scale 
environments will require new capture approaches, in particular when coupled with high-velocity 
capture methods. 

4.3.3 Communication across System Software 

In complex HPC and DAIC environments, the resources used, their properties, and resilience 
strategies can have a significant impact on the WMS performance, correctness, and 
reproducibility. For optimized performance and correctness, increasingly adaptive WMSs would 
ideally be aware of OS/R actions. Conversely, the WMS might provide critical information to the 
OS/R to help with its operation and resource allocation. To date, no common approach is 
available that would enable processes to communicate across the system stack with each other. 
Provenance could provide such a mechanism, enabling the initial exchange and capture of 
relevant events, as well as post-event analysis. 

State of the Art: 
While the majority of provenance work is focused on data lineage and workflow documentation, 
a number of attempts have been made to develop provenance-enabled system services such 
as provenance-aware storage [106], [107], distributed storage [108], file system [109], 
distributed file systems [110], kernel [111], and networks [112], [112]. Few solutions, however, 
cover multiple aspects and levels of the operating system. Hi-Fi [111] is one of the most 
comprehensive conceptual approaches and offers a kernel-level approach to trace the data flow 
through systems, processes, and threads across files and file systems, memory mappings, 
pipes, message queues, and sockets. Other approaches [90], [91], [106] also aim to facilitate 
provenance capture across different system layers. However, none goes as deeply into the 
operating and storage systems layers as Hi-Fi. To date these systems have been tested only in 
small-scale, single-system environments. 

Challenges: 
None of the systems available today can communicate provenance across system layers. 
Indeed, the majority of the systems were implemented with post hoc forensic analysis in mind 
(i.e. storage in log files or databases); thus, they do not include provisions for real-time 
exchange, negotiation, and analysis. Only a few solutions have started to explore how to 
exchange and capture this type of extensive provenance across systems, in extreme-scale 
systems, or through complex memory hierarchies. Similarly, no system offers the ability to 
communicate with WMSs or humans. 
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R&D Needed: 
1. Software stack individual layer capture. The capture and utilization of provenance information 
across system software levels and distributed systems constitute a new field of research that 
will require investigations at many different levels. 
2. Interlayer communication. We need to study, characterize, and model the type of processes 
that are usefully supported by such an approach; what information needs to be captured, when, 
and to whom it needs to be communicated. Effective capture and communication mechanisms, 
in situ triage, and analysis are other areas of R&D need. 

4.3.4 Archival 

Provenance information, if captured in some detail, can create a significant volume of data. At 
extreme scale, even more provenance information will need to be captured, not only about the 
workflow itself, but also about the tasks it is executing and the environment in which it runs. 
However, the I/O bottleneck at extreme scale impacts the management of the increasing 
volume of provenance data, possibly motivating new representations. At the same time, we 
foresee a much more active usage of the provenance information in these environments. 
Effective archival and access mechanisms are needed to enable scientists and applications to 
utilize the captured provenance information. 

State of the Art: 
In the past, provenance was predominantly collected in log files [92], XML files, and relational 
databases [113], [114]. Today, we see an increasing shift to using RDF and graph databases 
[115] or systems such as HBASE [116]. However, all solutions have their limitations in terms of 
the speed at which provenance can be ingested, the volume of information that can be stored, 
and the efficiency with which information can be extracted. Proprietary commercial graph 
databases offer the best performance but are not a practical solution because of their costs. 
Hybrid graph and relational solutions [117], or in-memory, parallel graph databases such as 
SGEM [118], [119] could provide an alternative. In all cases, provenance can reach a significant 
size, at times far exceeding the size of the original data or workflow implementation [114]. For 
this reason, a significant research effort has focused on provenance compression techniques 
that leverage the inherent duplication across provenance collections. Factorization and 
inheritance are utilized to remove duplicate provenance entries, only storing a single instance 
[113]–[115]. All these methods are designed to work over collections of provenance, rather than 
individual records as one might see in situ. For streaming data environments, such as wireless 
sensor networks, methodologies such as arithmetic coding [120], dictionary-based compression 
[121], event-only recording [122], and overlay of provenance data [123] are used to reduce the 
footprint of the individual provenance object. Today, all provenance records are assumed to be 
of value in perpetuity; however, in extreme-scale environments with a wealth of new sources of 
provenance, this might not be the case. System health performance provenance might only be 
needed until the correct execution of a task has been confirmed. 
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Challenges: 
A key challenge when supporting complex workflows in extreme-scale environments is the 
provision of fast storage and retrieval for large volumes of provenance information from different 
sources. Of particular concern is the traversal of potentially large geographical distances 
between provenance-creating resources in DAIC environments and the deep memory 
hierarchies of HPC systems, not to mention the sheer volume and velocity of the provenance 
information. 

R&D Needed: 
1. Representation. Increasing provenance data volume and velocity together with the I/O 
bottleneck at extreme-scale motivates research in more efficient representation, compression, 
and in situ processing of provenance data. 
2. Storage and delivery. Research is needed to evaluate effective storage and delivery 
approaches for provenance objects including fast storage, search, and retrieval in DAIC and 
HPC environments. A deeper understanding is needed of provenance flow and usage 
characteristics for different classes of extreme-scale workflows. 
3. Tools. Tools are required that can characterize and model this flow for classes of workflows in 
a variety of execution environments. 
4. Performance and energy tradeoffs. Also needed is investigation of performance and energy 
tradeoffs between different archival and delivery locations and methods: specifically, 
approaches that span multiple systems and memory hierarchy levels need to be evaluated. 
5. Speed. While much research has been done covering different archival methods and 
organization, further work is needed on the fast storage and retrieval of extreme-scale 
provenance information in order to support real-time decision-making. 
6. Resilience. Furthermore, if the archival system includes unreliable resources (e.g., interim 
storage in network devices or exascale memory), resiliency measures, and their performance 
and energy costs need to be considered. 

4.3.5 Usage, Analysis, and Data Mining 

While major research efforts have focused on general approaches to describe, capture, and 
manage provenance data, analysis of these data today is ad hoc and focused on specific 
application cases. 

State of the Art: 
Provenance analysis generally is used to extract knowledge from a provenance collection, or in 
rare cases to validate the quality of the provenance. Mining of provenance data has emerged as 
a key approach for its analysis, for both relational and graph databases. The main usage of 
provenance mining focuses on extracting key features and trends from large volumes of 
provenance information that is complex and rich in features. A range of approaches have been 
developed to aid the design or amendment of workflows through recommender systems based 
on past provenance information. Methods include event log file mining [124], [125], 
recommendations based on data dependencies [126]–[128], or a combination of the two 
approaches [129]. Provenance can be structurally incomplete, include erroneous or incomplete 
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information, or be inconsistent. Its correctness can be assessed through contextual analysis, 
while completeness can be assessed through structural analysis [105]. 

Challenges: 
New types of provenance information and extreme-scale DAIC and HPC usage environments 
are opening new avenues to utilize provenance information effectively for the validation and 
verification of workflows, workflow performance variability investigations, performance 
improvements, workflow resilience, workflow result interpretation, and provenance as a 
communication media between workflows and underpinning system software services. Some of 
these use cases will require the ability to interactively explore and investigate large volumes of 
complex, multilevel provenance information, turning it into actionable insights. Others ill require 
the summation and delivery of provenance information to operational processes in fixed-time 
windows. Overall, there is a particular interest in researching and characterizing the new use 
cases and determining the analytical approaches that will be required to satisfy these. 

R&D Needed: 
1. Representation. Research is needed to understand and characterize provenance analysis 
models as they will be required in HPC and DAIC extreme-scale workflows. 
2. Analysis. This research will tie directly to the other research themes described in this section, 
providing the means to analyze large and complex provenance information, both in situ and post 
hoc. 

4.4 Validation 

The increasing complexity of both workflows and their computational environments makes it 
critical to provide the HPC community with the approaches, methods, and tools to ensure that 
workflows are executed with sufficient reproducibility. The dynamics of complex workflows can 
range from a simple bag of tasks (e.g., MG-RAST [130] and DOCK [131]) and sets of distributed 
applications with intermediate key-value pairs that from MapReduce (e.g., data histograms for 
high energy physics [132] and object ordering [133]), to more sophisticated iterative chains of 
MapReduce jobs (e.g., graph mining [134]), sets of distributed applications with multiple stages 
using files for intermediate data (e.g., Montage [135], BLAST [136], and CyberShake post-
processing [137]), to iterative applications with a varying sets of tasks that must be run to 
completion in each iteration (e.g., Kalman filtering [138]). Extreme-scale systems, with their 
higher degrees of concurrency, and in situ data analysis that is triggered by specific events in 
very large-scale modeling and simulation applications, will further accentuate the community’s 
need for validation and reproducibility criteria [139]. 

Performance and accuracy validation are expected to become more important, from being 
purely post hoc to becoming a key run-time function that ultimately enables mitigation and 
optimization at the extreme-scale. Provenance as defined in Section 4.3 can provide a 
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framework for capturing and relating information critical to in situ and post hoc validation of 
workflow performance, reproducibility, and accuracy. 

4.4.1 Performance Validation and Predictability 

State of the Art: 
Application-specific performance tools are available for performance validation and prediction 
[140]. While we have sophisticated tools to monitor, model, and predict the performance of 
single applications, no comparable capabilities exist for complex HPC or DAIC workflows. The 
situation is aggravated by the fact that large parts of the WMS are hidden to scientists. Attempts 
to address the situation include skeletons for performance prediction [141]–[143] and targeted 
distributed-computing middleware such as Pegasus [27], [144], [145] and Swift [53], [146], [147]. 

Validation goes hand in hand with predictability. Science validation is achieved by repeating 
simulations or repeating the data analysis task and comparing the repeated results with real-
world results for reproducibility [148]. For extreme-scale workflows, however, the meaning of 
performance prediction and result reproducibility needs to be reviewed. When referring to 
performance prediction, instead of the traditional definition of performance as average time to 
solution for the single workflow, scientists use ad hoc performance metrics ranging from 
executing as fast as possible, to being done by a certain time, to minimizing resource use (e.g., 
energy, disk, memory, or core-hours). 

Communities other than HPC can provide hints for addressing these issues. For example, 
service-level agreements (SLAs) in cloud computing are not HPC-oriented. Instead, they build in 
abort mechanics for which repeated results of the same workflow are considered sufficiently 
similar (and thus delivered to the scientist) if within a defined region of interest or tolerance. In 
other words, cloud executions deploy the concept of an accurate-enough service within a 
certain time threshold and amount of resources. For example, a search does not explore all the 
data but just finds the top 50 results within an acceptable time. An open question here is 
whether we can use this approach from the cloud community and develop a related vision of 
performance—a vision that is latency driven but preserves a sufficient level of scientific 
accuracy and result reproducibility. 

Challenges: 
Performance validation. Performance goals can be expressed and measured either for the 
entire facility or for the specific workflow, and how to best express performance goals and 
assess their achievement for a facility versus for a specific workflow is an open challenge. Both 
cases have a wide range of objectives (e.g., resource utilization, in-time delivery of results, 
energy usage minimization, and accuracy). It is unclear exactly what metrics need to be 
monitored, how they can be captured, and at what granularity performance must be predicted 
and validated, all the while ensuring that science goals are being met. 

As the complexity of applications increases, the workflow must play a major role in application 
performance prediction. The question is how the scientist can keep track of aspects of the 
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workflow execution at the exascale, especially when competing for resources with other 
workflows and when frequent unexpected events occur (e.g., silent errors and node failures). 
Information that can provide insights into the entire execution environment can be overwhelming 
and substantially slow the entire workflow execution. Clear standards are needed that define the 
responsibility of the workflow and the information that needs to be tracked at a particular level, 
be it at the application, workflow, or system level. 

R&D Needed: 
1. Capabilities. Research is needed to extend performance validation capabilities and 
approaches from single applications to ensembles of applications and their workflows. 
2. Tools. New research should promote the design and implementation of tools capable of 
monitoring and modeling runtime performance—in order to validate and improve future 
predictions and models—by capturing event information at different levels and granularity. 
3. Analysis. I/O bottlenecks make the in situ analysis of the performance data essential. 
4. Feedback. Intelligent schedulers should use the knowledge of events’ occurrences to 
optimize the performance according to defined goals, despite the challenges introduced by new 
extreme-scale architectures, execution environments, geographical distribution, and scientific 
instruments. Runtime use of acquired knowledge can be used to continually improve 
performance and optimize resource use at the scheduler level—for example, by simultaneously 
running storage- and compute-intensive jobs. 
5. Predictability. Research is needed that targets the integration of applications, programming 
models, and OS/R to pursue performance predictability. Solutions should handle information 
flow between all layers of the OS/R, WMS, and applications, with the goal of observing and 
attributing performance and accuracy deviations to specific workflow paths and system 
resources. 

4.4.2 Accuracy and Scientific Reproducibility 

State of the Art: 
The definition of result reproducibility often depends on the community or even the individual 
scientist’s point of view. It may range from stringent bitwise reproducibility to reproducibility of 
the scientific conclusions across multiple executions. When different methods are used, 
reproducibility refers to “closeness of agreement among repeated simulation results under the 
same initial conditions over time,” and accuracy refers to “conformity of a resulted value to an 
accepted standard (or scientific laws)” [149]. 

The responsibility for guaranteeing accuracy, validation, and data reproducibility is traditionally 
the user’s, through choice of algorithm and implementation [150], [151]. The inability to 
reproduce data at the application level can be the result of arithmetic and algorithm factors 
[152], [153] or a simulation setting. Arithmetic and algorithm factors include the nonassociativity 
of floating-point arithmetic and nondeterminism in the order of operations. In response to these 
challenges, mathematical techniques can be applied to mitigate the degree to which computed 
sums exhibit sensitivity to reduction order. Such techniques can range from simple fixed-
reduction orders (for which imposing the same order adds cost in time and power [154]), to 
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interval arithmetic (for which the interval range can explode and 10x slowdowns have been 
observed [155]), and to extended precisions (for which it is difficult to predict how much 
precision a specific application run needs [156]). Compensated summation algorithms [157], 
composite precision [158]–[160], and prerounded algorithms [161], [162] show promising results 
but require some level of code modification and performance tuning [163]. 

Some disagreement exists in defining who is responsible for performance and results validation 
(i.e., the application, workflow, or system). One problem is that users may not know or fully 
understand all the variables that need to be controlled and hence do not report these variables 
or do not appropriately control them in the simulations. Additionally, physical mappings, as 
occur in the solutions to differential equations for most of nature’s most interesting systems, are 
themselves chaotic at some level. For example, two trajectories of the same folding protein 
initiated infinitesimally close to one another can diverge because of the level of ergodicity of the 
system [164]. Thus, a repeated simulation may not yield the same result or the same scientific 
conclusions. No test suite exists to check regularly for workflow and system inaccuracy 
associated with arithmetic errors, algorithmic factors, or simulation settings. In other words, no 
component of the entire system is watching the correctness of the workflow manager. 

Challenges: 
Workflow accuracy. By establishing the accuracy of components a priori, workflow systems can 
monitor specific variables to see whether the workflow is progressing as intended. The use of 
data mining, machine learning, and statistical methods can identify deviations and possibly 
correct them. However, the hidden parts of increasingly complex workflows remain a major 
challenge when pursuing accuracy and reproducibility. In order to answer the questions of how 
to convey only the needed information to the scientist and to determine exactly what that 
information is, a tradeoff must be made between the workflow’s information capture and the 
simulation’s accuracy. Specifically, if a workflow does not provide enough information to repeat 
the simulation, then its scientific validity cannot be tested or improved. Conversely, capturing too 
much information is a deterrent to workflow performance [165], [166]. 

The tradeoff should be driven by the use of accuracy metrics that determine what data to keep 
or throw away. Open questions include how much the scientist can be added in the loop and 
what role the scientist can play in determining accuracy (i.e., what deviation is acceptable) and 
in deciding on suitable actions. Workflows need to provide documentation of the paths taken 
and to check that the overall simulation is behaving correctly. In other words, we envision 
workflows capable of supporting the scientist in validating science data. 

R&D Needed: 
1. Accuracy of results. We need to pursue reproducibility of results in order to guarantee 
accurate science. Reproducibility is the basis for many validation approaches. Typically, 
reproducibility relies on a comparison between different models or between models and 
observations or experiments. When publishing and disseminating results, we need to provide 
sufficient provenance so that others can reproduce the results. 
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2. Validation driven by science needs. Reproducibility, enabled by provenance, is a fundamental 
requirement for the validation of complex workflows; however, the level, detail, and lifetime of 
the information gathered must be regulated by the reproducibility drivers (e.g., scientific 
explanation, performance validation, accuracy validation) and any events that occur during 
execution (e.g., delays, user interaction, errors). 
3. Automatic annotation. Automatic annotations embedded in multilayer and modular workflows 
are desirable, where workflows provide documentation of paths taken and resources used, with 
the aim of making workflows reproducible. While applications must continue to be responsible 
for providing results of acceptable accuracy; in many instances, the workflow is the right place 
to validate and propagate performance and accuracy expectations and achievements. 
4. Algorithms and system software. Any solution explored for exascale systems should consider 
the impact on reproducibility of numerical approaches, programming models, execution 
environments, system architecture, system optimization, component faults, workflow 
optimization, and user steering. 

4.5 Workflow Science 

Over the past decade, scientific workflows have emerged and proved to be an enabling 
technology for computational science. This situation has happened at a time when there have 
been many advances in scientific computing technologies including web, grid, cloud, big Data, 
and tera/peta/exascale computing systems. Now, more than ever, efficient WMSs are needed to 
connect computationally intensive codes and instruments, in situ analysis methodologies, near-
real-time processing, and interactive access to analytical visualizations. 

To date, workflow research has focused mainly on automation of the science data collection 
process; conformance with standards and agreements to move data, metadata, and instructions 
between workflow tasks; and emerging of in situ and real-time experimental data. As 
requirements for workflow management expand and workflow technologies mature, new 
research needs to pave the way for workflow science: a scientific approach to prove the correct 
operation of workflows and infrastructure leading to development of new workflow models and 
experiments. 

In other words, research is required not only to develop and enhance workflow tools and 
services, but also to fully understand how workflows behave. Such research targets questions 
related to the expected operation of the workflow, its relationship with the infrastructure 
(computer, instrument, network, storage), and the trustworthiness and reproducibility of 
experimental results. As in other sciences, workflow science has three main branches that serve 
as three legs of discovery in this field: theory, computation, and experiment. These three 
branches have large and complex problem spaces spanning multiple scientific disciplines and 
communities with disparate legacy tools and services. With myriad disconnected results in the 
literature, there is a strong need for a common language, metrics, theory, and tools before 
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workflows can become useful at extreme scale. The practitioners of this new discipline will be 
the workflow scientists of tomorrow. 

State of the Art: 
To date, little work has been done in the area of theoretical workflow science. Most of the effort 
has focused on workflow development and enabling the use of workflow technologies. Workflow 
science is needed to develop the foundations for integrating the workflow with applications and 
computing systems. Such codesign will be based on models and simulations of applications and 
facility resources (computers, storage, clusters, networks, instruments). A systematic approach 
to experimentation is needed in order to validate the theories and simulations and to optimize 
scheduling and resource management. 

Challenges: 
Experimental workflow science. The experimental workflow science challenges include 
determining how to decide which data to collect, how to collect that data, and how to analyze it 
in terms of methods and tools. Along with experimentation come concerns of experiment 
repeatability and validation against theoretical models and simulations. 

Computational workflow science. Computational workflow science focuses on developing 
accurate but also forward looking simulations of workflow execution. Thus the challenges 
include the determination of the necessary models and simulation tools, issues of the efficiency 
and scalability of the simulations, and simulation validation. 

Theoretical workflow science. Much of the experimental and computation workflow science 
needs to rely on solid theory in order to provide important insights and knowledge. The 
challenges in developing a theoretical understanding of workflow behavior include 
characterizing the impact of the execution environment on workflow performance and behavior, 
determining what predictions can be made about workflow behavior on current and future 
infrastructures, and deciding what future infrastructures should be like in order to support 
efficient workflows. 

R&D Needed: 
1. Theory. Theoretical workflow science is complex systems research: new theories and 
experiments are needed for validation of behavior models of workflows under different 
computation models. More expressive workflow systems and languages are needed that can 
capture heterogeneous models of computation for workflows at extreme scale. 
2. Experimentation. A deeper analysis of profiling, system workloads, and workflow execution is 
needed to create new models for predicting performance. Simulations based on the results of 
these predictive workflow models are needed in order to optimize workflow execution at extreme 
scale. 
3. Dissemination. More R&D is needed to create new knowledge that explains observed 
behavior of scientific workflows. Community-centered knowledge repositories are needed to 
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openly share the experimental data and benchmarks; these will advance workflow science and 
lead to more reproducible research. 
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5 Summary of Findings and Research Priorities 

We first summarize here the findings presented in the preceding sections. We then prioritize the 
recommended research. Each subsection is divided into these areas: application requirements, 
hardware systems, software systems, WMS design and execution, programming and usability, 
provenance capture, validation, and workflow science. 

5.1 Findings 

Application requirements 
● Research is needed in the areas of automation, human interaction, provenance, and 

validation in order to support simulation HPC workflows. 
● In order to address the challenges of experimental and observational workflows, the 

WMS must coordinate the end-to-end workflow life cycle, including real-time scheduling 
and execution of measurement instruments and supercomputers. 

● Collaborative workflows are characterized by heterogeneous users and resources, and 
WMSs must be shareable across a diverse set of environments in order to be usable by 
all members of a collaboration. 

Hardware systems 
● Metrics are needed for evaluating performance, power, and productivity. How to 

measure productivity is an open question. Proxy applications to test workflow workloads 
are needed for such metrics. 

● Mechanisms for passing data between tasks without unnecessary data movement 
should be investigated. 

● Memory management systems that support scratchpad and NVM are needed for 
workflows. 

Systems software 
● Efficient low-overhead scheduling of multiple cooperative tasks, various forms of 

communication (messages, interrupts, publish-subscribe, etc.) between independent 
tasks, and provisioning of shared resources (e.g., shared storage) among tasks are 
needed from the OS/R to support the WMS. 

● The WMS needs HPC systems to support long-running global services that the WMS 
and its constituent workflow tasks can access. Such global management may be through 
a hierarchy of resource groupings (enclaves), with heterogeneous programming models 
and runtimes managing the resources within a given enclave or task. 

● The WMS needs to negotiate with the OS/R through a well-defined interface on behalf of 
the entire application workflow. The OS/R must provide the WMS with the system calls 
to coordinate various tasks (such as the simulation and data analysis codes) and 
capture the provenance that scientists need in order to support writing papers and 
validating scientific results, including capturing any changes from the initial workflow that 
result from human-in-the-loop interactive analysis and steering. 

WMS design and execution 
● Coupling control and data flow between heterogeneous components requires research 

in data flows that can buffer, pre-fetch, aggregate, and distribute data. 
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● Data management research must solve challenges in the transport, layout, attributes, 
and provenance of data 

● The convergence or cooperation between DAIC and HPC workflows presents 
challenges in managing non-uniform latency, task granularity, and reliability. 

Programming and usability 
● The diverse needs of workflows impact usability. For example, real-time workflows need 

immediate cognition. In addition, there are many different ways to express workflows 
spanning from simple to complex. Research is needed to identify common needs and 
expression patterns (akin to design patterns in software engineering) in workflows with 
respect to data management, error control, reproducibility, programmability, and 
mapping to physical resources. 

● Research is needed to determine appropriate levels of abstraction in the user interface 
for workflow systems and their component modules, including an interface for human-in-
the-loop interactive workflows. 

● Many commonalities exist between HPC and DAIC workflows. Although some examples 
of workflow applications cross HPC and DAIC boundaries, most are specific to a 
particular application. WMS and application components must be developed that operate 
with good performance across heterogeneous platforms. Understanding the role of 
containers, virtualization, and security—features found in DAIC—is needed in HPC. 
Understanding the effect of disruptive technologies such as deep memory hierarchies 
and NVM is needed as well. 

Provenance capture 
● Research is needed in new provenance models. These will support new usage models 

with many provenance streams that align and intersect at certain time intervals. 
● The capture and utilization of provenance across system software levels and distributed 

systems will require investigations at many different levels, including effective capture 
and communication mechanisms, effective fast storage, search, retrieval, in situ triage, 
and analysis. 

● Mining of provenance data has emerged as a key approach for its analysis, both for 
relational and graph databases. 

Validation 
● The increasing complexity of workflows and their computational environments make it 

critical to provide the community with the approaches, methods, and tools to ensure and 
validate that workflows are executed with reproducible behavior to meet scientific goals. 

● Exascale systems with their higher degrees of concurrency will further accentuate this 
community need. 

● Validation is expanding from a pure post hoc operation to a key runtime function that can 
enable dynamic mitigation and optimization. 

Workflow science 
● One role of workflow science is to develop and execute theoretical models that describe 

the expected behavior of workflows. 
● Workflows can be modeled computationally. The community should strive to design and 

execute computational simulations and models that describe the workflow behavior. 
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● More research is needed to design and execute large complex experiments in order to 
validate the function of scientific workflows and the facility resources (computers, 
storage devices, networks, instruments) used by these workflows. 

5.2 Research Priorities 

Application requirements 
Workflows for both computational and experimental sciences need investigation, as do 
workflows to support scientific collaboration. Sharing workflows, migrating workflows between 
different computing environments, accommodating different user roles, and combining different 
languages and software tools used by various users all require further research. 

Hardware systems 
Extreme-scale hardware challenges for workflows—power, performance, resilience, and 
productivity—require significant planning and investment in system software, programming 
environments, applications, and WMSs. Heterogeneous nodes, new memory systems including 
NVM, and little growth in bandwidth to external storage systems or networks dictate new use 
patterns for WMS that leverage in situ analytics and heterogeneous programming models for 
individual workflow tasks. 

System software 
Supercomputers today are intended to run single-program batch jobs, the opposite of 
workflows. Workflows by definition are collections of multiple programs whose execution must 
be coordinated by the WMS. Human interaction with the workflow (for example, to steer a 
computation in one program based on a result in another) is another challenge. Resource 
allocations must treat storage, I/O, and network capacity as first-class resources to be allocated, 
managed, and measured to the same degree as computing capacity is today. Scheduling HPC 
and DAIC resources over several systems will require cooperative schedulers that can 
coordinate with the WMS. Schedulers, resource allocators, and file systems will need to expose 
runtime provenance data. 

WMS design and execution 
The efficient management of DAIC and HPC workflows present challenges at multiple levels of 
software. At the base layer, coupling control and data flow between heterogeneous components 
requires expanding workflow links into data flows that can buffer, pre-fetch, aggregate, and 
distribute data. At a higher level of abstraction, managing the workflow must address 
concurrency, locality, and system topology if data movement is to be optimized at extreme 
scale. 

Programming and usability 
Major challenges include lack of standardization between numerous programming models for 
tasks and workflows, the interconnection between the programming of individual tasks and 
entire workflows, and the portability of both code and data across different locations in a 
potentially heterogeneous workflow that spans both HPC and DAIC resources. 
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Provenance capture 
WMSs offer a unique opportunity for provenance capture, because they encapsulate the 
process of solving a computational problem. The increasing scale and complexity of hardware 
and software systems, however, coupled with the composition of multiple tasks by workflows, 
complicates provenance capture. The velocity of provenance data generated at extreme scale 
requires new methods to compress, mine, analyze it, store, and share it. 

Validation 
The increasing complexity of workflows and their computational environments makes it critical to 
provide the approaches, methods, and tools to ensure that workflows are executed with 
sufficient reproducibility in terms of performance and accuracy. Validation of expected 
performance is a complex high-dimensional space of metrics over a heterogeneous computing 
architecture. Needed research directions include extending single-application performance 
validation tools to workflows of applications and developing methods to learn what levels of 
differences in science results are statistically significant. 

Workflow science 
Workflow science is a new field that studies the formal theory and design principles of workflow 
systems, develops analytical models for their performance and validation, and empirically 
measures the predicted behavior through experimentation. 
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6 Glossary 

ACME: Accelerated Climate Modeling for Energy 
ALS: Advanced Light Source 
ALCF: Argonne Leadership Computing Facility 
APS: Advanced Photon Source 
DAIC: distributed-area instruments and computing 
DAG: directed acyclic graph 
DRAM: dynamic random access memory 
EPSI: Center for Edge Physics Simulation 
FPGA: field-programmable gate array 
JGI: Joint Genome Institute 
HPC: high-performance computing 
ITER: International Thermonuclear Experimental Reactor 
KBase: Systems Biology Knowledgebase 
LHC: Large Hadron Collider 
LSST: Large Synoptic Survey Telescope 
MG-RAST: Metagenomics RAST Server 
MTBF: mean time between failure 
NERSC: National Energy Research Scientific Computing Center 
NVM: nonvolatile memory 
OS/R: operating system and runtime 
PTF: Palomar Transient Factory 
QoS: quality of service 
SLA: service-level agreement 
SOA: service-oriented architecture 
SSIO: storage systems and input/output 
ULFM: user-level fault mitigation 
WMS: workflow management system 
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