
	 	

	
	

	
	 	 	 	

	
	

	 	
	

	
	 	 	

	 	
	 	

	

	
	 	

	
	 	 	
	 	 	

	
	 	

	 	 	
	 	 	

	
	 	

	
	 	 	

	 	 	

	
	 	 	

	 	 	
	 	 	 	

	
	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	

	
	 	 	

	 	 	
	

	 	
	 	 	

	
	 	 	
	 	

	
	

	
	 	 	

	
	 	 	

	
	 	 	

	 	
	

	
	

	
	 	

	
	

	 	 	
	 	 	
	 	 	

	
	

	
	 	 	
	 	 	
	 	 	

	

Storage 	Systems	and	Input/Output	to	Support	
Extreme 	Scale 	Science

Report of	the	DOE	Workshops on	Storage	Systems and	Input/Output

Rockville,	Maryland
December 8-11,	2014

Meeting	Organizers
Robert Ross (ANL)	(lead	organizer)
Gary	Grider (LANL)
Evan	Felix (PNNL)
Mark	Gary 	(LLNL)

Science/Mission Representatives
Salman Habib (HEP)
Rob Neely (ASC)
Varis	Carey	(ExaCT)
David	Rogers (ASC)

Scott	Klasky (ORNL)
Ron	Oldfield	(SNL)
Galen Shipman (LANL)
John Wu (LBNL)

Dave	Richards	(ExMatEx)
Michael Glass (ASC)
Dean Williams (Climate)

Crosscutting	Computer Science Representatives
Pete Beckman (OS/Runtime)
Kerstin Kleese van Dam	(Workflow)
Ian	Foster 	(Collaboration	Technologies)
Oliver Rubel (Analysis and Visualization)

Computer Scientist Participants
Hasan Abbasi (ORNL)
Eric	Barton	(Intel)
Michael	Bender (SUNY 	SB)
John Bent (EMC)
Suren	Byna	(LBNL)
Phil Carns (ANL)
John Chandy	(UConn)
Matt	Curry 	(SNL)
Bronis 	de 	Supinski 	(LLNL)
Garth	Gibson	(CMU)
Kevin Harms (ANL)
Quincey	Koziol	(The 	HDF 	Group)
Bradley Kuszmaul (MIT)
Wei-keng	Liao 	(Northwestern)
Darrell Long (UCSC)
Carlos	Maltzahn (UCSC)

Nathan	Debardeleben	(Resilience)
Maya Gokhale (Analytics and Workflow)
Jay Lofstead (LAN Networking and OS)

Meghan	McClelland 	(Seagate)
Ethan	Miller 	(UCSC)
Adam	Moody (LLNL)
Paul 	Nowoczynski	(DDN)
Manish 	Parashar 	(Rutgers)
Narasimha Reddy (TAMU)
Brad Settlemyer (LANL)
Rajeev Thakur (ANL)
Sudharshan	Vazhkudai	(ORNL)
Lee	Ward	(SNL)
Brent	Welch 	(Google)
Matt Wolf (GA	Tech)
Cornell Wright (LANL)
Wenji Wu (FNAL)
Erez 	Zadok	(SUNY	SB)

	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	

	 	 	 	
	 	 	 	
	 	 	 	 	

	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	
	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

	 	 	 	 	 	
	 	 	 	 	
	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	

Table	of Contents
TABLE OF CONTENTS .. I

1 EXECUTIVE	SUMMARY .. 3

2 INTRODUCTION... 6

3 MISSION DRIVERS... 8
3.1 OVERVIEW .. 8
3.2 WORKLOAD CHARACTERISTICS ... 10
3.3 INPUT/OUTPUT CHARACTERISTICS.. 12
3.4 IMPLICATIONS OF IN	SITU ANALYSIS ON	THE SSIO COMMUNITY ... 15
3.5 DATA	ORGANIZATION	AND	ARCHIVING.. 16
3.6 METADATA AND PROVENANCE.. 19
3.7 SUMMARY... 20

4 COMPUTER SCIENCE CHALLENGES .. 22
4.1 HARDWARE/SOFTWARE ARCHITECTURES ... 22
4.1.1 Networks .. 22
4.1.2 Deep Storage Hierarchies and Nonvolatile Memory .. 24
4.1.3 Active Storage.. 26
4.1.4 Resilience ... 28
4.1.5 Understandability .. 29
4.1.6 Autonomics ... 31
4.1.7 Security ... 32
4.1.8 New Paradigms ... 33

4.2 METADATA, NAME SPACES, AND	PROVENANCE ... 35
4.2.1 Metadata.. 35
4.2.2 Namespaces .. 37
4.2.3 Provenance.. 38

4.3 SUPPORTING SCIENCE DATA .. 40
4.3.1 Programming	Model Integration.. 41
4.3.2 Workflows.. 43
4.3.3 I/O Middleware and Libraries .. 44
4.3.4 Data Abstractions and Representation .. 46

4.4 INTEGRATION	WITH	EXTERNAL SERVICES .. 49
4.4.1 Scheduling and	Resource Management ... 49
4.4.2 System Monitoring... 50
4.4.3 Workflow and Orchestration .. 51
4.4.4 Archives .. 52

4.5 UNDERSTANDING STORAGE	SYSTEMS AND I/O ... 53
4.5.1 Workload Characterization... 54
4.5.2 Modeling and Simulation.. 56

5 SUPPORTING ACTIVITIES ... 59
5.1 COMPUTING, NETWORKING, AND	STORAGE	RESOURCES.. 59
5.2 AVAILABILITY	OF HIGHLY DOCUMENTED OPERATIONAL DATA ... 60
5.3 EDUCATIONAL	SUPPORT ... 61

6 SUMMARY OF FINDINGS	AND PRIORITY	RESEARCH ... 62
6.1 FINDINGS.. 62
6.2 PRIORITY RESEARCH DIRECTIONS .. 63

Storage Systems and Input/Output to Support Extreme Scale Science i

	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	
	 	 	 	

	
	 	

7 GLOSSARY .. 65

8 REFERENCES.. 67

9 ACKNOWLEDGMENTS .. 89

Storage Systems and Input/Output to Support Extreme Scale Science ii

 	 		
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	 	
	 	

	
	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	
	 	 	 	

1 Executive Summary

Storage systems are a foundational component of computational, experimental, and
observational science	today. The success of Department of Energy (DOE) activities
in	 these areas is inextricably tied to the usability, performance, and reliability of
storage	and	input/output	(I/O)	technologies. In December 2014, a diverse group of
domain and computer scientists from	 the Office of Science, the National Nuclear	
Security Administration, industry, and academia assembled in Rockville, Maryland,
to review the storage system	and input/output (SSIO) requirements for simulation-
driven	 activities associated with DOE’s science,	 energy,	 and national	 security	
missions and to assess the state of the art in key storage system	and I/O areas. The	
activity	was 	organized 	into 	three 	workshops.

The	first workshop consisted of	a series of talks from	six DOE and NNSA	application
representatives, many of whom	 are engaged in exascale application co-design	
activities.	The talks detailed the characteristics of the simulation and analysis tasks
that	the researchers	expect to perform	and the I/O characteristics of these tasks; the
anticipated use of new storage technologies such as nonvolatile memory in	
accomplishing their science goals; the ways in	which data is	organized and searched	
and how the history of that data maintained; and the expected impact of issues	such	
as increasing error rates and technologies such as compression. Following each	talk
the	 group	 discussed the key points raised	 and	 potential areas	 for	 future	 research	
and development.

The computing landscape is changing rapidly, and so	the	second	workshop focused	
on	how other	computer science technologies (i.e.,	computer architecture, operating	
systems and runtimes, networking systems, workflow systems, data analysis and
visualization algorithms, resilience techniques, and collaboration tools) will
influence, and will be influenced by, future SSIO solutions. Seven talks by computer
science	 experts in these fields identified the manner in which these systems are
interrelated,	 and discussion	 with these experts further focused attention	 on	 key
issues.

The information from	 these two workshops fed	 into the third workshop,	 during	
which SSIO	community members engaged in open discussion on potential research
directions in SSIO to support extreme-scale	 simulation-based DOE science. During
five	 interactive	 sessions,	 the	 participants	 openly	 discussed	 the	 state	 of	 the	 art in	
specific	SSIO technology	areas	and	identified	challenges	and	areas	where	additional
research	was	needed	in these	areas.

The	workshops	generated	specific	findings	that 	are	further	detailed	in	this	report:
• In	 situ data analysis	 is	 already an important component of many

applications. The	question	is	not whether	in situ analysis will	play	a	role in	
future computational and data-intensive	 science	 but,	 rather, how this	
capability will be manifested.

	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	
	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	
	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

• The inclusion of solid state and new disk-based storage layers	 is	
dramatically	 complicating	 the storage hierarchy. Standard methods of	
storage	organization	(e.g., parallel file systems, archival storage management
systems) must significantly	 change,	 if	 not be	 replaced,	 to	 provide	 effective	
SSIO for future platforms.

• To work productively, scientists	 need an integrated, coherent view of
the storage resources	 at their disposal and a common method of
managing	and accessing	data	on these resources. Meeting	this need will	
require new metadata capabilities and integration with external	 storage in	
conjunction with improvements in SSIO architectures.

• New requirements	 for public access	 to digital data required for
validation	of	published results	are poised to fundamentally change the
role of	 metadata in	 DOE Office of Science and NNSA mission-critical
applications.	 These	 changes	 will mandate new	 approaches	 for	 capturing	
provenance and new methods for exploring extreme scale datasets.

• The emerging	 use of alternative programming	 languages	 and task-
based workflows	 drives	 the development of SSIO software. Such	
software will need to be more flexible and to better integrate with upper
layers 	in	the 	software 	stack.	

• Scientists	 require increasingly complex and specialized data
abstractions	 in order	 to improve their	productivity and	 the quality of	
their science. Significant improvements in SSIO data abstractions and their
representations in the storage system	 are required to support these needs	
and to simplify upper layers of the stack.

• Current SSIO designs	are hindered by their isolation from system-level	
resource management, monitoring, and workflow systems. Cooperation
with these critical system	services will be mandatory for the success of SSIO	
in future platforms.

• Many important aspects	of application and system behavior related	to	
SSIO	 are obscured from view. Recent	 successes	 in	 capturing	 application
SSIO	behavior have	highlighted	the	value	of	this information for performance
debugging,	system	procurement, and steering of	SSIO	research; but	a	better
understanding	of behavior is 	critical	to	SSIO	effectiveness.

• A key need for successful research and development in SSIO is a	new	
and enhanced ecosystem. This ecosystem	must provide community access	
to rich sources of data on applications and systems, test environments in
which new technologies can be evaluated, and investments that bring new
talent into the community.

Four priority research directions emerged from	this activity:
• In	 the	 area	 of SSIO	 architectures,	 additional	 research is needed to develop	

solutions to the challenge of managing upcoming deep and heterogeneous
storage hierarchies, including storage in the compute system, and to explore
alternative paradigms to the current file system	 model of	 access	 and	
organization.

Storage Systems and Input/Output to Support Extreme Scale Science 4

	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	

• In the area of metadata, name spaces, and provenance, research is needed to
devise new methods of capturing, organizing, presenting, and exploring rich
metadata from	 DOE science activities, including breaking away from	 the
current file model of data storage prevalent in DOE supercomputing facilities	
and 	science.

• In	the	area	of supporting	science	data,	research	is needed to	develop	the	next	
generation of I/O middleware and services in support of the broad collection
of	HPC	and	experimental and observational data needs	and	to	integrate	with	
and support new programming abstractions and workflow systems as they
are 	adopted.

• In the area of understanding SSIO, research is needed to improve our ability
to characterize the storage activities of DOE scientists and to model and
predict the behavior of SSIO activities on future systems.

These	findings	and	priorities	are 	discussed 	in	greater 	detail	in	Section	6.

Storage Systems and Input/Output to Support Extreme Scale Science 5

	 	 	 	 	 	 	 	 	

 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	

	 	 	 	 	 	 	 	 	
	 	 	

2 Introduction

Computation and simulation advance knowledge in science, energy,	 and	 national
security.	The	United	States has	been	a leader	in	high-performance computing (HPC)
for decades, and U.S. researchers greatly benefit from	 open access to advanced
computing facilities, software, and programming tools. As HPC systems become
more capable, computational scientists are now turning their attention to new
challenges, including the certification of complex engineered systems such as new
reactor	 designs and the analysis of climate mitigation alternatives such as carbon
sequestration approaches. Problems of this type demonstrate a need for computing
power 1,000 times greater than we have today; and the solution	 is exascale
computing, the next milestone in HPC capability. At the same time, high-
performance computing is playing an increasingly	 critical role	 in	 understanding	
experimental and observational data (EOD) from	 platforms such as the Large
Hadron Collider, which is a key tool in better understanding fundamental questions
in physics, and the upcoming Large Synoptic Survey Telescope,	 which	 when	
deployed	will provide	greater	 insight into	 the	structure	of	 the	Universe. Achieving
the power efficiency, reliability, and programmability goals for exascale HPC and for
EOD will have dramatic impacts on computing at all scales, from	 personal	
computers (PCs) to mid-range computing and beyond; and the broader application	
of exascale computing can provide tremendous advantages for fundamental science
and industrial competitiveness.

The	 disparity	 between	 the rate of increase in the compute capabilities of HPC
systems compared with the rate of increase in	 storage bandwidths creates a	
widening	 gap	 between	 the	 capability	 of	 vendor	 storage	 options	 and	 HPC	
requirements,	 forcing	 the	 adoption	 of	 new	 storage	 technologies.	 The	 explosion	 in	
core	 counts	 resulting from	 changes in system	 architectures is dramatically
increasing the number of parties that might concurrently interact with the storage
system, mandating new ways of coordinating access. Additionally,	 the	 increase	 in	
data generation from	DOE computational and experimental science applications	will
result in the	 need	 to	 manage complex data on the scale of tens to hundreds of	
petabytes or more, requiring new methods of organizing and finding data and of
maintaining resiliency. Systems in the FY2017–2018 timeframe will be either hybrid
multi-core	or	many-core systems with dozens to hundreds of homogeneous cores
per node and will incorporate multiple levels of memory, including nonvolatile
storage,	 blurring the demarcation point between storage and memory. Storage
systems and I/O (SSIO) technologies must be developed and productized to meet
science needs on these systems. Systems in the FY2020–2021 timeframe will have
an order of magnitude more cores and possibly	 even	 deeper storage hierarchies,	
again mandating rapid development and productization of SSIO technologies.

The	 purpose	 of	 this	 report is	 to	 identify	 essential areas	 of	 research	 in	 SSIO
technologies necessary to enable the next	generation	of DOE simulation and data-
intensive	science.	SSIO technologies	include	a range	of	hardware	and	software, from	

Storage Systems and Input/Output to Support Extreme Scale Science 6

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

the low-level parallel file system	(e.g., Lustre, GPFS) and archival storage (e.g., HPSS)
up	 to	 libraries that	 serve	 as the	 interfaces to	 applications and provide format
interoperability, as well as software that monitors and reports on the utilization of
the storage system.

This	 report stems from	 a December 2014 DOE workshop series that brought
together application	 scientists from	multiple disciplines; computer scientists from	
crosscutting	 areas	 of	 research, including data management, analytics and
visualization, operating and runtime systems, computer architecture; and storage
systems and I/O experts from	 the Office of Science, the National Nuclear Security	
Administration, industry, and academia. Representatives from	DOE supercomputing
facilities	also	participated.

The	first workshop	focused	on	application	use cases and critical SSIO requirements
for	 achieving	 DOE mission goals on future extreme-scale platforms. The	 second	
workshop	 focused on critical SSIO requirements and points for coordination	
between SSIO and other computer science areas related to extreme-scale	 DOE
systems. The information from	 these first two workshops informed the third
workshop, during which SSIO community members engaged in open discussion on
potential research directions in SSIO to support extreme-scale	 DOE science. The
discussion focused on simulation-based science,	 but	 the results of the discussion	
could	 also	 be	 applicable to experimental and observational data (EOD) analysis
when this analysis is performed on large scale computing systems. Additional study
is	warranted	to	better	understand	EOD	needs.

The report is organized as follows. Section 3 summarizes the DOE mission	
requirements for SSIO. Section 4 discusses in depth	the	state	of	the	art,	challenges,	
and required research and development needed to advance SSIO technologies in
support of DOE mission goals. Section 5 captures workshop discussion related to
other	support that is needed for the SSIO R&D community to be most effective.

Storage Systems and Input/Output to Support Extreme Scale Science 7

	 	 	 	 	 	 	 	 	

 	 	
	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 			

	
	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	

 	
	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

																																																								
	 	

3 Mission Drivers

To better understand the application requirements, the workshop organizers
invited input from	a group of distinguished scientists developing application codes
for	 next-generation	 and	 future	 exascale	 DOE	 platforms. These	 scientists	 are	
involved	 in	 a wide	 range	 of	 DOE Office of Science and NNSA mission-critical
applications.	 The scientists reported	on anticipated	 scientific	 challenges	 and	how
SSIO capabilities might enable them	 to meet these	 challenges.	 Many of	 the	
discussions	 were based on work from	 the NNSA	 Advanced Simulation and
Computing (ASC) code teams and the SciDAC co-design	centers,1 which are charged
to ensure that future	architectures	are	well suited	for	DOE	target	applications.	These
centers contain the combined expertise of vendors, hardware architects, system	
software developers, domain scientists, computer scientists, and applied
mathematicians. Their work is at the forefront of anticipating features and	tradeoffs	
in	the	exascale	hardware,	software, and underlying algorithms.

This	report also	 incorporates extensive knowledge from	the organizing committee
on numerous applications from	 fusion	 energy,	 materials science,	 climate science,
accelerator	physics, and other domains.

3.1 Overview

The	 application	 drivers	 can	 be	 considered “big	 data”	 science relevant	 to DOE	
missions, in that they have significant data requirements in addition to significant
computational needs.	 In	 the	 subsequent discussion,	 we refer to them	 as data-
intensive	science.	In	this section	we	give	a	quick	rundown	of their characteristics in	
terms of the common nomenclature of the five Vs: volume, velocity, variety, veracity,
and 	value.

Volume. Much of the total volume from	 the HPC applications comes from	
checkpoint files. Most of this information is written once, and almost never read	in.	
With the inclusion of “burst buffers” we envision that most of the applications will
be able to write large volumes of	 checkpoint data efficiently.	 However, many
scientists are expressing	 a	 growing	 need to understand more of	 the	 “physics”	 in
their simulations; simple data reduction techniques are becoming insufficient for	
proper analysis.	Users	of	codes	such	as	the	XGC1 [Ku2006] simulation,	one	of	largest	
users of leadership-class facilities (over 300 million hours at ANL, NERSC, and ORNL
in	2015), have launched a series of simulations that need	to	write	out	100	PB	of	data	
in	 order	 to	 capture	 all of	 the	 turbulence	 data for	 runs	 on	 the	 Titan	 system
[Titan2015],	the	current	OLCF platform.	Because of the lack	of storage and because
of the time needed to write the amount of data, the simulation will be able to write
only	 about 10	 PB.	 This may lead scientists to miss important artifacts and miss

1 http://science.energy.gov/ascr/research/scidac/co-design/

Storage Systems and Input/Output to Support Extreme Scale Science 8

http://science.energy.gov/ascr/research/scidac/co-�-design

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 		

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	
	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 			

opportunity	for discovery.	 Clearly new research is necessary to handle volumes of
data this 	large.

Velocity.	 Higher velocities (i.e.,	 rates	 of	 data generation) will be seen from	many
leading	applications because of the nature of accelerators and nodes	with	high	core	
counts on	 certain	 next-generation systems. Simulations such as the QMC code
[QMCPACK2015], which use quantum	 Monte Carlo techniques to understand
material properties, are already	investing	 in situ data reduction	and	analysis,	since	
they are generating over 2 TB of data from	 their simulation every 10	 seconds.
Similarly, next-generation experiments such as ITER [Lister2003] will	 begin	 to
generate	data	at	over 2	PB/day,	and	this	data	needs	to	be	processed,	reduced,	and	
stored	 for	 later	 postprocessing.	 Similar requirements are expected in	 EOD	 based	
science.

Variety. Simulations are producing a wide range of variables in their output that
they later need to correlate and understand together.	We see this situation	 from	
climate simulations, among other leading-edge simulations.	 Generally	 on	 each	
process each variable is “small,”	 but	 there are often	 hundreds of variables,	which
create many new challenges when they	 are	 generated from	 high levels of
concurrency.	One implication for the SSIO community is that metadata will continue
to increase as the variety of data increases, and the management of the large
amounts of small data will become increasingly important,	 including	 the	ability	 to	
find	and	quickly access 	this large	variety	of	data.

Veracity.	Data integrity	has	become a critical part of the simulation workflow, and
most of the application teams are focusing on	 some aspect of	 uncertainty	
quantification (UQ) [Carey2014, Najm2003, Reagana2003].	 These	 simulations are
using	 either intrusive	 UQ	 techniques (e.g.,	 in	 combustion)	 that could	 potentially	
generate	zettabytes	of	data, or	they are employing nonintrusive	techniques	(used in	
many of the NNSA	 applications) and creating new	 I/O	 and	 storage	 use-cases	
(described	 below). Data need to be moved and processed with this integrity	
information in hand for	subsequent analysis. In the case of stockpile modernization
efforts, quantification of uncertainty in simulations is essential as calibration moves
away from	the experimental	test	base.

Value. As we reach the age where simulations cannot output as much data as they	
would like (e.g., the XGC1 simulation described above), many choices must be made
to understand which data	 products will	 have later value.	 Among other
characteristics,	the	value	of	the	data is	also	impacted by how much it can be reduced
for	fast post-processing. One of the common themes voiced	by	application	scientists
is that	 once data	 go to archival	 storage,	 they are rarely	 read	 again because of the
time to access those data.	New	research	into	new storage tiers that keep more data
readily	 available, retain the provenance of the data,	 and understand what	 the
different variables may contain will allow the SSIO software system to better
manage application data.

Storage Systems and Input/Output to Support Extreme Scale Science 9

	 	 	 	 	 	 	 	 	 	

 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	

	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
		 	 		 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	

3.2 Workload Characteristics

The first challenge facing these large simulation codes is that many of them	 are
monolithic programs designed for architectures of	 past decades.	 Some of these
codes	 will likely	 undergo	 significant change	 in	 order	 to	 transition	 to	 future	
architectures. Much of the rewrite will be to add additional functionality to make
effective	use	of	hundreds to thousands of cores per node, different types of memory
that are evolving in time, and the effective use of	 data-coupling	 techniques	 for	
uncertainty	 quantification,	 code	 coupling,	 in situ and in-transit	 analysis and
visualization,	 and	 different types	 of	 data	 reorganization and data compression
techniques for making effective use of postprocessing techniques. Codes	 used in	
critical safety- and security-related	 applications	 have	 to	 go	 through	 formal
verification	 and	 validation	 procedures that require	 additional time in	 the	
development cycle.

We first observe some common characteristics of anticipated simulation workloads
and then	dive into a	specific	application	use-case to illustrate some key features of
the I/O requirements.

Common observations
In Flynn’s taxonomy for classifying computer programming paradigms [Flynn2011],	
the monolithic codes mentioned above are known as single	 instruction,	 multiple	
data (SIMD) programs. The common alternative to SIMD is the multiple	instruction,	
multiple	data (MIMD) paradigm, where a number of different tasks	are	executed	at
the same time in a large parallel job. These	 tasks are expressed as separate
executables and may each be handling a different aspect of a complex model, such as
land, ocean, ice, and atmosphere in a global climate model, or chemistry and fluid
dynamics in a turbulent combustion model. Alternatively, the different tasks may
form a simulation program	plus a number of different in	situ analysis programs or
multiple simulation programs plus a set of analysis routines that compare the
outputs from	 the simulations, or simulations being compared with experimental
observations. In many of these cases, there is a stringent demand on
communicating a large amount of data from	 one part of a large parallel job to
another. These large parallel simulations will be producing a large amount of data
to be stored persistently. Additionally, they may also read a large amount of input
data, representing the initial condition required at the start of a simulation,
representing the boundary conditions needed at every step of the simulation,	 for
comparison against EOD, or other purposes.

The application scientists mentioned a number of characteristics of	 these	 MIMD
programs; we briefly highlight three:

• Homogeneous	 tasks	 in MIMD.	 The	quintessential	example of this type is a
set of	independent tasks	in	an	uncertainty	quantification	(UQ)	run	where	each	
task is using the same executable but with different input parameters.
Another common example of MIMD with homogeneous tasks is	an ensemble

Storage Systems and Input/Output to Support Extreme Scale Science 10

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	 	 		 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 		 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

run of climate models where each instance of the ensemble uses a different
model. Of course, UQ jobs and climate modeling runs could easily be
composed of different executables that each perform	 a different set of	
operations.

• Long-running	services.	 Certain	tasks	in	a MIMD program	may need to be run
as persistent services. For example, a number of simulation programs involve
complex materials, and a large number of chemical reactions and information
about these chemistry processes could best be captured	 in	 an	 equation-of-
state	service.	 Existing	large-scale simulation programs are run in batch mode,
where all	 executables are terminated when the batch job terminates. These
persistent	 services need to	 last	 beyond the	 end of any	 single	 batch job.		
Supporting	 these	 long-running services require supercomputer centers to
change their mode of operations. Such	 a change	 would	 also	 benefit long-
running data analysis	services.

• Composite workflows. A	MIMD job composed of heterogeneous tasks is	 a
composite workflow.	 The approach of	connecting	different tasks	into	a larger	
structure	has	been	used extensively	 for	 large-scale	distributed	data analysis,	
but	 it	 has not	 been	 widely used for composing parallel simulations.
Considerable	 work will	 be needed to develop the workflow composition,
scheduling, and execution	 tools.	 A	 large workflow is likely to produce and
consume data in variety of ways. It may also utilize the I/O system	to carry
information among the workflow components and therefore impose strong
performance requirements on the SSIO systems. These workflows will almost
certainly have a new type of I/O where different nodes write large data from	
one component often at the same time as other components, which can
increase	the	I/O 	variability.

An example:	Adjoint-based sensitivity analysis
To examine the I/O operations in more detail, we next consider a UQ use case,	 a	
combustion simulation program	 from	 the Center for Exascale Simulation of
Combustion in Turbulence	(ExaCT),	one	of	the	SciDAC	co-design centers. It employs
an	 uncertainty	 quantification (UQ) approach known	 as adjoint-based sensitivity	
analysis,	 an optimal approach for the direct numerical simulation in combustion
[Carey2014]. A	 key challenge of the adjoint workflow for time-dependent	
applications is the storage and I/O requirements for saving	 the application	 state.		
During the time-reversal portion of	 the	workflow, the	 forward	state	 is	 required	 in
last-in-first-out order.	 To	 avoid	 storing	 all the	 states,	 the	 co-design team	 has
developed an approach of regenerating the states from	checkpoints. This approach
dramatically reduces the total volume of stored data, allows the caching of state in
the regeneration window in memory and on local solid	 state	 disks	 (SSDs), may
accelerate the application	execution	by reducing	output	frequency,	and reduces the
power overhead from	I/O. For example, a number of checkpoints that are hundreds	
of time steps apart may be stored on disks. During the time reversal phase, the
application	uses the checkpoints	on	disk to	restart the computations, generates the
intermediate states and stores those intermediate states on local SSDs. Since the
intermediate time steps are not written back	 to global	 storage,	 this	 approach	

Storage Systems and Input/Output to Support Extreme Scale Science 11

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

 	
	
	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 		 	 	 	 	 	 	
	 	 	 		 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

reduces the I/O time. Since it does not recompute all the time steps, this approach
also reduces the amount of computation. The	 researchers	 in	 this	 project are	
particularly concerned with the cost of data recomputation as compared with the
cost of	storage	(e.g.,	write the data,	and then	read	the data	a	 little later because of
the limited memory on the system). This is a specific example of the more general
trade-off	 between storing code and recomputing	 (where	 possible)	 versus storing
data;	 and as FLOPs become cheaper, this ratio of cost of recomputation vs.	
write/read 	will	change.

In	 this use	case,	 the	application	scientists	are	also	using	 two	 techniques	 to	reduce	
space requirements,	 and	 these	 techniques	 also	 affect the I/O	operations.	 The first	
technique is to replace the simple uniform	mesh used in earlier simulations with an	
AMR (adaptive	 mesh	 refinement) mesh [Berger1989]. The AMR mesh is
dynamically adjusted to place more mesh points in regions	in the simulation domain
where the quantities of interest	 are varying	 quickly.	 This approach allows more
mesh points to be used in regions that	need a	higher resolution and can	reduce	the	
overall number of mesh points used in the simulation. However, the simulated
quantities are stored in more complex structures as compared with the original	
uniform	 mesh. The second technique used by application scientists is to
concentrate	on	 “regions	of	 influence” for sensitivity analysis instead of computing
on the entire simulation domain. This strategy again reduces the amount of
computation performed during sensitivity analysis; however,	 since	 the	 regions	 of	
influence	can	be	of	arbitrary	shape,	additional	data	structures	are	needed	in	order	to
keep track of the domain of sensitivity analysis computations. Both techniques	have	
implications for how SSIO technologies can best support science data storage.

3.3 Input/Output	Characteristics

To summarize the I/O characteristics of	 the	 representative	 applications,	 we	 first	
consider common use	 cases	 involving	 file systems. We then	 describe the more
advanced uses involving deep memory hierarchies, in	 situ data exchanges,	 and	
selective	access	to	data.

Most of the applications require a modest amount of input data at the beginning of
the simulation run along with the data that may be read in	when	they continue from	
a previous run. The input data typically contain parameters defining the
simulation's initial conditions	to be used in	the differential	equations that	represent
the evolution of the variables being simulated. In such cases,	the	input data may be
shared among the processors. Having immutable storage specifically for such input
files could reduce the I/O operation overhead and improve the overall application's
performance. Additionally, as many simulations start to validate their solutions
against	 the experimental/observational results, data must be read in from	 the
different experiments in order to ensure that the simulation is “realistic” for the
given	 conditions.	 For example, in many fusion experiments, data from	 the many	
diagnostics	on fusion	devices are ingested at the beginning of a simulation. As time
progresses,	 the fusion	 reactors continue to grow in size and more diagnostic

Storage Systems and Input/Output to Support Extreme Scale Science 12

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	

	 	 	 	 	
	 		 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	

instruments are built into the reactors, where each instrument is capable of
collecting	data more quickly than before. Altogether, the datasets collected from	the
experiments increase and the data passed to the simulations will	also grow.

DOE also supports a number of important applications that exhibit different data
access patterns from	 the more traditional pattern described above. For example,
global climate models frequently assimilate observational data into their
simulations, and high-energy	 physics	 collision simulations often incorporate	
calibration data of accelerators. In a number of other	 use	 cases,	 data analysis	
operations fuse simulation data and experimental observations, and this data	
analysis also requires	 reading a large amount of experimental data while the
simulation is progressing.

Simulations produce many different types of	output data.	We generally	 categorize	
them	into two types: defensive	output for	error	recovery	and	productive	output for	
scientific objectives. A	typical defensive output is a global checkpoint file (or	set of	
files),	 where	 a	 globally	 consistent	 state	 of the simulation is written to persistent
storage. A	 productive output can be just	 the	 output	 of	 the	 current	 state	 from	 a
fusion experiment, which is derived from	 the magnetic field vector from	 the
simulation. In many cases, the defensive output files are	 also	 used	 as	 productive	
output,	 because	 all of	 the	 data (e.g., in a combustion simulation such as S3D) are
necessary	for 	full	data	analytics.

Because the checkpoint files contain all the information necessary to regenerate the
whole state of the simulation, while the productive analysis output needs only to
summarize key features of the simulation,	 the	checkpoint	 files	are generally larger
than the productive output files. For example, many fusion	scientists using	particle-
in-cell (PIC)	 techniques [Dawson1983]	might write out the cell data	 frequently	 in	
order	 to	 understand	 the	 “fluid”	 effects of the physics.	 The	 kinetic	 (particle)
information is much larger and is often written infrequently because of the size of
the data.	 In	 applications	 that	 use checkpoint files	 for	 analysis,	 current codes	 can	
generate petabytes from	a single run, and future	runs may produce a large number
of	 such	 files, cumulatively totaling	 exabytes in	 size.	 For	 those	whose	 checkpoint
data are	 productive	 as	 well as	 defensive,	 application	 users often	 adjust	 the	
frequency	of	checkpointing	based	on	the	expected	analysis	needs,	rather	than	based	
on error recovery needs. They frequently produce more checkpoint files than the
“optimal” rate recommended for	 error	 recovery [Daly2006]. The	 application	
scientists also adjust the frequency of checkpointing to limit the I/O time to a
relatively small fraction of the total execution time. Most existing simulation codes
perform	their checkpointing operations by directly	writing	data to files,	 instead	of	
using	a	checkpointing	library.		

As parallel computers grow in size, there is considerable interest in moving away
from	 global checkpointing. Hybrid checkpointing schemes, such as the Scalable
Checkpoint/Restart (SCR)	 library [Moody2010], are gaining acceptance among
application	scientists.

Storage Systems and Input/Output to Support Extreme Scale Science 13

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

Figure 1: Applications on large-scale 	DOE 	platforms can consume great 	quantities
of data. In July 2011, many of the top producers/consumers of data on the
Intrepid 	Blue 	Gene/P 	system 	at 	Argonne 	had 	I/O 	patterns 	dominated 	by 	reading.

Machines that	will	be delivered in	 the 2017-2018 timeframe will have	nonvolatile	
memory (NVRAM) that could	be	used	for	storing the checkpoint files. NVRAM could
allow	the checkpoint	data	to be written	quickly.	 When	the	checkpoint data can be
discarded,	 this	 approach	 clearly	 reduces	 the	 traffic	 to	 the	 relatively	 slow disk
storage systems and significantly improves the I/O time. Since NVRAM is not yet
available at	 large-scale,	however,	 the user community is somewhat unsure	how	to	
best make use of	NVRAM.

When multiple tasks in a parallel job need to share data, the data transfer may be
conducted	 through	 in-memory mechanisms instead	 of	 through	 the	 parallel file	
systems. One realization of	this	is	through	in situ data analysis systems,	which	will	
be discussed in more detail in	the	next section. Another common issue	 is	 that the	
analysis may require	only	a portion of	 the	data instead	of the whole data	set—for	
example, only those data records in the region	 of	 influence mentioned in the
previous use	 case.	 These selective data accesses could be made more efficient
through techniques such as indexing. However, most existing	 checkpoint files	 or	
checkpointing	libraries	do	not yet support 	indexing.

So	 far,	 the	discussion	on	 I/O operation	has touched	only on	bulk data operations.	
Alongside these operations	 are common operations involving metadata, such as
provenance retrieval. In most cases, such metadata operations involve a relatively
small number of bytes and do not take a significant amount of time. However, a
complex simulation may generate a large amount of metadata, especially when the
simulation consists of a large ensemble of relatively small tasks.

Storage Systems and Input/Output to Support Extreme Scale Science 14

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 		 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	
 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

3.4 Implications 	of In 	Situ Analysis on the	SSIO Community

Many	large-scale scientific simulations routinely write out immense amounts of data
on	today’s	HPC systems,	such	as	in	the	case	of	XGC1 writing	100 PetaBytes (PB) of	
data per	 run	 on	 the	 Titan	 platform.	 Such	 “big	 data” impose steadily increasing
pressure	 on	 the	 SSIO	 systems. In fact, I/O is now widely recognized as a severe
performance bottleneck for both simulation and data post-processing, and this
bottleneck	 is	 expected	 to	 worsen	 with	 an order of magnitude increase in the
disparity between computation and I/O	capacity	on	future exascale machines.

In order to mitigate the I/O bottleneck, leadership scientific applications (e.g., XGC1,
QMCPACK, S3D, HACC)	have	begun	to	use	 in situ data analytics,	 in	which analytics
are deployed on the same platform	 where the simulation runs, with simulation
output data processed	 online	 while	 they are being generated. Compared with
conventional post-processing methods that first write data to	storage	and	then	read	
it back for	analysis,	in	situ analytics can reduce on-machine	data	movement and disk
I/O volume and can	deliver faster insights from	raw data [Klasky2011].	

Incorporating in situ analysis and visualization poses many challenges for
applications.	 Arguably, however, essentially all application	 scientists	 already	 use
their home-grown	 in situ analysis in	 codes.	 Scientists routinely	 create	 derived	
variables from	 a combination of their fundamental variables and then perform
different analysis	(Fourier,	feature	finding	routines,	addition	of Lagrangian particles	
to understand flows in simulations, etc.). The	 question	 that is	 generally	 posed	 to	
scientists—“What will you	do	when you can’t write as much as you want, because of
architectural	 changes?”—has existed since the advent of supercomputing. The
fundamental change that applications	are	now seeing	is not	the inclusion	of in situ
analysis but	rather the inclusion	of “computer science codes” developed	outside	the	
application	 team for use	 during in situ analysis.	 Scientists	 are leery of including	
other code in their simulation for	 good	 reasons.	 The	 challenges	 generally	 are as
follows:

1. Can the	 analysis routines run when/where there are idle resources? As
simulations evolve on systems, we see many unused cycles (due to issues
with OpenMP,	 etc.).	 There are funded projects that	 are working to address
these issues,	 such	 as	 by using	 task-based parallelism	 and moving tasks to
locations where there are free cycles.	 In	 much the same way, there is an
urgent	need for analytics and visualization tasks to move to locations where
application	 scientists	 allow them, i.e. where they are available for auxiliary
services. This same challenge exists for future SSIO services.

2. Can new services be used on all hardware platforms available to an
application community? This	 question	 applies	 not only	 to in situ analysis
services	but also	to	a variety	of	potential SSIO service	designs.	It requires	that
these services be able to be executed	 on-node	 – using	 different	 cores,	 on-
node	– using free cycles on the same cores as the simulation, off-node	– on	

Storage Systems and Input/Output to Support Extreme Scale Science 15

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	

	

 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
			

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 		

the same exascale resource, or	off-machine on a nearby resource. Research is
necessary	in	order to	ensure	this flexibility of service deployment.	This	will	
also 	allow	the 	inclusion	of 	UQ	analytics to be 	used 	in	this 	suite 	of 	services.

3. Can analysis tasks be shipped to another computer system	or preserved for	
future execution? For analysis that needs to meet hard time constraints, it
might be necessary to either ship some analysis tasks to another computer
system	 or save the task for future execution. Enabling	 this	 capability	 has	
implications for the connections between programming models, workflow,
and 	data	abstractions and 	representations.

4. Can users	ensure	that the simulation does	not	pause as someone is visualizing
or	 analyzing data at a previous time step? The ability	 to interact	 with
simulations is becoming a more pressing issue on exascale machines.

Today	 several in situ visualization	 and	 analysis	 services	 are being	 used in	
applications. ADIOS [Liu2014]	 is	an	I/O framework that allows applications to use
I/O	staging	(on-node,	off-node,	off-machine) and run different executables.	GLEAN
[Vishwanath2011a]	uses a similar methodology in order execute analysis pipelines.	
Catalyst allows users to embed analysis routines into their simulation, which then	
call VTK/Paraview [Henderson2004]	 code, which is similar to LibSim
[Whitlock2011]. Each of these frameworks has tradeoffs, and more research	 is	
necessary	 to	 understand how	 to	 best	 provide	 needed data	 services in	 support	 of
exascale	science.	

Finding: In situ data analysis is already an important component of many
applications.	The question	 is not	whether in	situ	analysis will	play	a	role in	 future
computational and data-intensive	 science	 but,	 rather,	 how this	 capability	 will be	
manifested.

3.5 Data	Organization	and	Archiving

Many application programs running on the current generation of supercomputers
are still outputting their data in custom	formats. However, the majority of the data
files	being	shared	by	large	scientific	projects	are using	popular file formats such as
ADIOS BP [Lofstead2008],	 HDF5 [Folk1999],	 and	 netCDF [Rew1990].	 As one	
scientist noted, “Some codes use HDF5, others use a custom	 data format for
performance reasons. Event simulation uses relational databases. Other data
organizations are being	investigated,	catering	to the type of scientific information to
be 	represented.”

This	diversity	of	data organizations	and	needs	creates challenges to our community,
which must be addressed for the future architectures.	 One	of	the	biggest	challenges
is how to integrate new solutions into many of the leading DOE applications.	 In	
particular,	how do we take current I/O solutions and improve the performance for
common I/O tasks, without	 having	 to customize them for	 each	 application? The	
application teams commonly articulate that	 I/O	 needs to include different	
application-specific	forms of compression as part	of the I/O routines themselves. In	

Storage Systems and Input/Output to Support Extreme Scale Science 16

	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	

	 	
	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 		

 		 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	

	

situ (asynchronous)	 techniques	 are	 often	 being	 explored	 to	 decouple	 the	 I/O
application	 performance from	 the storage system. I/O variability is also an
important phenomenon that	 greatly affects	 the	 applications’ ability	 to write
effectively	 to	 the	 file	 system. Research	 is	 necessary	 to	 ensure	 that techniques
addressing	these 	issues are 	in	the 	next-generation	I/O	libraries.	

Using	a	well-supported	high-level	I/O	library facilitates	the sharing	of data among a
large community of scientists. Professional software development efforts could be
directed	 to	 build	 high-quality	 data	 analysis	 tools	 using	 such	 I/O	 libraries.	 For
example, the climate community is using a large set of data analysis tools on
petabytes of netCDF files [Williams1997]; the	 high-energy physics community is	
using a highly effective data analysis environment based on ROOT files [Brun1997];	
and many researchers in the fusion community have used ADIOS-BP	 to exchange
many petabytes of simulation data [Lofstead2008].	 These	shared	I/O	libraries	are	
also making it easier for applications to read and write a large amount of data in
parallel. Research challenges exist to ensure that the “schemas” from	 different
communities remain standard, so that data can	 be	 easily	 converted	 among the
common file formats. Such	 standardization will	 reduce the need to develop	
customized data readers for data analysis and visualization.

Because high-quality, efficient I/O libraries could reduce the amount of
programming effort needed to handle I/O operations and facilitate exchanges of
data in large user communities, they will be an	essential component of any exascale	
software	stack.	 For	these	libraries	to	be	adopted effectively in the upcoming high-
performance computers, the following issues need to be addressed.

• Performance. The	I/O system must be highly efficient in a wide variety of
use cases: uniform	 meshes, semi-structured meshes, and unstructured
meshes. These records could be organized in a variety of ways (e.g., arrays,
trees, networks). Furthermore, the system	must have efficient read and write
operations for	all of	these,	not	just	one.

• Scalability. A	successful I/O library for exascale computers must be efficient
at different job sizes, ranging from	a few nodes on the machine to the whole
machine. The library needs to make efficient use of the different “swim	lanes”
for	 future	 architectures. These	 different architectures either place more
resources	(e.g.,	memory, computational power, NVRAM) on each node (scale-
up) or utilize more nodes with fewer resources	 on each	 node	 (scale-out).
Each	option	has 	its 	own	SSIO	challenges.	

• Resilience. Given that persistent data files are the key results of many
important activities, the integrity of these data files must be unimpeachable.
This requirement plays an important role in the adoption of new file formats.
As the data sizes increase, files must still be readable even when a portion of
the data is not reliable. New research into file formats that can	withstand	
failures	 is	 critical for	 future	 adoption. This	 is	 often	 the	 strategy	 taken	 by	
many Monte Carlo simulations such as QMCPACK and from	 some PIC
simulations.

Storage Systems and Input/Output to Support Extreme Scale Science 17

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

• Compression. Some forms of compression are already supported by the
current generation	of	 I/O	 libraries.	 In	 at least one	of	 the	applications,	 it is	
effective in reducing the output size as well as reducing the I/O time. Both
lossless and lossy compression methods could	be	used	to	reduce	the	I/O cost.		
When a lossy compression is used, it is highly desirable to be able to provide
users with ways to quantify the loss introduced by compression. Since the
impact of compression typically depends on	 the	 analysis	 operations	 to	 be	
performed, it is challenging to be able to quantify the impact without
knowing	the analysis to be performed after the data	files are produced.	These
techniques must be very fast in order to keep up with the high data velocities	
being	 presented. For example, in the QMCPack example, 2 TB of	 data are
produced on	 8K nodes	 every	 10	 seconds,	which means that 256 MB/node
must be compressed and written to the storage system	 every 10 seconds.	
Since	 the	 data at	 this scale will	 overflow	 the burst	 buffers	 on current and	
future systems, compression must be very fast in order to greatly reduce the
I/O	overhead and it must be significant in cost savings (10 times less data) in	
order	 for	 it to	be	 relevant to	 application	 science. Compression can also be
achieved by selectively reducing the spatial, temporal, and numerical
resolution of	 the	data saved	 for	 later	analysis, often	without compromising
the 	value 	of 	the 	data.

• Function shipping. As more analysis operations are added to a simulation,
some analysis tasks	may need to be deferred	or sent to another computer. In
such cases, the I/O systems may need	to	record	the	analysis	operations	and	
execute these operations when arriving at the detection or resurrected from	
disk. Additionally, the storage system	 may need to present a notion of
locality,	so 	that	other 	software 	can	co-locate 	analysis 	with 	data.

Outside of demands on I/O libraries themselves, many	of the large scientific	projects
keep	 only	 relatively	 recent data on disk,	 while	 keeping	 older	 data records	 on	
tertiary storage systems such as HPSS [Watson1995].	 The	data	 on	disk	 are often	
considered	 on-line because they can be accessed with common I/O libraries,
whereas the data	in	tertiary storage are considered	off-line	because	they have to go
through an	extensive	data transfer	process	before	they are usable	by	a	data	analysis
program. Typically, on-line data	 are available in milliseconds, while off-line data	
may require weeks to become available. Such a gap is a tremendous	 barrier for
users to	access the	data	 in	 tertiary	 storage and contributes to a	 failure to analyze
data that are	stored	in	this	way.		

A	 number of application scientists have expressed a desire to have a near-line
storage system	with latencies much less	 than	 the	 off-line storage. Such a system	
would increase	scientific	productivity	by	allowing the scientists to have access to a	
larger amount of data for a longer period of time even though the access might be
somewhat slower. This feature might be particularly	 useful for	 large	 scientific	
experiments with highly valuable data and large user communities. The challenge to
the SSIO community is to understand how	best	 to organize data across the many

Storage Systems and Input/Output to Support Extreme Scale Science 18

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	

	

 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

		

layers of storage. New research in data reorganization must	be encouraged in	order	
for	applications	to	take	advantage	of	these	features.	

Figure 2: Self-describing file formats, such as the netCDF format shown here,
capture not only array data but also structural information such as names, units,
types, 	and 	dimensions.

3.6 Metadata and Provenance

Metadata is commonly divided into two broad categories:	 structural metadata,
which concerns the design	and specification	of the data	 structure,	 and descriptive	
metadata, which comprises all other associated information such as creator,
meaning, intended uses, provenance,	 associations, and context.	 Historically,	 such	
metadata is captured in handwritten entries in laboratory notebooks. Many
attempts have been made to automatically capture metadata. So far, the most well
known success	stories	in	HPC are the self-describing file formats used to capture the
bulk	of the scientific data.	These contain	not only	the	arrays	of the raw	data	but	also
the structural information about the arrays, such	 as their names, data types, and
array dimensions. Because of the diversity of descriptive metadata, however,	
attempts to capture this information automatically have not produced widely
adopted 	tools.

Agencies have	begun to require the data displayed	in	research	publications,	such	as	
data that drive	a graph, to be accessible in	order to support	validation	of results [SC
n.d.].	This	policy	has been translated into a number of strong efforts to automatically
capture provenance information, which describes the origin	 and history of a data
object or	 a data set.	 Provenance information could also make the validation of	
results more likely. However, certain details of the data generation process, such as
compiler optimization flags used to generate the executables or floating-point	
rounding properties, are frequently omitted from	 the provenance information. In

Storage Systems and Input/Output to Support Extreme Scale Science 19

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 		

	
 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 		 	 	 	 	

certain	highly	regulated computing environments, it may be possible to require all
such information be documented precisely and all executables run under the same
workflow management system; however,	 in	 general,	 it is	 not possible	 to	 force	 all
users to	 develop	 and run	 their programs in the same programming environment.
Automatic capturing of	 provenance information about a MIMD program	 and its
runtime environment remains an open research topic.

Because metadata can grow to be extremely large, we must understand what needs
to be captured and what can	be	discarded, so	that resource constraints can	still be	
met.	For example, scientists might want to capture the different types of algorithms
used for analysis to	help them	understand accuracy	vs.	power tradeoffs,	 leading	to	
huge amounts of performance information captured on each process. In	 the	
combustion UQ use case, capturing the regions	 of	 interest	 that	 then	 help	 identify
regions	of	influence is critical for a complete understanding for the final behavior of
the system [Carey2014]. Metadata	 also grows when	 hundreds of variables are
involved, as in the XGC1 case, and researchers want to keep information at the
granularity	of	MPI	processes.

Scientists	generally	want	full control over their data,	and this desire also extends to
metadata. As a result, many applications scientists have developed their own	way of
capturing and encoding their metadata. However, the pressure to produce verifiable
provenance information may lead many more of these application scientists to use
automated	tools.	In	order	for	such	a tool to	be	adopted by scientists,	it must be easy
to use and allow sufficient flexibility for users to specify exactly what information to
capture and store. Additionally, the following features are strongly desired.

• The	 provenance capturing system	 needs a durable way of associating the
metadata with the data. Under the current data management systems, when
data files are moved, the associated metadata is often lost.

• The system	 should accurately capture information about the programming
environment and the runtime environment.

• The information captured must be easily	searchable	or	otherwise	accessible.
• The system	 must provide useful feedback about errors and faults.		

Furthermore, such feedback should be instructive in helping users recover
from	the errors.

3.7 Summary

Mission	scientists see the SSIO community as facing a number of exciting	challenges,	
summarized here in terms of the five Vs presented earlier in this section:

1. Fast data access	is	essential to	large-scale	data-intensive	applications.	 High-level	
self-describing data formats are critical to allow concerted efforts to improve the
SSIO system	 and to best use burst-buffer technology along	 with other next	
generation NVRAM. (Volume, velocity, and variety)

Storage Systems and Input/Output to Support Extreme Scale Science 20

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	

		 	 	
	 	

2. Effective metadata management is critical in allowing vast amount of high-
velocity data from	different sources to be used effectively together to generate
meaningful science results. (Variety, velocity, volume)

3. Provenance	capture	 is	essential.	As more workflow technologies	are	 integrated	
into applications, capturing provenance becomes critical for future
understanding of what occurred before and after the simulations. (Veracity,
value)

4. Research	in	in situ data frameworks is	needed that	can	place tasks (on	node,	off-
node,	 and	 on	 external resources)	 based	 on	 user	 intentions and resource
availability, and this system	should accept plug-ins	that enable	specialization	by	
application	scientists. (Velocity, volume,	variety,	value)

Storage Systems and Input/Output to Support Extreme Scale Science 21

	 	 	 	 	 	 	 	 	 	

 	 	

 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	
	 	 	 	

 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 			

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	

4 Computer Science	Challenges

4.1 Hardware/Software	Architectures

Architectural changes coming in post-petascale systems raise new challenges for
effective	 SSIO hardware	 and	 software.	 New network technologies	 and	 topologies	
create a new environment in which this software must operate. The inclusion	 of	
solid-state storage in systems adds another layer to an ever-deepening	 storage	
hierarchy. The introduction of computational capabilities within this hierarchy will
open	additional challenges.	Properties	such	as	voltage	scaling	and	shared	network
links will create a “noisier” environment in which SSIO systems must reside,	 and	
device reliability raises questions about long term	data retention.

Findings

The	 inclusion	 of	 solid	 state	 and	 new disk-based storage layers is dramatically
complicating the storage hierarchy. Standard methods of storage organization (e.g.,
parallel file systems, archival storage management systems) must significantly	
change, if not be replaced, to provide effective SSIO for future platforms.

To	work productively,	 scientists	 need	 an	 integrated,	 coherent view of	 the	 storage	
resources at their disposal and a common method of managing and accessing data
on	 these	 resources. Meeting this need will require new metadata capabilities
(Section	4.2) and integration	with external	storage	(Section	4.4)	in	conjunction	with	
improvements in SSIO architectures.

4.1.1 Networks

State	of	the	Art
Most modern HPC networks provide a wealth of features of potential benefit to
SSIO, such as support for remote memory access (RMA), atomic remote memory
operations (AMO), asynchronous progress engines (APEs), virtual lanes, and quality
of service (QoS) mechanisms. In order to scale to tens or even hundreds of
thousands of endpoints, these networks employ a variety of topologies such as Clos
[Clos1953], mesh [Felderman1994], 3-D	 torus, butterfly, and	 variants	 thereof	
[Scott2006], [Kim2008].

Some advanced network features have been investigated in the context of SSIO,
RMA	[Magoutis2003, Liu2004] in particular. QoS [Chuang1999] and request routing
[Anderson2000] have been explored to some degree, focusing primarily on
commodity networks. A	significant amount of funding has been invested in QoS in
the past	as part	of HEC-FSIO activities	 [HEC-FSIO2011], some of which focused on
network	 based	 QoS.	 To	 date,	 however,	 no	 distributed	 QoS	 capability	 has	 been	
demonstrated. Network and storage node topology has been explored in wide-area	
distributed storage systems [Beck2002], within HPC systems [Dillow2011] and
more generally in large-scale	datacenters	[Thereska2013].	Significant	research	also	

Storage Systems and Input/Output to Support Extreme Scale Science 22

	 	 	 	 	 	 	 	 	 	

	
	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 		
 	

		
 	 	 	 	 	 	 	 	 	 	

	 	
	

 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 		
	
	
	

has	 been	 conducted	 in	 adaptive	 and	 dispersive	 routing	 that,	 while	 not storage	
specific,	is	applicable	to	SSIO.	

Challenges
Future HPC systems will incorporate multiple levels of storage distributed across
one or more networks with potentially complex topologies. Networks on these
systems will likely present significant new capabilities including the following:
• QoS via throttling, performance isolation, and co-scheduling	with	pre-emption
• Advances in RMA	and AMO operations potentially end-to-end from	compute

memory to the storage device
• Support	 for asynchronous	 operations	 and	 independent	 progress	 of	

communication
• Collective communication support and the ability to embed computation for

data reduction	 or	 reorganization	 within	 networking endpoints	 and	 the	
switching	hierarchy	

• Resource management capabilities for resource sharing and resource
isolation	

Many of these capabilities will	 be researched outside the context	 of SSIO,	 and the
SSIO community should be ready to incorporate or leverage	these	advances	where	
appropriate.	 SSIO-specific	 R&D	 should	 be	 encouraged,	 allowing	 co-design	 of	
network	and	storage	technologies	as	appropriate.	

R&D	Needed
Research is needed to develop QoS mechanisms that integrate QoS capabilities
within the network with future SSIO architectures. Mechanisms to dynamically
provision network resources for differing SSIO tasks such as bulk data movement,
collective communications,	 and	 fault notification	 should	 be	 explored.	 Since	 fault
notification and response protocols such as quorum	and gossip are often needed for
SSIO, optimal mapping of these protocols to dynamic and reconfigurable network
topologies is needed. As SSIO continues to explore the use of distributed
transactions, algorithms should be explored that support distributed transactions
that leverage advanced network features such as AMOs. Some of this work will be
crosscutting, most notably with OS/runtime and resource management topical
areas.	

Future networks coupled with OS/runtime advances may provide new features such
as active message capabilities allowing computation to be scheduled via the
network. Furthermore, future networks may enable embedding of computation	
directly within the network for tasks such as collective reductions. Approaches for
utilizing these capabilities within the SSIO environment for active storage and data
reorganization (in transit)	should	be	explored.

Storage Systems and Input/Output to Support Extreme Scale Science 23

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 			
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

Figure 3: Nonvolatile memory (NVM) will be an important component of future
SSIO architectures. Placement of NVM in the system influences the utility of the
NVM for specific	use cases, and additional research is needed to best understand
where 	and 	how 	to 	integrate 	this 	technology 	to 	provide 	the 	greatest 	value.

4.1.2 Deep Storage Hierarchies and Nonvolatile Memory

State	of	the	Art
Today’s	state-of-the-art in SSIO includes storage hierarchies that can span multiple
system	 memories [Isaila2011], node-local	 or I/O	 node (ION) local	 SSDs
[Caulfield2009], dedicated scratch storage addressable on the HPC platform, global
storage	 addressable	 across	 the	 HPC	 datacenter,	 and	 long-term	 archival storage
addressable across the HPC datacenter.	Each layer provides a	different	set	of cost,	
access rate, capacity, power, and resilience characteristics; and facility teams
endeavor to match the overall hierarchy to their projected workloads when	 they
develop specifications for a new system	or an upgrade.

While node-local	and ION local	SSDs are still	 in	 their infancy in terms of adoption,
most future systems,	as	evidenced	in	the	proposed	FY2017-FY2018 procurements,
will	 incorporate this addition	 to the storage hierarchy [Bent2012,	 Liu2012a]	
because of economic constraints on employing solely disk-based solutions to meet
performance requirements on	 next-generation leadership HPC systems. With the
exception of system	memories and dedicated scratch storage, these hierarchies are
generally managed as explicitly independent resources at large-scale	HPC	facilities.	
Client-side caching and extensions to remote compute and ION caching have been
widely explored [Thakur1999, Liao2007, Isaila2011, Lofstead2008, Abbasi2010,
Qin2009].

Storage Systems and Input/Output to Support Extreme Scale Science 24

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		
	

	
	

	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

As SSDs have become more commonplace, a number of research efforts
[Moody2010,	 Ni2012,	 Rajachandrasekar2013,	 Barton2014] have	 begun	 exploring	
the use of this hierarchy of storage within HPC systems. Next-generation NVRAM
technologies such as phase change memory and memristor will present yet another
layer within the hierarchy with semantics akin to traditional DRAM; preliminary
research has begun in this area to assess their impact on file system	 design
[Miller2001,	Wang2002]	 and	 their use	 as	 caches	 [Liu2012b,	Kannan2011a]	 or for
staging	 and	 checkpointing	 [Kannan2011b,	 Kannan2013], and upcoming systems
will incorporate NVRAM into their design (e.g., Cori [Dosanjh2014]). Some
preliminary research has been conducted in data location services within deep and
potentially	geo-distributed storage systems [Sun2014].

Challenges
Significant	challenges	in	this	area exist,	with	the	deepening	of	the	storage	hierarchy	
and performance characteristics of next-generation	storage	technologies.	Only	a	few	
researchers [Barton2014, Goodell2012, Brinkmann2014] have investigated how
best	 to expose this deepening	 storage hierarchy. Additional research is needed to
understand how data and programming models expose and interact with this deep
hierarchy, how resource management can be coordinated across this diverse set of
devices,	 and	 what capabilities	 are	 needed	 from	 interfaces in order to support
science needs. Alternative, possibly transactional, object storage interfaces to
replace POSIX need further refinement and community exploration.

One difficulty	 in	creating	a	new	storage interface for future hierarchical	 storage is
understanding what the workload requirements of exascale applications will look
like. For example, will bulk synchrony at the application level survive? If so, the
entire storage stack may not need radical changes. If applications become
increasingly asynchronous as expected, however, they may require new
mechanisms in order to manage consistent views of distributed data in the
hierarchy.

R&D	Needed
Since the storage hierarchy will be utilized for different purposes and competed for
by multiple consumers, adaptive resource management mechanisms and policies
will be needed. Performance optimization techniques across the hierarchy will need
to be explored.	While some studies are under way and early products are emerging,	
additional	research	in	how	to expose the hierarchy of storage is required to identify
what	should be visible to the user,	how	(and if) the hierarchy should be described to
the user (exposition),	 how	 users should describe data	 organization	 across the
hierarchy, and how compositions of	 the	 hierarchy are effected.	 This	 research	 has	
significant overlap with workflow, since workflow systems likely can assist in
managing the complexity of data placement and movement within the storage
hierarchy.	Other	challenges,	such	as	enforcing	consistency across the hierarchy and
dealing with differing units of atomicity, will require new mechanisms, perhaps
transactional mechanisms. Integration of computation within the storage hierarchy
will	 require new	 techniques to expose locality of data	 within	 the	 hierarchy,	 the	

Storage Systems and Input/Output to Support Extreme Scale Science 25

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 		

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	
	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 		

 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

computational resources co-resident with	 the	 data, and	 interfaces	 to	 allow
computation on this data within the hierarchy.

Moving	data	efficiently and transparently between	data	 tiers presents a	challenge.	
Knowing	where the data	 should be and getting it there at the right time are both
areas that	need research.	Evolution	of existing	HSM	tools to cater to deep	storage
hierarchies should be explored; but other, more revolutionary solutions also merit
investigation.	Methods	for	incorporating	guidance from	the user (guided interfaces)
are a promising direction that possibly could affect many aspects of management in
the hierarchy, including retention policies, reliability requirements, QoS,	 and data
temperature.

In	 addition	 to	 the	 R&D needed	 for the	 general	 category	 of	 deepening	 storage	
hierarchies,	 significant discussion	 focused	 on	 R&D	 needed	 specifically	 for	 burst
buffers.	The burst	buffer is a	new	tier of storage within	the hierarchy that	 fills the
widening gap of performance between DRAM and traditional magnetic disk drives.
The burst buffer will be smaller in capacity than the file system	it sits in front of, but
it will provide	 significantly	 higher	 bandwidth.	 The	 use	 of	 burst buffers	 spans	 a
number of use cases, from	 defensive and productive	 I/O	 to	 active	
storage/programmable storage; and care must be taken in the design of burst buffer
systems to retain flexibility in how this resource might be used in future systems.

Of particular interest are data models and programming abstractions	 for	 burst
buffers.	 Potential	 interfaces to the burst	 buffer include transactional	 interfaces to
object storage, traditional file system	interfaces, memory abstractions, and durable
data structures	that enable	traditional data structures	to	be	efficiently implemented
on persistent memory devices [Venkataraman2011]. R&D is needed in order to
understand the tradeoffs of differing interfaces to the burst buffer. System	design
alternatives need further exploration in	 coordination	 with	 evaluation	 of	
deployments, including answering fundamental questions such as where burst
buffers will reside within the HPC system	 (node local, ION dedicated, or separate
nodes within the compute area); whether burst buffer resources will be time or
space shared among multiple consumers; and how they will be scheduled/allocated
including potential time for data draining to a parallel file system	or elsewhere on
job completion. Better understanding of device characteristics will be required in
order	 to	 design the most effective system	 architecture and proper
data/programming models for these systems.

4.1.3 Active Storage

State	of	the	Art
Active storage aims to expose computation elements within the storage
infrastructure	 for	 general-purpose computation on data. Active storage has been	
motivated by the increasing computational capabilities within storage devices and
the ability to reduce data movement (filtering) and storage requirements
(ephemeral views) by embedding computations in the storage device. Active storage

Storage Systems and Input/Output to Support Extreme Scale Science 26

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	
	

	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 		

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

has	 enjoyed	 over	 a decade of active research [Riedel1997, Arpaci-Dusseau1999,
Amiri2000, Son2010]. The current state of the art includes the extension of active
storage	 concepts	 to	 the	 device	 level (T10	 OSD)	 [Qin2006]	 and	 HPC	 parallel file	
systems [Felix2006, Piernas2007]. Programming models include streaming
[Acharya1998, Felix2006, Qin2006, Piernas2007], remote procedure calls
[Riedel1997],	and	object-oriented models. While general-purpose computation has
been explored in active storage, more limited forms of computation have	also	been	
investigated, including ephemeral views [Ma2003] and filtering [Riedel1997]. More
recent work has looked at mechanisms enabling the user to run predefined
computations [Felix2006] that are of a more general-purpose	nature	but	with	well-
known computational characteristics similar to stored procedures in databases, as
well	as extending	the MPI-IO	interface	for analytics shipping	[Son2010].	Still	other
research	 has	 proposed	 applying active	 concepts	 in the	 context of	 Flash	 devices	
[Boboila2012].

Challenges
A	number of significant challenges	exist in	active	storage,	particularly	as	it relates	to	
HPC environments. Embedding computation within an HPC storage infrastructure
brings about challenges in data and programming models for these environments,	
including security issues (e.g., how to control access of embedded computation) and
resource management challenges (e.g., how to balance service between active and
passive	operations). Addressing these challenges will	open	the opportunity to take
advantage of new storage media (NVRAM) with increasing computational
capabilities (either embedded or coresident) while significantly reducing data
movement within future HPC systems.

R&D	Needed
Several R&D topics will need to be addressed to make active storage	 a viable	
paradigm	in future systems. Research	is	needed	in order	to	understand	application	
use	 cases relevant to DOE mission, such	 as	 data reductions	 (filtering,	 subsetting,	
querying, etc.), data transformations (sorting, mapping, etc.), and ephemeral views,
along	with their relative tradeoffs in terms of communication and computation. Also
needed	 is better understanding	 of current	 device characteristics and capabilities
and those needed in	 the future to support	 these use cases.	 Supporting	 these use
cases on	 next-generation	 devices	 also	 will	 require	 advances	 in	 data	 and	
programming models, allowing the application to describe the computation and its
mapping to a high-level	data	structure.	R&D in	interfaces with an	eye to reusability
and portability	over time will be required in order to facilitate adoption by a broad
set of application communities.

Resource management challenges must be also addressed, since storage resources
will incorporate a new dimension of “active” traffic (i.e., computation being
performed on storage resources) alongside the traditional	 “passive”	 traffic.	 QoS	
mechanisms will need to advance to include computational quality of service
alongside traditional data movement. Providing a remote execution capability to
applications will	 raise	 new security	 challenges	 (e.g.,	 enforcing	 security	 policies	 in	

Storage Systems and Input/Output to Support Extreme Scale Science 27

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	

 	
	

	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	
	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

the context of code running in the storage system). Moreover, workflow will
crosscut this area as related issues of data locality, computational placement, and
resource	scheduling are	addressed.	

4.1.4 Resilience

State	of	the	Art
Resiliency	 in	 SSIO	 has	 been	 an	 active	 area	 of	 research,	 spanning	 techniques	 to	
provide resilience to individual component failures [Patterson1989, Rizzo1997] up
to the application	[Zhao2004,	Chang2008]	of generalized algorithms [Birman2007,
Lamport2001, Elnozahy2002] for fault detection and recovery. Numerous strategies
have also been employed for data availability, including network RAID/erasure
encoding, quorum	 protocols, and multiple forms of data replication. While
significant work has	 focused	 on	 resiliency	 of	 the	 underlying	 storage	 server	
infrastructure, some efforts have also focused on end-to-end	 data integrity	
[Zhang2010], although only limited work has been done in this area specifically for
HPC environments. Above the storage system	 level, some work has been done to
explore	 fault-tolerant runtimes and application-level	 resiliency strategies
[Hargrove2006, Sankaran2005], but the scalability of such techniques remains in
question.	 Fault-tolerant programming models, such	as MapReduce	and Legion,	and
the application of the CAP theorem	 and peer-to-peer systems principles are also
gaining momentum	and adoption within the scientific HPC community.

Challenges
Next-generation HPC systems will raise significant resiliency challenges	for	the	SSIO	
community. While some resiliency challenges will crosscut with the broader
resource management, networking, application, and parallel programming
environment communities, SSIO-specific resiliency challenges will remain.
Deepening storage hierarchies, new storage media, increasing storage capacity, and
tighter margins in component designs (silent data corruption) will necessitate
significant R&D	in	SSIO resiliency	to	account for,	and	take	advantage	of,	device	and	
data properties	when	 providing	 resiliency	 of persistent	 data	within	 the	 hierarchy	
and to provide appropriate performance for access to data in the presence of
interfering traffic. This latter issue must be addressed in successful hierarchical
storage	designs.

R&D	Needed
A	number of research topics will need to be explored in the area of SSIO resiliency.
Fault detection, fault communication, and recovery strategies in large-scale	
distributed storage environments are needed, with particular focus on low-
overhead	approaches	 that	scale to tens of thousands of endpoints while tolerating	
jitter.	 With	 the	 advent	 of	 new	 storage	 technologies,	 resiliency	 strategies	 to	
individual component failures warrant exploration. Since many application-level	
resiliency	 strategies	 will rely	 on SSIO,	 low-overhead	 scalable	 techniques	 for	
application-level checkpointing strategies should be explored. Arguably,	 a
completely resilient SSIO environment in the face of all failure scenarios will be

Storage Systems and Input/Output to Support Extreme Scale Science 28

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	

impossible; and the costs of increasing levels of resiliency may prove prohibitive for
some environments. Thus,	 resiliency	 techniques	 that trade	 space,	 bandwidth,	 and	
other overheads for differing levels of resiliency should be explored. Application-
level interactions with this environment may also be important, enabling	 the	
application to assist in making these tradeoffs. Similarly, mechanisms for
containment and communication of failures to the application could allow
application-level resilience strategies to be employed (recomputation of partial data
is	an	example), but additional SSIO research is needed in order to understand how
such mechanisms can work cooperatively with storage software to meet resilience
requirements.

4.1.5 Understandability

State	of	the	Art
Understanding SSIO systems in general is covered in Section	4.5.	Here	we	focus	on	
the issue of understanding the behavior of SSIO architectures and how one might
architect these systems for better understandability.

The state of the art in this area involves various storage components providing
independent logging	 of what	 the developers considered to be relevant	 or critical	
events. These log entries may be integrated into a systemwide RAS database, but
more likely they are accessible with proprietary tools. Continuous monitoring tools
are also available for some storage architecture components, such as disk
controllers [Kim2014] and file system	servers [Uselton2009]. More recently, efforts
have been made to include limited shared storage system	statistics as a component
of	 system-level monitoring tools [Agelastos2014].	 In	 addition	 to	 logs,	 PLFS	 [Bent
2009] creates maps that are helpful in identifying actual user IO patterns.

In the past, efforts were made to integrate the logging of user behavior across
multiple layers of the SSIO system	 [Ludwig2007], but	 this system	 was not
productized, and the approach was not adopted in other systems. More recently, a
technique for correlating	 fine-grained	 events	 across	 the	 storage	 architecture	 was	
developed	for	visualization	purposes	[Muelder2011];	however,	the	technique	is	too	
invasive for routine production use. Another approach [Hammond2011] looked at
rationalizing log messages to make them	more analyzable in the context of Lustre
file systems.

In the area of tools for designing understandable SSIO systems, a	project by Remzi
and Andrea Arpaci-Dusseau at Wisconsin began to address correctness and formal
failure models for SSIO systems [Arpaci-Dusseau2006]. This work has most recently
been extended to examine the consistency of file systems in the face of system	
crashes,	 including the development of two tools for verifying file system	resilience
and correctness following	a	crash [Pillai2014].	 Separately, a state machine language
called Aesop has been of some assistance in enabling correct behavior in storage
systems [Kimpe2012].	 Warranting	 investigation	 is the treatment of SSIO systems
development as a first-class	application	needing	its	own	tools	and	languages.

Storage Systems and Input/Output to Support Extreme Scale Science 29

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 		 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	

A	 number of methods have been developed to express HPC computer system	
models and topologies for purposes such as optimization [Broquedis2010],
performance modeling [Spafford2012], or root cause analysis [Mysore2014], but	
analogous 	techniques 	have 	not	been	adopted 	for 	use 	in	SSIO	storage 	architectures.

Challenges
Several major challenges	 exist in	 our	 ability	 to	 understand	 current SSIO
architectures. First, information coming from	 multiple layers in the SSIO
architecture stack is not coordinated or integrated, meaning that a holistic view of
how the architectural components work together is not available. Second,	 no	
common abstract model is shared across SSIO system	implementations, precluding
the development of tools to interrogate behavior that are portable across multiple
environments. Third, storage systems do not expose information about how
individual applications utilize the storage architecture (e.g., what components were
used and to what degree). This lack of information makes identifying bottlenecks or
gauging the impact of storage system	design tradeoffs difficult.

R&D	Needed
Research	 is	 needed	 to	 develop rich abstract storage models that capture the
relevant properties of future SSIO architectures. These models must incorporate
notions of locality, multiple tiers, as well as traditional properties such as MTBF,
capacity,	and	bandwidth.	Methods	of	presenting views of current system	state using
these models would be helpful as a first step in better understanding SSIO
architectures, but more quantitative tools for analysis are also needed. The
development of abstract SSIO architecture models also has the	 potential to	 affect
crosscutting topics such as storage system	 simulation, root cause analysis, and
autonomic tuning.

Approaches for integrating information from	 multiple subsystems into coherent
“views” (i.e., human-understandable representations) must	be developed,	including	
methods for capturing the accuracy of this information (e.g., is this an estimated
value for current time or an accurate value from	two minutes ago?). Multiple views
are needed to address the needs of different consumers of this information,
including administrators, developers debugging the system, and scientists	who want	
to use this information to adjust their applications’ behavior. Human readability and
understandability	are	critical	to	the	success of 	these	approaches.

Additionally, research is needed to realize the potential of integrated views of user
activity. This work may require and benefit from	collaboration with researchers in
other areas of performance understanding on future systems and could be of value
in	the development of autonomic SSIO solutions.

Storage Systems and Input/Output to Support Extreme Scale Science 30

	 	 	 	 	 	 	 	 	 	

 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

4.1.6 Autonomics

State	of	the	Art
Autonomics refers to the ability of a system	 to adapt to a changing environment,
such as tuning for higher performance in response to a change in workload or
redistributing work in response to a faulty component. In SSIO, autonomic
approaches are potentially	useful	for management, monitoring, and optimization in
response	to	user	behavior.

Despite a great deal of research into autonomics in the context of storage generally,
truly “autonomic” storage systems have not emerged in HPC. Instead, limited
adaptation	 is present in most parallel file systems in order to recover from	 failed
components, and some middleware responds to slow servers by shifting data
placement to use faster servers. Accurately representing HPC I/O workloads can
assist with enabling autonomics; however,	this	work 	is	also	in	its	infancy.

Challenges
The increasing complexity of SSIO systems means that practically no deployments
are operating in an optimal configuration, because the space of possible
configurations is huge, interactions between components	 lead	 to	 unexpected
behaviors,	 and tools do not	 currently exist	 to efficiently explore the configuration	
space and find good configurations for the system	 as a whole. Autonomic
approaches are greatly needed in SSIO to address reliability, performance, and	TCO	
issues.

R&D	Needed
Autonomic approaches are needed to increase the reliability of future SSIO systems.
A	key component of successful approaches to increasing reliability will be accurate
methods for detecting (and possibly predicting) faults so that	actions can	be taken	
in a timely manner. Clearly a connection exists between successful autonomic
systems and accurate fault detection and prediction; in fact, monitoring itself could
be adaptive, adjusting what is monitored and at what fidelity in response	 to	
significant events.

Autonomic approaches to improving performance are also needed. A	wide variety of
issues remains open in this area, including methods for optimizing data placement
in response to changes in component status or workload; approaches	 for	
implementing autonomic principles across multitier storage systems; and
techniques for implementing autonomic approaches in a decentralized, scalable
manner. Each of these areas has a potential connection to active storage. In
particular,	 active	 storage components could be the vehicle for implementation of
autonomic principles, but this approach has not been thoroughly investigated.

Additional research is needed to better improve the understandability and
predictability of autonomic systems. This includes methods for allowing human
understanding of how and when decisions were made and ensuring that

Storage Systems and Input/Output to Support Extreme Scale Science 31

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	

	
	

	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

autonomous systems do not interact in unexpected, disadvantageous ways. This
information may need to be presented in different formats depending on the
consumer; for example, an administrator might want to see information in terms of
devices, whereas a scientist might want to understand the data sets impacted by an
event.

New methods for defining policies are needed to control the behavior of autonomic
SSIO systems. Methods for understanding these systems must incorporate mapping
back to policies in order to enable administrators to tune policies that lead to
unexpected 	behavior.

4.1.7 Security

State	of	the	Art
Security for storage systems in HPC is typically implemented by using traditional
UNIX	 users	 or	 groups	 and	 access	 control lists.	 Specifically,	 this	 security	 is	
implemented via trusted software running in the kernel on storage clients, in
conjunction with one or more trusted servers. Data is not typically encrypted	at rest
or	over	the	wire.

Numerous, more advanced security approaches have been investigated in the
context of	 HPC	 but not productized.	 These	 include	 a technique	 for	 fine-grained	
encryption of large datasets [Li2013] and methods for aggregating security	
operations [Leung2007]: authorizing multiple client-file	pairs	 in	a single	operation	
and allowing	 a	 representative client	 to act	 on	 behalf of a	 large group	 (e.g.,	 the
processes in	a	parallel	application).	Scalable methods for security in large-scale HPC	
storage systems were also investigated as part of the LWFS project [Oldfield2007].
Security partitioning for secure and efficient search using bloom	 filters has been
explored	 [Parker-Wood2010]	 as well	 as using	 a	 keyed hash tree [Li2013]	 and
scalable	authorization mechanisms [Leung2007].

Challenges
Emerging system	 architectures create a number of challenges	 in	 applying	 the
current security	 strategy.	 First,	 additional layers	 in	 the	 storage	 hierarchy	 (i.e.,
nonvolatile storage layers, “campaign” or “data lake”	 storage layers between	 the
parallel file system	and archive) mean that the security system	will need to manage
multiple tiers, possibly integrating storage from	 multiple vendors. Second, the
dependence on node OS or network hardware for enforcement of	security	needs	to	
be relaxed: there must be ways of preventing information leakage from	nonvolatile
storage located within the compute fabric or between jobs running in the system	
without reliance on the kernel for enforcement, since the kernel itself is	 outside	
application control yet increasingly subject to compromise. Third, security must be
supported at a range of granularities that may leverage knowledge of file layout
(e.g., HDF5 or netCDF). Fourth, any new security solution must be decentralized and
allow fast paths for common operations; security needs to be as performance-
transparent	 as possible.	 Fifth,	 security solutions should integrate with resource

Storage Systems and Input/Output to Support Extreme Scale Science 32

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	
	
	 	

	 	 	 	 	 		
	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	

	
	

 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	
	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	

management to deter denial of service (e.g., consumption of available storage space
or	bandwidth).

R&D	Needed
Security	 R&D for SSIO	 is	 needed	 that	 integrates	 solutions	 to	 all	 five	 issues	 cited	
above while minimizing impacts to performance.

Additionally, solutions that allow data to be securely stored and subsequently
rendered	 inaccessible	 are	 needed	 to	 facilitate	 the	 use	 of	 nonvolatile,	 in-system	
storage for sensitive computations. The tradeoffs between software-based and
hardware-based solutions must be understood as well.

New solutions are needed to ensure that information is not leaked between	running
applications when data is transmitted over HPC networks, while retaining high
performance for communication.

The relationship between resource management and security also merits further
study,	particularly	as	relates	to	the	possibility	of	denial of	service	attacks	targeting	
SSIO	resources.

4.1.8 New	Paradigms

State	of	the	Art
Today’s state of the art in SSIO includes traditional parallel file systems (e.g., Lustre,
GPFS [Schmuck2002], PanFS [Welch2008], PVFS [Carns2000]) and a small
collection	 of	 middleware	 tools	 being	 used	 for	 in-system	 storage management for
fault tolerance	 (e.g.,	 FTI [Bautista-Gomez2011], SCR [Moody2010]) and data
sharing/code	coupling	(e.g.,	DataSpaces	[Docan2012],	C-MPI	[Wozniak2010]).

Researchers	 are	 also	 investigating	 solutions	 for	 specific	 access	 patterns	 (e.g.,
[Curry2012], [Zhao2014], [Sun2014]) and new methods incorporating adaptive
storage layout and access operator synthesis to increase performance while limiting
data movement and ingest overhead (e.g., [Ionkov2013]). In	 addition,	 researchers	
are borrowing concepts from	 scalable source code control systems to allow
reprogramming of storage systems while maintaining high availability
[Watkins2013].	

Challenges
Outside the HPC space, various new paradigms for data storage are being	explored,	
including automatic storage engine and query operator design using program	
analysis and software synthesis (e.g.,	 [Cheung2015],	 [Karpathiotakis2015]),	
distributed resource management and scheduling frameworks such as Apache
YARN [Vavilapalli 2013]	 to manage a wide variety of computations within
distributed storage systems, key-value	 stores,	 object stores	 of	 various	 types,	 and	
scientific databases. Similarly, alternative methods of managing data of interest are
being successfully employed	 outside	 the	 HPC	 space	 (e.g.,	 [LeFevre2014],	

Storage Systems and Input/Output to Support Extreme Scale Science 33

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 		

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

																																																								
	 	 	 	 	 	 	 	 	
	

[Alagiannis2014]). The merits of these methods in the context of HPC and EOD
analysis must be understood, and extensions to these methods developed in order
to 	accelerate 	scientific 	discovery.

R&D	Needed
Key-value stores, storage methods that manage multiple representations to
accelerate specific access patterns, and methods for managing data in the system	to
facilitate sharing of data between jobs are all promising techniques for accelerating
data analysis	tasks	relevant to	DOE science.

In terms of improving the performance of our systems in the context of concurrent
access, alternative approaches to storage semantics such as transactions, optimistic
methods2 [Kung	 1981],	 and	 speculative	 execution	 clearly need	 additional	 study.
Closer connections to programming models and better support for science data
models (e.g., multidimensional arrays) promise further usability of these systems. A	
closer connection to programming models enables more efficient I/O operators	
within storage systems because of the availability of high-level semantics. With
efficient I/O operators also comes the need for distributed resource management
and scheduling frameworks that successfully abstract over the resources of
heterogeneous system	 architectures. A	 closer connection to programming models
also implies that storage systems may have to evolve much faster than before while
remaining highly available.

Managing data is an increasingly critical component of successful SSIO, in both	HPC	
and EOD contexts. Efficient indexing techniques as alternatives to traditional name
spaces provide new methods of data discovery and can enable “piling” rather than
“filing”—which in turn opens up the possibility of new ways to manage bursty write
traffic. Similarly, finding the right tradeoff between the cost of accessing raw data
and the overhead of ingesting data into structured formats optimized for certain
access patterns is an increasingly important challenge, especially for applications
combining simulation and (possibly real-time) observational data.

In addition, new methods are needed to enable users to express future I/O needs, so
that I/O operations can be more effectively scheduled over long periods of time.
This is partially a programming model or interface issue, but these methods must be
coupled with mechanisms for data movement across the memory/storage
hierarchy, including incremental data movement, so that data can be effectively
positioned for computation. Because of the increasing complexity of system	
architectures and heterogeneity	of devices,	users will	need to increasingly	rely	on	a	
high level of automation in order to identify future I/O needs. Information available
during compile time and within runtimes could be a critical component of	successful
solutions.	

2 a	lock-free approach to managing concurrent access to resources	

Storage Systems and Input/Output to Support Extreme Scale Science 34

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 		 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	

	

 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

4.2 Metadata, Name Spaces, and Provenance

As the complexity and scale of systems, applications, and data continue to grow,
there is an increasing need to develop robust capabilities that enable both systems
and user to extract, search, and track lineage for the massive volumes of data
generated	for scientific purposes. While some of these capabilities exist today, they
are typically	deployed through a	set	of ad hoc tools (e.g.,	scripts that	use UNIX grep,	
find, and awk) not designed for the scale or complexity anticipated for large
scientific	 data sets. In general, managing large data sets on our existing systems
requires a level of discipline and organization by the user that is extremely time
consuming, if done well, and error prone if not. In addition, requirements for
repeatability, application workflow management, and data curation (among others)
are driving	 the need for robust	 and integrated tools for provenance capture and
management with extended features that allow exploration of the provenance
information for debugging, anomaly detection,	visualization,	and	other 	purposes.

Finding
New requirements for public access to digital data required for validation of
published results [SC n.d.]	are poised to fundamentally change the role of metadata
in DOE Office of Science and NNSA	mission-critical	applications.	These	changes	will
mandate new	approaches	for	capturing provenance and new methods for exploring
extreme scale datasets.

4.2.1 Metadata

Metadata, in this context, refers generally to the information about data as well as
the tools and techniques in an SSIO storage system	 to support the storage and
retrieval of such information. It may include traditional user-visible metadata (e.g.,
file names, permissions, and access times), internal storage system	constructs (e.g.,
data layout information), and extended metadata in support of features such as
provenance	 or user-defined	 attributes.	 Metadata access	 is	 often	 characterized	 by	
small, latency-bound operations that	 present	 a	 significant	 challenge for SSIO	
systems that are optimized for large, bandwidth-intensive	 transfers.	 Other	
challenging aspects of metadata management are the interdependencies among
metadata items, consistency requirements of the information about the data, and
volume and diversity of metadata workloads.

State	of	the	Art
While most HPC file systems support some notion of extended attributes for files
[Lustre2002, Welch2008, Weil2006] this type of support	 is insufficient	 to capture
the desired requirements to establish relationships between distributed datasets,
files,	 and	 databases; attribute additional complex metadata based	 on	 provenance	
information; and support the mining and analysis of data. Some research systems
provide explicit support for searching the file system	 name space based on
attributes [Aviles-Gonzales2014, Leung2009], but most of these systems rely	 on

Storage Systems and Input/Output to Support Extreme Scale Science 35

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	

	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 		 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

effective	 indexing, which has its own	 scalability and data-consistency	 challenges	
[Chou2011]. Recent	 work	 has	 investigated	 the	 use	 of	 integrated	 databases	 for
metadata storage [Johnson2014],	but	this	technique	has	not been	applied	in	an	HPC	
storage system.

Scalable metadata management for HPC systems has been a known issue for more
than	a	decade;	and while many systems have some support for multiple metadata
servers	 [Carns2000, Weil2006],	 the	additional	 servers often	are used for fail-over,	
not performance [Lustre2002].	 Truly distributed metadata servers with strong
consistency semantics, such as Ceph’s MDS [Weil2004, Weil2007] and GIGA+
[Patil2011],	are	either focusing	on	ease	of	load	balancing	using	hashing	(GIGA+) or
aiming for improved locality by dynamic subtree partitioning (Ceph’s MDS). More
recent object-storage systems scale metadata management across a large set of
storage	devices	[Aviles-Gonzalez2014]. Others manage parts of the metadata in the
clients	 to	achieve	scalability	 [Zheng2014, Weil2006,	Ren2014]	but	 rely	on	relaxed	
consistency semantics to achieve performance.

Challenges
Workshop attendees identified a number of nontraditional use cases for the
metadata management system. These include multiple views of the metadata to
support, for example, different views	at different levels of the name space hierarchy
and different	 views for different	 users’	 purposes; user-defined metadata;
provenance of the metadata; and the ability	 to define relationships between	
metadata from	different experiments (e.g., to support the provenance use case).

If we expand what can be stored as metadata, how do we ensure that all metadata
associated with a dataset remains with the data? Particular concerns were about
metadata storage at the different storage tiers, storage and recovery of metadata
from	archive, and the transfer of data sets to different storage systems.

Hashing a namespace balances the load but does not account for locality. Fixed
namespace partitioning accounts for locality but creates a load imbalance. How can
we combine the two or conceive of better techniques? How do we scale distributed
and multi-objective	 load-balancing algorithms across exascale-sized metadata
services that maximize caching and wear- or	power-leveling?

Currently, the end user explicitly enters a large portion of metadata. As workflows
grow in size and metadata becomes more complex, it is highly desirable to automate
the capture of most metadata about the workflow and provenance. A	number of
attempts have been made at the fairly coarse level [Schissel2014]; however, as
parallel jobs on a supercomputer become MPMD (multiple program	multiple data)
or composite workflows, there is a need to capture the complex dependencies
within	a	single parallel job. Since a job on an exascale machine may have 1-billion-
way concurrency, the metadata associated with a simple parallel write of a
checkpoint file could be large and complex, not to mention the dependencies and
interactions among the different components of a billion interrelated parallel tasks.

Storage Systems and Input/Output to Support Extreme Scale Science 36

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
		 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

The volume and velocity of the metadata associated with such a fine-grained	
metadata could present a serious challenge to manage.

R&D	Needed
Scalable approaches for metadata management on HPC platforms are still
inadequate;	 and the need to manage additional metadata for provenance and to
provide	 capabilities for searching	 creates new	 and	 exciting	 R&D challenges. How
would metadata management systems scale up to deal with the massive amount of
metadata from	parallel job with one billion parallel threads of execution? Are there
lessons we 	can	learn and apply from	cloud and web technologies?

Storage and metadata systems with implicit capabilities for	efficiently	querying	and	
analyzing metadata and application data are still needed. Particular efforts are
needed	to	develop	scalable algorithms, data-storage architectures for metadata, and
performance analysis for these capabilities.

While file system	 permissions, access control lists, and encryption-based security
have been used for data, applying the same security features to the corresponding
metadata must be explored.	 Easier interfaces to alter the security and privacy
features of metadata may be needed	 in	 order to	 open	 or restrict	 sharing	 of	 the	
metadata. For any new storage system	 feature, additional R&D to understand
security implications of these features is necessary. For example, a particular
concern for searchable files systems arises, since search results may be used to infer
the 	existence 	of 	files 	that	cannot	be 	read.

4.2.2 Namespaces

The namespace is the view or perception of data to the user. The subject includes a	
broad range of topics, including	discussion	of	data-model specific namespaces, time-
oriented naming schemes, consistency of naming across systems and storage
hierarchies, and search and discovery in large namespaces.

State	of	the	Art
Previous work has focused on improving the scalability of access to traditional,
POSIX-based namespace hierarchies [Weil2004,	Weil2006,	Patil2011,	Moore2011].		
More recent efforts have investigated how to manage scientific data in the context of
object-oriented namespaces [Barton2013, Goodell2012]. The grid computing
community has also made significant practical contributions to the problem	 of
federating namespaces across facilities [Baru1998].

Challenges
The	existing work generally is hierarchical. A	number of researchers, however, have
argued that such hierarchical namespaces impose inherent limitations	 on	
concurrency. Eliminating these limitations could be the fundamental breakthrough
needed to scale the namespaces to billion-way 	concurrency.

Storage Systems and Input/Output to Support Extreme Scale Science 37

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

R&D	Needed
One challenge is providing a coherent view of similar data from	different systems
(i.e.,	federating namespaces).

Much work still remains to develop algorithms and approaches that allow low-
latency traversal and search of very large and dynamic namespaces. Indexing is the
primary tool; but keeping indexes consistent is a challenge, especially for systems
with many small writes. Bulk ingest also presents a challenge for indexing.

Science teams need methods that preserve naming schemes and semantics across
systems and at different levels of the storage hierarchy. Of interest is the related
problem	 of data integration, for which the database community has developed
approaches for some years.

Techniques also are needed to support the coexistence of multiple namespaces for a
single collection of data. These techniques allow, for example, one namespace view
while data is generated and another for analysis of multiple experiments.

4.2.3 Provenance

Provenance is broadly defined as metadata that describes the lineage of data. In
simple terms, provenance contains details on	how a particular	 file	was	generated;	
these details	 can	 be	 used	 to	 reproduce scientific	 results.	 For	 large-scale	
computational problems, the information can include the origin of data (sometimes
experimental data); algorithms, libraries, and associated parameters and versions
used for processing	and transforming the data; details of the systems used for these
transformations such as memory requirements, number of resources, and system-
software;	 and	 perhaps	 even	 ownership or	 user	 attribution	 for	 the	 various	 steps	
performed. The most discussed use case for provenance information was to support
re-use	 of data	 for validation	 of	 published	 results, since	 the	 Office	 of	 Science	
Statement on Digital Data Management [SC n.d.]	now	requires	projects	 to	provide	
access to data	 for this purpose,	 but	 the	 group	 also	discussed numerous other use
cases such as understanding performance, system, and software variance;
certification	 of	 results;	 and	 forensic	 analysis	 useful for	 debugging,	 auditing,	 and	
security.

State	of	the	Art
Most of	 today's	 scientific	data sets	have	 little to no provenance information at all.
Provenance information that does exist is collected and managed in an ad hoc way
through custom-developed	 scripting	 tools	 (e.g.,	 Perl or	 Python)	 with	 no	 direct
support for managing this data in the storage system. In	these	cases,	the	quality	of
the provenance data is directly related to the discipline and management skills of
the 	data	owner.

An important aspect of provenance	 information is how it relates	 to	 application	
workflows.	Work on automatic extraction, management, or analysis of provenance

Storage Systems and Input/Output to Support Extreme Scale Science 38

	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	

	 	
	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	
	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 		
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	

	

data has	 begun	 in	 isolated	 research	 groups	 [Schissel2014,	 Davidson2008,
Muniswamy-Reddy2006] and is available in many workflow automation tools such
as Kepler/Komadu [Indiana2014],	 VisTrails	 [Callahan2006],	 and	 Pegasus
[Mandal2007];	however,	such	tools	are	not in	wide	use	and	are	often	not deployed	
on HPC systems.	 Most	 of these	 tools	 rely	 on	 third-party databases and custom	
designed	 tools	 [Davidson2008]. While this approach is effective for managing
workflows in	 a	 single environment, the ability to encapsulate entire datasets and
associated provenance for archival purposes is problematic. In addition, no effective
way exists	 to integrate provenance information for workflows that span multiple
systems.

High-performance computing facilities are also using tools such as ALTD
[Fahey2010] to collect provenance information for more traditional applications as
well. As is the case in workflow systems, however,	 these tools are not	 integrated
with the SSIO storage ecosystem.

Preliminary	 work	 has	 investigated	 the	 use	 of	 graph	 data	 structures	 [Ames2011,
Dai2014]	for provenance	storage,	but	these	concepts	have	not	been	fully	realized	at	
scale.

Challenges
Existing workflow tools manage all provenance data internally. There is no storage-
system	 support that enables the association of provenance-related metadata with
scientific datasets. As datasets increase in size and complexity, the ability for tools to
manage the files, databases, and other storage by-products will become a significant
challenge without implicit storage-system	and 	operating-system/library support.

The size and complexity of mining and analyzing provenance data could become an
extreme-scale computing problem. Use cases for mining and analysis include
debugging, anomaly detection, and visualization. One challenge identified	was the
need to identify all datasets derived from	 an application that used a	 particular
version of	a (known-buggy) library so they could be removed from	the archive and
rerun.

Workflows that span multiple systems also merit attention. For example, consider a
workflow consisting of preprocessing a large collection of data from	 a scientific
device.	The	results	are consumed by a large HPC simulation, and the results of the
simulation get transformed into a	graph and analyzed on	a	graph-analytics system.
The provenance information should include the complete description of these steps;
but	there is no formal way to construct, capture, and manage this type of data in	an	
interoperable manner.

A	complete description of steps may not	suffice	to	reproduce	a	simulation.	The	setup
of	a simulation depends on the particular environment, which continually changes,	
often	 irreversibly	 (e.g.,	 after	 the	 application	 of	 security	 patches).	 Capturing	 and	

Storage Systems and Input/Output to Support Extreme Scale Science 39

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	
	

	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	
	
	

understanding the impact of changes to the computing environment are important
aspects 	of 	using	provenance 	data	for 	reproducibility.

R&D	Needed
Research	 is	needed to understand how much provenance information is sufficient
for	 the	 validation	 of	 results	 and	whether	 there	 are	 different types	 of	 provenance	
information that must be captured	 for	 different use	 cases. The	 provenance	 data
required to rerun experiments may not be the same as the provenance	 data	
required	for	debugging or	security;	however,	 they	are	both	necessary	 for	different
levels of reproducibility [Arpaci-Dusseau2014]. How do we automatically capture
provenance from	 third-party libraries and system	 software?	 Do we define a	
standard API for emitting/capturing provenance data? Do we provide options to
select/filter	 this	 data? Research	 to	 evaluate	 and	 understand	 the	 tradeoffs	 and	
possible	solutions is 	necessary.

The	prospect of	collecting	a wide	range	of	provenance	data	could lead to	significant	
overheads, not just on the storage system, but also on	the	network and	associated	
applications.	These	overheads	include	costs	of	acquiring	provenance,	transferring	in	
the memory/storage hierarchy, storing provenance,	 and	 searching	 for	 useful
information. The community must understand these overheads and perform	R&D to
explore software and hardware systems to mitigate these costs at	HPC and other
Office 	of 	Science 	user facilities.

Keeping	provenance	data accessible is an important task,	 through	either standard	
formats or standard interfaces. This capability would enable third-party	 tools to	
evaluate	and	analyze	provenance	data,	allow for	the	integration	of	provenance	data
from	 multiple sources, and provide a mechanism	 for encapsulating all data and
associated metadata from	 a set of experiments into one logical unit. R&D is
necessary	to	explore	viable	approaches	to	enable	standard	access,	attribution,	and	
establish relationships between data and metadata. Closely	 related,	 we need an	
infrastructure	 that supports	 the	 curation of metadata and data associated with
simulations,	 so	 they	 can	 be	 validated	 across	 changing	 software	 and	 hardware	
environments.

4.3 Supporting 	Science 	Data

DOE science teams operate with large and complex datasets	 representing	 a wide	
variety of phenomena. In order to be productive, their tools must make storing,
managing, and analyzing this data convenient. Research and development in SSIO is
needed	 to	 bridge	 the	 gap	 between	 general-purpose	 storage	 services	 and	 specific
science needs, including supporting these data abstractions in programming models
and workflows – areas where data	abstraction	support	in	HPC has traditionally	been	
lacking.

Storage Systems and Input/Output to Support Extreme Scale Science 40

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 		

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

Findings
The emerging use of alternative programming languages and task-based workflows
drives the development of SSIO software. Such software will need to be more
flexible	and	to	better	integrate	with	upper	layers	in	the	software	stack.	

Scientists	require increasingly complex and specialized data abstractions in	order	to
improve their productivity and the quality of their science.	 Significant
improvements in SSIO data abstractions and their representations in the storage
system	 are required to support these needs and to simplify upper layers of the
stack.

4.3.1 Programming Model Integration

State	of	the	Art
While significant research has been performed in the area of programming models
for HPC [Draper1999, Chamberlain2007, Charles2005], relatively little research has
focused on providing better programming model support for	 HPC	 SSIO and	
imparting more information from	 the programming model to lower-level	 storage
system	 interfaces. Other communities outside HPC have conducted R&D (e.g.,
MapReduce [Dean2008]) to better integrate storage within programming models
and have seen	 widespread	 success.	 Further	 studies	 have	 sought to	 better	
understand these programming models and their connections to HPC and MPI [e.g.,
Plimpton2011, Hoefler2009, Ekanayake2008],	 including	 research	 to	 better
understand their 	relationship	to	parallel	file systems [Tantisiriroj2011].

Some research has been performed on extending the programming model to
incorporate processing capabilities within the storage system. In particular, active
storage	 has	 been	 investigated	 in	 the	 context of	 HPC	 applications	 [Son2010]	 and	
more generally in the context of object-based storage [Qin2006].	 Recently,	 this
concept was taken further [Jin2013], looking at methods for passing information
from	applications to the runtime (via the programming model) so that tradeoffs in
the performance, power, and resilience space can be effectively evaluated and
decisions made.

Researchers	 also	 have	 been	 investigating	 the	 applicability	 of	 task-based
programming models such as Legion [Bauer2012] for use in HPC systems and have
begun	exploring how to manage a deepening memory hierarchy. To date, however,
these 	efforts 	have 	not	focused 	on	providing	better 	support	for SSIO.

Challenges
Future HPC systems will incorporate multiple levels of memory and storage,
including	 high-bandwidth designs, NVRAM, DRAM, disk, and tape. The current
approach to programming does not expose any information regarding this hierarchy
to the programmer; rather, aspects of this hierarchy are transparently managed by
the operating system	 and hardware,	 while libraries and other services explicitly
manage other components. Providing programming model support would help	

Storage Systems and Input/Output to Support Extreme Scale Science 41

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	
	

	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

better coordinate activities across the storage	 hierarchy,	 rather	 than	 forcing
programmers to decode the behavior of the local memory and storage hierarchy and
the 	layout	of 	global	storage 	resources.

In order to achieve this functionality, a successful programming model and its
underlying	 infrastructure	 need to	 consider the	 execution	 of user functions at	 a	
variety of locations within the system, including within the storage system, to
support their	 execution	 near	 data.	 Further	 support also	 is	 required	 to	 provide	
complex data mappings across the various	 levels	 of	 the	 storage	 hierarchy. Via
abstraction, the potentially complex mappings of computation and data performed
by the programming model may be hidden from	the user, simplifying development.

In any discussion of future HPC systems, the issue of fault	 tolerance arises.	 The
current model of data resilience in HPC systems is simplistic, and the level of
protection provided by the system	 is not visible to the user. Richer capabilities to
express an application’s persistence requirements for resilience are	needed.

R&D	Needed
R&D needs	 focus primarily on the three challenges mentioned above: support for
using complex storage hierarchies seamlessly, mapping of computation to persistent
data (active	storage),	and	resilience	through	persistence.

In the area of complex memory and storage hierarchies, research is needed to
understand how the deep storage hierarchy can be presented to users and managed
as a whole in the scientific computing context. This research includes methods for
mapping complex data structures	 across	 the	 storage	 hierarchy,	 and	 exposing	
locality of data within the storage hierarchy, as well as methods for persisting data
structures stored across the hierarchy, possibly in a transactional manner.

In the area of mapping of computation	 to persistent	 data,	 additional	 research is
needed	 in order to understand how to efficiently execute computation (simulation
or	 analysis)	 on	 distributed,	 persistent scientific	 data structures;	 and	 in	 fact this	
work must be performed in concert with work to understand mapping of these
structures within the storage system. Research in methods to enable computation to
occur	 deep	 in	 the	 storage	 hierarchy	 (e.g.,	 active	 storage)	 is	 also	 needed;	 and	 the	
functions to be executed might need to be adjusted interactively,	 while	 an	
application	is 	running.	

In	the	area	of fault	 tolerance,	applications need to	be	able	to	express their desired
persistence properties of data. Additional research is needed in order to understand
how application	developers	can	effectively communicate persistence requirements
through the programming model and how the storage system	 can better express
(and guarantee) fault properties (and potentially fault containment) to the
programming model so that educated decisions can be made by the application.

Storage Systems and Input/Output to Support Extreme Scale Science 42

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 		

 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	

	
	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 		
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

More generally, given the complexity and constraints (power, failure rates) in
emerging extreme-scales systems, programming models and abstractions must
enable the application to guide an autonomic runtime so that it can effectively
evaluate	 tradeoffs (performance, power, resilience) and make decisions (mapping,
data placement, data prefetching, scheduling, etc.) in a cross-layer and application-
aware manner.

4.3.2 Workflows

State	of	the	Art
Workflow systems are an increasingly relevant software system	to be considered in
conjunction	with	scalable	storage	and	I/O	for	HPC.

In	 the	 context	 of HPC,	 the	 Swift	 [Zhao2007]	 activity	 has shown	 the	 potential	 for
high-throughput workflow on HPC systems and, in conjunction with the Hercules
store,	 has	 shown	 the potential for exploiting data locality in task placement
[Duro2014]. Similarly, the ADIOS [Lofstead2008, Lofstead2014] activity is taking
advantage of the DataSpaces [Docan2012]	 in-memory store to optimize task
coupling in HPC systems. Research enabling the MapReduce programming model in
HPC systems (see previous section) is also relevant to this area. However, no
general production capability for supporting workflows in HPC systems, nor
methodology for exposing locality from	 HPC storage to workflow systems,	 is	
available at this time.

Challenges
A	production workflow capability clearly is needed for use on future HPC systems.
Specific to SSIO, effective workflow execution on future platforms will require
efficient communication of data between tasks. While some research has been done
on	 this	 topic, more work is needed. Also strongly needed is linkage to resource
management systems for more dynamic allocation of resources within the
workflow. While some research has been done on partitioning tasks into in situ and
in-transit components [Bennett2012],	substantial	work remains before these hybrid
workflows are developed.	Success will	require co-design with programming models
and compilers.

Additionally, workflows capture a great deal of relevant provenance information.
This information is important for validation of results, but no mature method for
passing this information to the SSIO system	 is available at this time. Successful
solutions	 here	 will need	 co-design with workflow and resource management
systems.

R&D	Needed
Research	 is	 needed	 in	 order to better understand the best methods of interfacing
between	workflow	management systems and their tasks. For example, it is unclear
how best to present “locality” in the context of a deep memory hierarchy so that
decisions can be made regarding whether to move computation to data or data to	

Storage Systems and Input/Output to Support Extreme Scale Science 43

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

		

 	 	 	 		
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	

	

																																																								
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

computation or whether to further partition computation or data in order to
facilitate a mix of approaches. Additionally, scalable methods for publish/subscribe
paradigms 3 [Eugster2003] may be needed to assist in efficient,	 distributed	
scheduling	of	workflow tasks.

Since much data generated by workflow tasks will be transient, methods are needed
to provide data protection over short timeframes when data are stored	 in	 the	
system. An obvious connection exists here with other	 activities,	 such	 as	 SCR	
[Moody2010]	 and	 FTI	 [Bautista-Gomez2011], but these activities focus on
checkpoint/restart cases; more general solutions are needed.

Multiple intermediate representations of data and how they interact with a
multistage workflow must be explored. The data have to be augmented with
provenance information that is provided to the workflow management system. This
research strongly crosscut with the resource management system	with which the
workflow	 management system	must interact in order to make optimal decisions
about	resource 	allocation.	

Research is needed in order to understand how provenance information from	
workflows can best be captured and managed by the SSIO system. This could
include	 new interfaces	 for	 passing	 this	 data into the storage system, methods of
piggybacking provenance information on data payloads, or methods for cross-
referencing between generated data and workflow and resource management
constructs (e.g., tasks, jobs, workflows, and system	resources).

Moreover,	 the overlap between big data programming models and scientific data
programming models needs to be explored. MapReduce is an important big data
model, and initial activities have explored its utility for scientific data
[Ekanayake2008],	but	deeper study	of programing models for big data workflows is
required.

4.3.3 I/O Middleware and Libraries

State	of	the	Art
I/O middleware has established itself as an important component in the I/O stack
for	 HPC;	 and	 libraries	 such	 as	 ROMIO [Thakur1999],	 HDF5	 [Folk1999],	 Parallel	
netCDF [Li2003], ADIOS [Lofstead2008, Lofstead2014], SIONlib [Freche2009], and	
Damaris [Dorier2012] are routinely used in scientific codes to ease the burden of
data organization and management. These libraries largely support dense,
multidimensional arrays, with more specialized data models typically being
supported	on	top of	these	building	blocks.

3 a	model of communication where messages are published and delivered to	 receivers who	 have
subscribed to messages	matching certain criteria.

Storage Systems and Input/Output to Support Extreme Scale Science 44

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	

	 	 	 	 	
	 	 	 	 	 	
	 	
	 	 	 	 	
	

	 	 	 	 	

	 	 	 	
	 	 	 	 	 	

	 	 	 	 	
	 	 	

	 	 	 	
	 	 	 	 	

	
	

	
	
	 	 	 	 	 	

	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	

	 	 	
	 	 	 	 	

	 	 	 	
	 	 	 	

	

The libraries primarily are linked into
application codes and perform	 data
transformation and optimization on the
nodes on which the computation is
running. However, researchers	 also	 used	
set-aside processes or cores to perform	
I/O	 tasks [Nisar2008,	 Vishwanath2011a]	
and to integrate processing	 into the data	
path	 [Bennett2012,	 Vishwanath2011b].	
This	 research	 begins	 to	 blur	 the	 line	
between “traditional” I/O middleware
and I/O system	 software such as I/O
forwarding packages [Ali2009] and data
management services [Dong2013].
Additional research (e.g., [Docan2012])
focuses on middleware approaches for
data sharing	 between	 codes	 in	 HPC	
systems.

Challenges
A	 significant issue that must be resolved
is	 resource	allocation	 to	 I/O middleware.
Currently, either I/O middleware gains
control over	 cores	 or	 nodes	 when	

functions are called, or these resources are handed to the middleware in an ad hoc
manner by the application. I/O middleware needs to be extended to interact with
resource management for allocation (and reallocation) of resources at runtime. This
work includes enabling I/O middleware to execute beyond the scope of a single job.

The ability of I/O middleware to make best use of system	resources is limited by the
information that it presents to users, other layers of middleware, and low-level	OS	
services. These communication paths and the ability to compose services from	
multiple layers must be improved so that multiple layers of storage software can be
more easily composed into effective solutions for specific science teams. A	more
refined abstract model for storage may be a necessary component.

The range of models supported by middleware also must be improved. Dense,
multidimensional arrays may not be the ideal building block for certain other
models (e.g., graph representations, adaptive data structures); but it is unclear how
best to organize middleware to support these models. Further, access methods
should	account for	the	fact that users	have	differing	levels	of	expertise	in	accessing	
data.

R&D	Needed
Research is needed in order to understand how advanced I/O middleware
architectures should be implemented. Issues include how multiple layers of

Figure 4: I/O middleware is
hampered by its ability to self tune.
Work such as [Behzad2014a] is
investigating approaches for
autotuning of I/O middleware that
can provide dramatically improved
performance with limited search
time.

Storage Systems and Input/Output to Support Extreme Scale Science 45

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	

middleware can be composed and coordinate efficiently with one another and with
users, how security can be managed for multiuser I/O middleware, and how faults
and fault domains are managed and reported. Coordination with work in how
programming models support use	 of	 deep storage/memory hierarchies is
mandatory.

Additional research is needed into data models and interfaces, beyond the pervasive
dense multidimensional array model. More work is needed to understand how
asynchrony	 can	 be better supported,	 how	 adoption	 of	 new interfaces	 can	 be	
facilitated, and how users and other system	services can direct data traffic explicitly
when	necessary.

4.3.4 Data Abstractions and Representation

State	of	the	Art
As mentioned in the I/O middleware section, the dominant data model supported by	
HPC I/O storage software (beyond simple POSIX) is dense, multidimensional arrays.
Although some libraries support more complex data structures, such as geodesic
grid data structures for climate [Palmer2011] and particle data [Adelmann2005],
these are typically implemented atop a dense multidimensional array model. A	
second model that is supported in systems such as DataSpaces [Docan2012] and
Hercules	 [Duro2014] is	 a tuple	 representation. Tuple	 representations	 provide	 a
flexible method for users to define their own organizations. The Damsel
[Damsel2014] project investigated methods for storing unstructured arrays.

Compression of floating-point data has been studied as a method for concise
representation of scientific data [Lindstrom2006], including methods that represent
data as	a function	and	capture	error	[Lakshminarasimhan2011].

Various methods of indexing scientific data have also been investigated. For
example, the FastBit project [Wu2009] produced an indexing tool that has been
used in	a	number of scientific activities, and hybrid compressing/indexing of data
along	the 	data	path 	has 	been	researched as 	well	[Jenkins2012].

Numerous approaches for organizing data in storage have been investigated, and
some implemented. For example, chunking approaches to	 data	 storage	 have	 been	
studied	 as	 part of	work in	 the	HDF5	project [Folk1999]	 and	 in	 the	 Panda project
[Seamons1994]. The use of algorithmic distributions of data is common in parallel
file systems such as PanFS [Welch2008], Lustre [Braam2004], and PVFS	
[Carns2000], with PVFS providing mechanisms for the definition of new layouts and
application	 of these on	 a	 per-file basis. The Scientific Data Services framework
[Dong2013] manages partial replicas of frequently used data in locality-friendly	
organizations.	

Storage Systems and Input/Output to Support Extreme Scale Science 46

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Log-based approaches to storage of scientific data	 have been	 investigated in	 the
PLFS [Bent2009] and ADIOS [Lofstead2008] projects, both available on systems
today, and as a method of writing data through the MPI-IO interface [Kimpe2007].

Storage of adaptive, multi-dimensional data structures has seen some attention as
well, for example, in the Chombo project [Colella2000] and in the FLASH
astrophysics project	[Ross2001].	However,	packages specifically	targeting	storage of
multiresolution data have not emerged.

Challenges
The complex data structures used by scientific codes to organize their data are not
well	 supported by current	 SSIO	 products.	 Methods for specializing	 general	 data	
abstractions to support	 specific	 activities are needed,	 as well	 as new	abstractions
optimized to support data models present in HPC codes and analysis tools.
Furthermore, these abstractions should efficiently map to, and enable the use of,
emerging architectural solutions such as burst buffers.

In the context of expected deep memory hierarchies, many orders of magnitude of
variance can be present in the time to access data, based on its location.
Expectations of cost of data access must be made available in order for workflow
systems, programming models, and users to effectively schedule operations.	
Similarly, passing additional information on the future use of data to the storage
system	could allow for optimizations that are otherwise not possible or effective.
Initial work has been done one exploring abstractions and runtime mechanisms for
application-driven data management across deep memory hierarchies [Jin2015],
and associated energy/performance tradeoffs have been explored [Gamell2013];
but much work remains.

Relationships	between	data	are	not	represented	well	in	current	SSIO	approaches.	In
models such as HDF, data can be grouped and organized in a hierarchy within a file,
but relationships across files are not readily captured. Overall, a richer method for
expressing relationships between data items is needed.

As the cost (in terms of energy or time) of data movement continues to increase, the
need for alternatives to standard compression grows. Additional research is needed
to allow	 users to control	 the size of stored data	 while understanding	 the cost	 in	
fidelity.	 In	 particular,	 techniques must be devised that can provide a range of
bounded 	error 	options.

Additional research also is needed to better understand how indexing techniques
and different	organization	approaches can	further facilitate analysis and to develop	
new	techniques	that	target specific	HPC	and	EOD	concerns. Early	work in indexing
and reorganization in transit has shown promise for this approach. Embedding of
metadata with data may be necessary to enable certain classes of analysis as well.

Storage Systems and Input/Output to Support Extreme Scale Science 47

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

As discussed in the data abstraction section, additional information needs to be
communicated between applications and layers of the I/O stack. This information
should be coupled with mechanisms that allow for adjustment of data
representation in response to changing demands, including the	possible	storage	of	
multiple representations (or partial representations) in anticipation of a variety of
upcoming use cases. In situations where data is reorganized, information on how
that data was reorganized must be captured, particularly if the fidelity of the data	
may have been affected by the reorganization.

R&D	Needed
New research	 is	needed	 in	order	 to	 identify	what are	 the	best underlying	 storage	
data models for supporting science data models and correspondingly to determine
how to best map these science models down onto complex storage hierarchies as
well as emerging architectural solutions such as burst buffers. This research
includes not only the organization of data but also the semantics for access to that
data—where to implement certain capabilities in	 the SSIO	 stack	 and how	 to
efficiently specialize models for specific use cases.

Alongside the science data abstraction, a separate storage abstraction capturing the
salient properties	of	the	data is	needed.	This	includes	a range	of	attributes discussed	
in other sections of this document: resilience properties and locality information, as
well as information on how the data has been used and is expected to be used.
Furthermore, these abstractions should expose architecture aspects and constraints
as well as available tradeoffs in a semantically meaningful way; in other words,
while it is meaningful to talk about power at the hardware or OS level, it may be
more meaningful to consider resolution	or frequency of analytics,	which have power
implications, at	the 	application	level

Research is needed into methods for capturing relationships between data items.
For example, one approach could focus on alternative name spaces (i.e., new
methods of organizing storage in the large). Applying graph-based or other methods
of associating data elements could also lead to promising solutions.

As mentioned under data abstractions, research is needed into how to map complex
science data models onto hierarchical storage architectures. In the context of data
representations,	 additional research	 is	 needed	 to	 understand	what roles	 different
organizational techniques should play in the system	as a whole and how these can
be applied in	concert	to achieve science goals.	This includes both different	ways to
organize	data (and metadata) on storage and different methods for finding that data.

Similarly, assuming that new information is made available up and down the SSIO
stack, a number of concerns need to be addressed.	Issues	to	be	considered	include	
the intent	of users,	the status of layers, history and expectations of performance, and
the relationships between data elements, research is needed to develop the
mechanisms that make best use of this information. This objective is tightly tied to
the success of autonomic approaches	as	well.

Storage Systems and Input/Output to Support Extreme Scale Science 48

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
		

 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

In the context of compression and fidelity, additional research is needed to
understand what types of lossy compression are acceptable to scientists, what level
of loss is tolerable, how and where to support these methods in the SSIO stack,	and	
how information on fidelity and errors is communicated.

4.4 Integration 	with 	External	Services

SSIO systems can no longer exist as autonomous islands of data that users move
data into and out of manually or through custom	scripting. Storage systems need	to	
work seamlessly and be shared across multiple HPC resources	within a datacenter,
an	 activity	 that introduces additional complexities for providing consistent data
access and modification. New layers in the memory hierarchy further complicate the
picture. Interfaces are not currently well defined that would allow SSIO systems to
work	 with archives,	 resource schedulers, monitoring systems, and workflow	
systems. Clearly	 needed	 are interfaces	 and	 software	 that will allow a user	 or	
application to tell the system	what its storage needs are and to ask the system	about
its	storage	hierarchy	and	capabilities.	 These	needs	can	be	addressed	by	researching	
ideas such as standard APIs, fault monitoring and attribution, coscheduling, dynamic
provisioning, and discovery mechanisms.

Finding
Current SSIO designs are hindered by their isolation from	 system-level	 resource	
management, monitoring, and workflow systems. Cooperation with	 these	 critical
system	services will be mandatory for the success of SSIO in future NNSA	and ASCR
HPC	platforms.

4.4.1 Scheduling and Resource Management

Integration	 with	 scheduling	 and resource	 managers is becoming increasingly
important to effectively use and manage large storage systems that will include
archive, disk, burst buffers, and other NVRAM devices that are either on or off node.
Better coordination between the storage system	and the scheduler	can	ensure	less	
contention at the storage system	and result in improved job runtimes. To achieve
this goal, we will need a wealth of information on application I/O characteristics,
storage system	 load, and the ability to feed this data back to job schedulers.	
Workflow management systems present a multidimensional resource provisioning
challenge for the SSIO system. Workflow systems could, however, become part of
the solution, in that they can provide a priori and runtime information on current
and future SSIO requirements of the workflow components to schedulers and
resource managers or can	 adapt	 their execution	 to work	 within	 the available
resources. In the	 future, the	 scheduler	 will need	 to	 coordinate	 workflow or	 job
capacity	and	bandwidth	needs	with	the	burst buffer	and	factor	in	stages	and	drains	
to the disk and/or archival subsystem. This effort will	require elastic provisioning	of
storage and bandwidth across storage tiers in order to satisfy dynamic workflow
needs.

Storage Systems and Input/Output to Support Extreme Scale Science 49

	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 		 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	
	

	 	 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	

 	 	
	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

State	of	the	Art
Batch scheduling has been used for supercomputers for some time, and initial work
has	 been	 done	 on	 checkpoint/restart integration	 using	 burst buffer	 devices	 (e.g.,
Cray, HIO@LANL). Work involving moving data and scheduling jobs has been done
for grid computing, and the multischeduler issue has been addressed [Schopf2002].
The	 BadFS	 work has	 shown	 ways	 to	 integrate	 storage	 with	 the	 scheduler	
[Bent2004].

Challenges
A	major challenge concerns how schedulers should interface with storage systems
in	such	a way	as	to	provide	various	storage	resources	to	jobs	that are	executing	on	
multiple shared systems. Users want elasticity and on-demand provisioning
controlled	by	a	running	job.

R&D	Needed
Research is needed in numerous areas. Scheduler modifications include storage
hierarchy integration for data movement, long-running jobs	 needing resources	 at
different times, monitoring integration and reaction, multisystem	 use of shared
resources, QOS scheduling, active	 storage	 scheduling, and	 integrating an
understanding	of 	new	resource models.

4.4.2 System Monitoring

As the massive collection of devices associated with SSIO systems is deployed,	
knowledge of the state of every device, its relation to the system	as a whole, and its
real-time maintenance needs will be critical to the efficient use of storage systems.
Scalable collection of performance, fault, power, and usage data will allow such
system	 monitors to provide online analytics that	 provide key data	 to system	
managers with the lowest possible imposed overhead.	 The	 ability	 to	 align	 the	
captured parameters in time and space, as well as correlate these with system	
component characteristics, will	be critical, not	only	to gain a correct assessment of
the system	 state, but also to provide predictive capabilities. Performance metrics
will need to be collected at every level, ranging from	the burst buffers to the storage
system	and then to the archives,	 and must be propagated throughout the system.
Research	 will	 also be needed to standardize the format of the information being
collected and to perform	rich analytics of the collected performance data in	order	to	
provide	the predictions	of expected	load	necessary	for efficient scheduling.

State	of	the	Art
Most systems are monitored by gathering a large set of data about the system	and
then	having	a	storage	expert	sift	through	the	data	[Gainaru2011].	Many	open-source	
tools and vendor tools for gathering and monitoring this data already exist; and
many of these tools are combined by using custom	scripts [Miller2010].

Storage Systems and Input/Output to Support Extreme Scale Science 50

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	

 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	

	
	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	

Challenges
An open monitoring system	is needed that can collect analyze and report failures as
well as highlight the cause of performance issues that are actively occurring across
multiple compute, storage, and archive systems. The system	should be capable of
supporting O(100,000) elements. Creating such a monitoring system	 is difficult,
however,	because	of	 the	current lack of	any	standard	or	 interface	 for	gathering	all
performance, log, and failure data.

R&D	Needed
Research is required in a number of areas. For example, a common and scalable	
approach to data collection and organization is needed, which relates to schemas for
storing information and could be used for additional	 purposes beyond SSIO	 data	
collection. More standards are needed for collecting performance and failure data,	
as well as the ability to conduct online analyses of this information over the whole
system	so that normal slowdowns and performance issues can be separated from	
faults	 and	other	 events. Additional research is needed into automating root cause	
analysis. The	 ability to map monitoring information back to explanations that
inform	the user of the storage system	about the validity, availability, and durability
of data is also needed. Monitoring storage system	 power use is important for
system	management and scheduling. In order to support this research, more data
about the current running systems is needed to validate working models; to this
end,	 production	 centers	 should	 be	 encouraged	 to	 provide	 operational data in	 a
privacy-protected way.

4.4.3 Workflow and Orchestration

The capacity and associated bandwidth of today’s file systems are straining to store
ephemeral intermediate data in workflows. The ongoing integration of SSD devices
into compute infrastructures, both as burst buffers and as extended memory, offers
opportunities	to	enhance	science	workflow productivity.	 Interfaces,	including	ones	
to extended memory hierarchies, will be required that allow for the discovery of
system	 characteristics and the integration of data from	 disparate sensors	 and	
multiple storage and compute systems.

State	of	the	Art
Scientific	 workflow	 tools	 exist	 for desktop (Kepler [Altintas2004]) and grid
scheduling systems (Pegasus	 [Deelman2002]).	 Some workflow engines are built
closely with schedulers such as DAGMan and HTCondor. They	 have	 also	 been	
branching	out	 into collaborative efforts such	as MyExperiment.org [DeRoure2008]	
powered by	workflow	engines such	as Taverna [Wolstencroft2013].	These	systems
are very high level and are designed to abstract concepts of computation and data
movement into nodes in a graph for specific scientific applications.

Some efforts have been made to extend work on	scientific	workflows to the storage
layer [Bugra2008].	 For example, Swift	 [Wosniak2014]	 is	 a popular	 big	 data	
workflow engine gaining some traction in HPC-related	areas. Python-based engines

Storage Systems and Input/Output to Support Extreme Scale Science 51

https://MyExperiment.org

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	
	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 			
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

such	 as	Dispel4Py	 [Filguiera2014] and FireWorks [FireWorks2013] are becoming
predominant because of the ease of doing data type discovery. Workflow
performance optimization also requires information about the status	 and	
availability	 of resources,	 at	 near-real time, in	 order	 to optimize execution of
workflows 	[Wieczorek2009].

Challenges
In	 addition	 to	 opportunities	 in	 workflow-aware storage (see,	 e.g.,
[Vairavanathan2012]), there remain gaps	 between	 high-level	 scientific workflow	
tools and the heterogeneous storage environment in HPC centers. Identifying
middleware (e.g.,	 [Lofstead2008]) and messaging [Subramoni2008] layers that	
appropriately abstract the storage hierarchy and perform	reasonably well is the first
step to getting scientific workflow tool users using HPC systems with burst buffers
or other emerging storage	architectures. Significant challenges	exist in the	area of	
wide-area	data	transfers 	in	support	of 	site-spanning	and	data-streaming workflows.

R&D	Needed
Topics that need research include a system	 publish/subscribe model that ties in
with programming and workflow models, resource managers that cross multiple
systems and sites, services that are available always or on demand for feeding
workflows, producer/consumer models for sensors and other data movement, and
discovery mechanisms for storage properties.

4.4.4 Archives

Scientific	 data	 storage	 has	 long	 used	 large	 archives	 based	 on	 tape	 storage.	 These	
archives need to be better integrated into the storage system	 of large-scale	
computing systems. In the 2018 timeframe, there may be a	 real	 need for the
archival system	 to integrate not just with the machine’s scratch storage but also
with the center-wide long-term	 analysis storage. In the exascale timeframe, as
much of the data analysis begins to be performed in situ on	the	burst buffer,	 there	
may also be a need for the archival system	to interface directly with the burst buffer.
As this situation	develops, the architecture and design	of archives will	 need to be
able to adapt to changes in the storage hierarchy and provide access mechanisms to
support active-archive processing,	cross-site data flows, and rich metadata services.
This may necessitate the use of alternative	archive	technologies	beyond	tape,	such	
as 	power-managed disk or optical storage.

State	of	the	Art
Facilities have	 been	 using	 tape for archives for some time. Hierarchical storage	
management systems	such	as	HPSS [Watson1995]	use	a	disk	front-end	to speed the
time to first byte (TTFB) for small and recently accessed files.	 Work	has	been	done	
to connect namespaces across file systems and archives [Lustre2010,
Degremont2013] and to understand how archives are currently used in HPC
[Adams2012]. Archives today are predominantly centralized stand-alone services
that	are 	used 	as 	a	long-term	storage where read access is often	slow.	

Storage Systems and Input/Output to Support Extreme Scale Science 52

	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	

 	 	 	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 		 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	
	 	 	 	 	 	 	 	 	 	 			

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	

Challenges
Two	 challenges	 of	 particular	 concern	 are	 (1)	 effectively	 verifying	 the	 integrity	 of	
archive files over time and continuous technology migration and (2) the cost and
practicality	of 	retrieving	and 	searching	data	that	are resident on slow TTFB devices.	

R&D	Needed
The	question	of	how to	interface	with	archival	systems raises a long list of topics for
research. These	 include	 burst buffer	 direct to	 archive	 transfer;	 scalable	 data
integrity	checking;	resilient and	scalable	archive	searching	and	 indexing,	 including	
semantic search; ease of archive expansion and federation; programming models for
archive access; active archives; new archive systems that may not be tape or as
monolithic; cross-system	 namespaces including other archives, file systems, and
compute systems; security and privacy protection; and long-term	 curation
interfaces.	 Research	 in	 these	 areas	 should	 dovetail with	 efforts	 both	 to	 integrate	
archives more closely with namespaces and resources that span the entirety of the
storage	 hierarchy	 and	 to	 allow for	 intelligent searching and	 indexing of	 archive	
metadata and data.

4.5 Understanding	Storage	Systems and I/O

Research	tools	are	needed	for end-to-end measurement and understanding of SSIO
systems. In parallel application building and tuning,	 numerous correctness	 and	
performance tools are available to applications. In the area of SSIO systems,
however,	few generally	applicable	tools	are available. Tools and benchmarks for use
by application programmers, library developers, and SSIO system	managers would
be an enormous aid. Also needed is research	into	evolutionary	ideas	such	as	layered	
performance measurement, benchmarking, tracing, and visualization	 of	 related	
performance data. More radical ideas also need to be explored, including	end-to-end	
modeling and simulation of SSIO stacks.

In addition, tools for designing SSIO systems for understandability are desirable.
Given	 the	 need	 for	 extreme concurrency while having to handle coherence,
consistency, and correctness over many tiers of storage devices with many orders of
magnitude differences in latency and performance, SSIO systems have been difficult
to build with provable reliability and performance. Just as applications on extreme-
scale systems have become difficult to reason about, SSIO systems are equally
difficult or even perhaps harder to reason about, given the multiuser environments
in	which	 they	operate.	 Researchers	need	 to	 treat SSIO systems development as a
first-class	application	warranting	its	own	tools	and	languages.	 This	topic	is	covered	
in	greater	detail 	in	Section	4.1.5.

Finding
Many important aspects of application and system	 behavior related to SSIO are
obscured	from view.	Recent successes	in	capturing	application	SSIO behavior	have	
highlighted	 the	 value	 of	 this information for performance debugging, system	

Storage Systems and Input/Output to Support Extreme Scale Science 53

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	

 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 		 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		 	 	 	 	 	 	

	 	
	

	
	 	

	 	 	
	 	 	 	

	
	

	 	
	

	 	 	 	 	
	 	 	 	

	 	 	
	 	 	 	 	 	
	 	 	

	 	 	
	 	 	

	 	 	 	
	 	

	
	 	 	 	 	
	 	 	

	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	

	 	 	
	 	 	 	
	 	 	 	

	 	 	
	

procurement, and steering of	SSIO research;	but a better	understanding	of	behavior	
is	critical 	to	SSIO 	effectiveness.

4.5.1 Workload Characterization

Workload characterization, emulation, and understanding are some of the more
important concerns	that call for micro-applications that	capture current	application	
SSIO patterns/flows. Automated tools for workload characterization	like	I/O	kernel
extraction, automated workload characterization, and of course benchmarks were
also discussed.	 There are no real	 standard tools for workload characterization	or
benchmarking. There are examples of current state of the art tools	but there	was	
consensus that these tools are not used broadly enough and dissemination of the
data they	 produce	 is	 not ubiquitous	 enough	 to	 enable	 broad	 enough	 research.	
There are even fewer I/O kernels of important applications being provided and kept
up to date for broad use by the research community. So while tools do exist, the
quality	of	upkeep	of	the	tools,	broadness	of	use,	and	availability	and	quality	of	data	
they produce is just not sufficient for a broad community engagement.

In	 addition	 to	 characterizing	 and	 understanding	 today’s	workloads,	 the	 attendees	
felt that some methods for understanding future workloads/workflows including
local and wide area data management needs are needed. There are very few if any
workflow	characterizations 	for future	applications.

State	of	the	Art
In	 the	 area	 of workload
characterization, emulation, and
understanding, multiple projects have
focused	 on	 tracing,	 replaying,	 and
analyzing	 workloads,	 including
workload-aware storage [Zadok2006],	
visualization	 of	 I/O behavior	
[Ma2009a], and automatic extraction of
parallel I/O benchmarks [Ma2009b,
Behzad2014b].	 Other HPC I/O	 tracing	
tools have contributed features such as
trace compression [Vijayakumar2009],
multilevel instrumentation [Luu2013],
and detection	 of internode
dependencies [Mesnier2007]. A	 large
set of	 tools	 exist for	 characterizing	and	
understanding	 I/O workload,	
addressing areas such as automation,
compression, replaying, and
visualization;	 but the	 tools	 are	
piecemeal, each designed to measure or

Figure 5: Darshan data can be used to
understand the behavior of
applications running on production
systems. This	 graph shows	 the
relationship between number	of bytes
transferred and effective I/O
throughput	 for applications on	 the
Mira 	Blue 	Gene/Q 	platform 	[Luu2015].

Storage Systems and Input/Output to Support Extreme Scale Science 54

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	

	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

understand one part of the workload or system. Sorely lacking is a comprehensive
tool	 set	 that	 can	 characterize all the way from	 application to storage devices and
back	at	 flexible fidelity/overhead.	 Further,	 there is no standardization	of tools or
the data	they produce; and therefore there is not	a	large set	of data	that	characterize
the entire problem	space disseminated broadly enough to engage a large research
community effort.

Benchmarking is also an important part of SSIO research. Many HPC SSIO-related	
benchmarks exist, such as IOR [Shan2009], FSTest [Nunez2003], and MDTest
[MDTest]. Additionally, the recent DOE CORAL procurement included an HPC
application-centric SSIO benchmark called HACC [HACC n.d.]. Similar to the
characterization tools above, however, the benchmark area suffers from	 lack of
standardization and piecemeal tools. Most of the benchmarks are for measuring
low-level	 SSIO	 activities,	 with only a	 few	 that	 are intended for full	 stack	
understanding.		

Profiling	 techniques	 for	 workload	 characterization	 also	 exist,	 including	 Darshan	
from	 Argonne National Laboratory [Carns2011, Carns2009], IPM from	 LBNL
[Uselton2010], and Vampir from	TU Dresden [Vampir n.d.]. These profiling tools
could be used to provide much more data to the research community if adopted and
used more broadly and if HPC sites felt that providing this insight into SSIO	
workloads was 	worthwhile.

Darshan [Carns2011] is the most used and relevant SSIO workload profiling tool in
use	 by	 a	 large	 set	 of HPC sites today.	 While	 other tools do	 exist,	 Darshan	 has a	
particularly broad impact because it can be transparently enabled for production	
use.	 The	tool	captures histogram-level information for I/O activities performed by a
job, for example, the number of writes binned into size bins. The simplicity of the
tool and its light touch on production systems makes it highly leverageable.

From	a benchmarking point of view, IOR [IOR n.d.] is probably the most used HPC
SSIO	 low-level benchmark for understanding data movement from	 compute
memory to and from	 storage devices. MDTest [MDTest n.d.] is probably the most
used mostly for metadata measurements, such as file name/attribute creation,
deletion,	and	query	rates.

In	 the	 area	 of understanding	 future	workloads,	 almost no work exists. The most
salient ideas in this area revolve around having future facing mini-I/O	applications
that	 are coordinated with the co-design center mini-applications.	 This	 work
includes integration with future potential programming and execution models. At	a	
minimum, a suite of mini-I/O	applications is needed that	is tied to co-design	center	
mini-applications	written	in or	utilizing	next-generation runtimes.

Challenges
For the most part tools such as IOR and MDTest can mimic current application I/O
patterns, but at times more application-like benchmarks would be useful. Another

Storage Systems and Input/Output to Support Extreme Scale Science 55

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

 	 	 			
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

challenge	 is	 in	effectively	 leveraging characterization data to improve applications
and systems (e.g., expert systems and other automated methods). Additionally,
complex workloads have not been well characterized, especially complex workflow-
based workloads. Tools for capturing complex workflow effects on SSIO systems are
largely 	nonexistent.	

Another critical need is an effort to enable much more broadly disseminated,
validated	results	of	characterization.	The	lack of	incentive	for	large	HPC	sites	to	run	
collection	 tools	and	routinely provide this information is a real inhibitor. Nothing
would help the research community more than orders of magnitude more high
quality operational 	and	characterization	data.

R&D	Needed
R&D needed in this area include more kernel extraction and scalable mini-
applications of more complex workflows, characterizations of multi-application	
ensembles or platform-wide workloads,	 tools for exploring	new	architectures and
mapping new application concepts onto new architectures, more R&D on workload-
driven	 understandable SSIO systems designs, and better analysis and automation
techniques to translate characterization data into actionable information. The small
amount of available operational and characterization data limits the number of
researchers	willing to invest time into looking at deep understanding of the SSIO
problem	space. The tools mentioned above are worth producing only if they are run
routinely	 and	produce	 high-quality data that is released regularly. Funding more
tool development without finding a	way	to incentivize HPC sites to produce ongoing	
data will not have a huge payoff. Producing a tool for a single point study might
make for a great conference paper but lacks the leverage of engaging the community
at	large.

4.5.2 Modeling and Simulation

Clearly needed are much better modeling and simulation tools for SSIO systems, the
environment they live in, and the workloads they face. Modeling and simulation
could	be	applied	to	trying	new workloads,	new concepts,	and	new technologies,	all
virtually.	 Just as with the tools mentioned above, however, without follow-up	 to	
ensure these tools are maintained and do not keep up with current thinking on
future applications, architectures, and systems, the need will still exist.

State	of	the	Art
The state of the art for SSIO systems-related modeling and simulation is the CODES
project [Lang2010]. Utilizing the massive DOE computing complex to model SSIO
systems and their environments is a big payoff activity, and CODES is an excellent
start in	this direction. CODES can be thought of as a combination of modeling and
simulation of SSIO systems and interactions between SSIO system	parts and other
parts of the environment. Use of the massive DOE computing resources for
furthering	 the	 understanding	 of SSIO systems is something that should be

Storage Systems and Input/Output to Support Extreme Scale Science 56

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	

	
	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

leveraged;	 but sustained effort on a small number of	 consolidated model and
simulation frameworks that could eventually be well validated has not occurred.

Smaller efforts have included the development of new mathematical techniques,
such as differential regression [Settlemyer2012] and machine learning models
[Kettimuthu2012], for developing analytical methods for modeling the pairing of
storage	 devices	 with	 wide-area networks, as is common for long-distance	 file	
transfers	with	tools	such	as	XDD	and	GridFTP.

Additionally, work on the HECIOS simulator done by Clemson [HECIOS n.d.] and the
SIOX	 work	 done	 by	 the High Performance Computing Center in Stuttgart (HLRS)
[SIOX	n.d.]	are	likely	the	closest	things	to	the	state	of	the	art,	but neither	is	generally	
regarded	 as	 the	 entire	 answer	 to	 this	 need. These	 efforts	 approach simulation of	
SSIO systems from	the ground up. Other work	has	been	done	at Purdue on modeling
disk-bound applications [Thottethodi2006] and at Clemson on	 SSIO simulation
frameworks [Ligon2006]. Additional efforts	 include device-oriented modeling and
simulation tools from	the DiskSim	project managed at CMU [DiskSim n.d.]	and	the	
Blackcomb project at ORNL [Blackcomb n.d.]. DiskSim	has been used as the basis
for	understanding	disk behaviors	for	over	a decade	and	has	been	an	underlying	tool
to hundreds of academic efforts.

Challenges
The	 principal challenge in this area is the need to include modeling of the
application in conjunction with the entire computing/networking/storage	
environment. Most modeling and simulation of SSIO systems are not
comprehensive enough to improve our understanding	 of the linkage between	 the
application, networking, and storage. Furthermore, no current modeling and
simulation activities adequately	deal with the complex workflows in shared usage
environments, so the scenarios considered by these tools are “best case” and often
not	realistic	about	what	users 	see 	or 	will	see.

Other important issues with simulation tools include intellectual	property	issues	for
industry-developed simulation tools, incomplete validations of the tools, and
incomplete validation of data from	simulation of SSIO systems. Validation of tools
takes years of use and improvement. Funding for these types of	activities	does	not
promote standardization or de facto acceptance and broad use by the community.

R&D	Needed
Numerous R&D activities are needed. Automated extraction of multi-resolution
models from	codes, runtime, and traces would enable rapid tailoring of models to
applications. Modeling reliability of SSIO systems, including source, duration, and
distributions	of	subtle	failures,	would	allow SSIO designers	to	explore	the	resilience
design space with realistic failure modes. End-to-end flexible modeling and
simulation tools could facilitate exploring new design spaces of new systems
without having to produce entirely new models. Composed models that cover
applications,	networks, and SSIO systems and their interactions would enable much

Storage Systems and Input/Output to Support Extreme Scale Science 57

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

more realistic understanding in more typical environments users will see.
Exploration of potential domain-specific languages for modeling SSIO systems
would enable rapid exploration	of design	and use	space.	 Models that	enable	study	
of SSIO systems over long time periods (e.g., years) would provide information to
SSIO designers to assist sites in management issues. Exploring models with mixed
modeling techniques and mixed resolutions would enable flexible	 efficient
exploration	of	interesting	features.	Moreover,	an	issue	that needs	to	be	addressed	is	
the lack	 of a	 generally agreed-upon small set of reference SSIO simulators and
models that are supported over many years so that the quality of the data	 and
results could become highly trusted.

Storage Systems and Input/Output to Support Extreme Scale Science 58

	 	 	 	 	 	 	 	 	 	

 	 	
	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 		 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	

 	 	 	 		
	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

5 Supporting Activities

Although the workshop did not have a dedicated session on supporting	activities	for	
SSIO	 research,	 throughout	 the	 workshop	 supporting	 activities	 were	 called	 out	 as	
requirements for the research community in order to perform	the needed	research.	
While these	topics	are	not research	activities, the workshop	attendees saw	them as
necessary ingredients to inform, enable, and sustain research into SSIO areas.

The	 supporting	 activities	 that were discussed focused on three themes. The first
was the availability of forward-looking (at reasonable scale) computing and storage
resources (testbeds) on which realistic experiments associated with SSIO R&D
topics could be performed. The second theme was the need for highly documented
operational data of	 existing	 leading-edge computing systems, network systems,
storage systems, and their workloads. Failure, performance, and usage-related	data
in an understandable, clean, and documented form	 were all deemed	 essential in	
order to assist SSIO researchers with deep understanding of modern SSIO problem	
spaces and their projection to future systems. The third theme was educational
support to enable better understanding of HPC SSIO problems.

Finding
A	key need for successful research and development in SSIO is a new and enhanced
ecosystem. This ecosystem	must provide community access to rich sources of data
on applications and systems, test environments in which new technologies can be
evaluated, and investments that bring new talent into the community.

5.1 Computing, Networking, and Storage	Resources

State	of	the	Art
Several capabilities	 were	 identified	 as	 desirable	 for	 ensuring	 the	 availability	 of	
computing and storage resources. Cloud-oriented systems research mechanisms
such	as Chameleon [Chameleon	n.d.] and Cloud Lab	[CloudLab2015]	were thought	
to have some utility in providing computing resources but are limited to R&D that
can be run	 in	 a	 cloud-based environment. The NSF GENI [Geni2006]	 suite
supporting	 research	 in	 networking	 was also mentioned as a potentially useful
method of enabling related SSIO research, especially research involving long-
distance	 networking.	 Other, more HPC-oriented	 resources	 such	 as	 the	
DOE/NNSA/LLNL Hyperion [Hyperion n.d.] and the NSF/DOE/NNSA/LANL PRObE
[PRObE n.d.] systems were also mentioned as useful; however, these systems are
likely insufficient	 for future SSIO	 research without	 expansion	 of the types of
hardware and experiments they will support. Hyperion is not managed for openly
competed research for extreme-scale computing, but its hardware is relatively new.
PRObE	is	the	only	resource	that is	specifically	designed	for	researchers	to	have	full
access all	 the way	 to the hardware	 and	 to	 allow root access	 for	 reasonably	 long	
periods of time. This ability to have full root access to the real, not virtual, testbed

Storage Systems and Input/Output to Support Extreme Scale Science 59

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	

hardware	is important. Because PRObE utilizes retired DOE	hardware,	however,	the
architectures are not	 well	 suited for future research.	 The need is really	 a	
combination of new and renewed frequently hardware in an openly competed for
resource that allows access all the way to the hardware. Also needed	 is
coordination	with	efforts	in	advanced	architecture, as well	as future	software	stack
development.

Challenges
The lack of modern and periodically renewed, large-scale testbed computing
environments is	a significant challenge,	and	this	 includes	in-system	and off-system	
storage	and the ability to give users bare metal root access. PRObE and Hyperion do
provide some aspects of this need area, but	 they do	 not extend	 to	 enough	
researchers and are not always modern enough to satisfy the need. The ability to try
out new hardware mechanisms is also a requirement. Neither PRObE	nor	Hyperion
is	funded	specifically	to assist the national SSIO research community. Root access	to	
bare metal hardware is needed in	order	to support	reproducibility in	system-level	
experimentation. Neither facility is rich with instrumentation tools, fault injectors,
or	other	generally	useful testing	tools.

Support	Needed
Funding is needed to ensure that testbed environments are made available to the
community and that the systems within the environments are periodically
refreshed. Support for instrumentation and fault injection tools is required	in order	
for researchers to make better use of these testbed environments. Further, the
testbeds and their testing environments need to be maintained well: if the testing
environments are not well cared for and do not have support for the broad
community 	use,	the 	leverage 	is 	lost.

5.2 Availability of	Highly Documented	Operational Data

State	of	the	Art
Several facilities are already making well-documented operational data available.
Among the releases are data from	LANL [LANL Data n.d.] and NERSC [NERSC Data
n.d.].	The LANL failure data release represented the largest operational failure data
release	done in two decades when it was released in 2006. It came with FAQs, and
much care was taken to 	clean	the 	data	well.		

Storage-oriented	data is	provided	by	the	large-scale	Sandia trace	data [Sandia Data
n.d.] and the Argonne Darshan usage-related	data [Carns2013, ANL Data n.d.]. Not
only	is	the	Darshan data an example of well-produced data, but	it also represents a	
usable	tool	by	HPC sites to	assist with	data collection.	 Additionally, storage system	
namespace statistics are provided by the DOE Petascale Data	 Storage Institute’s
FSStats	effort [Felix2011, PDSI FSStats	Data n.d.]. Included	are	data from	many HPC
sites, a tool for collecting the data, and even a multisite clearinghouse for making the
data available. BackBlaze also released a	sizable data	collection	 tracking	hard	disk
failures over time [BackBlaze2015].

Storage Systems and Input/Output to Support Extreme Scale Science 60

	 	 	 	 	 	 	 	 	 	

	
	

	 	 	
	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	
	

	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	

 	
	

	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 		 	 	 	 	 		
	

	
	 	 	 	 	 	 	 	 	 	

	
	

	

	 	 	 	 	 	

Challenges
A	major challenge in	this	area is	funding	incentive	for	researchers	to	create	tools	to	
assist	 HPC sites to accurately	 produce,	 curate,	 and provide operational	 data	
(including	 SSIO-related data) without	 adversely	 affecting	 production	 operation.	
Data involving operations, failure, repair, use, and performance, for all layers of
storage and for both data and metadata, is needed in order to engage the full SSIO
research community. Ideally, data would span from	 applications, complex
workflows, and all other uses of storage down to mechanisms including
management of the SSIO systems themselves. This data would be provided in a
consistent way over many years, and it would be periodically updated.

Funding also	 is	 needed	 in order	 to	 pay	 for	 collection, curation, and	 broad	
dissemination of this	operational data.	 If	 the	data is	not well cared	 for	and	 is	not
periodically updated to current thinking and architectures, then the full community
cannot 	engage,	and	leverage	will 	be	lost.

Support	Needed
Funding and	 coordination of	 R&D	 and	 HPC	 site	 activities	 are	 needed	 in	 order	 to	
make large-scale	 operational data-sharing a reality. Additionally, all funded R&D
should have a data management and dissemination plan for data used in the
research. A	consistent mechanism	for giving credit in research publications to the	
HPC	sites	and	tool producers	for	providing the	data would	create	extra incentive	for	
HPC sites and researchers to work together more.

5.3 Educational Support

Support	 for education in	 the	 SSIO areas includes tutorials at	 conferences	 and	
workshops and materials suitable for classroom	teaching, such	as	reference	books.

State	of	the	Art
Tutorials such	as the Supercomputing Conference recurring tutorial “Parallel I/O In
Practice” [Parallel I/O	Tutorial n.d.] and recurring informative workshops such	as
the Supercomputing Conference Parallel	 Data	 Storage Workshop	 [PDSW n.d.]	
represent state	 of	 the	 art in SSIO educational outreach. Additionally, textbook
documentation about	 SSIO	 research is best exemplified by “High Performance
Parallel I/O” [Koziol2014],	 “Parallel I/O for High Performance Computing”
[May2001], and “Scalable Input/Output: Achieving System	Balance” [Reed2004].

Challenges
For the most part, textbook creation and, to a	 great	 extent, educational outreach	
activities 	are 	not	funded 	for 	SSIO	researchers 	or 	SSIO	experts 	at	HPC 	sites.	

Support	Needed
Support	 could	 be	 provided	 by	 request	 for	 specific	 outreach	 activities	 in	 research	
solicitations, similar to NSF solicitations.

Storage Systems and Input/Output to Support Extreme Scale Science 61

	 	 	 	 	 	 	 	 	 	

 	 	 	 	

 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

6 Summary	of Findings and	Priority Research

6.1 Findings

Finding	 1: In	situ data analysis	 is	 already an important component of many
applications. The	question	is	not whether	in	situ analysis will	play	a	role in	future
computational and data-intensive	 science	 but,	 rather,	 how this	 capability	 will be	
manifested (p. 16).

Finding	 2: The inclusion of solid state and new disk-based storage layers	 is	
dramatically complicating	 the storage hierarchy. Standard methods of storage
organization (e.g., parallel file systems, archival storage management systems) must
significantly change, if not be replaced, to provide effective SSIO for future platforms
(p.	22).

Finding	3: To work productively, scientists need an integrated, coherent view
of the storage resources	at their disposal and a common method of managing	
and accessing	 data on these resources. Meeting	 this need will	 require new	
metadata capabilities and integration with external storage in conjunction	 with	
improvements in SSIO architectures (p.	22).

Finding	 4: New requirements	 for public access	 to digital data required for
validation	of	published results	are poised to fundamentally change the role of
metadata in	 DOE	Office of Science and NNSA mission-critical applications.	 These	
changes will mandate new approaches for capturing provenance and new methods
for exploring extreme scale datasets (p.	35).

Finding	5: The emerging	use of alternative programming	languages	and task-
based workflows	drives	 the development of SSIO software. Such	software	will	
need to be more flexible and to better integrate with upper layers in the software
stack (p.	41).	

Finding	 6: Scientists	 require increasingly complex and specialized data
abstractions	 in order to improve their	 productivity and	 the quality of	 their	
science. Significant improvements in SSIO data abstractions and their
representations in the storage system	are required to support these needs and to
simplify upper layers of the stack (p.	41).

Finding	7: Current SSIO designs	are hindered by their isolation from system-
level resource management, monitoring, and workflow systems. Cooperation
with these critical system	 services will be mandatory for the success of SSIO in
future platforms (p.	49).

Finding	8: Many important aspects	of application and system behavior related
to SSIO are obscured from view. Recent	successes	 in	capturing	application	SSIO	

Storage Systems and Input/Output to Support Extreme Scale Science 62

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	

 	 	 	
	

	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

behavior have highlighted the value of this information for performance debugging,
system	procurement, and steering of	SSIO research;	but a better	understanding of	
behavior 	is 	critical	to 	SSIO	effectiveness. (p.	53)

Finding	 9: A key need for successful research and development in SSIO is	 a
new and enhanced ecosystem. This ecosystem	must provide community access to
rich sources of data on applications and systems, test environments in which new
technologies can be evaluated, and investments that bring new talent into the
community (p.	59).

6.2 Priority Research Directions

In	 the	 area	 of SSIO	 architectures,	 additional	 research	 is	 needed	 to	 develop
solutions to the challenge of managing upcoming deep and heterogeneous storage
hierarchies, including storage in the compute system, and to explore alternative
paradigms to the current file system	model of access and organization. This	work is	
needed	 to	 address	 integration	 of	 in-system	 storage and campaign storage with
traditional parallel file systems and archive (or their successors). Additionally, new
paradigms for data access and organization are needed to eliminate the POSIX	 file	
system	bottlenecks that increasingly hinder the usability of current SSIO stacks.

In	 the	 area	 of metadata, name spaces, and provenance,	 research	 is	 needed	 to	
devise new methods of capturing, organizing, presenting, and exploring rich
metadata from DOE science activities, including breaking away from	the current file
model of data storage prevalent in DOE facilities and science. Scalable methods for
metadata management are critical to supporting a more rich set of science activities
on	 future	 systems	 and	 to	 providing	 provenance	 capture	 and	 search	 capabilities	
needed for verification of results. Alternatives to the traditional POSIX name space
are needed to eliminate performance bottlenecks and to create a more flexible
environment for storage and analysis 	of 	science 	data.

In	 the	 area	 of supporting	 science data,	 research	 is	 needed	 to	 develop	 the	 next	
generation of I/O middleware and services in support of the broad collection of HPC
and experimental and observational data needs and to integrate with and	support	
new programming abstractions and workflow systems as they are adopted. New
methods of coordinating the activities of I/O middleware and services are needed in
order to maximize the utility of SSIO deployments, and new and more streamlined
methods of interfacing between programming models, workflow systems, and SSIO
are 	needed to enable seamless use of the deep memory/storage hierarchy.

In	 the	 area	 of understanding	 SSIO, research is needed to improve our ability to
characterize the storage activities of DOE scientists and to model and predict the
behavior of SSIO	 activities on future systems. This information is critical to the
successful design of future platforms, it enables the optimization of SSIO

Storage Systems and Input/Output to Support Extreme Scale Science 63

	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	

technologies and applications using	 them,	 and	 it	 contributes	 to	 the	 growth	 of	 a	
vibrant SSIO research community.

Storage Systems and Input/Output to Support Extreme Scale Science 64

	 	 	 	 	 	 	 	 	 	

 	
	

		 	 	 	
	 	 	 	 	
	 	 	 	 	 		
	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	
	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	
	 	 	
	 	 	
	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	
	 	 	 	 	
	 	 	
	 	 	
		 	 	 	
		 	 	 	 	
	 	 	 	 	 	

	 	 	 	
	 	 	 	

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	 	 	
		 	 	 	 	

	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	
	 	 	

7 Glossary

ADIOS Adaptive I/O System
ANL Argonne National Laboratory
ASC Advanced Simulation and Computing
ASCR Advanced Scientific Computing Research
CAP Consistency, Availability, and Partition tolerance
CMU Carnegie	Mellon University
CORAL A	 collaboration between ANL, LLNL, and ORNL to acquire advanced

computing resources
DOE Department of Energy
EOD Experimental and Observational Data
FSIO File Systems and I/O
GPFS General 	Parallel 	File	System
HACC Hardware/Hybrid Accelerated Cosmology Code
HDF Hierarchical Data Format
HEC	FSIO High End Computing File Systems and I/O
HPC High Performance Computing
HPSS High Performance Storage System
HSM Hierarchical Storage Management
I/O Input/Output
IOR Interleaved Or 	Random
LANL Los Alamos National Laboratory
LBNL Lawrence	Berkeley	National Laboratory
LLNL Lawrence Livermore National Laboratory
LWFS Light Weight File	System
MDS MetaData	Server
MIMD Multiple 	Instruction	Multiple 	Data
MPMD Multiple Program	Multiple Data
NERSC National Energy	Research	Scientific Computing Center
NNSA National Nuclear Security Administration
NSF National Science	Foundation
NVRAM Non-Volatile Random	Access Memory
ORNL Oak	Ridge 	National	Laboratory
PDSI Petascale	Data	Storage	Institute
PDSW Petascale	Data	Storage	Workshop
PLFS Parallel 	Log-structured	File	System
PNNL Pacific	Northwest 	National 	Laboratory
POSIX Portable Operating System	Interface
PRObE Parallel Reconfigurable Observational Environment
QoS Quality	of 	Service
RAID Redundant Array of Independent Disks
RAS Reliability, Availability, and Serviceability
RMA Remote Memory Access
SIMD Single	Instruction	Multiple	Data

Storage Systems and Input/Output to Support Extreme Scale Science 65

	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	
	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	

	 	

SNL Sandia	National	Laboratories
SSD Solid	State	Disk
SSIO Storage System	and I/O
UQ Uncertainty	Quantification
XDD Command line tool for measuring I/O performance

Storage Systems and Input/Output to Support Extreme Scale Science 66

	 	 	 	 	 	 	 	 	 	

 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

		
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	
	

	
		 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

		 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

8 References

[Abbasi2010] Abbasi, Hasan, et al. "Datastager: scalable data staging services for
petascale	applications."	Cluster Computing 13.3	(2010):	277-290.

[Acharya1998]	 Acharya, Anurag, Uysal,	 Mustafa,	 and Saltz,	 Joel. “Active disks:	
Programming model,	 algorithms and evaluation.”	 In	 Proceedings	 of	 ASPLOS'98.	
1998.	

[Adams2012] Adams, I. A.; Madden, B. A.; Frank, J. C.; Storer, M. W.; Miller, E. L.;
Harano, G. “Usage	 behavior	 of	 a	 large-scale	 scientific	 archive.”	 In	 Proceedings	 of	
SC12, Nov.	2012.

[Adelmann2005] Adelmann, A., R. D. Ryne, J. M. Shalf, and C. Siegerist. "H5part: A	
portable high performance parallel data interface for particle simulations." In
Proceedings of the Particle Accelerator Conference, 2005. PAC 2005, pp.	4129-4131.	
IEEE,	2005.

[Agelastos2014] Agelastos, Anthony, et al. “The Lightweight Distributed Metric
Service: A	 scalable infrastructure for continuous monitoring of large scale
computing systems and applications.” In Proceedings of the International	
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’14,	pages 	154–165,	2014.

[Alagiannis2014]	 I. Alagiannis, S. Idreos, and A. Ailamaki. “H2o: A	 hands-free	
adaptive 	store.” In	SIGMOD 	’14,	Snowbird,	UT,	June	22-27, 2014.

[Ali2009] Ali, Nawab, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert
Latham, Robert Ross, Lee Ward, and P. Sadayappan. "Scalable I/O forwarding
framework for high-performance computing systems." In IEEE International
Conference on Cluster Computing	 and Workshops,	 2009.	 CLUSTER'09,	 pp.	 1-10.	
IEEE,	2009.

[Altintas2004] Altintas, I. and Berkley, C. and Jaeger, E. and Jones, M. and Ludascher,
B.	and Mock,	S. Kepler “An extensible system	for design and execution of scientific
workflows.” In	Proceedings	of	 the 16th	 International Conference	on Scientific	 and	
Statistical Database Management, 2004,	pp. 423-424.

[Ames2011] Sasha Ames, Maya B. Gokhale, and Carlos Maltzahn. QMDS: A	 File
System	Metadata Management Service Supporting a Graph Data	Model-Based	Query	
Language. In Proceedings	of	the	6th IEEE	International	Converence	on	Networking,	
Architecture and Storage (NAS), 2011,	pp. 268, 277,	July	28-30,	2011.

[Amiri2000] Amiri, Khalil, et al. "Dynamic function	 placement for data-intensive	
cluster computing."	USENIX Annual Technical Conference, General Track, 2000.

Storage Systems and Input/Output to Support Extreme Scale Science 67

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	
	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 		

	 	 	 	 	 	 	
	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	
	 	

	
	 	 	

	

	
	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	

[Anderson2000] Anderson, Darrell C., Jeffery S. Chase, and Amin M. Vahdat.
"Interposed	request	routing	for scalable	network	storage."	In	Proceedings	of	the	4th
conference	on	Symposium	on Operating System	Design & Implementation-Volume
4. USENIX Association, 2000.

[ANL Data n.d.] ALCF I/O data repository http://press3.mcs.anl.gov/darshan/data/

[Arpaci-Dusseau1999] Arpaci-Dusseau, Remzi	 H., et al. "Cluster	 I/O with	 River:	
Making the fast case common." In	 Proceedings	 of	 the	 sixth	 workshop	 on	 I/O	 in	
Parallel	and Distributed	Systems.	ACM, 1999.

[Arpaci-Dusseau2006] Arpaci-Dusseau, Remzi H., Andrea C. Arpaci-Dusseau, Benjamin
R. Liblit, Miron Livny, and Michael M. Swift. “Formal failure analysis for storage
systems.”	High End Computing University Research Activity NSF 06-503	(2006)

[Arpaci-Dusseau2014] Remzi Arpaci-Dusseau, Andrea Arpaci-Dusseau, Carlos	
Maltzahn: 	Reproducible 	evaluation	of HPC Systems. SSIO White Paper, Dec. 2014.

[Aviles-Gonzalez2014]	Ana Avilés-González,	Juan	Piernas,	and	Pilar	González-Férez.
Scalable metadata management through OSD+ devices. International	 Journal	 of
Parallel Programming 42.1 (2014): 4-29.

[BackBlaze2015]	https://www.backblaze.com/hard-drive-test-data.html

[Barseghian2010] Derik Barseghian, Ilkay Altintas, Matthew B. Jones, Daniel Crawl,
Nathan Potter , James Gallagher, Peter Cornillon,	 Mark Schildhauer,	 Elizabeth	 T.	
Borer, Eric W. Seabloom, Parviez R. Hosseini “Workflows and extensions to the
Kepler Scientific Workflow System	 to support	 environmental sensor	 Data access	
and analysis.” Ecological Informatics 5 (2010): 42-50.

[Barton2013]	 E.	 Barton.	 Lustre*	 -–Fast forward	 to	 exascale. Lustre	 User Group
Summit 2013,	March	2013.

[Barton2014]	Barton,	 Eric,	 Bent,	 John,	 and	Quincey	Koziol.	 “Fast forward	 storage
and IO	 program	 documents.	 “	
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Progra
m+Documents.

[Baru1998]	Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. "The
SDSC storage	resource	broker."	In	Proceedings	of	the	1998	conference	of	the	Centre	
for Advanced Studies on Collaborative Research, p.	5.	IBM	Press,	1998.

[Bauer2012]	 Bauer, Michael, Sean Treichler, Elliott Slaughter, and Alex Aiken.
"Legion:	expressing	locality	and	independence	with	logical	regions."	In	Proceedings	

Storage Systems and Input/Output to Support Extreme Scale Science 68

https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Progra
https://www.backblaze.com/hard-�-drive-�-test-�-data.html
http://press3.mcs.anl.gov/darshan/data

	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	

	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

of	 the	 international conference	 on	 High	 Performance Computing, Networking,
Storage 	and Analysis, p. 66. IEEE Computer Society Press, 2012.

[Bauer2014]	 M.	 Bauer.	 “Legion: Programming distributed	 heterogeneous	
archtectures	with	logical regions.” Ph.D. dissertation, Stanford University, December
2014.

[Bautista-Gomez2011] Bautista-Gomez, Leonardo, Seiji Tsuboi, Dimitri Komatitsch,
Franck Cappello, Naoya Maruyama, and Satoshi Matsuoka. "FTI: high performance
fault tolerance interface for hybrid systems." In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, p.
32. ACM, 2011.

[Beck2002]	Beck, Micah, Terry Moore, and James S. Plank. "An end-to-end	approach	
to globally scalable network storage." ACM SIGCOMM Computer Communication
Review 32.	4 (2002).	

[Behzad2014a]	Babak	Behzad,	 Surendra	Byna,	 Stefan	Wild,	Prabat,	 and Marc	Snir.	
“Improving Parallel I/O Autotuning with Performance Modeling.” In the 23rd

International ACM Symposium	 on High Performance Distributed Computing. June
2014.

[Behzad2014b]	Babak Behzad, Hoang-Vu	Dang, Farah Hariri, Weizhe Zhang, and Marc
Snir.	“Automatic generation of I/O kernels for HPC applications.” Parallel Data Storage
Workshop (PDSW) 2014.

[Bennett2012]	 Bennett, Janine C., Hasan Abbasi, P-T. Bremer, Ray Grout, Attila
Gyulassy,	Tong	Jin, Scott Klasky et al. "Combining in-situ and	in-transit	processing	to
enable extreme-scale	 scientific	 analysis."	 In	 International Conference	 for	 High
Performance Computing, Networking, Storage and Analysis (SC), 2012, pp. 1-9.	
IEEE,	2012.

[Bent2004]	J.	Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau “Explicit Control
in	a Batch-Aware Distributed File System.” In Proceedings of the First USENIX/ACM
Conference on Networked Systems Design and Implementation, March 2004.

[Bent2009]	 Bent,	 John,	 Garth Gibson,	 Gary	 Grider,	 Ben	 McClelland,	 Paul	
Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate. "PLFS: A checkpoint
filesystem	 for parallel applications." In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, p. 21. ACM, 2009.

[Bent2012]	John Bent, Sorin Faibish, James Ahrens, Gary Grider, John Patchett, Percy
Tzelnic,	 and	 Jon	 Woodring.	 “Jitter-free	 co-processing	 on	 a	 prototype	 exascale	
storage	 stack.” In 28th IEEE Symposium	 on Massive Storage Systems and
Technologies,	MSST	2012,	2012.

Storage Systems and Input/Output to Support Extreme Scale Science 69

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

[Berger1989]	Berger, Marsha J., and Phillip Colella. "Local adaptive mesh refinement
for	shock hydrodynamics." Journal of Computational Physics 82.1	(1989):	64-84.

[Birman2007] Birman, Ken. "The promise, and limitations, of gossip protocols." ACM
SIGOPS Operating Systems Review 41.5 (2007): 8-13.

[Blackcomb n.d.]	https://ft.ornl.gov/trac/blackcomb

[Boboila2012]	 Boboila, Simona, Youngjae Kim, Sudharshan S. Vazhkudai, Peter
Desnoyers, and Galen M. Shipman. "Active flash: Out-of-core	data	analytics	on	flash	
storage." In IEEE 28th Symposium	 on Mass Storage Systems and Technologies
(MSST),	2012,	pp.	1-12.	IEEE,	2012.

[Braam2004] Braam, Peter J. "The Lustre storage architecture." 2004.

[Brinkmann2014] Brinkmann, A., Cortes, T., Falter, H., Kunkel, J., and
Narasimhamurthy, S. “E10 – Exascale	 IO.”	 E10 Working	 Group	 Technical	 Report.	
2014	.	http://www.eiow.org/home/E10-Architecture.pdf

[Broquedis2010]	 Broquedis,	 Francois,	 et.	 al.	 “HWloc:	 A generic framework for
managing hardware affinities in HPC applications.” In Proceedings of the 18th
Euromicro International Conference on Parallel, Distributed and Network-Based
Computing (PDP 2010), 2010.

[Brun1997]	 Brun, Rene, and Fons Rademakers. "ROOT—an	 object	 oriented data	
analysis framework." Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 389.1	(1997):
81-86.

[Bugra2008]	 Bugra Gedik , Henrique Andrade , Kun-Lung Wu , Philip	 S.	 Yu	 ,
Myungcheol Doo “SPADE: The System	S Declarative Stream	Processing Engine.” In	
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data,	June	9-12,	2008,	Vancouver,	Canada.

[Cachin2006]	 Cachin, Christian, and	 Stefano Tessaro. "Optimal resilience for
erasure-coded	 Byzantine	 distributed	 storage."	 International	 Conference	 on	
Dependable Systems and Networks, 2006. DSN 2006.	IEEE,	2006.

[Callahan2006]	 Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E.	
Scheidegger,	 Cláudio T.	 Silva,	 and	 Huy T. Vo. Vistrails: Visualization meets data
management. In Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, pp. 745-747,	2006.

[Carey2014] Carey, Varis, Hasan Abbasi, Ivan Rodero, and Hemanth Kolla.
"Sensitivity analysis for time dependent problems: optimal checkpoint-recompute

Storage Systems and Input/Output to Support Extreme Scale Science 70

http://www.eiow.org/home/E10-�-Architecture.pdf
https://ft.ornl.gov/trac/blackcomb

	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	

	
	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 		
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	
	

	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	

HPC	workflows." In Proceedings	of	 the	9th	Workshop	on	Workflows	 in	Support of	
Large-Scale	Science, pp.	20-30.	IEEE Press,	2014.

[Carns2000]	Carns,	Philip,	Ligon,	Walter,	Ross,	Robert	B.,	and	Rajeev	Thakur.	"PVFS:	
A	 parallel file system	 for Linux clusters." In Proceedings of the 4th annual Linux
Showcase	and	Conference,	pp.	391-430.	2000.

[Carns2009] Carns, Philip, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang,
and Katherine Riley.	 “24/7	 characterization	 of	 petascale	 I/O workloads.” In	
Proceedings of 2009 Workshop on Interfaces and Architectures for Scientific Data
Storage.	IEEE,	2009.

[Carns2011] Carns, Philip, Kevin Harms, William	 Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. “Understanding and improving
computational science storage access through continuous characterization.” ACM
Transactions	on	Storage	7.3 (2011):8.

[Carns2013]	Carns, Philip, et al. “Production	I/O	characterization	on	the	Cray	XE6.”	
In	Proceedings of the Cray User Group meeting.	Vol.	2013.	2013.

[Caulfield2009]	Caulfield, Adrian M., Laura M. Grupp, and Steven Swanson. "Gordon:
using flash memory to build fast, power-efficient clusters	 for	 data-intensive	
applications."	ACM SIGPLAN Notices 44.3	(2009):	217-228.

[Chamberlain2007] Chamberlain, Bradford L., David Callahan, and Hans P. Zima.
"Parallel programmability and the chapel language." International Journal of High
Performance Computing Applications 21.3	(2007):	291-312.

[Chameleon2015] https://www.chameleoncloud.org

[Chang2008]	Chang, Fay, et al. "Bigtable: A	distributed storage system	for structured
data."	ACM Transactions on Computer Systems (TOCS) 26.2	(2008):	4.

[Charles2005]	 Charles, Philippe, Christian Grothoff, Vijay	 Saraswat, Christopher	
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar.
"X10:	 An	 object-oriented	 approach	 to	 non-uniform	 cluster computing." ACM
SIGPLAN Notices	40.10	(2005):	519-538.

[Cheung2015]	 A. Cheung. “Towards	 creating	 application-specific	 database	
management systems.” In CIDR ’15, Asilomar, CA, January 4-7, 2015

[Chou2011]	Jerry Chou, Mark Howison, Brian Austin, Kesheng Wu, Ji Qiang,	E. Wes
Bethel,	 Arie Shoshani, Oliver Rübel, Prabhat, and Rob D. Ryne. Parallel index and	
query	for	large	scale	data	analysis.	In	Proceedings	of	2011	International Conference	
for High Performance Computing, Networking, Storage and Analysis, number 30,	pp,
1-30, November 2011.

Storage Systems and Input/Output to Support Extreme Scale Science 71

https://www.chameleoncloud.org

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	

	
	 	

	
	 	 	 	 	 	

	 	 	 	
	

	

	
	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	

	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	

[Chuang1999]	 Chuang, J., and	 M. Sirbu. "Stor-serv: Adding quality-of-service	 to	
network	 storage."	 In	 Proceedings	 of	 Workshop	 on	 Internet Service	 Quality	
Economics. 1999.

[Clos1953]	Clos, Charles (Mar 1953). "A	study of non-blocking	switching	networks".	
Bell System	 Technical Journal 32.2 (2011):	 406–424.	 doi:10.1002/j.1538-
7305.1953.tb01433.x.	ISSN	0005-8580.	Retrieved	22	March	2011.

[CloudLab2015]	https://www.cloudlab.us

[Colella2000]	 Colella, P., D. T. Graves,	 T.	 J.	 Ligocki,	 D.	 F.	Martin,	 D.	Modiano,	 D.	 B.	
Serafini, and B. Van Straalen. "Chombo software package for AMR applications-
design document." 2000.

[Curry2012]	M.	L.	Curry,	R.	Klundt,	and	H.	L.	Ward.	Using	the	Sirocco file system	for
high-bandwidth checkpoints. Tech. rept. SAND2012-1087,	 Sandia National
Laboratories, Albuquerque, NM, February 2012.

[Dagum1998] Dagum, Leonardo, and Ramesh Menon. "OpenMP: an industry
standard API for shared-memory programming." Computational Science &
Engineering,	IEEE	5.1	(1998):	46-55.

[Dai2014]	 Dong Dai, Robert B. Ross, Philip Carns, Dries Kimpe, Yong Chen. Using
Property	Graphs	for	Rich	Metadata Management in HPC Systems. In	Proceedings	of	
the 	9th 	Parallel	Data	Storage 	Workshop,	vol.	11,	IEEE,	2014.

[Daly2006]	 Daly, John T. "A	 higher order estimate of the optimum	 checkpoint
interval for restart dumps." Future Generation Computer Systems 22.3	(2006):	303-
312.

[Damsel2014] Damsel: A	 Data Model Storage Library for Exascale Science.
http://cucis.ece.northwestern.edu/projects/DAMSEL/

[Davidson2008]	 Susan B.	 Davidson	 and Juliana	 Freire.	 Provenance and scientific	
workflows: challenges and opportunities.	In	Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data,	 SIGMOD '08,	 pages	 1345-1350.	
ACM, 2008.

[Dawson1983] Dawson, J.M. "Particle simulation of plasmas.” Reviews of Modern
Physics	 55.2(1983):	 403.	 Bibcode:1983RvMP...55..403D.	
doi:10.1103/RevModPhys.55.403.

[Dean2008]	 Dean, J., & Ghemawat, S. MapReduce: Simplified data processing on
large 	clusters.	Communications of the ACM,	51.1 (2008): 107-113.

Storage Systems and Input/Output to Support Extreme Scale Science 72

http://cucis.ece.northwestern.edu/projects/DAMSEL
https://www.cloudlab.us

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	
	 	 	 	

	
	 	 	 	 	

	

	 	 	 	 	 	 	
	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	
	 	

	
	 	 	 	 	

	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
		

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

	
	

	 	
	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	

[Deelman2002]	 Ewa Deelman, James Blythe, Yolanda Gil and Carl Kesselman
“Pegasus:	 Planning	 for	 Execution	 in	 Grids.” GriPhyN Technical Report 2002-20,	
2002.

[Deelman2008] Ewa Deelman, Miron Livny, Gaurang Mehta, Andrew Pavlo, Gurmeet
Singh,	Mei-Hui, Karan	Vahi,	R.	Kent	Wenger. “Pegasus and DAGMan from	concept to	
execution: Mapping	scientific	workflows	onto	today’s	cyberinfrastructure.” pp.	56–
74. IOS, Amsterdam, 2008.

[Degremont2013] Aurélien Degremont, Thomas Leibovici.
http://cdn.opensfs.org/wp-content/uploads/2013/04/lug13-robinhood.pdf

[DeRoure2008]	De	Roure,	D.,	Goble,	C.	and	Stevens,	R.	“The	design	and	realisation	of	
the myExperiment virtual research	 environment for social sharing	 of	workflows.”
Future Generation Computer Systems 25 (2009):	 561-567	
[doi:10.1016/j.future.2008.06.010]

[Dillow2011]	 Dillow, David A., et al. "I/O congestion avoidance via routing and
object placement." In	Proceedings	of	Cray	User	Group	Conference	(CUG	2011). 2011.

[DiskSim n.d.]	disksim.	http://www.pdl.cmu.edu/DiskSim/

[Docan2012]	 Docan, Ciprian, Manish	 Parashar, and	 Scott Klasky. "DataSpaces:	 An	
interaction and coordination framework for coupled simulation workflows."	Cluster
Computing 15.2	(2012):	163-181.

[Dong2013] Bin Dong, Suren Byna, and John Wu, "SDS: A	Framework for Scientific
Data Services." 8th	 Parallel Data Storage	 Workshop (PDSW)	 held	 in conjunction
with 	SC13,	2013.

[Dorier2012]	 Dorier, Matthieu, Gabriel Antoniu, Franck Cappello, Marc Snir, and
Leigh Orf. "Damaris: How to efficiently leverage multicore parallelism	 to achieve
scalable,	jitter-free	I/O."	In	IEEE	International	Conference	on Cluster Computing,	pp.
155-163.	IEEE,	2012.

[Dosanjh2014]	Dosanjh,	 Sudip.	 “Cori	 (NERSC-8).” Presented	 at the	 2014	 Scientific	
Discovery Through Advanced Computing (SciDAC-3)	Principal Investigator	Meeting.	
Washington, DC, August 2014.

[Draper1999]	 Draper, Jesse	M., David	 E. Culler, Kathy	 Yelick, Eugene	 Brooks, and
Karen	 Warren.	 “Introduction	 to	 UPC and language	 specification.” Center	 for	
Computing Sciences, Institute for Defense Analyses, 1999.

[Duro2014]	 Francisco	 Rodrigo	 Duro,	 Javier Garcia	 Blas,	 Florin	 Isaila,	 Justin	 M.	
Wozniak,	 Jesús Carretero and Robert	 Ross.	 “Exploiting	 data locality	 in	 Swift/T	

Storage Systems and Input/Output to Support Extreme Scale Science 73

http://www.pdl.cmu.edu/DiskSim
http://cdn.opensfs.org/wp-�-content/uploads/2013/04/lug13-�-robinhood.pdf

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	

	
	

	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	
	 	 	 		

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	
	

	
	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	
	

	
	

	
	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	

workflows using	Hercules.”	In	Proceedings of the Network	for Sustainable Ultrascale
Computing Workshop, 2014.

[Ekanayake2008]	 Ekanayake,	 Jaliya,	 Shrideep	 Pallickara,	 and Geoffrey	 Fox.	
"Mapreduce for	 data intensive	 scientific	 analyses."	 In	 IEEE Fourth	 International
Conference	on eScience, 2008, pp. 277-284.	IEEE,	2008.

[Elnozahy2002]	 Elnozahy, Elmootazbellah Nabil, et al. "A	 survey of rollback-
recovery protocols in message-passing systems." ACM Computing Surveys (CSUR)
34.3	(2002):	375-408.

[Eugster2003]	 Eugster, Patrick Th, et al. "The many faces of publish/subscribe."
ACM Computing Surveys (CSUR) 35.2 (2003): 114-131.

[Fahey2010]	 Mark	 Fahey,	 Nick	 Jones,	 and Bilel	 Hadri.	 The Automatic	 Library	
Tracking Database. In Proceedings	of	the	Cray	User	Group,	2010.

[Felderman1994] Felderman, Robert, et al. "ATOMIC: A	 high-speed	 local
communication architecture." Journal of High Speed Networks 3.1 (1994): 1-29.

[Felix2006]	Felix, Evan J., et al. "Active storage processing in a parallel file system."
In	Proceedings of	the	6th	LCI	International Conference	on	Linux Clusters:	The	HPC	
Revolution.	2006.

[Felix2011]	Felix,	E.	“Environmental molecular sciences laboratory: Static survey of
file system	 statistics.”	 [2011-02-23].	 http://www.pdsi-scidac.org/fsstats/index,	
html

[Filguiera2014] Rosa Filguiera, Iraklis Klampanos, Amrey Krause, Mario David,
Alexander Moreno, Malcolm	 Atkinson “dispel4py: A	 Python framework for	 data-
intensive	scientific	computing.” In	Proceedings of the	2014 International	Workshop	
on Data Intensive Scalable Computing Systems,	pp. 9-16.

[FireWorks2013]	 FireWorks	 workflow software,	
http://pythonhosted.org/FireWorks.	[doi:	10.5281/zenodo.14096]

[Flynn2011]	 Flynn, Michael. "Flynn’s	 taxonomy." In Encyclopedia	 of Parallel	
Computing, pp.	689-697.	Springer,	2011.

[Folk1999]	Folk, Mike, Albert Cheng, and Kim	Yates. "HDF5: A	 file format and I/O
library for high performance computing applications." In Proceedings of
Supercomputing, vol. 99, pp.	5-33.	1999.

[Freche2009]	 Freche, Jens, Wolfgang Frings, and Godehard Sutmann. "High-
throughput parallel-I/O	using	SIONlib	for mesoscopic	particle dynamics simulations
on	massively	parallel	computers." In PARCO, pp. 371-378.	2009.

Storage Systems and Input/Output to Support Extreme Scale Science 74

http://pythonhosted.org/FireWorks.	

http://www.pdsi-�-scidac.org/fsstats/index,	

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 		
	

	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	

	
	 	

			
	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	

	 	 	
	 	

	
	 	 	 	 	 	 	 	

	

		
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	 	
	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	
	

	

[Gainaru2011] Ana Gainaru,	Franck Cappello,	Stefan	Trausan-Matu, and Bill Kramer
“Event log mining tool for large scale HPC systems.” In Euro-Par	 2011	 Parallel
Processing,	pp. 52–64.	Springer,	2011.

[Gamell2013] M. Gamell, I. Rodero, M. Parashar and S. Poole, “Exploring energy	and	
performance behaviors of data-intensive scientific workflows on systems with deep
memory hierarchies.” In Proceedings of 20th Annual International Conference on
High Performance Computing (HiPC 2013), IEEE Computer Society Press,
Hyderabad, India, December 2013.

[Geni2006]	 GENI,	 NSF.	 Global environment for network innovations.	 [2007-12-
17][2008-06-05].	http://www.geni.net

[Goodell2012]	Goodell, David, Seong Jo Kim, Robert Latham, Mahmut Kandemir,	and	
Robert Ross. "An evolutionary path to object storage access." In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, pp. 36-41.	
IEEE,	2012.

[HACC] https://asc.llnl.gov/CORAL-benchmarks/#hacc

[Hammond2011] J. Hammond. “Rationalizing message logging for Lustre.” Lustre
Users	Group,	2011.

[Hargrove2006]	 Hargrove, Paul H., and	 Jason C. Duell. "Berkeley	 Lab	
Checkpoint/Restart (BLCR)	 for	 Linux clusters."	 Journal of	 Physics:	 Conference	
Series. 46.	1.	IOP	Publishing,	2006.

[HDF5]	 The HDF Group. Hierarchical Data Format, version 5, 1997-2015.	
http://www.hdfgroup.org/HDF5/

[HEC-FSIO2011] High End Computing Interagency Working Group (HECIWG)
Sponsored File Systems and I/O Workshop HEC FSIO 2011.

[HECIOS n.d.]	http://www.parl.clemson.edu/hecios/

[Henderson2004]	 Henderson, Amy, Jim	 Ahrens, and Charles Law. The ParaView
guide.	Clifton	Park,	NY: 	Kitware,	2004.

[Hoefler2009]	Hoefler, Torsten, Andrew Lumsdaine, and Jack Dongarra. "Towards
efficient MapReduce	using	MPI." In Recent Advances in Parallel Virtual Machine and
Message 	Passing	Interface,	pp.	240-249.	Springer	Berlin	Heidelberg,	2009.

[Hyperion	n.d.]	https://hyperionproject.llnl.gov/index.php

Storage Systems and Input/Output to Support Extreme Scale Science 75

https://hyperionproject.llnl.gov/index.php
http://www.parl.clemson.edu/hecios
http://www.hdfgroup.org/HDF5
https://asc.llnl.gov/CORAL-�-benchmarks/#hacc
http://www.geni.net

	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	
	

	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	

	 	 	
	

		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 		

		
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	 	

	 	 	 	
	

	 	 	 	
	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

[Indiana2014]	 University	 of	 Indiana.	 Komadu Provenance Collection Framework
User	Guide,	April 2014.

[Ionkov2013]	 L. Ionkov, M. Lang, and	 C. Maltzahn. “Drepl: Optimizing access to
application	data	for analysis and visualization.” In	MSST	’13,	Long	Beach,	CA, May 6-
10, 2013.

[IOR n.d.]	 https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/

[Isaila2011]	Isaila, Florin, et al. "Design and evaluation of multiple-level	data	staging	
for blue gene systems." IEEE	Transactions	on Parallel and Distributed Systems,	22.6	
(2011):	946-959.

[Jenkins2012]	 Jenkins, John, Isha Arkatkar, Sriram	Lakshminarasimhan, Neil Shah,
Eric	 R.	 Schendel,	 Stephane	 Ethier,	 Choong-Seock Chang, et al. "Analytics-driven	
lossless data compression for rapid in-situ indexing,	 storing,	 and	 querying."	 In	
Database	 and Expert Systems Applications,	 pp.	 16-30.	 Springer	 Berlin	 Heidelberg,	
2012.

[Jin2015] Jin,Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki, S. Klasky, H. Kolla, J.
Chen, R. Hager, C-S	 Chang	 and M.	 Parashar,	 “Exploring	 data	 staging	 across deep	
memory hierarchies for coupled data intensive simulation workflows." In
Proceedings	 of	 the	 29th	 IEEE	 International Parallel &	 Distributed	 Processing
Symposium, Hyderabad, India, May 2015.

[Jin2013]	T.	Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu, S. Klasky, N. Podhorszki,
and H. Abbasi, “Using cross-layer adaptations for dynamic data management in large
scale coupled scientific workflows.” In Proceedings of SC’13, The ACM/IEEE
International	Conference	for High Performance Computing, Networking Storage and
Analysis, Denver, CO, USA, November 2013.

[Johnson2014] Charles Johnson, Kimberly Keeton, Charles B. Morrey III, Craig A. N.
Soules, Alistair Veitch, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton
Coutinho, Patrick J. Doyle, Rafael Eichelberger, Hugo Kiehl, Guilherme Magalhaes,
James McEvoy, Padmanabhan Nagarajan, Patrick Osborne, Joaquim	 Souza, Andy
Sparkes, Mike Spitzer, Sebastien Tandel, Lincoln Thomas, and Sebastian Zangaro.
“From	 research	 to	 practice:	 Experiences	 engineering	 a	 production metadata
database for a	scale	out	file	system.”	In	Proceedings	of	the	12th	USENIX	Conference	
on	File	and	Storage	Technologies	(FAST 2014), USENIX, 2014.

[Kannan2011a]	Kannan,	Sudarsun,	et	al.	"Using	active NVRAM for I/O
staging.” In	Proceedings	of	the	2nd	international workshop on	Petascale	data
analytics: challenges and opportunities (PDAC@SC), 2011.

[Kannan2011b] Kannan, Sudarsun, et al. "Using active NVRAM for cloud I/O.”

Storage Systems and Input/Output to Support Extreme Scale Science 76

https://www.nersc.gov/users/computational-�-systems/cori/nersc-�-8

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	

	
	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

In	Proceedings 	of 	the	2011 Sixth Open Cirrus Summit. 2011.

[Kannan2013] Kannan, Sudarsun, et al. "Optimizing Checkpoints Using NVM as
Virtual Memory.” In Proceedings of the 2013 IEEE 27th International Symposium
on	Parallel 	and	Distributed	Processing,	2013.

[Karpathiotakis2015]	M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A.
Ailamaki. “Just-in-time data virtualization: Lightweight data management with VIDa.	
“In CIDR ’15, Asilomar, CA, January 4-7	2015.

[Kettimuthu12] Kettimuthu, R., Vardoyan, G., Agrawal, G., and Sadayappan,	 P.,
“Modeling	and optimizing large-scale	wide-area	data	transfers.”	In 14th IEEE/ACM
Symposium	on Cluster, Cloud, and Grid Computing (CCGrid2014). IEEE, 2014.

[Kim2008] Kim, John, et al. "Technology-driven,	highly-scalable	dragonfly	topology."	
ACM SIGARCH Computer Architecture News 36.3. IEEE Computer Society, 2008.

[Kim2014] Youngjae Kim, Youngjae and Gunasekaran, Raghul. “Understanding I/O
workload characteristics of a peta-scale storage system.” The Journal of
Supercomputing, pages 1–20,	2014.

[Kimpe2007] Kimpe, Dries, Rob Ross, Stefan Vandewalle, and Stefaan Poedts.
"Transparent	log-based data	storage in	MPI-IO applications." In Recent Advances in
Parallel Virtual Machine	 and	 Message	 Passing	 Interface,	 pp.	 233-241.	 Springer	
Berlin	Heidelberg,	2007.

[Kimpe2012] D. Kimpe, P. Carns, K. Harms, J. M. Wozniak, S. Lang, and R. Ross.
“AESOP: Expressing concurrency in high-performance system	 software.” In	
Proceedings	 of	 the	 7th International Conference on Networking, Architecture and
Storage (NAS), pp.303–312,	Fujian,	China,	June	2012.

[Klasky2011]	Klasky, Scott, Hasan Abbasi, Jeremy Logan, Manish Parashar, Karsten
Schwan, Arie Shoshani, Matthew Wolf et al. "In situ data processing for extreme-
scale computing." Scientific Discovery through Advanced Computing Program	
(SciDAC’11) (2011).

[Koziol2014]	Koziol,	Quincey,	ed. High	performance parallel	I/O.	CRC 	Press,	2014.

[Ku2006] S. Ku, C. Chang, M. Adams, J. Cummings, F. Hinton, D. Keyes, S. Klasky, W.
Lee, Z. Lin, S. Parker, et al. “Gyrokinetic particle simulation of neoclassical transport
in	 the	 pedestal/scrape-off region of a tokamak plasma.” Journal of	 Physics:
Conference	Series 46 (2006): 87.
[Kung	1981]	Kung,	Hsiang-Tsung, and John T. Robinson. "On optimistic methods for
concurrency control." ACM Transactions on Database Systems (TODS) 6.2 (1981):
213-226.

Storage Systems and Input/Output to Support Extreme Scale Science 77

	 	 	 	 	 	 	 	 	 	

	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	

		
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	
	

[Lakshminarasimhan2011]	Lakshminarasimhan, Sriram, Neil Shah,	Stephane	Ethier,	
Scott Klasky, Rob Latham, Rob Ross, and Nagiza F. Samatova. "Compressing the
incompressible with ISABELA: In-situ reduction	of	 spatio-temporal data." In Euro-
Par	2011	Parallel 	Processing,	pp.	366-379.	Springer	Berlin	Heidelberg,	2011.

[Lamport2001] Lamport, Leslie. "Paxos made simple." ACM Sigact News 32.4	
(2001):	18-25.

[Lang2010]	Lang, Sam and Chris Carothers. “CODES: Enabling co-design of multi-layer
exascale	 storage	 architectures.” Advanced Architectures and Critical Technologies for	
Exascale Computing ASCR FOA-10-0000255, 2010.

[LANL Data n.d.] LANL systems – operational and	 fault data
http://institute.lanl.gov/data/

[LeFevre2014]	 Jeff	 LeFevre,	 Jagan	 Sankaranarayanan,	 Hakan	 Hacıg¨um¨us,	 Junichi	
Tatemura, Neoklis Polyzotis, and Michael J. Carey. “Miso: Souping up big data query
processing with a multistore system.” In SIGMOD ’14, Snowbird, UT, June 22-27	
2014.

[Leung2007]	 Leung, Andrew W., Ethan L. Miller, and Stephanie Jones. "Scalable
security for petascale parallel file systems." In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing,	p. 16. ACM, 2007.

[Leung2009]	 Andrew W.	 Leung,	 Ian F. Adams, and Ethan L. Miller. Megellan: A	
searchable metadata architecture for large-scale file systems. Technical Report
UCSC-SSRC-09-07, University of California, Santa Cruz, November 2009.

[Li2003]	 Li, Jianwei, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur,
William	Gropp, Robert Latham, Andrew Siegel, Brad Gallagher, and Michael	Zingale.	
"Parallel netCDF: A	high-performance scientific I/O interface." In Supercomputing,
2003 ACM/IEEE Conference, pp. 39-39.	IEEE,	2003.

[Li2013]	Li, Yan, Nakul Sanjay Dhotre, Yasuhiro Ohara, Thomas M. Kroeger, Ethan L.
Miller,	and Darrell Long. "Horus:	Fine-grained	encryption-based security for large-
scale	storage."	In	FAST,	pp.	147-160.	2013.

[Liao2007]	Liao, Wei-keng, et al. "An implementation and evaluation of client-side	
file	 caching	 for	 MPI-IO."	 Parallel and	 Distributed	 Processing	 Symposium, 2007.
IPDPS	2007.	IEEE,	2007.

[Liewer1989]	 Liewer, Paulett C., and Viktor K. Decyk. "A	 general concurrent
algorithm	 for plasma particle-in-cell simulation codes." Journal of Computational
Physics 85,	no.	2	(1989):	302-322.

Storage Systems and Input/Output to Support Extreme Scale Science 78

http://institute.lanl.gov/data

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	

	 	 	 	 	
	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	
	

[Ligon2006]	Ligon, Walter B. “Improving scalability in parallel file systems for high end
computing.” High End Computing University Research Activity NSF 06-503	(2006)

[Lindstrom2006] Lindstrom, Peter, and Martin Isenburg. "Fast and efficient
compression of floating-point	 data."	 IEEE	 Transactions	 on	 Visualization	 and	
Computer Graphics 12. 5 (2006): 1245-1250.	

[Lister2003]	 Lister, J. B., B. P. Duval, J. W. Farthing, T. J. Fredian, M. Greenwald, J.
How, X. Llobet, F. Saint-Laurent, W. Spears, and J. A. Stillerman. "The ITER project	
and its data handling requirements." In 9th ICALEPCS Conference, Gyeongju, Korea.	
2003.

[Liu2004]	 Liu, Jiuxing, Dhabaleswar K. Panda, and Mohammad Banikazemi.
"Evaluating	the	impact of RDMA	on Storage I/O over Infiniband." SAN-03	Workshop
(in	conjunction with HPCA).	2004.

[Liu2012a]	Liu, Ning, et al. "On the	role	of	burst buffers	in leadership-class	storage	
systems." IEEE 28th Symposium	on Mass Storage Systems and Technologies (MSST),
2012.	IEEE,	2012.

[Liu2012b]	Liu, Zhuo, et al. "PCM-based durable	write	cache	for	fast disk I/O."	2012	
IEEE 20th International Symposium	 on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), IEEE,	2012.

[Lofstead2008]	Lofstead,	Jay	F.,	et al.	"Flexible	IO and integration	for scientific	codes	
through the adaptable IO system	(ADIOS)."	 In	Proceedings	of	 the	6th	 international
workshop	on	Challenges of Large Applications in	Distributed	Environments. ACM,
2008.

[Lofstead2014] G. F. “Lofstead, Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki,	J.	Y.	
Choi, S. Klasky, R. Tchoua, R. A. Oldfield, M. Parashar, N. Samatova, K. Schwan, A.
Shoshani, M. Wolf, K. Wu, W. Yu, “Hello ADIOS: The challenges	 and	 lessons	 of	
developing	 leadership	 class I/O	 frameworks.” Concurrency and Computation:
Practice	and	Experience 26.7 (2014): 1453-1473.	

[Ludwig2007] Ludwig, Thomas, Stephan Krempel, Michael Kuhn, Julian Kunkel, and
Christian Lohse. "Analysis of the MPI-IO optimization levels with the PIOViz
Jumpshot enhancement." In Recent Advances in Parallel Virtual Machine	 and	
Message 	Passing	Interface,	pp.	213-222.	Springer	Berlin	Heidelberg,	2007.

[Lustre2002]	Lustre: A	scalable, high-performance file system. Cluster File Systems
Inc. white paper, version 1.0, November 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[Lustre2010]	 Lustre-HSM,
(http://wiki.lustre.org/images/4/4d/Lustre_hsm_seminar_lug10.pdf)

Storage Systems and Input/Output to Support Extreme Scale Science 79

http://wiki.lustre.org/images/4/4d/Lustre_hsm_seminar_lug10.pdf
http://www.lustre.org/docs/whitepaper.pdf

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	

	 	 	
	

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	

	 	 	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	
	

	 	 	 	 	 	
	 	

	
	 	

	
			

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	

	 	 	
	 	 	 	 	 	 	 	

[Luu2013] Luu, H, B. Behzad, R. Aydt, and M. Winslett. “A	multi-level	approach for
understanding	I/O	activity	in	HPC applications.”	in	IEEE	International	Conference on	
Cluster Computing (CLUSTER), Sept. 2013,	pp.	1–5.

[Luu2015] Luu, H, M. Winslett, W. Gropp, K. Harms, P. Carns, R. Ross, Y. Yao, S. Byna,
and Prabhat. “A	 Multi-platform	 Study of I/O Behavior on Petascale
Supercomputers.” In the 24th International ACM Symposium	on High Performance
Distributed Computing. June 2015 (to appear).

[Ma2003]	 Ma, Xiaonan, and AL Narasimha Reddy. "MVSS: An	 active	 storage	
architecture."	 IEEE	Transactions on Parallel and	Distributed	System,	14.10	(2003):
993-1005.

[Ma2009a]	 Ma, Kwan-Liu, Peter H. Beckman, and	 Kamil A. Iskra. “Visual
characterization of I/O system behavior for high-end computing.” High End Computing
University Research Activity NSF 09-530	(2009)

[Ma2009b]	Ma, Xiaosong, Frank Mueller, Kai Shen and Marianne Winslett. “Automatic
extraction of parallel I/O benchmarks from HEC applications.” High End Computing
University Research Activity NSF 09-530	(2009)

[Magoutis2003]	 Magoutis,	 Kostas,	 et	 al.	 "Making	 the	 most out	 of direct-access	
network attached storage."	FAST.	2003.

[Mandal2007]	 Nandita Mandal, Ewa Deelman, Gaurang Mehta, Mei-Hui	 Su, and	
Karan Vahi. Integrating existing scientific workflow systems: The Kepler/Pegasus	
example. In Proceedings	of	 the	2nd	Workshop	on	Workflows	 in	Support of	Large-
scale	Science, WORKS	'07,	pp. 21-28. ACM Press, 2007.

[May2001]	 May,	 John	 M. Parallel I/O for high performance computing.	 Morgan	
Kaufmann, 2001.

[MDTest n.d.]	 https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/mdtest/

[Mesnier2007] Mesnier M.P., M. Wachs, R. R. Sambasivan, J. Lopez, J. Hendricks, G. R.
Ganger,	 and	 D.	 O’Hallaron. “Trace: Parallel trace replay with approximate causal
events.”	 In	 Proceedings	 of	 the	 5th	 USENIX	 Conference	 on	 File	 and	 Storage	
Technologies, ser. FAST ’07. Berkeley, CA, USENIX Association, 2007, pp. 24–24.

[Miller2010]	 Ross	 Miller,	 Jason	 Hill,	 G. Raghul,	 G.M. Shipman, D. Maxwell.
“Monitoring tools for large scale systems.” CUG10, 2010.

[Miller2001]	 Miller,	 Ethan,	 Brandt,	 Scott	 A., Long, Darrell, “HerMES:	 High-
performance reliable MRAM-enabled	 storage.” In	 Proceedings	 of	 the	 8th	 IEEE	
Workshop on Hot Topics in Operating Systems, May 	2001.

Storage Systems and Input/Output to Support Extreme Scale Science 80

https://www.nersc.gov/users/computational-�-systems/cori/nersc-�-8

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	

		
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	

[Moody2010]	Moody, Adam, Greg Bronevetsky, Kathryn Mohror, and Bronis R. De
Supinski.	 "Design, modeling, and evaluation of a scalable multi-level	checkpointing	
system." In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2010, pp. 1-11.	IEEE,	2010.

[Moore2011]	M.	Moore,	D.	Bonnie,	B.	Ligon,	M.	Marshall,	W.	Ligon,	N.	Mills,
E. Quarles, S. Sampson, S. Yang, and B. Wilson. OrangeFS: Advancing
PVFS.	FAST Poster Session,	2011.

[Muelder2011] Muelder, Chris, et. al. “Visual analysis of I/O system	 behavior for
high-end computing.” In Proceedings of 3rd	Workshop on	Large-Scale System	and
Application Performance (LSAP), pp. 19–26,	2011.

[Muniswamy-Reddy2006]	K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M.
Seltzer.	 Provenance-aware storage systems. In Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, 2006.

[Mysore2014]	Mysore,	Radhika	Niranjan,	et.	al.,	“Gestalt:	Fast,	unified
fault localization for networked systems.” In 2014 USENIX Annual Technical
Conference (USENIX ATC 14),	pp.	255–267,	2014.

[Najm2009] Najm, Habib N. "Uncertainty quantification and polynomial chaos
techniques in computational fluid dynamics." Annual Review of Fluid Mechanics 41	
(2009):	35-52.

[NERSC Data n.d.] NERSC systems – operational and	 fault data	
http://pdsi.nersc.gov/

[Ni2012]	 Ni, Xiang, Esteban Meneses, and Laxmikant V. Kalé. "Hiding checkpoint
overhead in HPC applications with a semi-blocking algorithm." IEEE	 International	
Conference	on Cluster Computing	(CLUSTER),	2012.	IEEE,	2012.

[Nisar2008]	Nisar, Arifa, Wei-keng Liao, and Alok Choudhary. "Scaling parallel I/O
performance through I/O delegate and caching system." In International Conference
for High Performance Computing, Networking, Storage and Analysis,	2008.	SC 2008.	
pp.	1-12.	IEEE,	2008.

[Nunez2003]	http://institute.lanl.gov/data/software/

[Oldfield2007]	Ron A. Oldfield, Lee Ward, Arther B. Maccabe, and Patrick Widener.
Scalable	 security	 for	MPP storage	 systems. In	 International	 Conference	 on	 Security	
and Management: Special Session on Security in Supercomputing Clusters, Las
Vegas, NV, July	2007.

Storage Systems and Input/Output to Support Extreme Scale Science 81

http://institute.lanl.gov/data/software
http://pdsi.nersc.gov

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	

	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

		
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	
	

	
	

	
	 	 	 	

	 	 	 	 	 	
	

		 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 		
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	

[Palmer2011] Palmer, Bruce, Annette Koontz, Karen Schuchardt, Ross Heikes, and
David	 Randall. "Efficient data IO for a parallel global cloud resolving model."
Environmental Modelling & Software 26.12	(2011):	1725-1735.

[Parallel	 I/O	 Tutorial	 n.d.]	 Parallel	 I/O	 in	 practice	
http://sc14.supercomputing.org/program/tutorials

[Parker-Wood2010]	 Parker-Wood, Aleatha, Christina Strong, Ethan L. Miller, and
Darrell DE Long. "Security aware partitioning for efficient file system	 search." In
IEEE 26th Symposium	on Mass Storage Systems and	Technologies	(MSST),	2010,	pp.
1-14.	IEEE,	2010.

[Patil2011] Swapnil Patil and Garth A. Gibson. “Scale and concurrency of GIGA+: File
system	directories with millions of files.” In Proceedings	of	the	USENIX	Conference	
on	File	and	Storage	Technologies (FAST), pp. 177-190.	USENIX,	2011.

[Patterson1989]	 Patterson, David A., et al. "Introduction to redundant arrays of
inexpensive disks (RAID)." In	Proceedings	of	the	IEEE	COMPCON, Vol. 89. 1989.

[PDSI	FSStats	Data	n.d.]	http://www.pdsi-scidac.org/fsstats

[PDSW	n.d.]	Parallel	Data	Storage	Workshop	http://www.pdsw.org

[Piernas2007]	Piernas,	Juan,	Jarek Nieplocha,	and	Evan	J.	Felix.	"Evaluation	of	active	
storage	 strategies	 for	 the	 Lustre parallel file system." In	 Proceedings	 of	 the	 2007	
ACM/IEEE conference on Supercomputing. ACM, 2007.

[Pillai2014] Pillai, T.S., Chidabram, V., Alagappan, R., Al-Kiswany, S., Arpaci-Dussea,
A.c., and Arpaci-Dusseau, R.H, “All file	 systems are not created	 equal:	 On	 the	
complexity of crafting crash-consistent applications.”	 In	 The	 11th	 Usenix	
Symposium	 on Operating System	Design and Implementation (OSDI ’14). Usenix
Association, 2014.

[Plimpton2011] Plimpton, Steven J., and Karen D. Devine. "MapReduce	 in MPI for	
large-scale graph algorithms." Parallel Computing 37.9	(2011):	610-632.

[PRObE n.d.] Parallel Reconfigurable Observational Environment http://www.nmc-
probe.org/

[Qin2006]	Qin,	Lingjun, and Dan Feng. "Active storage framework for object-based
storage	 device."	 20th	 International Conference	 on Advanced Information
Networking and Applications, Vol. 2. IEEE, 2006.

[Qin2009]	 X. Qin, H. Jiang, A. Manzanares, X.-J	 Ruan, and	 S. Yin. "A	 dynamic	 load	
balancing	 for I/O-intensive	 applications	 on	 clusters," ACM Transactions on
Storage, 5	(2009).

Storage Systems and Input/Output to Support Extreme Scale Science 82

https://probe.org
http://www.nmc
http://www.pdsw.org
http://www.pdsi-�-scidac.org/fsstats
http://sc14.supercomputing.org/program/tutorials

	 	 	 	 	 	 	 	 	 	

	
	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	

	
	

	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	
	

	 	 	 	
	 	 	

	 	 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

	
	

	 	 	 	 	 	 	
	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	

[QMCPACK2015] http://www.qmcpack.org/

[Rajachandrasekar2013]	Rajachandrasekar, Raghunath, et al. "A	1 PB/s file system	
to checkpoint three million MPI tasks." In	 Proceedings	 of	 the	 22nd	 international
symposium	on High-Performance Parallel	and Distributed	Computing. ACM, 2013.

[Reagana2003]	Reagana, Matthew T., Habib N. Najm, Roger G. Ghanem, and Omar M.
Knio.	"Uncertainty quantification	in	reacting-flow simulations through non-intrusive	
spectral projection."	Combustion and Flame 132,3	(2003):	545-555.

[Reed2004]	 Reed, Daniel A., ed. Scalable	 Input/Output: Achieving system	 balance.	
MIT 	Press,	2004.

[Ren2014]	Kai	Ren,	Qing	Zheng,	Swapnil Patil,	and	Garth	Gibson.	 “IndexFS: Scaling	
file	 system	 metadata performance with stateless	 caching	 and	 bulk insertion.” In	
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC14,	Nov.	2014

[Rew1990]	 Rew,	 Russ,	 and	 Glenn	 Davis.	 "NetCDF:	 An	 interface	 for scientific	 data	
access."	Computer Graphics and Applications, IEEE 10.4	(1990):	76-82.

[Riedel1997]	 Riedel,	 Erik,	 and	 Garth	 Gibson.	 “Active disks-remote execution for
network-attached storage.” No.	 CMU-CS-97-198.	 Carnegie-Mellon University	
Pittsburgh, PA, School of	Computer Science, 1997.

[Rizzo1997]	 Rizzo, Luigi. "Effective erasure codes for reliable computer
communication protocols." ACM SIGCOMM computer communication review 27.2	
(1997):	24-36.

[Ross2001]	Ross, Robert, Daniel Nurmi, Albert Cheng, and Michael Zingale. "A	case
study	 in	application	 I/O on Linux clusters." In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing, pp. 11-11. ACM, 2001.

[Sandia	 Data	 n.d.]	 Sandia	 application	 traces	
http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data/

[Sankaran2005]	 Sankaran, Sriram, et al. "The LAM/MPI checkpoint/restart
framework: System-initiated	 checkpointing."	 International	 Journal	 of High	
Performance Computing Applications 19.4	(2005):	479-493.

[SC n.d.] Department of Energy Office of Science. “Statement on Digital Data
Management.” http://science.energy.gov/funding-opportunities/digital-data-
management/

Storage Systems and Input/Output to Support Extreme Scale Science 83

http://science.energy.gov/funding-�-opportunities/digital-�-data
http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data
http://www.qmcpack.org

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	
	 	 	 		 	 	

	
	 	 		 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 		
	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

[Schissel2014]	 D.P. Schissel, G. Abla, S.M. Flanagan, M. Greenwald, X. Lee, A.
Romosan, A. Shoshani, J. Stillerman, J. Wright.	 Automated metadata, provenance
cataloging and navigable interfaces: Ensuring the usefulness of extreme-scale	data.
Fusion Engineering and	Design,	Feb. 23,	2014.

[Schmuck2002] Schmuck, Frank B., and Roger L. Haskin. "GPFS: A	shared-disk file	
system	for large computing clusters." In FAST 2 (2002):19.

[Schopf2002] J.M. Schopf, “A	general architecture	for	scheduling	on	the	grid.” Special	
issue	on	grid	computing, Journal of	Parallel and Distributed Computing, April 2002.

[Scott2006]	 Scott,	 Steve,	 et	 al.	 "The BlackWidow	 high-radix Clos network."	 ACM
SIGARCH Computer Architecture News 34.2 (2006). IEEE Computer Society.

[Seamons1994] Seamons, Kent E., and Marianne Winslett. "An efficient abstract
interface for multidimensional array I/O." In Proceedings	of	Supercomputing'94, pp.
650-659.	IEEE,	1994.

[Settlemyer2012] Settlemyer, B.W., Rao, N.S.V., Poole, S.W., Hodson, S.W., Hicks, S.E.,
Newman, P.E., “Experimental analysis	 of	 10Gbps	 transfers	 over	 physical and	
emulated dedicated	connections.”	 In 2012 International Conference on Computing,
Networking, and Communications (ICNC). IEEE, 2012.

[Shan2008] Shan, H., K. Antypas, and J. Shalf. “Characterizing and	predicting	the	I/O
performance of HPC applications using a parameterized synthetic benchmark.” In	
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008.

[SIOX n.d.]	http://www.hlrs.de/research/current-projects/siox/

[Son2010]	Son, Seung Woo, Samuel Lang, Philip Carns, Robert Ross, Rajeev Thakur,
Berkin Ozisikyilmaz, Prabhat Kumar, Wei-Keng Liao, Alok Choudhary. "Enabling
active storage on	parallel	 I/O	 software stacks." In IEEE 26th Symposium	on Mass
Storage Systems and Technologies (MSST), 2010, pp.	1-12.	IEEE,	2010.

[Spafford2012] Spafford, Kyle and Vetter, Jeffery S. “Aspen: A	 domain specific
language for performance modeling.” In Proceedings of the International Conference	
on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp.
84:1–84:11,	2012.	

[Subramoni2008] Subramoni, H.; Marsh, G.; Narravula, S.; Ping Lai; Panda, D.K.
"Design	 and	 evaluation	 of	 benchmarks for	 financial applications using advanced	
message	 queuing	 protocol (AMQP) over InfiniBand." Workshop on High
Performance Computational Finance, 2008.,	pp. 1, 8,	16. Nov.	2008.

Storage Systems and Input/Output to Support Extreme Scale Science 84

http://www.hlrs.de/research/current-�-projects/siox

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	

	
	 	 	 	 	

	 	 	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	
	 	

	 	
	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

[Sun2014]	 Sun, Zhiwei, et al. "A	 lightweight data	 location	 service	 for	
nondeterministic exascale storage systems."	 ACM Transactions on Storage 10.3	
(2014):	12.

[Tantisiriroj2011]	 Tantisiriroj, Wittawat, Seung Woo Son, Swapnil Patil, Samuel J.
Lang, Garth	Gibson, and	Robert B. Ross. "On the	duality	of	data-intensive file system	
design:	 reconciling	 HDFS	 and	 PVFS."	 In	 Proceedings	 of	 2011	 International	
Conference for High Performance Computing, Networking, Storage and Analysis, p.
67. ACM, 2011.

[Thakur1999]	 Thakur, Rajeev, William	 Gropp, and Ewing Lusk. "Data sieving and
collective	I/O	in	ROMIO."	Seventh Symposium	on the Frontiers	of	Massively	Parallel
Computation, 1999. IEEE,	1999.

[Thereska2013]	 Thereska, Eno, et al. "Ioflow: A	 software-defined	 storage	
architecture."	 In	Proceedings	of	 the	Twenty-Fourth ACM Symposium	on Operating
Systems Principles. ACM, 2013.

[Thottethodi2006]	Thottethodi, Mithuna S., Vijay S. Pai, Rahul T. Shah, T. N. Vijaykumar
and Jeffrey	 S. Vitter. “Performance models and systems optimization for disk-bound
applications.” High End Computing	University	Research Activity	NSF	06-503	(2006)

[Titan2015] https://www.olcf.ornl.gov/titan/

[Uselton2009] Uselton, Andrew. “Deploying server-side file system	monitoring at
NERSC.” In Proceedings of the Cray Users Group meeting, 2009.

[Uselton2010]	Uselton, A., M. Howison, N. J. Wright, D. Skinner, N. Keen, J. Shalf, K. L.
Karavanic, and L. Oliker, “Parallel I/O performance: From	events to ensembles.”	 In	
2010 IEEE International Symposium	on Parallel & Distributed Processing (IPDPS).
IEEE,	2010,	pp.	1–11.

[Vairavanathan2012] Emalayan Vairavanathan, Samer Al-Kiswany,	 Lauro Beltrão
Costa, Zhao Zhang, Daniel S. Katz, Michael Wilde, Matei Ripeanu (2012): “A	
workflow-aware storage system: An opportunity	study.”	In	Proceedings	of	the	2012	
12th IEEE/ACM International Symposium	 on Cluster, Cloud and Grid Computing
(CCGrid 2012).

[Vampir n.d.]	https://www.vampir.eu/

[Vavilapalli2013]	V.	K.	Vavilapalli	et	al.	“Apache Hadoop YARN: Yet another resource
negotiator.” In SoCC’13, Santa Clara, CA, October 1-3, 2013.

[Venkataraman2011]	 Venkataraman, Shivaram, Niraj Tolia, Parthasarathy
Ranganathan, and Roy H. Campbell. "Consistent and durable	 data	 Structures for
non-volatile	byte-addressable	memory." In FAST, pp. 61-75. 2011.

Storage Systems and Input/Output to Support Extreme Scale Science 85

https://www.vampir.eu
https://www.olcf.ornl.gov/titan

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

		
	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 		
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

		

[Vijayakumar2009] Vijayakumar, K, F. Mueller, X. Ma, and P. C. Roth, “Scalable I/O
tracing	and analysis.”	In Proceedings of the 4th Annual Workshop on Petascale Data
Storage, ser. PDSW ’09. New York, NY, ACM, 2009, pp. 26–31

[Vishwanath2011a]	 Vishwanath, Venkatram, Mark Hereld, Vitali Morozov, and
Michael	E.	Papka.	"Topology-aware data movement and staging for I/O acceleration
on Blue Gene/P supercomputing systems." In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, p.
19. ACM, 2011.

[Vishwanath2011b]	 Vishwanath, Venkatram, Mark Hereld, Michael E. Papka.
"Toward simulation-time data analysis and i/o acceleration on leadership-class	
systems." In IEEE Symposium	 on Large Data Analysis and Visualization (LDAV),
2011, pp.	9-14.	IEEE,	2011.

[Wang2002] Wang, An-I, et al. “Conquest: Better performance through a
disk/persistent-RAM hybrid files system.” In Proceedings of USENIX Annual
Technical 	Conference, 2002.

[Watkins2013]	N.	Watkins,	C.	Maltzahn, S. Brandt, I. Pye, and A. Manzanares. In-vivo	
storage system	 development. In BigDataCloud ’13 (in conjunction with EuroPar
2013), Aachen, Germany, August 26, 2013.

[Watson1995] Watson, R.W.; Coyne, R.A., "The Parallel I/O Architecture of the High-
Performance Storage System	 (HPSS)." In	 Proceedings	 of	 the	 Fourteenth	 IEEE	
Symposium	 on Mass Storage Systems, 1995:	 Storage	 - At the Forefront of
Information Infrastructures,	pp. 27, 44,	Sept. 11-14,	1995.

[Weil2004]	S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic metadata	
management for petabyte-scale file systems. In SC’04, Pittsburgh, PA, Nov. 2004.

[Weil2006]	 Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E.	 Long,	 and
Carlos Maltzahn. Ceph: A	scalable, high-performance distributed file system.
In	 Proceedings of the 2006 Symposium	 on Operating Systems Design and
Implementation,	pp. 307-320.	University	of	California,	Santa Cruz,	2006.

[Weil2007]	 S. A. Weil. “Ceph:	 Reliable, scalable,	 and	 high-performance distributed	
storage.” Ph.D. thesis, University of California at Santa Cruz, December 2007.

[Welch2008], Brent, Marc Unangst, Zainul Abbasi, Garth A. Gibson, Brian Mueller,
Jason Small, Jim	Zelenka, Bin Zhou. "Scalable performance of the Panasas parallel file
system." In	FAST,	vol.	8,	pp.	1-17.	2008.

Storage Systems and Input/Output to Support Extreme Scale Science 86

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	
		

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

	
	

	 	 	 	 	
	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	
	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	
	

[Whitlock2011]	B.	Whitlock,	J.M.	Favre,	J.S.	Meredith,	"Parallel	In	Situ	Coupling	of a	
Simulation with a Fully Featured Visualization System." In	Eurographics Symposium	
on	Parallel 	Graphics	and	Visualization,	pp	101-109, 2011.

[Wieczorek2009] Marek Wieczorek, Andreas Hoheisel, and Radu Prodan. 2009.
Towards a general model of the multi-criteria	 workflow scheduling	 on	 the	 grid.
Future	Generation Computing Systems 25.3	(March	2009): 237-256.

[Williams1997] Williams, Dean N. “The PCMDI software system: Status and future
plans.” Program	 for Climate Model Diagnosis and Intercomparison, University of
California, Lawrence Livermore National Laboratory, 1997.

[Wolstencroft2013]	 Katherine	 Wolstencroft,	 Robert Haines, Donal Fellows, Alan
Williams, David	Withers, Stuart Owen, Stian Soiland-Reyes,	 Ian	Dunlop, Aleksandra
Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty,
Abraham	 Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib Sufi, and Carole
Goble. “The Taverna	 workflow	 suite: Designing	 and	 executing	 workflows	 of	
Web Services	on	the	desktop,	web	or in	the	cloud.” Nucleic Acids Research 41(W1):
W557-W561,	2013.

[Wozniak2010]	 Wozniak, Justin M., Bryan Jacobs, Rob Latham, Sam	 Lang, Seung	
Woo Son,	 and	 Robert	 Ross.	 "C-MPI: A	 DHT implementation for grid and HPC
environments." Preprint ANL/MCS-P1746-0410	(2010):	04-2010.

[Wosniak2014]	Justin	M.	Wozniak,	Michael Wilde,	Ian	T.	Foster	“Language	features	
for	 scalable	 distributed-memory dataflow	 computing.” In Proceedings, Data-flow
Execution Models for Extreme-scale Computing at PACT 2014

[Wu2009]	Wu, Kesheng, Sean Ahern, E. Wes Bethel, Jacqueline Chen, Hank Childs,
Estelle Cormier-Michel, Cameron Geddes et al. "FastBit: Interactively	 searching	
massive data." Journal of Physics: Conference Series, 180.1,	 p.	 012053.	 IOP	
Publishing,	2009.

[Zadok2006]	 Zadok,	 Erez,	 Ethan	 L.	Miller	 and	Klaus	Mueller.	 “File	 system	 tracing,
replaying,	profiling, and	analysis	on	HEC systems.” High End Computing University	
Research Activity NSF 06-503	(2006).

[Zhang2010]	Zhang, Yupu, et al. "End-to-end	data	 integrity	 for file	 systems: A	ZFS
Case	Study." FAST, 2010.

[Zhang2012] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi,
“Enabling	 in-situ execution of coupled scientific workflow on multi-core platform.”
In	 Proceedings of the	 26th	 IEEE	 International	 Parallel	 & Distributed Processing	
Symposium	(IPDPS 2012), Shanghai, China, pp. 1352-1363,	May	2012.

Storage Systems and Input/Output to Support Extreme Scale Science 87

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	

	
	 	

[Zhao2004]	Zhao, Ben Y., et al. "Tapestry: A	resilient global-scale	overlay	for	service	
deployment." IEEE	 Journal	on Selected Areas in Communications 22.1	 (2004):	41-
53.

[Zhao2007]	 Zhao, Yong, Mihael Hategan, Ben Clifford, Ian Foster, Gregor	 Von
Laszewski, Veronika Nefedova, Ioan Raicu, Tiberiu Stef-Praun,	Michael Wilde.	"Swift:	
Fast, reliable, loosely coupled parallel computation." In IEEE Congress on Services,
2007,	pp.	199-206.	IEEE,	2007.

[Zhao2014] Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R.,
Raicu,	 I.	 “FusionFS:	 Toward	 supporting	 data-intensive	 scientific	 applications	 on	
extreme-scale	 high-performance computing systems.” In Proceedings of the IEEE	
International	Conference	on	Big	Data.	2014.

[Zheng2014]	Qing	Zheng,	Kai Ren,	and Garth Gibson.	BatchFS: Scaling the file system	
control plane	with	client-funded metadata servers. In Proceedings	of	the	9th	Parallel
Data Storage	Workshop, PDSW 	'14,	pages	1-6.	IEEE Press,	2014.

Storage Systems and Input/Output to Support Extreme Scale Science 88

	 	 	 	 	 	 	 	 	 	

 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	 	 		

9 Acknowledgments

The	 organizers	 wish	 to	 thank Lucy	 Nowell for sponsoring the meeting and Lucy
Nowell and Thuc	Hoang	for facilitating	and	soliciting contributions from	key science
domains. Additionally, the organizers wish	 to	 thank ORISE	 and	Deneise	 Terry	 for	
managing the registration and logistics of the workshop series.	Last,	but not least,	
the	 organizers	 also	wish	 to	 recognize	 Gail Pieper	 for	 her	 invaluable	 assistance	 in	
editing this document.

Storage Systems and Input/Output to Support Extreme Scale Science 89

	Structure Bookmarks
	Figure 3: Nonvolatile memory (NVM) will be an important component of future
	Figure 4: I/O middleware is
	Figure 5: Darshan data can be used to

