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Neuromorphic Computing 

Architectures, Models, and Applications  
A Beyond-CMOS Approach to Future Computing 

Executive Summary 

The White House1 and Department of Energy2 have been instrumental in driving the development of a 

neuromorphic computing program to help the United States continue its lead in basic research into (1) 

Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, 

(2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific 

data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum 

architectures. 

Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, 

to computer science, to neuroscience, all of which are required to solve the neuromorphic computing 

grand challenge. In our workshop we focus on the computer science aspects, specifically from a 

neuromorphic device through an application. Neuromorphic devices present a very different paradigm to 

the computer science community from traditional von Neumann architectures, which raises six major 

questions about building a neuromorphic application from the device level. We used these fundamental 

questions to organize the workshop program and to direct the workshop panels and discussions. From the 

white papers, presentations, panels, and discussions, there emerged several recommendations on how to 

proceed. 

(1) Architecture Building Blocks—What are the simplest computational building blocks? What should 

the neuromorphic architecture look like and how should we evaluate and compare different architectures? 

Current CMOS-based devices and emerging devices (e.g., memristor, spintronic, magnetic, etc.) and their 

associated algorithms could potentially emulate the functionality of small regions of neuroscience-

inspired neurons and synapses ranging from great details to very simple abstracts. Just as biological 

neural systems are composed of networks of neurons and synapses that learn and evolve integrated, 

interdependent responses to their environments, so must the computational building blocks of 

neuromorphic computing systems learn and evolve network organization to address the problems 

presented to them. Scalability and generalization need to be provided by neuromorphic architecture. 

Potentially, the effective data representation, communication, and information storage and processing 

could be the key considerations. 

                                                
1 The White House has announced a Nanotechnology-Inspired Grand Challenge for Future Computing, which seeks to create a 

new type of computer that can “proactively interpret and learn from data, solve unfamiliar problems using what it has learned, 

and operate with the energy efficiency of the human brain.” This grand challenge will leverage three other national research and 

development initiatives: National Nanotechnology Initiative (NNI), National Strategic Computing Initiative (NSCI), and the 

BRAIN initiative. 
2 In October 2015 the DOE Office of Science conducted a roundtable on neuromorphic computing with leading computer 

scientists, device engineers, and materials scientists that emphasized the importance of an interdisciplinary approach to 

neuromorphic computing. http://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/Neuromorphic-Computing-

Report_FNLBLP.pdf 

https://www.whitehouse.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing
https://www.whitehouse.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing
http://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/Neuromorphic-Computing-Report_FNLBLP.pdf
http://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/Neuromorphic-Computing-Report_FNLBLP.pdf
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Research Challenge: Invest and guide effective collaborations and connections between theory of 

computation, neuroscience, and nonlinear device physics with machine learning and large-scale 

simulations to discover the new materials and devices, the building blocks, and therefore novel 

architecture of a practical neuromorphic computing system. 

(2) Configurations—What should we expect from reconfigurable devices? Traditionally, devices for the 

part most have been static (with gradual evolutionary modifications to architecture and materials, 

primarily based on CMOS), and software development dependent on the system architecture, instruction 

set, and software stack has not changed significantly. A reconfigurable device-enabled circuit architecture 

requires a tight connection between the hardware and software, blurring their boundary.  

Research Challenge: Computational models need to be able to run at extreme scales (+exaflops) and 

leverage the performance of fully reconfigurable hardware that may be analog in nature and computing 

operations that are highly concurrent, as well as account for nonlinear behavior, energy, and physical 

time-dependent plasticity. 

(3) Learning Models—How is the system trained/programmed? Computing in general will need to move 

away from the stored programming model to a more dynamic, event-driven learning model that requires a 

broad understanding of theory behind learning and how best to apply it to a neuromorphic system. 

Research Challenge: Understand and apply advanced and emerging theoretical concepts from 

neuroscience, biology, physics, engineering, and artificial intelligence and the overall relationship to 

learning, understanding, and discovery to build models that will accelerate scientific progress. 

(4) Development System—What application development environment is needed? A neuromorphic 

system must be easy to teach and easy to apply to a broad set of tasks, and there should be a suitable 

research community and investment to do so. 

Research Challenge: Develop system software, algorithms, and applications to program/teach/train. 

(5) Applications—How can we best study and demonstrate application suitability? The type of 

applications that seem best suited for neuromorphic systems are yet to be well defined, but complex 

spatio-temporal problems that are not effectively addressed using traditional computing are a potentially 

large class of applications.  

Research Challenge: Connect theoretical formalisms, architectures, and development systems with 

application developers in areas that are poorly served by existing computing technologies. 

(6) Hardware Development—How do we build and/or integrate the necessary computing hardware? As 

compared to conventional computing systems, neuromorphic computing systems and algorithms need 

higher densities of typically lower precision memories operating at lower frequencies. Also, 

multistate/analog memories offer the potential to support learning and adaptation in an efficient and 

natural manner. Without efficient hardware implementations that leverage new materials and devices, the 

real growth of neuromorphic applications will be substantially hindered. 
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Research Challenge: Enable a national fabrication capability to support the development and technology 

transition of neuromorphic materials, devices, and circuitry that can be integrated with state-of-the-art 

CMOS into complete and functional computing systems.  

We propose that DOE Office of Science, Advanced Scientific Computing Research (ASCR) program 

office, in particular, develop and execute a program in neuromorphic computing focused on DOE’s 

priorities of leading innovation to deliver a beyond-exascale vision and strategy, revolutionize scientific 

discovery, and answer challenging questions about the future of computing. The program should be based 

on exploring neuromorphic computing from fundamental applied physics and materials science, device, 

circuitry, componentry, and hardware architecture through an application level with strong ties to new 

research in materials, devices, and biology. High performance computing–enabled simulations should be 

central to ensuring the success of leading potential prototyping, testing, and evaluation of the building 

blocks, configurations, learning models, development systems, hardware, and applications for future 

neuromorphic computers. 
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I. Introduction and Motivation 

In October 2015, the White House Office of Science and Technology Policy released A Nanotechnology-

Inspired Grand Challenge for Future Computing, which states the following: 

“Create a new type of computer that can proactively interpret and learn from data, solve unfamiliar 

problems using what it has learned, and operate with the energy efficiency of the human brain.” 

As a result, various federal agencies (DOE, NSF, DOD, NIST, and IC) collaborated to deliver "A Federal 

Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge" white paper presenting a 

collective vision with respect to the emerging and innovative solutions needed to realize the 

Nanotechnology-Inspired Grand Challenge for Future Computing. The white paper describes the 

technical priorities shared by multiple federal agencies, highlights the challenges and opportunities 

associated with these priorities, and presents a guiding vision for the R&D needed to achieve key near-, 

mid-, and long-term technical goals.  

This challenge falls in line and is very synergistic with the goals and vision of the neuromorphic 

computing community, which is to build an intelligent, energy efficient system, where the inspiration and 

technological baseline for how to design and build such a device comes from our recent progress in 

understanding of new and exciting material physics, machine intelligence and understanding, biology, and 

the human brain as an important example. 

Investment in current neuromorphic computing projects has come from a variety of sources, including 

industry, foreign governments (e.g., the European Union’s Human Brain Projects), and other government 

agencies (e.g., DARPA’s SyNAPSE, Physical Intelligence, UPSIDE, and other related programs). 

However, DOE within its mission should make neuromorphic computing a priority for following 

important reasons: 

1. The likelihood of fundamental scientific breakthroughs is real and driven by the quest for 

neuromorphic computing and its ultimate realization. Fields that may be impacted include 

neuroscience, machine intelligence, and materials science. 

2. The commercial sector may not invest in the required high-risk/payoff research of emerging 

technologies due to the long lead times for practical and effective product development and 

marketing.  

3. Government applications for the most part are different from commercial applications; therefore, 

government needs will not be met if they rely on technology derived from commercial products. 

Moreover, DOE’s applications in particular are also fundamentally different from other 

government agency applications. 

4. The long-term economic return of government investment in neuromorphic computing will likely 

dwarf other investments that the government might make. 
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5. The government’s long history of successful investment in computing technology (probably the 

most valuable investment in history) is a proven case study that is relevant to the opportunity in 

neuromorphic computing. 

6. The massive, ongoing accumulation of data everywhere is an untapped source of wealth and well-

being for the nation. 

What is neuromorphic computing? 

Neuromorphic computing combines computing fields such as machine learning and artificial intelligence 

with cutting-edge hardware development and materials science, as well as ideas from neuroscience. In its 

original incarnation, “neuromorphic” was used to refer to custom devices/chips that included analog 

components and mimicked biological neural activity [Mead1990]. Today, neuromorphic computing has 

broadened to include a wide variety of software and hardware components, as well as materials science, 

neuroscience, and computational neuroscience research. To accommodate the expansion of the field, we 

propose the following definition to describe the current state of neuromorphic computing: 

Neural-inspired systems for non–von Neumann computational architectures 

In most instances, however, neuromorphic computing systems refer to devices with the following 

properties: 

 two basic components: neurons and synapses, 

 co-located memory and computation,  

 simple communication between components, and 

 learning in the components.  

Additional characteristics that some (though not all) neuromorphic systems include are 

 nonlinear dynamics, 

 high fan-in/fan-out components, 

 spiking behavior, 

 the ability to adapt and learn through plasticity of both parameters, events, and structure, 

 robustness, and 

 the ability to handle noisy or incomplete input.  

Neuromorphic systems also have tended to emphasize temporal interactions; the operation of these 

systems tend to be event driven. Several properties of neuromorphic systems (including event-driven 

behavior) allow for low-power implementations, even in digital systems. The wide variety of 

characteristics of neuromorphic systems indicates that there are a large number of design choices that 

must be addressed by the community with input from neurophysiologists, computational neuroscientists, 

biologists, computer scientists, device engineers, circuit designers, and material scientists.  

Why now? 

In 1978, Backus described the von Neumann bottleneck [Backus1978]:  
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Surely there must be a less primitive way of making big changes in the store than by pushing vast 

numbers of words back and forth through the von Neumann bottleneck. Not only is this tube a 

literal bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual 

bottleneck that has kept us tied to word- at-a-time thinking instead of encouraging us to think in 

terms of the larger conceptual units of the task at hand. Thus programming is basically planning 

and detailing the enormous traffic of words through the von Neumann bottleneck, and much of 

that traffic concerns not significant data itself but where to find it.  

In the von Neumann architecture, memory and computation are separated by a bus, and both the data for 

the program at hand as well as the program itself has to be transferred from memory to a central 

processing unit (CPU). As CPUs have grown faster, memory access and transfer speeds have not 

improved at the same scale [Hennessy2011]. Moreover, even CPU performance increases are slowing, as 

Moore’s law, which states that the number of transistors on a chip doubles roughly every 2 years, is 

beginning to slow (if not plateau). Though there is some argument as to whether Moore’s law has actually 

come to an end, there is a consensus that Dennard scaling, which says that as transistors get smaller that 

power density stays constant, ended around 2004 [Shalf2015]. As a consequence, energy consumption on 

chips has increased as we continue to add transistors.  

While we are simultaneously experiencing issues associated with the von Neumann bottleneck, the 

computation-memory gap, the plateau of Moore’s law, and the end of Dennard scaling, we are gathering 

data in greater quantities than ever before. Data comes in a variety of forms and is gathered in vast 

quantities through a plethora of mechanisms, including sensors in real environments, by companies, 

organizations, and governments and from scientific instruments or simulations. Much of this data sits idle 

in storage, is summarized for a researcher using statistical techniques, or is thrown away completely 

because current computing resources and associated algorithms cannot handle the scale of data that is 

being gathered. Moreover, beyond intelligent data analysis needs, as computing has developed, the types 

of problems we as users want computers to solve have expanded. In particular, we are expecting more and 

more intelligent behavior from our systems.  

These issues and others have spurred the development of non–von Neumann architectures. In particular, 

the goal of pursuing new architectures is not to find a replacement for the traditional von Neumann 

paradigm but to find architectures and devices that can complement the existing paradigm and help to 

address some of its weaknesses. Neuromorphic architectures are one of the proposed complement 

architectures for several reasons: 

1. Co-located memory and computation, as well as simple communication between components, can 

provide a reduction in communication costs. 

2. Neuromorphic architectures often result in lower power consumption (which can be a result of 

analog or mixed analog-digital devices or due to the event-driven nature of the systems).  

3. Common data analysis techniques, such as neural networks, have natural implementations on 

neuromorphic devices and thus are applicable to many “big data” problems. 
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4. By building the architecture using brain-inspired components, there is potential that a type of 

intelligent behavior will emerge.3  

Overall, neuromorphic computing offers the potential for enormous increases in computational efficiency 

as compared to existing architecture in domains like big data analysis, sensory fusion and processing, 

real-world/real-time controls (e.g., robots), cyber security, etc. Without neuromorphic computing as part 

of the future landscape of computing, these applications will be very poorly served. 

The goal of this report is to discuss some of the major open research questions associated with the 

computing aspect of neuromorphic computing and to identify a roadmap of efforts that can be made by 

the computing community to address those research questions. By computing we mean those aspects of 

neuromorphic computing having to do with architecture, software, and applications, as opposed to more 

device- and materials-related aspects of neuromorphic computing. This workshop was preceded by a 

DOE-convened roundtable on Neuromorphic Computing: From Materials to Systems Architecture, held 

in October 2015. The roundtable, which included computer scientists, device engineers, and materials 

scientists, was co-sponsored by the Office of Science’s ASCR and BES offices and emphasized the 

importance of an interdisciplinary approach to neuromorphic computing. Though this report is written 

specifically from the computing perspective, the importance of collaboration with device engineers, 

circuit designers, neuroscientists, and materials scientists in addressing these major research questions is 

emphasized.  

II. Current State of Neuromorphic Computing Research 

Because of the broad definition of neuromorphic computing and since the community spans a large 

number of fields (neuroscience, computer science, engineering, and materials science), it can be difficult 

to capture a full picture of the current state of neuromorphic computing research. The goals and 

motivations for pursuing neuromorphic computing research vary widely from project to project, resulting 

in a very diverse set of work.  

One view of neuromorphic systems is that they represent one pole of a spectrum of repurposable 

computing platforms (Figure 1). On one end of that spectrum is the synchronous von Neumann 

architecture. The number of cores or computational units increases in moving across this spectrum, as 

does the asynchrony of the system.  

 

Figure 1: Spectrum of repurposable computing platforms [WSP:Hylton]. 

One group of neuromorphic computing research is motivated by computational neuroscience and thus is 

interested in building hardware and software systems capable of completing large-scale, high-accuracy 

                                                
3 It is worth noting that this intelligent behavior may be radically different from the intelligent behavior observed in biological 

brains, but since we do not have a good understanding of intelligence in biological brains, we cannot currently rely on replicating 

that behavior in neuromorphic systems.  
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simulations of biological neural systems in order to better understand the biological brain and how these 

systems function. Though the primary motivation for these types of projects is to perform large-scale 

computational neuroscience, many of the projects are also being studied as computing platforms, such as 

SpiNNaker [Furber2013] and BrainScaleS [Brüderle2011].  

A second group of neuromorphic computing research is motivated by accelerating existing deep learning 

networks and training and thus is interested in building hardware that is customized specifically for 

certain types of neural networks (e.g., convolutional neural networks) and certain types of training 

algorithms (e.g., back-propagation). Deep learning achieves state-of-the-art results for a certain set of 

tasks (such as image recognition and classification), but depending on the task, training on traditional 

CPUs can take up to weeks and months. Most state-of-the-art results on deep learning have been obtained 

by utilizing graphics processing units (GPUs) to perform the training process. Much of the deep learning 

research in recent years has been motivated by commercial interests, and as such the custom deep 

learning–based neuromorphic systems have been primarily created by industry (e.g., Google’s Tensor 

Processing Unit [Jouppi2016] and the Nervana Engine [Nervana2016]). These systems fit the broad 

definition of neuromorphic computing in that they are neural-inspired systems on non–von Neumann 

hardware. However, there are several characteristics of deep learning–based systems that are undesirable 

in other neuromorphic systems, such as the reliance on a very large number of labeled training examples.  

 

Figure 2: Two types of memristors that could be used in neuromorphic systems [Chua1971, WSP:Williams]. 

The third and perhaps most common set of neuromorphic systems is motivated by developing efficient 

neurally inspired computational hardware systems, usually based on spiking and non-spiking neural 

networks. These systems may include digital or analog implementations of neurons, synapses, and 

perhaps other biologically inspired components. Example systems in this category include the TrueNorth 

system [Merolla2014], HRL’s Latigo chip [WSP:Stepp ], Neurogrid [Benjamin2014], and Darwin 

[Shen2016]. It is also worth noting that there are neuromorphic implementations using off-the-shelf 

commodities, such as field programmable gate arrays (FPGAs), which are useful as both prototypes 

systems and, because of their relative cost, have real-world value as well.  
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One of the most popular technologies associated with building neuromorphic systems is the memristor 

(also known as ReRAM). There are two general types of memristors: nonvolatile, which is typically used 

to implement synapses, and locally active, which could be used to represent a neuron or axon (Figure 2). 

Nonvolatile memristors are also used to demonstrate activation functions and other logical computations. 

Memristors used to implement synapses are often used in a crossbar (Figure 3). The crossbar can operate 

in either a current mode or a voltage mode, depending on the energy optimization constraints. The use of 

spiking neural networks as a model in some neuromorphic systems allows these types of systems to have 

asynchronous, event-driven computation, reducing energy overhead. Another use of these devices is to 

realize a co-located dense memory for storing intermediate results within a network (such as weights). 

Also, the use of technologies such as memristors have the potential to build large-scale systems with 

relatively small footprints and low energy usage.  

 

Figure 3: ReRAM used as synapses in a crossbar array [WSP:Saxena]. 

It is worth noting that other emerging architectures (beyond neuromorphic computers) can implement 

neuromorphic or neuromorphic-like algorithms. For example, there is evidence that at least some neural-

inspired algorithms can be implemented on quantum computers [WSP:Humble]. As multiple architectures 

are being considered and developed, it is worthwhile to consider how those architectures overlap and how 

each of the architectures can be used to benefit one another, rather than developing those architectures in 

isolation of each other.  

When considering neuromorphic computing as compared with other emerging computer architectures, 

such as quantum computing, there is a clear advantage in hardware development in that hardware 

prototypes are appearing regularly, both from industry and academia. One of the key issues is that 

projects generating hardware prototypes are not very well connected, and most systems are either not 

made available for external use or are limited to a relatively small number of users. Even most 

neuromorphic products developed by industry have not been made commercially available. Thus, 

communities built around an individual project are relatively small, and there is very little overlap from 

project to project. Moreover, because the communities are so limited, there has been little focus on 

making the end-products accessible to new users with the development of supporting software systems. 

When considering a von Neumann architecture from the computer science perspective, the following 

picture emerges (Figure 4). 
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Figure 4: A von Neumann or traditional architecture from the computer science perspective. 

In this view of the von Neumann architecture, we see the clear structure of the architecture itself, which is 

made up of a CPU and a memory unit. The programmer for a von Neumann system typically writes a 

program for a particular application in a high-level programming language. The program is then 

translated by the compiler into computer instructions, which are stored in the memory unit and executed 

by the CPU. The application or user then interacts with the “program” on the CPU through input and 

output.  

We contrast this with a neuromorphic architecture from the computer science perspective (Figure 5). 

 

Figure 5: A potential neuromorphic architecture from the computer science perspective. 
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First, the neuromorphic computer itself is no longer made up of a separate memory unit and CPU; it is 

instead made of different computational building blocks, each of which is likely contain some 

combination of memory and processing. Although it is possible for there to be a programming language 

that is used by a programmer, it is more likely that the neuromorphic computer configuration for a 

particular application is determined by a training/learning algorithm that may be run either off-line and 

off-chip, or run on the chip itself. There could still be a compiler to turn the programming language or 

output from the training algorithm into configuration commands for the neuromorphic computer. Finally, 

the application is likely communicating with the neuromorphic computer using spikes (assuming the 

neuromorphic computer is representing a spiking neural network) or some other simple message type, in 

which case an input/output converter will likely be necessary. 

III. Open Issues 

Neuromorphic computing includes researchers in fields such as neuroscience, computing, computer and 

electrical engineering, device physics, and materials science. Each research area has a set of open research 

questions that must be addressed in order for the field to move forward. The focus of the workshop was to 

identify the major questions from a computing perspective of neuromorphic computing or questions that 

can be addressed primarily by computational scientists, computer scientists, and mathematicians and 

whose solutions can benefit from the use of high performance computing (HPC) resources. 

Based on the submissions to the workshop and the presentations and discussions during the workshop, six 

major questions emerged, each of which is described in the following sections and framed in the bigger 

picture of a neuromorphic architecture (as shown in Figure 5). It is important to note that none of these 

questions can be answered by computing alone and will require close collaboration with other disciplines 

across the field of neuromorphic computing.  

A. What are the basic computational building blocks and general architectures of 

neuromorphic systems? 
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The basic computational building blocks of most neuromorphic systems are neurons and synapses. Some 

neuromorphic systems go further and include notions of axons, dendrites, and other neural structures, but 

in general, neurons and synapses are the key components of the majority of neuromorphic systems. The 

information propagation usually is conducted through spikes: whenever enough charge has flowed in at 

synapses, a neuron generates outgoing spikes, which causes charge to be injected into the post-synaptic 

neuron. 

What neuron and synapse models are appropriate? 

When defining a neuromorphic architecture or model, the associated neuron and synapse models must be 

chosen from among a large variety of neuron and synapse models. Example neuron models range from 

very simple (e.g., McCulloch Pitts [McCulloch1943]) to very complex (e.g., Hodgkin-Huxley 

[Hodgkin1952]).  

Figure 6 shows a spectrum of neuron models ranging from more complex and biologically accurate to 

simpler and more biologically inspired. 

 

Figure 6: Example neuron models [Hodgkin1952, Izhikevich2003, Gerstner2002, McCulloch1943]. 

In addition to complicated neuron models, there are a variety of synapse implementations, ranging from 

very simple synapses that are only represented by weight values (such as those used with McCulloch-Pitts 

neurons) to extremely complex, biologically realistic synapses that include notions of learning or 

adaptation. Artificial synapses may or may not have a notion of delay, depending on the implementation. 

Some synapse models represent synapse activity using a conductance-based model [Vogelstein2007] 

rather than a weight value. Synaptic weights may be adapted over the course of network simulation via 

learning mechanisms such as Hebbian-learning-like rules (e.g., spike-timing-dependent plasticity (STDP) 

[Caporale2008] or long-term and short-term potentiation and depression [Rabinovich2006]). In general, 

we do not believe that detailed bio-mimicry is necessary or feasible because neurobiology is extremely 

complicated and still not well understood. The task instead should be to create an understanding of what 

matters in the biology (that is, a theory) and to use that theory to effectively constrain and integrate the 

component models and to transfer certain intuition about the brain to a different technological substrate 

(such as a neuromorphic chip or software model). 
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What other biological components may be necessary for a working neuromorphic 

system? 

Beyond neurons and synapses, there are a variety of other biologically inspired mechanisms that may be 

worth considering as computational primitives. Astrocytes are glial cells in biological brains that act as 

regulatory systems; in particular, they can stimulate, calm, synchronize, and repair neurons. Certainly we 

will want to consider what computational effects these regulatory-type systems will have on 

neuromorphic models. Neurotransmitters and neuromodulatory systems also have a significant effect on 

the behavior of biological brains. It is not clear how these systems influence the capabilities of biological 

brains, such as learning, adaptation, and fault tolerance, but it is worthwhile to consider their inclusion in 

neuromorphic models. In general, the goal should be to make minimalistic systems first and then to grow 

their complexity as we understand how the systems operate together. If we start with the proposition that 

it must be very, very complex to work, then we will surely fail. 

There are many different types of neurons and synapses within biological neural systems, along with 

other biological components such as glial cells; different areas of the brain have different neuron types, 

synapse types, connectivity patterns, and supporting systems. Artificial neural networks have taken 

inspiration from different areas of the brain for different types of neural networks. For example, the 

structure of convolutional neural networks is inspired by the organization and layout of the visual cortex 

[LeCun2015], whereas hierarchical temporal memory (HTM) takes its inspiration from the organization 

of the neocortex [Hawkins2016, WSP:Kudithipudi] (Figure 7). When considering the model selection, it 

may be worthwhile to target a specific functionality or set of applications and take inspiration from a 

particular part of the brain that performs that functionality well in determining the characteristics of the 

model.  

 

Figure 7: Convolutional neural network example (left) as compared with hierarchical temporal memory 
example (right) [WSP:Kudithipudi]. 

How do device and materials characteristics influence computational building block 

selection? 

When selecting the appropriate computational primitives, a variety of questions must be addressed. One 

major issue associated with selecting the neuron and synapse models is what adaptations need to be made 

in the model as a result of the chosen device or implementation. For example, certain device 

implementations may restrict a parameter space or functionality of a certain component of either the 

neuron or synapse model. These adaptations will almost certainly have an effect on the theoretical 
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capabilities of the model. An open research challenge is to create a theory that incorporates the constraints 

of the implementation rather than to create an implementation that perfectly matches a particular model. 

In this vein, there are really two challenges that, given the uncertain state of both device and neural 

research, need to be addressed in parallel. First, there exists a theoretical space where we can formally 

show that certain algorithmic computations can produce certain functions. Understanding that 

computation abstractly (perhaps in terms of computational building blocks) is critical. The second 

challenge is to understand how to reformulate those building blocks to best leverage the specialized 

devices that have unique abilities to accelerate or compress certain operations. That is, the underlying 

theory is very important, but considering that theory in the context of physical devices is also important.  

How should neurons and synapses be organized for effective information propagation 

and communication? 

Connectivity and plasticity in synaptic weighting dominate the complexity of neuromorphic computing. 

Offering the compatible connection density as human brain usually results in unaffordable complexity 

and unsalable system design. Therefore, how to organize neurons and synapses to obtain the greatest 

density of interconnect at the local level while offering scalable long-range connectivity and balancing the 

traffic in routing of neural events remains an open research question.  

How does computational building block selection influence data representation? 

The choice of models will also necessarily affect the way data is represented in the system and how data 

will be encoded and decoded between a neuromorphic device. For example, a spiking neural network 

model requires inputs to be encoded as spikes and spiking events to be decoded as outputs. When 

selecting the model, we should consider what impact this encoding and decoding process will have on the 

overall performance of the system and determine whether any benefits we gain from the model selection 

in theoretical capabilities and efficiency may be outweighed by the cost of communication to and from 

the device.  

What are the criteria in evaluating neuromorphic system architectures? 

Our goal is to develop practical computational systems inspired by biological mechanisms. When 

evaluating and selecting the architecture, we shall consider if the system is good for things that brains are 

good at and provides features such as high energy efficiency, learning ability, adaptive to environment, 

etc. The impact from physical design and the feasibility of the hardware implementation are also 

important. A suite of benchmarks/tasks for evaluation and comparisons might be necessary. 

What level of biological detail is necessary to capture the desired functionality? 

Another major research question associated with selection of the models is what level of complexity 

and/or biological realism is necessary to achieve desired functionality. This question is inextricably linked 

with the desired end-goal of the neuromorphic system. If the goal of the neuromorphic device is to 

produce biologically realistic simulations, then the models will necessarily be as biologically realistic as 

possible. However, this report is written from the standpoint that the goal of a neuromorphic architecture 

should be to produce computationally useful systems, not biologically realistic behavior.  
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Some conjecture that in order to achieve intelligent behavior, we must emulate biological systems as 

closely as possible. However, even with the leaps that have been made in neuroscience, neurobiology, 

neuroanatomy, and computational neuroscience in recent years, we still do not have a full understanding 

of the functionality of biological neural systems or how their functionality ultimately leads to intelligent 

behavior. As such, there is no guarantee that more biologically realistic systems will indeed lead to 

intelligent neuromorphic systems. To address this question, we must rigorously examine how each 

biologically inspired model or mechanism influences the performance of the system and only move 

forward with those that clearly affect performance (Figure 8). That is, we should never include a 

mechanism or property in a neuromorphic system just because it is present in the biological brain; it must 

have a justifiable purpose in the performance of the neuromorphic system. In general, while practical 

systems will almost certainly draw inspiration and ideas from biology, it is very unlikely that detailed 

simulation of biological brains will be practical or necessary in building computationally useful 

neuromorphic architectures. 

 

Figure 8: Levels of abstraction in biological brains and what functionality they may allow [WSP:Aimone]. 

It is of vital importance that we are able to build and test systems with varying levels of complexity in 

order to understand the relative strengths and weaknesses of each system. For example, we speculate that 

the more complex the neuron/synapse model is, the more difficult it will be to efficiently program the 

system (or, the more difficult it will be for the system to learn its parameters). On the other hand, by 

choosing simpler models, we may be significantly reducing the capabilities of the neuromorphic system. 

Building hardware is often an expensive endeavor, in both time and resources. Software simulation of 

models is going to be a key step in understanding the models and their capabilities, and it will be 

necessary for these software simulations to be capable of handling very large neuromorphic networks to 

show utility on real applications. Further, we believe that model reduction techniques, such as uncertainty 

quantification and sensitivity analysis (UQ/SA) that are widely used in other simulation-heavy sciences, 

could be invaluable in helping guide our abstraction of complex biological systems into more abstract 

computing-friendly models of neural computation [WSP:Aimone]. 
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There is almost certainly no one right answer to the selection of computational primitives that will be the 

most appropriate for all neuromorphic systems. Neuromorphic systems will be used in a wide variety of 

ways, and it is likely that each of these systems will make use of different types of models. However, it’s 

highly important that we are able to analyze these models, to compare them, and to evaluate the strengths 

and weaknesses of each approach in real use-cases.  

 
Recommendation: Connect the theory of computation with neuroscience and the 

nonlinear physics of devices using machine learning and large-scale simulation 

1. Look to both neuroscience and devices to develop potential computational building 

blocks and models. 

2. Develop software simulation modules of potential computational building blocks that can 

be combined interchangeably to build full (potentially large-scale) neuromorphic systems 

that can be evaluated on real applications.  

3. Use the software simulator study and evaluate the neuromorphic system on a variety of 

performance characteristics and highlight the strengths, weaknesses, and overall 

capabilities of each resulting system. Make use of existing neuromorphic 

implementations (such as TrueNorth, Neurogrid, and Latigo) as appropriate.  

4. Develop hardware of computational building blocks and architecture in small-scale (and 

potentially large-scale) systems to evaluate system performance and scalability and 

verify the software simulators. 

5. Use the software simulator study to inform the development of the computational theory 

of neuromorphic systems.  

 

B. What elements of a neuromorphic device should be configurable by the user 

or by a training/learning mechanism? 
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One of the issues with developing neuromorphic systems is defining the level of reconfigurability of the 

device. Neuromorphic devices are usually made of two fundamental component types (neurons and 

synapses), but even once a model or models are chosen for device implementation, there is still a question 

of what elements of the device will be programmable or flexible for implementing new applications 

(without changing the fundamental device structure). For example, elements that may be determined as 

part of programming or that may be adaptable as a part of learning include 

1. which models will be chosen if multiple neuron or synapse models are available,  

2. activating or deactivating neurons and synapses to influence the structure of the network,  

3. setting connectivity between neurons and synapses, and 

4. setting parameter values. 

What effect does device programmability have on device performance? 

There will likely be major trade-offs between device performance/footprint and programmability. 

Programmability will not be a major factor in many specific applications, such as devices on autonomous 

vehicles or in brain-computer interfaces. In these cases, the goal of the device is to typically perform a 

very small set of tasks in an extremely efficient way and often with a much smaller device than would be 

required when performing the same task on a programmable chip. For other uses of neuromorphic 

computers, such as a co-processor in a larger, heterogeneous computing system, more flexibility in the 

configuration of the device is a desired quality in order to ensure that the device may be used for a wide 

variety of applications.  

The level of configurability at the device level is tied closely to the selection of models and computational 

primitives. The complexity of the selected models may influence the type of configurability that is 

required. Given enough flexibility in the connectivity and structure, it is likely possible to replicate the 

behavior of more complex models. For example, the behavior of a single neuron in a complex neuron 

model may be replicated by multiple neurons with simpler neuron models. 

This research question is also inextricably linked with research questions in device development and 

materials science research. The level of configurability in a physical hardware system is going to be 

heavily dependent upon what flexibility is actually allowed by the type of device and materials used. For 

example, available connectivity is likely to be restricted, limiting the types of structural selections that 

will be made on the device. The effects of these restrictions in flexibility/configurability can be studied in 

simulation and provide insights to the hardware and materials researchers, while insights and innovations 

from hardware and materials research will drive developments in simulation.  

What desired characteristics of neuromorphic systems rely on flexibility and 

configurability of the device? 

The level of configurability or flexibility at the device level will also determine how the device is 

programmed, what algorithms can be evaluated on-chip, and what types of learning are possible on-line. 

There is a trade-off in making the device more flexible or configurable because with more programmable 

options at the device level, there are more variables to be determined by a programmer or an algorithm. 

However, by restricting the device reconfigurability, we are also potentially restricting the device’s 

adaptability. One of the key features of biological neural systems is their ability to repair or heal 
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themselves or to develop new structures in order to compensate for lost functionality. By including the 

reconfigurability as part of the device’s capabilities, we are allowing for the inclusion of mechanisms that 

will allow the neuromorphic system to have similar adaptability features.  

Once again, there is certainly no single correct answer for what level of configurability is appropriate for 

neuromorphic systems. We suspect that there will be a spectrum of resulting neuromorphic devices, 

ranging from custom neuromorphic application-specific integrated circuits (ASICs) for specific 

applications to neuromorphic computers which have significant flexibility and can be used for a broad 

range of applications.  

 
Recommendation: An integrated approach of computational models and reconfigurable 

hardware 

1. Define a list of desired characteristics of neuromorphic systems and determine which 

characteristics rely on configurability and reconfigurability at the device level.  

2. Augment the computational building blocks simulators to allow for different levels of 

configurability of the neuromorphic system. 

3. Study and evaluate the effect of device configurability/adaptability on 

programming/training difficulty and application space on the software simulator; inform 

device and materials research in reconfigurable hardware. 

4. Implement the reconfigurable hardware design and provide feedback to enhance the 

software simulator. 

 

C. How do we train/program a neuromorphic computer? 

 

A key question for neuromorphic computers is how to use the device for real applications. In answering 

this question, we must define what it means to “program” a neuromorphic device, or perhaps more 
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appropriately, how neuromorphic devices will learn or be trained. As such, we define three terms to 

describe the operation of neuromorphic computers on real applications. 

 Programmed: The user explicitly setting all parameters and potentially the structure of the 

networks to perform a particular task. 

 Trained: A training algorithm is defined. Example situations from the application are presented 

as part of the algorithm. The user provides feedback (as part of the algorithm) as to how well the 

neuromorphic device is performing the task, and the algorithm updates parameters and potentially 

structure based on that feedback. In machine learning this is often referred to as “supervised 

learning.” An example of a training algorithm for certain types of neuromorphic implementations 

and models is back-propagation. We also categorize reinforcement learning as a training method 

because the algorithm is receiving feedback. In this case, feedback is either “good” or “bad” as 

opposed to the correct answer when a wrong answer is given.  

 Learning: A learning algorithm is defined. Example situations from the applications are 

presented as part of the algorithm, and the algorithm defines ways in which the structure and 

parameters are updated based on the input it receives. In this case, the user does not provide 

feedback, but the environment may provide some sort of inherent “reward” or “punishment” (in 

the case of reinforcement learning). In machine learning, this is often referred to as “unsupervised 

learning.” Unsupervised learning algorithms typically create a compressed "representation" of the 

input structure. An example of a learning algorithm for certain types of neuromorphic 

implementations and models is spike-timing-dependent plasticity.  

For neuromorphic computing in the real world, there are roles for all three use-cases, and it is likely that 

some combination of the three will be used. The role of a software developer for neuromorphic computers 

is going to be radically different depending on the selected programming paradigm. The developer for an 

explicitly programmed neuromorphic computer will need to explicitly set all parameters and structure and 

understand the implications of each selection and how they interact. Developers for trained neuromorphic 

computers will need to consider what examples should be presented and what feedback to provide as part 

of the training process. They will also likely define parameters for the algorithm itself. For learning 

neuromorphic computers, the “developer” may be defined as the person who is presenting examples, or 

there may be no developer at all. For trained and learning neuromorphic computers, the term developer 

may also be used for the person who defines the training or learning algorithm. Another role of a 

programmer for a neuromorphic computer will be to determine what inputs are given, how those inputs 

are represented, and how they are presented to the device.  

Highly redundant, high-volume inputs are the target of unsupervised learning algorithms. The challenge 

for the unsupervised learning algorithm is to substantially compress and abstract that input so that it can 

be separated and compared with other low-volume inputs. Low-volume inputs that are examples of what 

(a human thinks) the machine should do/output are targets of supervised learning algorithms, preferably 

used in conjunction with the compressed representations created by the unsupervised algorithms. The 

challenge for the supervised learning algorithm is generalize from these examples to similar cases that it 

has never seen before. End-to-end training methodologies like convolutional deep nets bypass the need 

for unsupervised learning because they work on data sets where the unsupervised learning is not 
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needed/helpful (like collections of labeled images where there is no correlation among successive 

images).  

Very low-volume inputs that provide feedback about the overall state of the system are the target of 

reinforcement learning algorithms. The challenges for reinforcement learning algorithms are (1) to 

construct a cost function (which is easy for tasks like games but can be very difficult to define for other 

use-cases) and (2) to give enough information so that a large network can effectively organize itself. 

Presumably the reinforcement learning is much easier if the state has been compressed by something like 

an unsupervised learning algorithm.  

There is absolutely no reason to believe that there is a simple "learning rule" that might be applied at a 

synapse (e.g., a Hebbian rule or STDP) that will somehow create a general-purpose learning system. Very 

little work has been done on learning systems that close the loop with the real world—systems in which 

the output feeds back to the input by changing the environment. 

There are strengths and weaknesses for each of the three programming paradigms. The inclusion of 

manual programming allows for the neuromorphic device to be used for applications other than its native 

purpose (running a neural-inspired system). By allowing for manual programming, we open the door for 

the possibility of using the underlying chip structure for non-neurally inspired computational problems 

that would still benefit from features such as event-driven computation and co-located memory and 

computation. However, manual programming is not likely to be a scalable approach for very large 

neuromorphic systems; moreover, it will require an expert in the underlying architecture in order to 

program it in a meaningful way. 

The key advantage for training methods is that many supervised learning methods have already been 

developed in artificial neural network theory that may be able to be mapped to neuromorphic systems. 

There are several issues moving forward with training methods, however. One is that many of the training 

algorithms and methods were devised with the von Neumann architecture in mind and thus will not 

necessarily take advantage of the native processing capabilities of a neuromorphic system. It will require 

a fundamental shift in the way we think about algorithm development and programming in order to adapt 

these training methods to neuromorphic systems. Moreover, we should not limit ourselves to simply 

adapting existing techniques to neuromorphic systems. We should also figure out how to do supervised 

learning in truly neuromorphic algorithms/systems. 

Another major issue with training methods or supervised learning is that problems that involve data 

require labeled examples to work properly. As noted, one of the key driving forces behind the need for a 

new computing paradigm is the tremendous amount of data that is being gathered. It will likely be 

impossible for there to be sufficient manpower to provide enough labeled examples in these complex data 

sets to make use of existing training methods, for several reasons: 

1. Existing methods tend to require a large number of labeled examples that span the set of 

“interesting” characteristics in the data set. 

2. Many of the complex data sets are domain specific, where there are few who have the expertise 

required to label the data in a meaningful way. 
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3. The sheer complexity of much of the data being gathered is difficult to comprehend, even for the 

human experts. 

4. In many cases, it is not clear what characteristics of the data should be labeled in order to produce 

scientific discovery. 

As such, existing supervised learning methods are clearly not going to solve the types of problems we 

would like neuromorphic systems to address. An ideal neuromorphic system will incorporate a notion of 

learning in which the system itself is intelligently analyzing the raw data and indicating which features 

may be important. The primary issue with developing a learning algorithm is that it is not clear how 

learning is done in the brain or how it should be done in a neuromorphic system. Basic learning 

mechanisms such as Hebbian learning or spike-timing-dependent plasticity [Caporale2008] provide 

examples of how a neural network may learn in an unsupervised way, but those methods are also 

somewhat limited. Though this has been a common approach in the literature, there is no reason to 

believe that there is a simple "learning rule" that might be applied at a synapse (such as a Hebbian rule or 

STDP) that will somehow create a general-purpose learning system. One of the biggest goals of the 

neuromorphic computing community is to determine learning methods that enable one-shot learning, or at 

the very least, learning from a small set of examples, of the type that occurs in biological brains. One 

speculation is that one-shot learning implies that the system has experience in a closely related task such 

that it already has an efficient representation. In this case, learning is then some small refinement on an 

existing network. Pursuing this approach is one potential path to achieving one-shot, or near one-shot, 

learning in neuromorphic systems.  

We should also not think of neuromorphic learning mechanisms as existing in isolation. For many 

applications, a neuromorphic system will likely not only be taking input from the environment and 

processing that input in some way but will also be making decisions that will, in turn, affect the 

environment. Very little work has been done on learning systems that close the loop with the real world. 

Because one of the major advantages of neuromorphic systems is their potential for extremely low power, 

it is extremely likely that one of their major use-cases will be in real-world environments (e.g., on sensors 

or autonomous vehicles). As such, it is important that we consider how to develop neuromorphic learning 

algorithms that close the loop with the real world.  

Overall, it is clear that an entirely new way of thinking about algorithm development will be required for 

neuromorphic systems (Figure 9). The community will have to break itself out of the von Neumann way 

of thinking in order to do so. In order to develop new learning methods with the characteristics of 

biological brains, we will need to learn from cutting edge research in neuroscience. As part of that 

process, we will need to build a theoretical understanding of “intelligence.” Without the theoretical 

underpinnings, we will not be able to implement truly intelligent neuromorphic systems.  
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Figure 9: Incorporation of machine/device design into algorithm development [WSP: Mohsenin-Koushanfar]. 

Where and when should training/learning for a neuromorphic system take place? 

A major technical and detailed consideration, especially for trained and learning neuromorphic 

computers, is where training/learning takes place and when training/learning takes place. We define the 

location of learning as either “on-chip” or “off-chip.” We use these terms for convenience even though 

the actual device or computer acting as a neuromorphic computer may not be a chip. On-chip 

training/learning is when the training/learning algorithm is implemented as part of the operation of the 

neuromorphic computer. Many existing neuromorphic computers do not include any notion of on-chip 

training or learning. Off-chip training/learning is when the training/learning algorithm does not take place 

on the neuromorphic computer (though the neuromorphic computer may take part of the algorithm or a 

simulation may be used in its place). We define the time of learning as either “on-line” or “off-line.”  

On-line training/learning occurs when the algorithm makes real-time updates in a real situation. Usually 

on-line refers to a learning instance, which the neuromorphic chip is making decisions on how to update 

itself dynamically without feedback. However, training algorithms may also fit into this paradigm as part 

of a framework such as reinforcement learning, where the user may be providing minimal feedback. Off-

line training/learning usually occurs when the training knowledge is available earlier than when the 

device is used in the environment. One possibility for implementing hybrid on-line/off-line learning 

system is a system that can operate in real-time using an off-line trained model but store sampled input 

statistics, network outputs, and implications and update itself off-line at a later point. This approach is 

arguably what the cortex/hippocampus interaction provides to brains; our cortical “models” update very 

slowly (potentially even off-line during sleep), whereas the hippocampus is continuously learning and 

storing what occurs in the world and eventually using this info to update the cortical model. 

Neuromorphic devices can contain combinations of on-line, off-line, on-chip, and off-chip 

training/learning. On-line training/learning methods are usually by necessity on-chip. Off-line 

training/learning mechanisms may be on-chip or off-chip. Even neuromorphic computers that rely heavily 

on on-line learning will almost certainly include off-line pre-training and/or programming by the user in 

which some structure and parameters are defined and then refined as part of the on-line learning process.  
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How does the application choice affect the programming/training/learning paradigm? 

Clearly the choice of applications for neuromorphic computers is going to have a radical effect on the 

selected programming/training/learning paradigm. Beyond defining the programming/training/learning 

paradigms, it is of vital importance that we understand how these paradigms interact and what effect the 

selection of each algorithm has on the overall performance of resulting neuromorphic systems. The 

development of on-chip algorithms in particular will require significant interaction with the hardware 

developers and material scientists as to what operations are possible given the selected hardware and 

materials.  

Which biological learning mechanisms should be considered as part of 

training/learning? 

Another major question associated with programming/learning/training method is what that method 

defines. Many traditional neural network training or learning methods refer to algorithms that set the 

weight values of synapses in the neural network. The selection of the model and the 

flexibility/programmability of the device will affect what the programming method is capable of defining. 

Clearly biological learning systems encompass not only synaptic learning but also neurogenesis and 

neuronal-death, axonal growth and pruning, and neuromodulation. One of the key questions associated 

with developing training and learning mechanisms is how important structural evolution and change is as 

part of learning in biological brains. For computer scientists and computational scientists, this is clearly a 

question that can be addressed through simulation. We may examine the effect of changing structure and 

incorporating in complex neuromodulatory systems inspired by biological learning on the overall 

performance of a particular neuromorphic model. Using this information, we may inform the 

requirements of device developers and materials scientists in the selection and development of new 

devices and materials for neuromorphic systems.  

One of the key features of biological brains that likely enables very fast learning from limited examples or 

trials is the structural features that are present in biological brains as a result of evolution that are then 

“customized” through learning processes. It may be the case that a neuromorphic system includes a 

longer-term off-line training or learning component that creates a gross network structures or modules 

that are then refined and tuned by shorter-term on-line training or learning component.  

Can we define a set of neuromorphic computational primitives that can be used to build a 

large set of neuromorphic algorithms? 

One of the key challenges with the design of neuromorphic hardware is preventing obsolescence in the 

face of new neuromorphic algorithms. This is particularly problematic for learning algorithms, as better 

training approaches are constantly being developed, thus making any existing hardware learning 

structures much less effective and attractive. Identifying a set of neuromorphic computational primitives 

from which any neuromorphic algorithm, including learning algorithms, can be "assembled" would make 

be beneficial. If these computational primitives can then be implemented through efficient circuits into a 

neuromorphic device, the device would be able to implement most new neuromorphic computational 

algorithms. This would minimize the possibility of device obsolescence. 
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Can we define a high-level abstraction of neuromorphic systems for general 

neuromorphic algorithm development? 

Clearly the selection of computational primitives will have a serious impact on algorithm development. 

However, there is also the need to abstract away details about a particular architecture when developing 

algorithms. Ideally, a single algorithm developed for neuromorphic computing should be able to be 

implemented on most, if not all, neuromorphic architectures or devices. It is worthwhile to consider 

defining the high-level properties of neuromorphic systems that can be used as part of a given algorithm. 

Then these high-level properties can be used to define a commonly accepted pseudo-programming 

language, where each “compiler” to convert the algorithm pseudo-code may be then be developed for 

each individual neuromorphic architecture or device.  

Though we have a proof of concept that complex learning algorithms exist (in the human brain itself), it is 

not clear that we will be able to replicate that behavior in a neuromorphic computer. However, it does 

seem clear that if any computing platform is capable of replicating that behavior, a neuromorphic 

computer seems the most natural to do so.  

 
Recommendation: Develop theories of training and learning informed by neuroscience to 

be applied to neuromorphic computing. 

1. Step outside of the von Neumann way of thinking about algorithm development. Take 

inspiration from existing training and learning methods to develop new algorithms 

specifically for neuromorphic devices. 

2. Formalize computer science–compatible models of biological neural learning processes, 

such as spike-timing plasticity, synaptogenesis, and neurogenesis, to allow appropriate 

identification of both algorithmic utility and hardware feasibility. 

3. Create theories of the mind and theories of intelligence that can be used to inform the 

development of entirely new algorithms and learning methods.  

4. Define a set of neuromorphic computational primitives that can be used to "assemble" a 

large variety of existing neuromorphic algorithms and implement new learning 

algorithms. This will minimize the possibility of hardware obsolescence.  
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D. What supporting software systems are necessary for neuromorphic systems 

to be usable and accessible? 

 

In order for neuromorphic systems to be a valid complementary architecture for the future computing 

landscape, it is vital that we consider the accessibility and usability of the systems during the early stages 

of development. One of the major questions associated with usability and accessibility is how 

neuromorphic systems will actually be integrated into environments and what supporting software is 

necessary. We describe two example use-cases of neuromorphic computers or processors and the 

supporting software that will be required for each use-case.  

In one use-case, a neuromorphic system may be directly connected to sensors and/or control mechanisms 

as an embedded system on autonomous vehicles, sensors, or robots that are deployed in real 

environments. In this case, it will be necessary to build custom protocols and schemes for communication 

among custom devices within the deployed system itself, as well as the functionality to communicate 

results and/or data with a centralized server (Figure 10). For this case, it is almost certain that most 

training/learning will be done off-line (and perhaps also off-chip) and loaded onto the neuromorphic 

device, so training/learning software will be required. The neuromorphic processor will probably be 

customized for the particular application with very little programmability, adaptability, and on-line 

learning, in order to reduce the complexity and, as a consequence, the size and the energy consumption of 

the device. 
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Figure 10: Embedded system example. 

A second use-case for neuromorphic computers is as a co-processor in a future heterogeneous node. 

Figure 11 shows an example of a heterogeneous node, which includes traditional CPUs, GPUs, a 

neuromorphic processor, a quantum processor, and potentially other emerging architectures. For this use-

case, the supporting software will be extensive, and the device itself will likely be more programmable 

than neuromorphic devices for other use-cases in order to enable the device to be as useful as possible in 

the heterogeneous node. Communication protocols will be required. 

 

Figure 11: Co-processor example. 

Particularly for the final use-case, but also for all other use-cases of neuromorphic devices, supporting 

software for the neuromorphic devices and an associated software community will be necessary in 

making neuromorphic computing accessible enough for wide release. For instance, it will almost certainly 

be important to define abstract network representations (such as PyNN [Davison2009] or N2A 

[Rothganger2014]) that are common among different implementations and devices but also flexible 

enough to accommodate the capabilities and characteristics of each unique device and application. To be 

effective, these tools should be capable of both creating simulations of a neural circuit algorithm or model 

on conventional systems as well as eventually providing abilities to compile onto specialized 
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neuromorphic hardware or systems. The community is a vital component in defining these 

representations, just as the developer community was vital in defining standards for various aspects of 

traditional computing.  

What does a “program” for a neuromorphic computer look like? 

Instances of abstract network representations can be thought of as high-level “programs” for 

neuromorphic devices, which will then need to be “compiled” for each individual device. For some 

devices, the abstract representation will likely have a direct conversion process, resulting in a simple 

compiler. However, depending on the implementation and its associated restrictions in parameter 

representations or connectivity, an extensive mapping process may be required. Thus, the development of 

basic compilers for neuromorphic systems to perform the conversion from abstract network representation 

to machine code for the neuromorphic device will be an important software component (Figure 12).  

 

Figure 12: Example software-stack, that includes hardware-specific compilers, an abstract instruction set, 
high-level programming languages, and off-line training mechanisms. 

We make the analogy that the abstract network representation is similar to assembly language. For 

neuromorphic computers, the development of this assembly language may be performed in several 

different ways (see Section III.C): the user may manually set the parameters (programming) or the 

network may be designed using supervised (training) or unsupervised (learning) processes. Software that 

performs these algorithms and interact with either simulators or the devices themselves may be required 

in developing the appropriate abstract network instance for any given application.  
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What other types of software are required for using neuromorphic systems? 

Because of this new way of thinking about developing software, visualization tools will be critical to 

understanding the performance of neuromorphic computers. Visualization tools will be key in helping 

familiarize a novel user with the new computational structure. For developers, visualization tools for the 

abstract network representation as well as visualizations of each device itself will prove to be invaluable 

sources for identifying issues at the system level and, depending on how detailed they are, at the 

component level. Even for device developers, detailed visualizations will provide significant insight in 

verifying and debugging hardware implementations. While building these architectures from the ground 

up, we will also have the opportunity to introduce user interface experts into the development process 

early and, as a consequence, develop intuitive user interfaces for interacting with, training, and 

programming the neuromorphic devices.  

Overall, it is clear that there are many potential use-cases for neuromorphic systems, and we must be 

prepared to accommodate a variety of uses-cases during the development of associated software tools. 

The development of modular software stacks will be an extremely important component to allow for the 

usability and accessibility of neuromorphic systems in the future. 

 
Recommendation: Define and develop required supporting software systems for using 

neuromorphic computers. 

1. Define use-cases for neuromorphic systems and what supporting software systems will 

be required for each use-case.  

2. Define a common abstract network representation and instruction sets that the 

community can adopt and that can be used to build higher-level supporting software 

systems, such as visualization tools and application-specific software. 
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E. What applications are most appropriate for neuromorphic computers? 

 

Another major ongoing research question is what applications are most appropriate for neuromorphic 

computers. There are really two underlying fundamental questions for neuromorphic computing (and 

perhaps for all non-von Neumann) architectures in terms of applications: what applications can they solve 

and what applications should they solve?  

What are the theoretical computational capabilities of neuromorphic systems? 

The first question can only be answered with extensive research into theoretical results. For neuromorphic 

computing architectures, this may be achieved by examining computational complexity classes and 

looking at Turing computability properties. However, it is likely that each neuromorphic model will have 

to be examined separately in terms of its computational abilities. It is also likely that an entirely new 

computational theory paradigm will need to be defined in order to encompass the computational abilities 

of neuromorphic systems, as they have radically different properties from the traditional von Neumann 

architecture.  

What applications are natural for neuromorphic systems? 

Though the theoretical results are certainly important, a perhaps more important (and certainly more 

immediate) question is what applications are most appropriate for neuromorphic systems. For example, 

though it may be possible for a neuromorphic computer to perform precise floating point calculations, it is 

not a natural application. One obvious set of applications for neuromorphic computers is the set of 

applications for which artificial neural networks perform well. However, it is important to note that 

artificial neural networks have undergone 60 years of research for which the architectures and algorithms 

were adapted and tailored to von Neumann systems. In fully understanding what applications are most 

appropriate for neuromorphic computers, a fundamental paradigm shift in the way we think about what 

computers are capable of solving is required. It is tempting to categorize the set of applications that are 

appropriate for neuromorphic computers as the “applications” that are appropriate for biological neural 

systems. Though this may be true to some extent, our lack of understanding of biological neural systems 
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and all of their underlying mechanisms restricts our ability to fully define the capabilities of a neurally 

inspired computer. 

One of the key aspects of most neuromorphic systems is the inclusion of temporal processing capabilities; 

this is one of the key differentiating features between spiking neural networks (the most commonly 

implemented neural network model in neuromorphic systems) and deep learning. In determining the set 

of applications for neuromorphic systems, we should consider this strength and choose applications that 

will leverage that strength. For traditional artificial neural network type applications, this will likely 

include processing spatiotemporal data (e.g., clustering or classifying spatiotemporal data) and control 

problems where a sense of memory and timing in the system is important.  

Another key characteristic of biological systems that neuromorphic systems attempt to capture is the 

ability to process noisy data and the ability to learn from a relatively small set of data (as compared with 

deep learning systems, which require a large amount of data). For applications that require the ability to 

make decisions in the face of inadequate or noisy data sources, a neuromorphic system is likely a good 

candidate.  

What are the characteristics of applications for which neuromorphic systems may be 

appropriate? 

To better understand neuromorphic computing systems as a whole, it will be beneficial to define a set of 

benchmark applications. However, it is of vital importance that these applications represent a diverse 

problem space. Neuromorphic computing, especially as applied to general applications, is still in its 

infancy. There is a danger in selecting a small, relatively homogeneous set of benchmark applications 

because, by defining a “goal set,” we may restrict the way the community thinks about neuromorphic 

systems and their capabilities, as well as how we select models, build devices, and choose 

training/learning/programming paradigms. It is of vital importance that we, as a community, use 

benchmarks as tools for comparison purposes but not as driving forces for research. Figure 13 gives some 

examples of application characteristics for which neuromorphic systems are suitable.  
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Figure 13: Applications that require devices with one or more of these properties may be well suited for 
neuromorphic systems. 

Defining the set of applications that are most appropriate for neuromorphic systems will also, necessarily, 

affect device design. For example, we defined several potential use-cases in the introduction: simulation 

engines for computational neuroscience, co-processors for supercomputers and/or personal computers, 

custom neuromorphic supercomputers for predefined applications, and in situ computers on sensors or 

autonomous vehicles in real environments. For each of these use-cases, the particular application will 

drive the model selection, programming/learning/training paradigm, and device design. As a result, we 

should also consider the possibility that neural computing should not be a “one-size-fits-all” technology. 

For example, there is increasing evidence that one can build neural algorithms that leverage neuromorphic 

hardware at known precisions suitable for accelerating many numerical and scientific computing 

applications [Severa2016]; however, this type of application may well require a distinct implementation 

from more biologically inspired applications that may benefit from stochastic implementations or real-

time approximate learning capabilities. Perhaps the most interesting use-case (from a computer science 

perspective), is the use of a neuromorphic computer as a co-processor. In this case, the desired properties 

of a neuromorphic device include programmable, computationally fast (relative to a traditional CPU or 

GPU or other co-processor) on a particular problem subset, and relatively low power consumption. Figure 

14 gives an overview of some potential uses of neuromorphic devices. 
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Figure 14: Potential applications for neuromorphic computers [WSP:Hylton]. 

How can neuromorphic hardware be leveraged in high performance computing clusters? 

With the increase of device unreliability, scaling existing computational systems to exascale levels is 

extremely challenging. Neuromorphic computers have been shown to be more power efficient than 

traditional computers by several orders of magnitude [Hasan2016]. Using a neuromorphic system as a 

processing component could make the design of exascale systems more feasible. 

The key use of the neuromorphic computing system would be likely be in analyzing and processing large 

volumes of data. Several studies have shown that neuromorphic algorithms can be used in approximating 

non-neuromorphic applications to gain significant power savings at minimal loss in accuracy [Chen2012]. 

Thus when approximation is acceptable, computation could be off-loaded to the neuromorphic hardware 

in an HPC system to save power. Additionally, neuromorphic hardware could be used to monitor system 

health at minimal power overhead to predict component failures in an HPC. This could be used to assist 

schedulers in avoiding potentially problematic computation nodes. 

 
Recommendation: Define a diverse set of benchmark applications for neuromorphic 

computers. 

1. Define a relatively large set (20 or more) of benchmark or target applications for 

neuromorphic computers that require one or more of the desired characteristics of 

neuromorphic systems. 

2. Make associated data sets and/or application simulation software available to the 

community so that real comparisons may be between different neuromorphic platforms. 
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F. How do we build and/or integrate the necessary computing hardware?  

The primary focus of this report has been on computing aspects of neuromorphic computing. However, in 

order to have a truly successful neuromorphic computing program, it will be necessary that we consider 

the hardware and device components as well. As compared to conventional computing systems, 

neuromorphic computing systems and algorithms need higher densities of typically lower precision 

memories operating at lower frequencies. Also, multistate/analog memories offer the potential to support 

learning and adaptation in an efficient and natural manner. Without efficient hardware implementations 

that leverage new materials and devices, the real growth of neuromorphic applications will be 

substantially hindered. 

As noted throughout this report, significant effort will be needed on the part of the computing community 

to work with researchers in the areas neuromorphic materials, devices, and circuitry. Neuromorphic 

systems will not and cannot be developed by a single field in isolation. The decisions we make at the 

model and algorithm level should both inform and be informed by what occurs at the materials, device, 

and circuitry levels. DOE has capabilities at all levels of neuromorphic computing (models, algorithms, 

circuitry, devices, and materials) that can and should be leveraged together.  

 
Recommendation: Enable a national fabrication capability to support the development 

and technology transition of neuromorphic materials, devices, and circuitry that can be 

integrated with state-of-the-art CMOS into complete and functional computing systems.  

1. Determine the appropriate neuromorphic materials, devices, and circuitry that need to be 

supported at such a foundry. 

2. Make the fabrication foundry available to a wide user base of researchers and 

developers of neuromorphic processors as an effective method to develop complete 

neuromorphic systems by leveraging and sharing common infrastructure and interfaces.  

3. Ensure that software for effective emulation of new computing architecture components 

is readily available to enable the scientific community to explore new computing 

approaches. 

 

IV. Intermediate Steps 

There are several intermediate steps that the community can take to begin to address these challenges.  

1. Large-Scale Simulators: The first short-term goal is the development of large-scale simulations 

that are capable of supporting different neuromorphic architectures at different levels of 

abstraction. High-level simulations will be important for examining and testing different 

computational building blocks, as well as connectivity patterns and structural programmability 

requirements. High-level simulations can be used to develop and test theoretical results, as well as 

to help develop algorithms for training and learning. Insights gained from these simulations can 

also inform device design. Lower-level simulations are also likely to be important. Large-scale 

simulations at the device level, circuit level, or even materials level can be used in concert with 
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small-scale prototypes of devices to provide insight as to the capabilities and characteristics of the 

system, including energy efficiency estimates. 

2. Algorithms: A second intermediate goal is to delve deeply into the development of algorithms 

specifically for neuromorphic system. In doing so, we need to understand the fundamental 

characteristics of each system, as well as how they operate. As a first step, we may continue to 

adapt existing training/learning methods so that they are appropriate for neuromorphic computers. 

However, we cannot continue to rely on off-line and off-chip training and learning; we must be 

willing to allow for suboptimal performance of the resulting algorithms, at least in the initial 

development stages. It is also worthwhile to begin to form some theoretical foundations of what it 

means for a system to be intelligent. In doing so, we may look to neuroscience, nonlinear 

dynamics, and theories of the mind.  

3. Hardware Development: A third intermediate goal is to develop neuromorphic hardware, 

including both computation building blocks and system architecture. It requires an integrated 

effort with a good understanding of not only the material science, device process, and circuit 

design but also the neuroscience and software engineering. We expect complete and functional 

computing systems by leveraging new materials, devices, and novel circuitry and architecture. 

The investigation and prototype of system integration may be necessary. It is also worthwhile to 

enable a fabrication foundry available to a wide user base of researchers and developers of 

neuromorphic processors by leveraging and sharing common infrastructure and interfaces.  

4. Supporting Software: A fourth intermediate goal is the development of supporting software for 

both simulation software and neuromorphic hardware. It is of vital importance that this software 

is developed in conjunction with the simulation software, rather than waiting for the devices to be 

made available. Tools such as visualizations and user interfaces can be used to debug the software 

and hardware itself throughout development and ease the interaction for algorithm developers.  

5. Benchmark Suite: A fifth intermediate goal is to define a set of benchmarks for neuromorphic 

systems in order to test the relative strengths and weaknesses of various neuromorphic computing 

approaches. It is of vital importance that this set of benchmarks accurately reflects the range of 

capabilities and characteristics of neuromorphic systems (Figure 15). Benchmarks for neural 

network systems, such as classification, control, and anomaly detection, should be included in the 

set of benchmarks. At least one neuroscience-specific benchmark (such as generating particular 

spiking patterns) should also be included, to encompass neuromorphic systems built specifically 

to accurately simulate biological neural systems. It is also likely worthwhile to include at least 

one non-neural network and non-neural-inspired benchmark, such as running a traditional graph 

algorithm. One goal in defining the set of benchmarks is that they should be diverse enough that 

they will not directly drive, and thus possibly restrict, the creativity in the development of 

neuromorphic systems. As part of defining a set of benchmarks, relevant data sets and simulation 

codes should be made available for the community, so that fair comparisons may be made 

between neuromorphic systems. As such, building the data sets and simulation software will 

require effort.  
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Figure 15: Example benchmark application areas. 

6. Metrics: A sixth intermediate goal is the development and selection of appropriate metrics for 

measuring performance and comparing different neuromorphic systems. This step will need to be 

accomplished simultaneously with benchmark selection. Neuromorphic systems are almost 

always measured in terms of application-specific metrics (such as accuracy for classification 

tasks). Though application-specific metrics are important (and should be defined alongside the set 

of benchmarks), it is equally important that other metrics be defined as well. A power efficiency 

metric will also be important to define. Most reported results for neuromorphic computing 

devices include some power metric, but it is also important to include energy consumption and 

power efficiency of supporting software running on traditional architectures as well as 

communication costs when considering the true power cost of a neuromorphic system. Another 

major metric to consider is the computation metric similar to FLOPS for traditional architectures; 

this will likely be the hardest metric to define because different models will have significantly 

different operating characteristics. It may also be worthwhile to consider other metrics, such as 

size of device (footprint), scalability, and programmability/flexibility. By defining a common set 

of metrics and benchmarks, we may begin to quantify which neuromorphic models and devices 

are best for a particular type of application.  

For each of these intermediate steps, it is important that the computing community develop strong 

interactions with other key fields in the neuromorphic computing: the neuroscience community, the 

hardware/device development community, and the materials community.  

V. Long-Term Goals 

Four major areas within neuromorphic computing emerged as the most important to focus on for long-

term success. 

1. Learning: The development of general purpose learning and training methods for neuromorphic 

systems is and will continue to be a major goal for neuromorphic computing, and it will likely 

require long-term investment in order to produce successful systems. It will require a coordinated 
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effort between computational neuroscientists, researchers with specialties in learning and 

intelligence, machine learning and artificial intelligence researchers, and algorithm designers in 

order to produce them.  

2. Theory: The development of computational theory and theories of intelligence within 

neuromorphic computing will also be key in neuromorphic systems being accepted by the 

computing community at large. The development of theoretical results associated with abstract 

models and learning or intelligence will also drive algorithm development, device design, and 

materials research of the future. With a handle on the theoretical capabilities of the system, we 

may inspire the development and innovation of new neuromorphic systems for the next several 

decades. 

3. Large-scale coordinated effort: One of the major conclusions reached during the workshop was 

that neuromorphic computing research in the United States as a whole and in DOE in particular 

would benefit from a large-scale, coordinated program across all of the associated disciplines. 

Such a neuromorphic computing program for the United States was proposed by Stan Williams 

during our workshop (Figure 16). The first four proposed elements of this large-scale 

neuromorphic computing program fall neatly in line with the major research questions proposed 

in this report, as well as the proposed short-term and long-term goals we have identified for 

neuromorphic computing moving forward. It is vital that we consider the broader picture of the 

community when addressing these goals.  

4. Applications: As data sets have continued to grow in recent years, the long-term prognosis for 

data analysis across a broad range of applications appears problematic. In particular, scientific 

data sets are typically very large with numerous, dense, and highly interrelated measurements. 

One primary characteristic of many of these scientific data sets is spatial and/or temporal locality 

in the observation space. In other words, it is rare that any two observations will be independent 

in both time and space, and proximity of any two measurements in time and/or space is highly 

relevant to an analysis of the data. Furthermore, the scale of the data is typically so immense that 

many separate measurements are almost inevitably represented as an average, sacrificing detail 

for tractability. A neuromorphic computing paradigm may be ideally suited to address these 

challenges through the ability to leverage both spatial and temporal locality. It is imperative that 

we investigate this promising opportunity. 
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Figure 16: Large-scale neuromorphic computing program, as proposed by Stan Williams [WSP:Williams]. 

VI. Conclusions 

Overall, there are several major conclusions of our workshop: 

1. Importance of simulators, benchmarks, and metrics: There are many different approaches to 

neuromorphic models, architectures, devices, and algorithms. We need a way to study (via 

simulation) and evaluate (via metrics and benchmark definitions) these systems in a meaningful 

way. 

2. Paradigm shift for programming: A fundamental shift in the way we think about programming 

and computing algorithm development is going to be required. We need to develop theories of 

learning and intelligence and understand how they will be applied to neuromorphic computing 

systems. 

3. Focus on innovation, not applications: Applications are important, but particular applications 

should not be the driving focus in the development of a neuromorphic computer. Though 

benchmarks are important for evaluation, they should not limit or restrict development.  

4. Move away from brain emulation: The goal of a neuromorphic computer should not be to 

emulate the brain. We should instead take inspiration from biology but not limit ourselves to 

particular models or algorithms, just because they work differently from their corresponding 



Neuromorphic Computing Architectures, Models, and Applications 38 

biological systems, nor should we include mechanisms just because they are present in biological 

systems. 

5. Large-scale coordination: The community would greatly benefit from a large-scale coordinated 

effort, as well as a neuromorphic “hub” through which we may openly share successes and 

failures, supporting software, data sets and application simulations, and hardware designs. 

DOE Office of Science and ASCR are well positioned to address the major challenges in neuromorphic 

computing for the following three important reasons.  

1. World-class scientific user facilities: We have access to and experience using world-class 

scientific user facilities, such as HPC systems, which will be invaluable in studying large-scale 

simulations of neuromorphic systems, and materials science user facilities, which will be 

invaluable in providing insight into the properties of materials to build neuromorphic systems. 

2. World-class researchers: We have researchers in each of the major focus areas of the 

community, including biology, computing, devices, and materials, who have experience in 

building cross-disciplinary collaborations.  

3. World-class science problems: We have world-class science problems for which neuromorphic 

computing may apply. Without DOE involvement, it is likely that neuromorphic computing will 

be limited to commercial applications.  

It is clear that neuromorphic computing will play a critical role in the landscape of future computing. The 

feasibility of such systems has been demonstrated, but there are still major research questions that need to 

be resolved in the development and application of these systems. DOE can fill an important national role 

in enabling solutions that address these important basic research and development challenges.  
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Workshop Agenda 

Wednesday, June 29, 2016 

Time Event Location 

10:30–11:00 Check-In/Badging Visitor’s Center 

11:00–12:30 

Welcome/Working Lunch:  

 Tom Potok, ORNL 

 Shaun Gleason, ORNL 

 Robinson Pino, DOE 

Tennessee A&B 

12:30–1:15 Keynote: Todd Hylton, Brain Corporation Tennessee A&B 

1:15–2:00 Keynote: Catherine Schuman, ORNL Tennessee A&B 

2:00–2:45 Keynote: Cindy Leiton, Stony Brook University Tennessee A&B 

2:45–3:30 Break 
Lobby & 
Tennessee C 

3:30–4:00 
Presentation: Lloyd Whitman, White Office of Science and 
Technology Policy 

Tennessee A&B 

4:00–5:00 
Break-Out Discussions: Architectures, Algorithms, 
Applications 

Architectures: Tennessee 
A&B, 
Algorithms: Cumberland 
Applications: 
Emory 

5:00–5:15 Summary Tennessee A&B 

 

Thursday, June 30, 2016 

Time Event Location 

8:00–8:30 Coffee/Light Breakfast 
Lobby & 
Tennessee C 

8:30–8:40 Welcome/Recap Tennessee A&B 

8:40–10:00 

Short Presentations: 

 James Aimone, Kristofor Carlson and Fredrick 
Rothganger: Neural Computing: What Scale and 
Complexity is Needed? 

 Alice Parker: Object Recognition and Learning using 
the BioRC Biomimetic Real-Time Cortex Neurons 

 Kathleen Hamilton, Alexander McCaskey, Jonathan 
Schrock, Neena Imam and Travis Humble: 
Associative Memory Models with Adiabatic 
Quantum Optimization 

 Tinoosh Mohsenin and Farinaz Koushanfar: 
Bringing Physical Dimensions to the Deep Networks 
for Neuromorphic Computing 

Tennessee A&B 

10:00–10:30 Break 
Lobby & 
Tennessee C 
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Time Event Location 

10:30–12:00 

Short Presentations: 

 Yuan Xie: Architecture, ISA support, and Software 
Toolchain for Neuromorphic Computing in ReRAM 
Based Main Memory 

 Angel Yanguas-Gil: Beyond the crossbar: materials 
based design and emulation of neuromemristive 
devices and architectures 

 Matthew J. Marinella, Sapan Agarwal, A. Alec Talin, 
Conrad D. James and F. Rick McCormick: Device to 
System Modeling Framework to Enable a 10 fJ per 
Instruction Neuromorphic Computer 

 Chris Carothers: Large-Scale Hybrid Neuromorphic 
HPC Simulations, Algorithms and Applications 

Tennessee A&B 

12:00–1:00 Working Lunch and Plenary: Stan Williams, HP Tennessee A&B 

1:00–2:30 

Short Presentations: 

 Priyadarshini Panda and Kaushik Roy: Enabling on-
chip intelligence with low-power neuromorphic 
computing 

 Yu Cao, Steven Skorheim, Ming Tu, Pai-Yu Chen, 
Shimeng Yu, Jae-Sun Seo, Visar Berisha, Maxim 
Bazhenov and Zihan Xu: Efficient Neuromorphic 
Learning with Motifs of Feedforward Inhibition 

 Praveen Pilly, Nigel Stepp and Jose Cruz-Albrecht: 
Exploiting Criticality in HRL's Latigo Neuromorphic 
Device 

 Yiran Chen: Algorithm Innovations of Enhancing 
Scalability and Adaptability of Learning Systems 

Tennessee A&B 

2:30–3:00 Break 
Lobby & 
Tennessee C 

3:00–3:45 

Lightning Talks: 

 Vishal Saxena and Xinyu Wu: Addressing 
Challenges in Neuromorphic Computing with 
Memristive Synapses 
 

 Tarek Taha, Raqibul Hasan and Chris Yakopcic: 
Energy Efficiency and Throughput of Multicore 
Memristor Crossbar Based Neuromorphic 
Architectures 

 Dhireesha Kudithipudi, James Mnatzaganian, 
Anvesh Polepalli, Nicholas Soures, and Cory 
Merkel: Energy Efficient and Scalable 
Neuromemristive Computing Substrates 

 Gangotree Chakma, Elvis Offor, Mark Dean and 
Garrett Rose: A Reconfigurable Memristive DANNA 
Circuit with Implementations in Pattern Recognition 

Tennessee A&B 

3:45–5:00 
Presenter Panel Discussion, moderated by Mark Dean, 
University of Tennessee 

Tennessee A&B 

5:00–5:15 Summary Tennessee A&B 
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Friday, July 1, 2016 

Time Event Location 

7:30–8:00 Coffee/Light Breakfast 
Lobby & 
Tennessee C 

8:00–10:00 Breakout Discussions 
Tennessee A&B, 
Tennessee C, 
Cumberland, Emory 

10:00–10:30 Break 
Lobby & 
Tennessee C 

10:30–11:45 Breakout Discussions 
Tennessee A&B, 
Tennessee C, 
Cumberland, Emory 

11:45–12:00 Final Wrap-Up Tennessee A&B 
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