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EXECUTIVE	SUMMARY	

Computation in its many forms is the engine that fuels our modern civilization. Modern 
computation—based on	 the von Neumann architecture—has	 allowed,	 until now,	 the	
development of continuous improvements, as predicted by Moore’s law. However, 
computation using current architectures and materials will inevitably—within	the next	10 
years—reach a limit because of fundamental scientific reasons. 

DOE convened	 a roundtable	 of	 experts	 in neuromorphic computing systems, materials 
science, and computer science in Washington on October 29-30,	 2015	 to	 address	 the	
following	basic	questions:	

Can brain-like	 (“neuromorphic”) computing devices based on new material concepts 
and systems be	 developed to dramatically	 outperform conventional CMOS based 
technology? If so, what are	 the	 basic research challenges for materials sicence	 and 
computing? 

The	overarching	answer	that emerged was: 

The development of novel functional materials	and devices	incorporated into	
unique architectures	will allow a revolutionary technological leap toward the	
implementation 	of	a	fully 	“neuromorphic” 	computer. 

To	address	this	challenge,	the	following	issues	were	considered: 

The	 main differences between neuromorphic and conventional computing as related to: 
signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, 
integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning 

New neuromorphic architectures needed	 to:	produce	 lower energy consumption, potential 
novel nanostructured materials, and enhanced computation 

Device	and	materials 	properties needed	to implement functions	such	as: hysteresis,	stability,	
and fault tolerance 

Comparisons of different implementations:	 spin	 torque,	 memristors, resistive	 switching,	
phase	change,	and optical schemes for enhanced breakthroughs in performance,	cost,	fault 
tolerance, and/or manufacturability 

The	conclusions of the roundtable, highlighting the basic research challenges for materials
science and computing, are: 

1. Creating the architectural design for neuromorphic computing requires an 
integrative,	 interdisciplinary	 approach between computer scientists, engineers, 
physicists, and materials scientists 

Neuromorphic Computing: From Materials to Systems Architecture 3 



	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 			
 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	
	 	

 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 		

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	 	

2. Creating a new computational system will	 require developing new system	
architectures to accommodate all needed functionalities 

3. One or more reference architectures should be used to enable comparisons of 
alternative devices and materials 

4. The basis for the devices to be used in these new computational systems require the 
development of novel nano and meso structured materials; this will be 
accomplished by unlocking the properties of quantum	 materials based on new 
materials physics 

5. The most promising materials require fundamental understanding of	 strongly	
correlated materials, understanding formation and migration of	 ions,	 defects	 and 
clusters, developing	 novel spin	 based	 devices,	 and/or discovering	 new quantum	
functional materials 

6. To	 fully	 realize open	 opportunities requires	 designing systems and materials that 
exhibit self- and external-healing, three-dimensional reconstruction, distributed 
power delivery,	fault	tolerance,	co-location of memory and processors, multistate— 
i.e., systems in which the present response depends on past history and multiple 
interacting	state	variables	that 	define	the	present 	state 

7. The development of a new brain-like computational system	 will not evolve in a 
single step; it is important to implement well-defined intermediate steps that give 
useful	scientific	and technological information 

Successfully	addressing	these	challenges will	lead to a new class of computers and systems 
architectures. These new systems will exploit massive, fine-grain computation; enable	the 
near real-time analysis of large-scale	 data;	 learn	 from examples; and compute with the 
power efficiency approaching	 that of	 the human brain. Future computing systems with 
these 	capabilities 	will	offer 	considerable scientific,	economic, and 	social	benefits.	

This	DOE	activity	aligns	with	 the	 recent White	House	 “A	Nanotechnology-Inspired Grand 
Challenge for Future Computing” issued	on	October	20th,	2015 with the goal	to “Create a	
new type of computer that can proactively interpret and learn from	data, solve unfamiliar 
problems using what it has learned, and operate with the energy efficiency of the human 
brain”.	 This grand challenge addresses three Administration priorities:	 the National	
Nanotechnology Initiative (NNI), the National Strategic Computing Initiative (NSCI), and 
the BRAIN initiative. 

Neuromorphic Computing: From Materials to Systems Architecture 4 



	 	 	 	 	 	 	
	

	 	 		
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 		

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 		
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

WHY NEUROMORPHIC COMPUTING? 

Computers have become essential to all aspects of modern life—from	 process controls, 
engineering, and science to entertainment and communications—and are omnipresent all 
over	the	globe.	Currently,	about 5–15% of the world’s energy is spent in some form	of data 
manipulation, transmission, or	processing. 

In	the	early	1990s, researchers	began to	investigate	the	idea of	“neuromorphic” computing. 
Nervous	system-inspired analog computing devices were envisioned to be a million times 
more power efficient than devices being developed at that time.	 While	 conventional 
computational devices had achieved notable feats, they failed in some of the most basic 
tasks that biological systems have mastered, such as speech and image recognition. Hence	
the idea that taking cues from	 biology might lead to fundamental improvements in 
computational capabilities. 

Since that time, we have witnessed unprecedented progress in CMOS technology that has
resulted in systems that are significantly more power efficient than imagined. Systems have 
been mass-produced with	 over	 5	 billion	 transistors	 per	 die,	 and	 feature	 sizes	 are	 now 
approaching 10 nm. These advances made possible a revolution in parallel computing. 
Today, parallel computing is commonplace with hundreds of millions of cell phones and 
personal computers containing multiple processors, and the largest supercomputers 
having CPU counts in the millions. 

“Machine learning”	 software is used to tackle problems with complex and noisy datasets 
that	cannot	be solved with conventional	“non-learning” algorithms. Considerable progress 
has been made recently in this area using parallel processors. These methods are proving
so effective that all major Internet and computing companies now have “deep learning”— 
the branch of machine learning that builds tools based on deep (multilayer) neural	
networks—research	 groups. Moreover, most major research universities have machine 
learning groups in computer science, mathematics, or statistics. Machine learning is such a 
rapidly	growing field	that it was	recently	called	the	“infrastructure 	for 	everything.” 

Over the years, a number of groups have been working on direct hardware 
implementations of deep neural	 networks.	 These designs vary from	 specialized but 
conventional processors optimized for machine learning “kernels” to systems that attempt 
to directly simulate an ensemble of “silicon” neurons, better known as neuromorphic 
computing. While the former approaches can achieve dramatic results, e.g., 120 times 
lower power compared with that of general-purpose	 processors,	 they	 are not	
fundamentally different from	existing CPUs. The latter neuromorphic systems are more in 
line with what	researchers	began	working	on in the 1980s with the development of analog 
CMOS-based devices with an architecture that is modeled after biological neurons.	One	of	
the more recent accomplishments in neuromorphic computing has come from	 IBM 
research, namely, a biologically inspired chip (“TrueNorth”) that implements one million 
spiking neurons and 256 million synapses on a chip with 5.5 billion transistors	 with	 a 
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typical power draw of 70 milliwatts. As impressive as this system	is, if scaled up to the size 
of the human brain, it is still about 10,000 times too 	power 	intensive. 

Clearly, progress on improvements in CMOS and in computer hardware more generally	will	
not	 be	 self-sustaining	 forever.	 Well-supported	 predictions,	 based	 on	 solid	 scientific	 and	
engineering data, indicate that conventional approaches to computation will	hit	a	wall in	
the next	10 years.	Principally,	this situation	is due to three major factors: (1) fundamental 
(atomic) limits exist beyond which devices cannot be miniaturized, (2) the local energy
dissipation limits the device packing density, and (3) the increase and lack of foreseeable
limit in overall energy consumption are becoming	prohibitive.	Novel	approaches	and	new	
concepts	 are	 needed	 in	 order	 to	 achieve	 the	 goals	 of	 developing	 increasingly	 capable	
computers that consume decreasing amounts of power. 

The	Need for Enhanced	Computing 

The	DOE has	charted	a path	 to	Exascale	computing by early in the next decade. Exascale 
machines will be orders of magnitude faster than the most powerful machines today. Even	
though they will	be incredibly powerful, these machines will consume between 20 and 30 
megawatts of power and will not have intrinsic capabilities to learn or deal with complex 
and unstructured data.	 It has become clear that the mission areas of DOE in national	
security,	 energy	 sciences, and fundamental science will need even more computing 
capabilities	 than	what	 can	be	delivered by Exascale class systems. Some of these needed	
capabilities	will require	revolutionary	approaches	for	data analysis	and	data understanding.	

Neuromorphic computing systems are aimed at addressing these needs. They will have 
much lower power consumption than conventional processors and they are explicitly 
designed to support dynamic learning in the context of complex and unstructured data. 
Early signs	of	 this	need show up in	 the	Office of Science	portfolio	with	 the	emergence of 
machine learning based methods applied to problems where traditional approaches are 
inadequate. These methods have been used to analyze the data produced from	 climate 
models, in	 search	 of complex patterns not obvious to humans. They have	 been	 used	 to	
recognize	features	in large-scale cosmology data, where the data volumes are too	large	for	
human inspection. They	 have been	 used to predict	 maintenance needs	 for accelerator 
magnets—so	 they	 can	 be	 replaced	 before	 they	 fail—to search for	 rare	 events	 in	 high-
energy physics experiments and to predict plasma instabilities that	might develop in fusion 
reactors. These	novel	approaches are also being	used in biological research from	searching 
for novel features in genomes to predicting which microbes are likely to be in a given 
environment at a given time. Machine learning methods are also gaining traction in 
designing materials and predicting faults in computer systems,	especially	 in	 the	so-called	
“materials genome” initiative. Nearly every major research area in the DOE mission was 
affected by	machine learning in the last decade. Today these applications run on existing 
parallel computers; however, as problems	 scale	 and	 dataset sizes increase, there will	 be 
huge opportunities for deep learning on neuromorphic hardware to make a serious impact 
in	science	and	technology. 

Neuromorphic Computing: From Materials to Systems Architecture 6 



	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 		

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
						
	
	
	
	

	

Neuromorphic computing may even play a role in replacing existing numerical methods 
where lower power functional approximations are used and could directly augment 
planned Exascale	 architectures. Important questions	 for the	 future	 are which areas of 
science are most likely to be impacted by neuromorphic computing and what are the 
requirements for those deep neural networks. Although this roundtable did not	focus	on an	
application	driven	agenda, it is	increasingly	important to identify these areas and to further
understand how neuromorphic hardware might address them. 

VON	NEUMANN	vs. NEUROMORPHIC 

System Level 

Traditional computational architectures and their parallel derivatives are based on a core
concept known	as the von Neumann architecture (see Figure	1). The system	is divided into 
several major, physically separated, rigid functional units such as memory (MU),	 control 
processing (CPU), arithmetic/logic (ALU),	 and	 data	 paths.	 This	 separation	 produces	 a	
temporal and energetic bottleneck because information has to be shuttled repeatedly 
between the different parts of the system. This “von Neumann” bottleneck limits the future 
development of revolutionary computational systems. Traditional parallel computers 
introduce thousands or millions of conventional processors each connected to others. 
Aggregate computing performance is increased, but the basic computing element is 
fundamentally the same as that in a serial computer and is similarly limited by this 
bottleneck. 

In contrast, the brain is a working system	that has major advantages in these aspects. The 
energy efficiency is markedly—many orders of magnitude—superior.	 In	 addition,	 the	
memory and processors in the brain are collocated because the constituents can have 
different roles	 depending	 on	 a learning	process.	Moreover, the brain is a flexible system	
able to adapt to complex environments, self-programming, and capable of complex 
processing. While the design, development, and implementation of a computational system	
similar to the brain is	beyond the scope of today’s science and engineering, some important 
steps in this direction can be taken by imitating nature. 

Clearly a	 new disruptive	 technology is	 needed	 which must be based on revolutionary 
scientific developments. In this “neuromorphic” architecture (see Figure 1),	 the various 
computational elements are mixed together and the system	 is dynamic, based on a 
“learning” process by which the various elements of the system	 change and readjust 
depending on the type of stimuli they receive. 

Neuromorphic Computing: From Materials to Systems Architecture 7 



	 	 	 	 	 	 	
	

	 	 	 										 	 	
	

											 	
	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

		 	 	
	 	 	 	 	 	 	

	

									 	 	 	
		

	 	 	 	 	 	 	 	
	

			

	 	 		

	 	

	 	

	 	
	 	

			

 

 

 

 

von	Neumann	Architecture Neuromorphic Architecture 

Output
Device 

Central Processing Unit
(CPU) 

Control Unit 

Memory Unit 

Arithmetic /
Logic Unit 

Input
Device 

Figure 1.	Comparison	of high-level	 conventional	 and neuromorphic computer architectures.	 The so-
called “von Neumann bottleneck” is the data path between	the CPU and the memory unit. In contrast, a neural 
network	based architecture combines synapses and neurons into a fine grain	distributed structure that scales 
both memory (synapse) and compute (soma) elements as the systems increase in scale and capability, thus 
avoiding	the bottleneck between computing	and memory. 

Device Level 

A	major difference is also present at the device level (see Figure 2). Classical von Neumann 
computing is based on transistors,	 resistors,	 capacitors,	 inductors and communication 
connections as the basic devices. While these conventional devices have some unique
characteristics (e.g., speed, size, operation range), they are limited in other crucial aspects
(e.g., energy consumption, rigid	 design	 and	 functionality,	 inability	 to	 tolerate	 faults,	 and	
limited connectivity). In contrast, the brain is based on large collections of neurons, each of 
which has a body (soma), synapses, axon, and dendrites that are adaptable and fault 
tolerant. Also, the connectivity between the various elements in the brain is much more 
complex than in a conventional computational	circuit	(see	Figure	2). 

a) b) 

Dendrites 

Axon 

Synapses 

Soma 

Figure 2.	Interconnectivity in a)	conventional and b) neuronal circuits. 
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Performance 

A	 comparison of biological with technological systems is revealing in almost all aspects. 
Although the individual constituents of silicon systems naively seem	to exhibit an enhanced 
performance in many respects, the system	 as a whole exhibits a much-reduced	
functionality. Even under reasonable extrapolations of the various parameters, it appears 
that	the improvement in computational capacity of	conventional silicon based systems will	
never be able to approach the density and power efficiency of a human brain. New 
conceptual development is needed. 

Inspection of the delay time versus power dissipation for devices in many competing 
technologies is quite	revealing (see	Figure	3).	The	neurons	and	synapses	exist	in	a	region	in	
this phase diagram (upper	 left corner) where no other technologies are available.	 The 
energy dissipation in a synapse is orders of magnitude smaller although the speed is much
slower.	

Figure 3. Delay time per transistor versus the power dissipation. The operating regime for neuromorphic 
devices 	is 	in 	the upper left corner indicating the extreme low power dissipation of biological synapses	and the 
corresponding delay time. Systems built in this region would be	more	“brain-like” in their power and cycle 
times (after userweb.eng.gla.ac.uk). 

Table	1 compares the performance of biological neurons and neuron equivalents built from	
typical CMOS transistors currently used in computers. While the values listed in this table 
may not be exact and are debatable, the differences are so large that it is clear that	new	
scientific concepts are needed, including possibly to the system	architecture itself. While 
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silicon devices may exhibit certain advantages, the overall system	 computational 
capabilities—its fault tolerance, energy consumption, and ability to deal with large data	
sets—is	 considerably	 superior	 in	 biological brains.	Moreover,	 there	 are	whole	 classes	 of	
problems that conventional computational systems will never be able to address even 
under the most optimistic scenarios. 

Biology	 Silicon	 Advantage 

Speed 1	msec 1 nsec 1,000,000x 
Size 1µm	- 10µm 10nm	- 100nm 1,000x 
Voltage ~	0.1V Vdd	~1.0V 10x 
Neuron	Density 100K/mm2 5k/mm2 20x 
Reliability 80% <	99.9999% 1,000,000x 

Synaptic Error Rate 75% ~	0% >109 

Fan-out	(-in) 103-104 3-4 10,000x 

Dimensions Pseudo 3D Pseudo 3D Similar 

Synaptic 	Op	Energy ~	2 fJ ~10pJ 5000x 

Total Energy 10 Watt >>103 Watt 100,000x 

Temperature 36C	- 38C 5C	- 60C Wider Op Range 

Noise 	effect Stochastic Resonance Bad 
Criticality Edge Far 

Table 1.	Comparison	of biological and	silicon	based	systems. This table shows a comparison	of neurons 
built with biology to equivalent structures built with silicon. Red is where biology is ahead; black	 is where 
silicon is	ahead. The opportunity lies in	combining the best of biology and	silicon. 

Technology	that has	the	advantages	of	both	biological and engineered materials, with the 
downsides	 of	 neither, is needed. Thus, major changes are required in nanoscale device 
designs, new functional materials, and novel software implementations. The	 general 
philosophy of building a conventional computational system	relies on the ability to produce 
billions of highly controlled devices that respond the same way to a well-defined stimulus 
or signal. In contrast, neuromorphic circuits elements (especially synapses) intrinsically 
are expected to respond differently	 depending	 on	 their past	 history.	 Consequently,	 the	
design as well as the implementation of new architectures must be dramatically modified. 

EXISTING NEUROMORPHIC SYSTEMS	

Architectures 

A	 range of computing architectures can support some form	 of neuromorphic computing 
(see	Table	3	in the appendix	for a partial	list	of historical	efforts to build chips that	directly 
implement neural network abstractions).	 At one end of the spectrum	 are variations of 
general-purpose	 CPU	 architectures with data paths that are optimized for execution of 
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mathematical approximations of neural networks. These artificial neural network 
accelerators support the fast matrix oriented operations	 that are	 the	 heart of	 neural 
network methods.	 This architectural	 approach can	 beat general-purpose	 CPUs in	 power
efficiency by a large margin by discarding those features that	 are not	 needed	 by	 neural	
network algorithms and may be well suited for integration into existing systems as neural 
network	accelerators (see	Figure	4). 

At the other end of the spectrum	are direct digital or analog implementations of networks 
of relatively simple neurons, typically based on an	 abstract	 version	 of	 a	 leaky	 integrate-
and-fire	(LIF)	neuron. These have discrete implementations of synapses (simple storage), 
soma,	and	axons	(integrating	and	transmitting signals to other neurons). Implementations 
can	be	in	analog	circuits	or	digital logic.	Analog implementations of spike timing dependent
plastic	(STDP) synapses—a	form	of learning	synapse—have been demonstrated with a	few	
transistors,	and an	analog	leaky integrate-and-fire model of the soma required around 20 
transistors. Axons in this case are implemented as conventional wires	for	local connections	
within	a	chip. 

Figure 4.	Variation of CPU data path optimized for execution of a mathematical approximation of a 
neural network.	This variation	 shows	dramatic	power	 reduction compared to general purpose CPU when 
executing key	machine	learning kernels including neural network execution. It	uses a relatively simple data 
path,	and many fixed-width multiple/add 	units 	enable this architecture to perform well on the dense floating-
point workload characteristic	of neural network	training. This type of architecture is aimed at a low-power 
accelerator add-on to	existing	CPUs. Figure: Chen, Tianshi, et al. IEEE Micro (2015): 24-32. 

For	long-distance	(off-chip)	signaling,	an (electronic	or	optical) analog	to digital	to analog	
conversion can be used. The digital equivalent implementation can take considerably more 
transistors depending on the degree of programmability. The TrueNorth system, for 
example, is estimated to require about 10 times as many transistors	 as	 does	 an analog 
equivalent;	many of these transistors are used to	provide	a	highly	programmable soma, but	
do not	 currently	 support on-chip	 learning.	Power	differences	between	analog	and	digital 
implementations are also significant, with analog being several orders of magnitude more 
efficient. Even the best current analog chips, however, are four to five orders of magnitude 
less 	power 	efficient	than	biological	neurons. 

In	 this report, we focus on the abstract	 hardware implementation of an	 abstraction of	 a 
neural type network. Clearly	novel devices	based	on new	functional materials will	have a	

Neuromorphic Computing: From Materials to Systems Architecture 11 



	 	 	 	 	 	 	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	

	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	

	
	

	

	
	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	

	 	

	 	 	
	 	 	 	 	 	

	 	

	 	 	 	 	 	
	

	

	 	 	 	 	 	 	 	
	

	

	 	 	 	 	 	 	 	

major impact for such an implementation. Therefore, collaborative	 research	 in	 the	
synthesis of new nanostructured materials, design and engineering of nanoscaled devices
and implementation of creative architectures is needed. This is precisely the approach 
necessary to dramatically improve power and density	 needed	 to	 reach	 “brain-like”	
performance and “brain-like”	power 	levels. 

Demonstrations 

Recent neuromorphic processor test chips have typically implemented 256	 neurons	 and	
65K–256K synapses, whereas IBM’s TrueNorth chip,	 announced in	 2015,	 contained one 
million neurons and 256 million synapses. Some groups	are experimenting with test	chips 
including	 novel synapse devices based on memristors. Full-system-scale neuromorphic 
prototypes under development include	 the	 one	 billion-neuron	 SpiNNaker hybrid 
CPU/Neuron project at the	 University	 of	 Manchester	 and	 the	 wafer-scale neuromorphic 
hardware system	“FACETS” being developed at the University of Heidelberg that contains 
180K neurons	and	4	x 107 synapses per wafer. The completed system	should contain many 
such	wafers. The FACETS system	is unique in that it supports more than 10,000 synapses 
per neuron, making it potentially able to simulate systems that are more biologically 
plausible and perhaps more powerful. 

Project 	Name 
Programmable	

Structure 

Component 
Complexity 

(Neuron/Synapse) 

On-Chip 
Learning 

Materials/Devices 

Desired 
Neurons	and	
synapses <	5 / <	5 Yes Novel	Materials? 

Darwin6 Neurons and synapses >	5 / >	5 Yes Fabbed with existing 
CMOS processes 

DANNA1 Neurons and synapses 2	/	2 Yes FPGA, ASIC 

TrueNorth2 Fixed (Synapses 
on/off) 10	/	3 No 

Fabbed with existing 
CMOS processes 

Neurogrid3 Fixed (Synapses 
on/off) 79	/	8 No 

Fabbed with existing 
CMOS processes 

BrainScaleS4 Neurons and synapses Variable Yes 
Wafer-Scale 

ASIC 

SpiNNaker5 Neurons and synapses Variable Yes ARM	Boards, Custom 
Interconnection 

Table 2. Comparison of some recent neuromorphic device	implementations. 
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A	common architectural pattern in neuromorphic hardware is to arrange the synapses in a
dense	 crossbar	 configuration	with	 separate blocks of logic to implement learning	 in	 the	
synapse	and	integrate-and-fire	for	the	soma (see	Figure	5). A	challenge for such systems is 
the fan-in	 fan-out ratios	 for	 the	crossbars.	Real biological neurons	can	have	up	 to	20,000	
synapse	connections per neuron. Existing neuromorphic chips tend to limit the number of 
synapses	to	256	per	neuron.	

We currently do not	understand precisely when	or	if	artificial	neural	networks will	need to 
have	the number of connections that approach those in biological systems. However, some 
deep learning	 networks in	 production have	 layers	 with	 all-to-all	 connections between	
many thousand neurons, but these approaches also use methods to “regularize” the 
networks	by	dropping	some connections. It might be possible to get by with limitations in
the number of synapses per neuron in the thousands. It has also recently been determined 
that dendrites are not just passive channels of communication from	 the synapse to the 
soma,	but	that they might also play	a	role	in	pattern	recognition by filtering	or recognizing	
patterns of synaptic inputs and transmitting potentials only in some cases. This might 
require that we revise the ideas of simple synapses connected by wires. 

Figure 5.	Example of a	simple neuromorphic architecture. This diagram illustrates the dominance of the 
synapse crossbar	in most neuromorphic	architectures implementations and explains in part why	most groups 
are focused on implementation of synapses as the key	scalable component. Since synapse area	will dominate 
most designs, it is	imperative that designs	minimize synapse area. 

For historical comparison, a list of early neuromorphic chips and their scale is available in 
Table 3 in the Appendix. While many of these implementations have produced considerable 
advances, none	are based on developing completely novel approaches nor based on	new 
neuromorphic materials/devices nor approach the performance expected from	a brain-like 
device.	

Neuromorphic Computing: From Materials to Systems Architecture 13 



	 	 	 	 	 	 	
	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 			

IMPLEMENTATION 	NEEDS 

In	 this section, we will outline the important concepts and building blocks that will most 
likely be used to implement a neuromorphic computer. 

Neuromorphic Concepts 

The following	concepts	play an important role in the operation of a system, which imitates 
the brain. It should be mentioned that sometimes the definitions listed below are used in 
slightly	different ways	by	different investigators. 

Spiking. Signals are communicated between neurons through voltage or current spikes. 
This communication is different from	 that used in current digital systems, in which the 
signals are binary, or an analogue implementation, which relies on the manipulation of 
continuous signals. Spiking signaling systems are time encoded and transmitted via “action 
potentials”. 

Plasticity. A	conventional	device	has	a	unique	response	to	a	particular stimulus	or input.	In	
contrast, the typical neuromorphic architecture relies on changing	 the	 properties	 of	 an	
element or device depending on the past history. Plasticity is a key property that allows the
complex neuromorphic circuits to be modified (“learn”) as they are exposed to different 
signals. 

Fan-in/fan-out. In conventional computational circuits, the different elements generally 
are interconnected by	 a	 few	 connections between	 the individual	 devices.	 In	 the brain,	
however, the number of dendrites is several orders of magnitude larger (e.g., 10,000). 
Further	 research	 is	 needed	 to	 determine how essential this is to the fundamental 
computing model of neuromorphic systems. 

Hebbian learning/dynamical resistance change.	 Long-term	 changes in	 the	 synapse	
resistance after repeated spiking by the presynaptic neuron. This is also sometimes 
referred to as spike time-dependent plasticity	 (STDP). An alternative characterization in 
Hebbian learning is	“devices	that fire	together, wire	together”. 

Adaptability. Biological brains generally start with multiple connections out of which, 
through a selection or learning process, some are chosen and others abandoned. This 
process may be important for improving the fault tolerance of individual devices as well	as 
for selecting the most efficient computational path. In contrast, in conventional computing 
the system	architecture is rigid and fixed from	the beginning. 

Criticality. The brain typically must operate close to a critical point at which the system is	
plastic enough that it can be switched from	one state to another, neither extremely stable 
nor very volatile. At the same time, it may be important for the system	to be able to explore 
many closely lying states. In terms of materials science, for example, the system	may be 
close to some critical state such as a phase transition. 

Neuromorphic Computing: From Materials to Systems Architecture 14 



	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 				

		
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	

	
 	 	 	 	 	 	 	
 	 	 	 	

	
 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

Accelerators. The ultimate construction of a neuromorphic–based thinking machine 
requires intermediate steps, working toward small-scale	 applications	 based	 on	
neuromorphic ideas. Some of these types of applications require combining sensors with
some limited computation. 

Building	Blocks 

In functional terms, the simplest, most naïve properties of the various devices and their 
function	in	the	brain	areas	include	the	following. 
1. Somata (also	known	as	neuron	bodies),	which	function	as	integrators	and	

threshold 	spiking	devices 
2. Synapses, which provide dynamical interconnections between neurons 
3. Axons, which 	provide 	long-distance	output connection	between	a presynaptic	to	a 

postsynaptic	neuron 

4. Dendrites, which provide multiple, distributed inputs into the neurons 

To implement a neuromorphic system	 that mimics the functioning of the brain requires 
collaboration of materials scientists, condensed matter scientists, physicists, systems	
architects,	 and device designers in	 order to advance the science and engineering	 of the 
various steps in such a system. As a first step, individual components must be engineered
to resemble the properties of the individual components in the brain. 

Synapse/Memristor. The synapses are the most advanced elements that have thus far 
been simulated and constructed. These have two important properties: switching and 
plasticity. The implementation of a synapse is frequently accomplished in a two-terminal 
device such as a memristor. This type of devices exhibits a pinched (at V=0), hysteretic I-V	
characteristic.		

Soma/Neuristor. These types of devices provide two important functions: integration and 
threshold spiking.	 Unlike synapses, they have not been investigated much. A	 possible
implementation of such a device consists of a capacitor in parallel with a memristor. The 
capacitance	 (“integration”)	 and	 spiking	 function	 can	 be	 engineered	 into	 a	 single	 two-
terminal memristor. 

Axon/Long wire. The role of the axon has commonly (perhaps wrongly) been assumed 
simply to provide a circuit connection and a time delay line. Consequently, little research	
has been done on this element despite the fact that much of the dissipation may occur in	
the transmission of information. Recent research indicates that the axon has an additional 
signal-conditioning	role.	Therefore, much more research is needed to understand its role 
and 	how	to 	construct	a	device that resembles its function. 

Dendrite/Short 	wire. The role of dendrites is commonly believed simply to provide signals 
from	multiple neurons into a single neuron. This in fact emphasizes the three-dimensional 
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nature	of	the	connectivity	of	the	brain.	While	pseudo-3D systems have been implemented 
in multilayer (~8) CMOS-based architecture, a truly 3D implementation needs further 
research and development. In addition, recent work in neuroscience has determined	that 
dendrites can also play a role in pattern detection and subthreshold filtering. Some 
dendrites	have	been	shown	to	detect over	100	patterns. 

Fan-in/Fan-out. Some neurons have connections to many thousands of other neurons. 
One	axon may perhaps connect to ten thousand or more dendrites. Current electronics	 is 
limited to fan-in/fan-out of	 a few tens of terminals. New approaches to high-radix 
connections may be needed; currently, crossbars are used in most neuromorphic systems 
but they 	have scaling limits. 

Many of the needed functions can be (and have been) implemented in complex CMOS 
circuits. However, these not only occupy much real estate, but also are energy inefficient. 
The	latter	perhaps	is	a crucial fundamental limitation	as	discussed	above.	Thus,	for	the	next	
step in the	evolution of brain-like	computation, it is crucial to build these	types of devices from 
a single	material that is sufficiently	flexible	to be	integrated at large-scale	and have	minimal 
energy	consumption. 

PROPOSED IMPLEMENTATION 

Architecture 

Ultimately, an	 architecture that	 can	 scale neuromorphic systems to “brain scale” and 
beyond is	 needed. A	brain scale system	 integrates approximately 1011 neurons	 and	 1015 

synapses	 into a	 single system. The high-level	 neuromorphic architecture illustrated	 in	
Figure	1 consists	of	several large-scale synapse arrays connected to soma arrays such that	
flexible	 layering	 of	 neurons (including	 recurrent networks) is	 possible	 and	 that off-chip
communication uses the address event representation (AER) approach to enable	 digital 
communication to link spiking analog	 circuits.	 Currently, most neuromorphic designs 
implement synapses and somata as discrete sub-circuits connected via wires implementing 
dendrites	and	axons.	In	the	future, new materials and new	devices	are expected to enable	
integrated	constructs as the basis for neuronal	connections in	large-scale systems.	For this,	
progress is	 needed	 in each of the discrete components with the primary focus on 
identification of materials and devices that would dramatically improve the 
implementation of synapses and somata. 

One might imagine a generic architectural	framework that separates the implementation of 
the synapses from the soma in order to enable alternative materials and devices for 
synapses to be tested with common learning/spiking circuits	(see	Figure	6). A	reasonable 
progression for novel materials test devices would be the following: (1) single	 synapse-
dendrite-axon-soma feasibility test	devices,	(2)	chips	with	dozens	of	neurons	and	hundreds	
of synapses, followed by (3) demonstration chips with hundreds	 of	 neurons	 and	 tens of 
thousands 	of 	synapses. 

Neuromorphic Computing: From Materials to Systems Architecture 16 



	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Once hundreds of neurons and tens of thousands of synapses have been demonstrated in a 
novel	 system, it may be straightforward to scale these building	 blocks to the scale of	
systems competitive with the 	largest CMOS implementations. 

State-of-the-art	neural	networks that	support	object	and speech recognition	can	have tens 
of millions of synapses and networks with thousands of inputs and thousands of outputs.
Simple street-scene recognition needed for autonomous	 vehicles	 require	 hundreds	 of	
thousands of synapses and tens of thousands of neurons.	The largest	networks that	have 
been	published—using over a billion synapses and a million neurons—have	been	used	for	
face	detection	and	object recognition	in	large	video databases. 

Figure 6.	Block diagram of a	hybrid neuromorphic processor for synapse materials testing. The idea is 
that	novel materials could be tested in a “harness” that	uses existing CMOS implementations of	learning and 
soma.	A 	framework such as this could be used to accelerate testing of materials at	some modest	scale. 

Properties 

Development of neuromorphic computers, materials and/or devices are needed that 
exhibit some (or many) of the following properties: 

1. Multistate behavior,	in	which	a	physical property may have different values for the
same control parameters, depending on past history. 

2. Sensitivity to external stimuli such as current, voltage, light, H field, temperature or 
pressure	to	provide	desirable	functionalities. 

Neuromorphic Computing: From Materials to Systems Architecture 17 



	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		
	

3. Threshold behavior, in which the material may drastically change its properties
after repetitive application of the same stimulus. 

4. Fault tolerance,	so	that	the 	responses 	are 	repeatable 	in	a	statistical	sense,	but	not	
necessarily with extremely high reliability. 

5. Nonvolatility, such that the properties are maintained for a	long time without the 
need	for refreshing processes or	energy	dissipation	to	hold	state. 

6. Temperature window, in which the properties can be controlled and maintained. 
7. Insensitivity	to	noise, through phenomena such	as	stochastic	resonances caused	by	

inherent nonlinearities in the material. Counter	intuitively; the 	addition	of 	noise to a	
periodic signal may enhance its intensity. 

8. Low energy, in which switching from	one state to another is obtained and 
maintained with 	low	dissipation	without	the need	for energy-costly	refreshing. 

9. Compatibility	with other materials already in use in these types of systems. 
In order to make this program	 a reality, several material-specific needs must be met. In	
general,	 the	 types	of material systems that have been investigated in this context include 
strongly correlated oxides, phase change materials, metal inclusions in insulators, spin 
torque devices,	 ionic liquid-solid	 interfaces,	 and magnetic nanostructures. In	 addition,	
many of the complex materials are close to some type of electronic and/or structural 
instability. The use of these materials for neuromorphic applications requires extensive 
knowledge of their behavior under highly nonlinear, nonequilibrium	 conditions in	
heterogeneous structures at the appropriate nanometer scale, presenting an ambitious 
materials/condensed matter challenge. Because of the broad range of materials and 
systems, this cannot be cast as a single, universal aim. 

Specifically,	 researchers must quantitatively address issues related to synthesis,
characterization (e.g., static, dynamic, and in operando), measurements at short time scales,
interactions with different types of electromagnetic radiation, and nanoscale 
inhomogeneities and defects. The problem	is complex enough that it requires the attention
of multiple investigators with different expertise and techniques. Much of this work can be 
done in small-scale	 laboratories	 such	 as	 at universities;	 however,	 certain	 resources	 are	
available and accessible only at major facilities such as national laboratories. 

Devices 

The main basis for the current digital computers is a three-terminal device that has gain:	
the transistor. In	 this device,	 the	 drain	 current is	 controlled	 by	 the	 application	 of	 a gate	
voltage,	as shown	in	Figure 7.	For a	fixed	gate	voltage,	the	I-V	characteristic	 is	reversible. 
The	control is	provided	by	the	changes	in	the	output current as	a function	of	gate	voltage.	
In	this case,	for fixed parameters the output is always the same. Typically, these devices are 
built from	 ultra-pure semiconductors (e.g., Si, GaAs) where extreme control has to be 
exercised to minimize the defect density. 
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Figure 7. I-V characteristic of a transistor, 
the basis of von Neumann architecture. 
This I-V is controlled by the voltage applied 
to the gate. 

Figure 8. I-V characteristic of a memristor, 
the basis of a possible neuromorphic 
architecture. This I-V is controlled by the 
history of the device. 

One	 possible	 implementation of a neuromorphic synapse is a hysteretic, two-terminal 
device: the memristor (see Figure 8).	Typically,	these	types	of	devices	exhibit a pinched	(at 
zero	 voltage)	 I-V	 characteristic	 that is	 hysteretic. The	 type	 of	 hysteresis	 depends	 on	 the	
particular device implementation and material. An experimentally, easily accessible 
memristor material can be built from	 a strongly correlated oxide such as TiO2.	 The	
behavior of a memristor has been well established, although the detailed mechanism	and 
how to modify it are still being investigated. This type of I-V	characteristics	lends	itself	to	
plasticity, namely, changing properties depending	on	the	past history. 

It	 is expected that	 data	 transfer will	 be considerably reduced	 in the	 type	 of	 new 
neuromorphic architectures, with the consequent energetic savings. However, this cannot 
be completely eliminated as exemplified by the preponderance of connections through 
dendrites and axons in the brain. As a consequence, the interesting	issue	arises	whether	it 
would be possible to replace some of the electrically based data	 transfer to more energy
efficient optical communications using reconfigurable optical elements and antennas. This 
may even be the basis of the development of	a 	largely	optically	based data processor. 

Materials 

The development of neuromorphic devices also requires	 the	 use	 of	 strongly	 correlated,
possibly complex, heterogeneous materials and heterostructures that	are locally active so 
that	they can	be used to create	an	action	potential.	In	many systems that are used as a basis 
for	unconventional neuromorphic computing, the ultimate aim	is to control the dynamical 
resistance	 (i.e., I-V	 characteristic) of a material or device. The control parameters can be 
categorized generally into two major classes: electronically driven and defect driven. 
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Within each class, many materials systems and devices have been investigated in different
contexts and depth. A	 (probably) non-exhaustive	 list is	 given	 in	 Tables 5 and 6 in	 the	
Appendix. 

Electronically	driven materials rely on changes of a physical property due to variation in 
some control parameter such as temperature, current, voltage, magnetic field, or 
electromagnetic irradiation. Generally, they become useful if they exhibit negative	
differential resistance or capacitance and/or “threshold switching.” While for some 
systems the basic physics is well understood, for others, even the underlying phenomena 
are controversial.	 The types of materials that	 are actively	 being	 investigated	 and	 the 
fundamental issues that	are being	addressed are related to strong	electronic correlations,	
phase	 transitions,	 charge,	 and spin	 propagation.	 In	 addition,	 efforts are	 underway	 to	
identify	applications	in	the	areas	of	spintronics,	ferroelectric	storage,	and	sensors. 

Electronically	 driven	 transitions include	 spin	 torque,	 ferroelectric,	 phase	 change,	 and 
metal-insulator	 transition based devices. The detailed physics of these systems differs 
significantly depending on the phenomena and the material system. In general, however, a 
scientific bottleneck exists because the detailed atomic-scale dynamics of these systems is 
still largely	unknown.	

Defect driven materials take advantage of some of the fundamental properties, which are 
strongly affected by the presence of inhomogeneities. These include the formation of 
metallic filaments, inhomogeneous stress, and uniform	and nonuniform	oxygen diffusion. 
Strong debates arise concerning how well these phenomena can be controlled. 
Nevertheless, a number of experiments have proven that the inhomogeneities can be 
controlled by control parameters such as voltage, temperature, or electric fields. Typical 
systems of this type are oxygen	 ionic diffusion in oxides, formation of metallic filaments,	
and ionic front motion across metal-insulator-metal trilayers. Moreover, the endurance of 
these types of devices has been	shown	to exceed one trillion	cycles—not as much as DRAM 
or SRAM—although research	is	expected	to	significantly	increase	this. 

Optically	controlled materials and devices had a much more limited use in this context. 
This	 probably is because the eventual system	 that will emerge will likely be mostly 
electronic. On the other hand, the development of tunable optical elements may add an 
additional	functionality	to materials, which may be 	useful	partially 	in	this 	context. 

Fault tolerance is	one of the principal requirements of the materials to be used. Defects 
and their effect play a crucial role in the behavior of these materials especially when	
incorporated into devices. This has not been the case with the materials that have been 
used until	now	in	silicon-based technology,	which	strives	for ever higher perfection Thus,
the 	new,	fault-tolerant materials may actually improve device performance. 
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OPEN ISSUES 

The most important general issue that needs extensive research and is not clearly defined
is	 how to	 integrate	 individual devices	 into	 a working	 (although limited) system	
(“accelerator”)	 that will serve as a proof of concept. Moreover, this system	 should be 
potentially scalable, although the exact way to do this may not be known at present time.
Below we list some of the open	issues that arise when considering materials/devices and 
systems almost 	independently.				

Materials/Devices 

Many open issues	and questions remain regarding properties of materials and devices used 
and proposed for neuromorphic implementations. Because it is practically impossible to 
produce a comprehensive literature review in	this	brief	report,	we list	here a	few	striking	
examples. 

Resistive switching. Some memristor devices use as a basis the metal-insulator	transition	
of simple transition-metal oxides. The switching mechanism	 in these is	 based	 on	 a first-
order	 electronic transition that is generally coincident with a symmetry-changing
structural phase transition. Resistive devices based on these materials, so-called	 locally	
active memristors, exhibit unusual hysteretic I-V	 characteristics	 of	 different types. They	
can	show oscillations	in	the	presence	of	a DC	bias,	can	inject previously	stored	energy	into	a 
circuit to provide power amplification or voltage amplification for electrical pulses or 
spikes, and can	exhibit	chaos under controlled conditions.	The physics of these materials is 
still being	 investigated,	although	the	properties	can	be	controlled	well.	For	these	types	of	
strongly correlated materials, researchers continue to debate intensely regarding the role
that Mott, Peierls, Hubbard, or Slater mechanisms play in the transition, the relevant time
scales, the correlation of structural and resistive transitions, the effect of proximity, and the
way these effects may be controlled (e.g., by epitaxial clamping). These issues are related to 
the specific properties of the materials in questions and are being investigated in many 
other	 contexts.	 Nevertheless,	 their	 properties	 can	 be	 controlled	 sufficiently	 well that a 
number of neuromorphic devices have been implemented. 

Filament formation. Many of the neuromorphic devices	utilized as synaptic memory rely 
on the formation of filaments or	conductive	channels in the material between two metallic 
electrodes. These may occur because of an intrinsic	 phase	 transition	 present, such	 as 
amorphous-crystalline or	 metal-insulator transitions,	 or because	 of	 redistribution	 of	
defects/ions that modulates local electrical properties.	Understanding the mechanisms in
the formation and destruction of filaments and the effect of preexisting defects is crucial for
understanding	 the	 reproducibility of these devices. Particularly important is the role of 
pre-existing defects and the way these modify the formation of filaments. 

Spin torque switching. In	spin	torque	devices,	the	resistive	transition	is controlled by	the	
magnitude of a current through (in	 principle) a	 four-layer device.	 Spin	 torque devices 
already have been implemented for unrelated spintronics applications and are being 
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incorporated into commercial nonvolatile magnetic random	 access memory. The 
magnitude of the spin torque effect and the role the Oersted field are subjects of important 
research, especially	 when the	 size	 of	 the	 devices	 is	 reduced	 to	 the	 nanoscale	 or	 when 
devices	are	closely	packed,	as	needed	here.	Understanding	defects	and	their	effect on	the	
stability	 of	 ferromagnetic	 materials is important in order to improve the endurance	 of	
materials. 

Ionic diffusion. Defect-induced devices and materials rely on the controlled formation of 
filaments or the diffusion of ionic fronts between two metallic electrodes to control the	
conductance and thus provide large resistance switching. Examples are the formation of 
metallic shorts across metal-insulator-metal trilayers, the change in the resistance of an 
insulator due to an ionic front diffusion between two metallic electrodes, and the diffusion	
of oxygen induced by a metallic tip from	an ionic liquid into an oxide. For these types of 
defect-based devices and phenomena, basic research is needed on several major issues: the
importance of preexisting defects on the diffusion of light elements, thermophoresis, the 
formation of filaments, the reproducibility from	cycle to cycle, and electromigration and the 
consequent 	effects	on	endurance. 

Nano and mesoscale. A	 number of open issues straddle both the materials and devices 
contemplated here. In particular, incorporating these materials into computational systems 
will require reducing them	 to nanometer scale in	 functional structures.	 Therefore,	
understanding the materials and especially their interface behavior at	 the nano and 
mesoscale	is	crucial.	While	at large-scale these phenomena may be well understood, when
reduced to the nanoscale, additional effects become important. For instance, Oersted fields 
and dipolar interactions may become more important than at the micron scale in spin 
torque devices; filament formation may become highly inhomogeneous and uncontrolled in
defect-based devices; and the importance and magnitude of enhanced fields in connection 
with roughness become especially important in nanoscale devices based on ionic 
conduction. A	key issue in scaling down to the nanoscale is the fact that while the device 
heat capacity decreases, its thermal resistance increases, which can lead to huge Joule 
heating-induced temperature increases and enormous temperature gradients when 
electrically	 biased. This issue requires detailed studies of materials properties, ideally in 
operando. In many cases, complex interactions will appear at different nano and meso 
scales which can	only	be	solved	by the experimental capabilities available at	DOE	facilities.	
This will also necessarily include some capabilities for fabricating test structures using 
what	 is traditionally called back-end-of-line (BEOL) processing	 techniques (i.e.,	not	using	
full CMOS	 capabilities).	 The	 size	 scales	 and	 the	 reproducibility required for meaningful 
analysis will mean that some lithographic capabilities at the 50 nm	and smaller scales will 
be required, which can be obtained by electron beam	 lithography or refurbished and 
therefore 	relatively 	inexpensive 	UV 	steppers. 

System 

As we consider the building of	large-scale systems from	neuron like building blocks, there 
are a large number of challenges that must be overcome. One challenge arises from	 the 
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need for dense packaging of neurons in order to achieve comparable volumes to brains. 
This implies dense 3D packing with a range of problems associated with assembly, power
delivery, heat removal and topology control. Another	 set of	 challenges	 arises from the 
abstract	nature of neuro-inspired computation itself. How close to nature must we build to 
gain the benefits that evolution has devised? Can we develop computational abstractions
that have many of the advantages of	biology	but	are easier to construct	with non-biological	
materials and non-biological assembly processes? How will such systems be designed? 
How will they be programmed and how will they interact with the vast computational 
infrastructure	that 	is	based	on	conventional 	technologies? 

A	number of critical issues remain as we consider the artificial physical implementation of 
a system	that partially resembles a brain-like 	architecture: 
1. What are the minimal physical elements needed for a working artificial structure:

dendrite, soma, axon, and synapse? 
2. What are the minimal characteristics of each one of these elements needed in order 

to have a first proven system? 
3. What	are 	the essential conceptual ideas needed to implement a minimal system: 

spike-dependent plasticity,	learning,	reconfigurability,	criticality,	short- and 	long-
term	memory, fault tolerance, co-location of memory and processing, distributed 
processing,	large	fan-in/fan-out,	dimensionality? Can we organize these in order of 
importance? 

4. What are the advantages and disadvantages of a chemical vs. a solid-state	
implementation? 

5. What features must neuromorphic architecture have to support critical testing of
new materials and building block implementations? 

6. What intermediate applications would best be used to prove the concept? 

These	 and	 certainly	 additional questions	 should	 be	 part of	 a coherent approach	 to	
investigating	 the development of neuromorphic computing systems. The field could	 also	
use a comprehensive review of what has been achieved already in	the	exploration	of	novel 
materials, as there are a number of excellent groups that are pursuing new materials and 
new	device	architectures.	Many	of these activities could	benefit from	a framework that can 
be evaluated on simple applications. 

At the same time, there is a	considerable gap	in	our understanding	of what	it	will	 take to 
implement state-of-the-art applications on neuromorphic hardware in general. To date, 
most hardware	 implementations have been rather specialized to specific problems and 
current practice	 largely uses conventional	 hardware	 for the	 execution	 of deep	 learning	
applications and large-scale parallel clusters with accelerators for the development and 
training	 of deep neural networks. Moving neuromorphic hardware out of the research 
phase	into	applications and end use would be helpful. This	would require advances which 
support training	of the device itself and to show performance above that	of artificial	neural	
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networks	 already	 implemented in conventional hardware. These improvements are 
necessary both regarding power 	efficiency	and ultimate performance.		

INTERMEDIATE 	STEPS 

This section identifies the major milestones needed toward the development of a 
neuromorphic computer. We should highlight that every step must be based on earlier 
steps and connected to eventual implementation of next steps. This can be considerably 
advanced through the construction of appropriate compact theoretical models and 
numerical simulations	that are	calibrated	through experimentation. It is also important to 
point out that this field is in its earlier stages of development and therefore sufficient 
flexibility should be maintained at every stage. This should not be viewed as a	well-defined	
development task but as a research project. Therefore, it is important that at every stage
several competing projects are implemented to allow for the best solution to emerge. The	
key ingredients in these intermediate steps could be: 

General	Aim. As a	general	goal, it would	be	desirable	to	develop	well-defined intermediate 
application	such as needed in	the fields of	vision,	speech, and object	recognition to prove	
the reality of a program	as described here. 

Simulations. There	 are	 opportunities	 to	 leverage	 large-scale computing in the 
development of simulators for neuromorphic designs and to develop	a	deep	understanding	
of materials and device. These	simulations could	be	used	to	refine	architectural concepts,	
improve performance parameters for materials and devices, and to generate test	data	and 
signals	 to	 help support accelerated	 testing	 as	 new materials, devices	 and	prototypes	 are	
developed. 

Devices. Development and engineering of	 novel devices	 perhaps based on some type of 
memristive or	optically	bistable property is	needed.	This	should	include incorporation	into	
well-defined systems and be based on well-understood materials science. 

Material Science. Synthesis,	 characterization	 and	 study	 of	 new	 functional,	 tunable 
materials	 with	 enhanced	 properties are needed to integrate into novel neuromorphic 
devices.	

We envision the following stages in the development of such a project: 

1. Identify conceptual design of neuromorphic architectures 
2. Identify devices needed to implement neuromorphic computing 

3. Define	properties	needed	for prototype	constituent	devices 
4. Define materials properties needed 

5. Identify major materials classes that	satisfy 	needed 	properties 
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6. Develop a deep understanding of the quantum	materials used in these applications 
7. Build and test devices (e.g., synapse, soma, axon, dendrite) 
8. Define and implement small systems,	and	to	the	extent	possible,

integrate/demonstrate with appropriate research and development results in
programming languages, development and programming environments, compilers,
libraries, runtime systems, networking, data repositories, von Neumann-
neuromorphic computing interfaces, etc. 

9. Identify possible “accelerator” needs for intermediate steps in neuromorphic
computing (e.g., vision, sensing, data mining, event detection) 

10. Integrate small systems for intermediate accelerators 
11. Integrate promising devices into end-to-end system	experimental chips (order 10 

neurons,	100	synapses) 
12. Scale promising end-to-end experiments to demonstration scale chips (order 100 

neurons	and	10,000	synapses) 
13. Scale successful demonstration chips to system	scale implementations (order 

millions of neurons and billion synapses) 
14. Scale successful demonstration chips to system	scale implementations (order 

millions of neurons and billion synapses) 

We have outlined in this report many of the open issues and opportunities for architecture
and materials science research needed to realize the vision of neuromorphic computing. 
The key idea is that by adopting ideas from	biology and by leveraging novel materials, we 
can build systems that can learn from	 examples, process large-scale	 data adjust	 their 
behavior to new	inputs and do all	of these with the power efficiency of the brain.	Taking	
steps	 in	 this	 direction	 will continue the development of data processing	 in	 support of	
science	and	society.	

CONCLUSIONS 

The	main conclusions of	the	roundtable	were: 
1. Creating the architectural design for neuromorphic computing requires an 

integrative,	 interdisciplinary	 approach between computer scientists, engineers, 
physicists, and materials scientists 

2. Creating a new computational system will	 require developing new system	
architectures to accommodate all needed functionalities 

3. One or more reference architectures should be used to enable comparisons of 
alternative 	devices and materials 

4. The basis for the devices to be used in these new computational systems require the
development of novel nano and meso structured materials; this will be 
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accomplished by unlocking the properties of quantum	 materials based on new 
materials physics		

5. The most promising materials require fundamental understanding of strongly 
correlated materials, understanding formation and migration of	 ions,	 defects	 and 
clusters, developing	 novel spin	 based	 devices,	 and/or discovering	 new quantum	
functional materials 

6. To	 fully	 realize open	 opportunities requires	 designing systems and materials that 
exhibit self- and external-healing, three-dimensional reconstruction, distributed 
power delivery,	fault	tolerance,	co-location of memory and processors, multistate— 
i.e., systems in which the present response depends on past history and multiple 
interacting	state	variables	that 	define	the	present 	state 

7. The development of a new brain-like computational system	 will not evolve in a 
single step; it is important to implement	well-defined intermediate steps that give 
useful scientific and technological information 
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APPENDICES 

Acronyms 

3D:	Three-dimensional 

AER: Address Event Representation 

ALU:	Arithmetic/Logic Unit 

BEOL:	Back-end-of-line 	(BEOL) 

CMOS:	Complementary Metal Oxide Semiconductor 

CNN:	Convolutional Neural Network 

CPU:	Central Processing	Unit 

ColdRAM:	Memory organized	for	infrequent access 	patterns 

DNN:	Deep Neural Network 

DMA: Logic	for	supporting Direct Memory Access 

HotRAM: Memory organized for frequent access patterns 

InstRAM: Instruction Memory 

LIF:	Leaky	Integrate	and	Fire	(neuron) 

LTPS:	Long-Term	Plasticity Synapses 

MLU: Machine Learning Unit, functional units optimized for ML operations 

MU:	Memory Unit 

OutputRAM:	Memory for holding output of operations 

STDP: Spike Time-Dependent Plasticity 

STPS:	Short-Term	Plasticity Synapses 

VLSI:	Very	Large-Scale	Integration 
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Glossary 

Axon: Transmitting signals to other neurons, axons provide long-distance	output 
connection	between	a	presynaptic	to	a	postsynaptic	neuron 

Charge trapping: Mobile electrons maybe trapped sometimes in defects invariably	present
in materials 

Crystalline-amorphous	transition: Some materials change their physical structure from	
an ordered crystalline to a completely disordered (amorphous) phase; the	electronic	
properties of 	these	two	phases maybe radically different 

Deep learning: Deep learning is the branch of machine learning that builds tools based on
deep (multilayer) neural networks 

Dendrite: Providing multiple, distributed inputs into the neurons, the role of dendrites is
commonly believed simply to provide signals from	multiple neurons into	a	single	neuron 

Depress:	To increase	resistance 

Domain	wall motion: In some cases, a magnetic material reverts its magnetization by the
motion of a separation (“wall”) in between two well-defined magnetization areas 

Filament	formation: The	resistance of two electrodes separated by an insulator may 
change	drastically	if a conducting filament forms; this can form	because of intrinsic reasons 
or	due	to	the	motion of atoms in the insulator 

Hebbian	learning:	Change	occurs	in	the	synapse	resistance	after	repeated	spiking by	the	
presynaptic neuron before the postsynaptic neuron; this is also sometimes referred to as
spike time-dependent plasticity	(STDP) 

Ionic	motion: Certain solids and liquids ions may move under different driving forces such 
as 	high 	voltages, currents and temperature 

Learning:	Conditioning;	process by which the various elements of the system	change and 
readjust depending on the type of stimuli they receive 

Machine	learning: The branch of computer science that deals with building systems that	
can learn from	and make predictions on data 

Magnetic tunnel junction: A	device based on quantum	mechanical tunneling that changes 
it resistance depending on the relative magnetization of the magnetic electrodes; the	basis	
for most spintronics applications 
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Parallel	computing:	Differing from serial von Neumann, parallel computing is 
distinguished	by	the	kind	of	interconnection	between	processors	and	between	processors
and memory; most parallel computers today are large-ensembles of von Neumann 
processors and memory 

Plasticity: Synaptic	resistance; key property that allows the complex neuromorphic
circuits to be modified (“learn”) as they are exposed to different signals 

Potentiation:	Increased in	conductance 

Soma:	Neuron	body, where primary input integration	and	firing	occurs 

Synapse:	Space	between	axon	and	dendrites	that allows for signals to be transmitted from	
the 	presynaptic to 	the 	postsynaptic 	neuron. 

Vacancy motion: In	certain	solids	and	liquids, the absence of an ion (“vacancy”) may move
under different driving forces such as high voltages, currents and temperature 

Tables 

Table	2	References (Table	2	above) 
1. Dean, Mark E., Catherine D. Schuman, and J. Douglas Birdwell. "Dynamic adaptive 

neural	network	array."	Unconventional Computation and Natural Computation.	
Springer 	International	Publishing,	2014.	129-141.	

2. Merolla, Paul A., et al. "A	million spiking-neuron	integrated	circuit	with	a	scalable	
communication network and interface." Science 345.6197	(2014):	668-673. 

3. Benjamin, Ben Varkey, et al. "Neurogrid: A	mixed-analog-digital multichip system	
for	large-scale neural simulations." Proceedings of the	IEEE 102.5	(2014):	699-716. 

4. Brüderle, Daniel, et al. "A	comprehensive workflow for general-purpose	neural	
modeling with highly configurable neuromorphic hardware systems." Biological 
cybernetics 104.4-5	(2011):	263-296. 

5. Furber, Steve B., et al. "Overview of the spinnaker system	architecture." Computers, 
IEEE Transactions on 62.12	(2013):	2454-2467. 

6. Shen	JunCheng,	et.	al. “Darwin: a Neuromorphic Hardware Co-Processor	based	on	
Spiking	Neural	Networks”.	SCIENCE CHINA Information Sciences,	DOI:	
10.1360/112010-977 
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Neural networks	digital hardware implementations 
Name Architecture Learn Precision Neurons Synapses Speed 

Slice	architectures 

Micro devices MD-1220a Feedforward, ML No 1	x 16	bits 8 8 

NeuraLogix NLX-420a Feedforward, ML No 1-16	bits 16 Off-chip 

Philips Lneuro-1 Feedforward, ML No 1-16	bits 16	PE 64 

Philips Lneuros-2.3 N.A. No 16-32	bits 12	PE N.A. 

SIMD 

Inova 	N64000a GP, SIMD, Int Program 1-16	bits 64	PE 256k 

Hecht-Nielson	HNC	100-NAPb GP, SIMD, FP Program 32	bits 4	PE 512k 

Off-chip 

Hitachi WSI Wafer, SIMD Hopfield 9	x 8	bits 576 32k 

Hitachi WSI Wafer, SIMD BP 9	x 8	bits 144 N.A. 

Neuricam NC3001 TOTEM Feedforward, ML, SIMD No 32	bits 1-32 32k 

Neuricam NC3003 TOTEM Feedforward, ML, SIMD No	 32	bits 1-32 64k 

RC	Module NM6403 Feedforward, ML Program 1-64	x 1-64	bits 1-64 1-64 

Systolic array 

Siemans 

MA-16 Matrix ops No 16	bits 16	PE 16	x 16 

Radial basis functions 

Nestors/Intel NI1000c RBF RCE, PNN, program 5	bits 1	PE 245	x 1024 

IBM 	ZISC036 RBF ROI 8	bits 36 64	x 36 

Silicon recognition ZISC78 RBF KNN, L1. LSUP N.A. 78 N.A. 

Other chips 

SAND/1 Feedforward, ML, RBF No 40	bits 4	PE Off-chip 

Kohonen 

MCE MT 19003 Feedforward, ML No 13	bits 8 Off-chip 

1.9	MCPS 

300	CPS 

26	MCPS 

720	MCPS 

870	MCPS 

220	MCUPS 

250	MCPS 

64	MCUPS 

138	MCPS 

300	MCUPS 

1	GCPS 

750	MCPS 

1200	MCPS 

400	MCPS 

40	kpat/s 

250	kpat/s 

1	Mpat/s 

200	MCPS 

32	MCPS 

Table 3. Historical hardware implementations of neural networks. 
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Feature Description 

Clock	Free Fully asynchronous 

Scale 	Free Activity can vary from local to system level scales depending upon context 

Symbol	Free No single neuron or synapse represents any single item/concept 

Grid 	Free 
Small world network geometry allows feature integration from 
heterogeneous and non local brain areas 

Dendritic	Neuron Nonlinear signal processing via	dendrites in each neuron 

Synaptic Plasticity Most	synapses exhibit	plasticity at	various time scales (secs to hrs) 

Synaptic 	Path	Length Approx. constant	number of hops between different	brain areas 

Dense	Connectivity Each neuron connects to between 1000-10000 other neurons 

Modular Cortex Six layered modular architecture that	repeats across architecture 

Broadcasting Brain areas that	broadcast	signals (neuromodulatory) to all other parts 

Table 4.	Neuromorphic system level architecture features. 
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CATEGORY SYSTEM MECHANISM 
WRITE 
SPEED 

ON / 
OFF 

DATA 
RETENTION (@ 
1	Hz) 

TEMP	(ºC) POWER	
(W) ISSUES REFERENCE 

Oxides 

HfOX/TiOX/HfOX/T 
iOX 

Vom-front 10s	
ns 1000 >	15	min 20-85	 10-4 Abrupt SET	process (only depression 

is 	possible) 
http://onlinelibrary.wiley.com/doi/10.1 
002/adma.201203680/abstract 

VO2 Ff 1s 100 70 10-2 Temperature, memory duration, 50	
V	pulses, only potentiation 

http://scitation.aip.org/content/aip/jour 
nal/apl/95/4/10.1063/1.3187531 

Nb2O5/Pt Vom 100s	ns 10 >	500	years RT 10-4 Simple planar micron	scale structure 
http://ieeexplore.ieee.org/xpl/articleDe 
tails.jsp?arnumber=1425686 

WOX Vom-front 100s	 µs 1.4 >	3	hours RT 10-5 Low ON/OFF	ratio 
http://dx.doi.org/10.1109/TED.2014.23 
19814 

Nb-doped-a-STO Vom-filament 10s	µs 1000 >	1	day 27-125 10-4 Electroforming needed 
http://onlinelibrary.wiley.com/doi/10.1 
002/adfm.201501019/abstract 

Pt/TiO2/Pt Vom 10 ns 10 >	35,000	years RT <10-4 30	nm wire	width crossbar structure 
http://onlinelibrary.wiley.com/doi/10.1 
002/adfm.201202170/abstract 

Phase	
Change 

GeSbTe CAt 1	ns 100 >	3	hours RT 10-3 https://www.sciencemag.org/content/3 
36/6088/1566.full 

Optical 
C-Nanotubes Photo/Electrical 

gating 
10s	 200 >	2	days RT 10-6 Very slow	and	difficult to	implement http://onlinelibrary.wiley.com/doi/10.1 

002/adma.200902170/full 

GaLaSO Photodark Ms 1.1 RT 10-1 Proof of concept http://onlinelibrary.wiley.com/doi/10.1 
002/adom.201400472/abstract 

Metal 
Inclusions 

Ag on a-Si Ff 10s	 ns 1000 11	days RT 10-8 Electroforming, short endurance 
http://pubs.acs.org/doi/abs/10.1021/nl 
073225h 

Cosputtered	a-Si 
and Ag 

Iom-front 100s	µs 8 5	years RT 10-6 Low ON/OFF	ratio 
http://pubs.acs.org/doi/abs/10.1021/nl 
904092h 

Organic Au/Pentacene/Si 
NWs/Si Ct 120 RT 10-5 Speed	is not clear http://scitation.aip.org/content/aip/jour 

nal/apl/104/5/10.1063/1.4863830 
Ferro 
electric 

BTO/LSMO 
Tunneling 

Ps 10s	ns 300 >	15	min RT 10-6 http://www.nature.com/nmat/journal/v 
11/n10/full/nmat3415.html 

Magnetic MgO-based	MTJ DWm 1.1 RT 10-4 Needs external magnetic field, Low 
ON/OFF ratio 

http://www.nature.com/nphys/journal/ 
v7/n8/full/nphys1968.html 

Liquid-Solid	 Ionic liquid/SmNiO3 
Iom 10s	ms 11 35-160 Requires gating circuit, slow https://doi.org/10.1038/ncomms3676 

Table 5.	List 	of materials systems for neuromorphic applications. Characteristics obtained	from the 
literature of	the different material	systems put forward for neuromorphic applications. The following
abbreviations are used: Vom=Vacancy	motion; Ff=Filament formation; Iom=ionic motion; DWm=domain wall 
motion; Cat=crystalline amorphous transition; Ct=Charge trapping; Ps=Polarization	switching; RT=room 
temperature; SET=change from high to low resistance state, and MTJ=magnetic tunnel junction. 



	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 		
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

		 		
	 	 	 		

	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

		 		
	 		

	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	

		 		
	 		

	 	 	 	 	 	 	
	 	 	 	 	 	 	

		 		
	 		

	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	
	

Summary	of common inorganic	storage media and corresponding switching characteristics 
Storage medium Switching mode ON/OFF ration Operation speed Endurance (cycles) 
Binary oxides 
MgOx Unipolar, bipolar >105 - >4	x 102 

AIOx Unipolar, bipolar >106 <10	ns; <10	ns >104 

SiOx Unipolar, bipolar >107 <100	ps; <100	ps >108 

TIOx Unipolar, bipolar >105 <5	ns; <5 ns >2	x 106 

CrOx Bipolar >102 <4	µs;	<5 µs >6	x 104 

MnOx Unipolar, bipolar >104 <100	ns; <200	ns >105 

FeOx Bipolar >102 <10	ns; <10 ns >6	x 104 

CoOx Unipolar, bipolar >5	x 103 <20	ns; <20 ns >103 

NiOx Unipolar, bipolar >106 <10	ns; <20	ns >106 

CuOx Unipolar, bipolar >105 <50	ns; <50 ns >1.2	x 104 

ZnOx Unipolar, bipolar >107 <5	ns: <5	ns >106 

GaOx Bipolar >102 <400	ns; <600 ns >104 

GeOx Unipolar, bipolar >109 <20	ns; <20	ns >106 

ZrOx Unipolar, bipolar >106 <10	ns; <10	ns >104 

NbOx Unipolar, bipolar >108 <100	ns; <100	ns >107 

MoOx Unipolar, bipolar >10 <1	µs;	<1 µs >106 

HfOx Unipolar, bipolar >105 <300	ps; <300	ps >1010 

TaOx Unipolar, bipolar >109 <105 ps ; <120 ps >1012 

WOx Unipolar, bipolar >104 <300	ns; <50	ns >108 

CeOx Unipolar, bipolar >105 <1 µs :	<200 	ns >104 

GdOx Unipolar, bipolar >5	x 105 <1	ns; <1	ns >107 

YbOx Unipolar, bipolar >105 - >105 

LuOx Unipolar, bipolar >104 <10	ns; <30 ns >8	x 102 

Ternary	and	more complex oxides 
LaAIO3 Bipolar >104 - >102 

SrTiO3 Bipolar >105 <5	ns: <5	ns >106 

BaTiO3 Unipolar, bipolar >104 <10	ns; <70	ns >105 

LC(or S)MO Bipolar >103 <25	ns; <25	ns >103 

PCMO Bipolar >103 <8	ns; <8 ns >1010 

BiFeO3 Unipolar, bipolar >105 <50	ns; <100 µs >103 

Chalcogenides 
Cu2S Bipolar >106 <100	µs;	<100 µs >105 

GeSx Bipolar >105 <50	ns; <50	ns >7.5	x 106 

Ag2S Bipolar >106 <200	ns; <200	ns -
GexSey Bipolar >106 <100	ns; <100	ns >3.2	x 1010 

Nitrides 
AIN Unipolar, bipolar >103 <10	ns; <10	ns >108 

SiN Unipolar, bipolar >107 <100	ns; <100	ns >109 

Others 
a-C Unipolar, bipolar >3	x 102 <50	ns; <10	ns >103 

a-Si Bipolar >107 <5	ns; <10	ns >108 

AgI Bipolar >106 <50	ns; <150	ns >4	x 105 

Table 6. Comprehensive list of relevant properties for interesting materials.	The operation	speed is 
written as ‘set (write) speed; reset (erase) speed’. The symbol ‘-‘	means 	that 	no 	data 	concerning 	that 
characteristic	is	found. (after F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Materials Science and Engineering R 83 
(2014)	1–59.) 
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Roundtable	Summary
Roundtable on	Neuromorphic Computing:	
From Materials to	Systems Architecture 

Co-chairs: 

Ivan K. Schuller University	of	California,	San	Diego 

Rick	Stevens Argonne National Laboratory	and	University	of	Chicago 

DOE	Contacts: 

Robinson Pino 
Michael	Pechan 

Advanced Scientific Computing Research 
Basic	Energy	Sciences 

Purpose
The Neuromorphic Computing: From	Materials to Systems Architecture Study Group 
convened	national 	laboratory, university, and	industry	experts	to	explore	the	status	of	the	
field and present future research opportunities involving research challenges from	
materials to computing, including materials science showstoppers and scientific
opportunities.	The	output goal of the roundtable is a symbiotic report between systems,
devices and materials that would inform	future ASCR/BES research directions. 

Logistics
Gaithersburg, MD, Montgomery Ballroom
Thursday, October 29, 2015 (5:00pm	– 8:00pm) 
Friday, October	30, 2015 (8:00am	– 5:00pm) 

Participants
Participation and observation, by invitation only, was approximately 20 external scientists
(DOE	laboratories,	university	and	industry).	Two	co-chairs	helped	select 	participants	and	
helped	lead	the	discussion.	Several—approximately 10—Federal Program	Managers from	
DOE attended as observers. The total meeting size was approximately 30. 

Agenda
The agenda comprised two days and included a keynote address, overview talks, discussion
sessions,	breakout sessions,	and	a closing summary. 

Roundtable	Report 
A	draft will be delivered by December 18, 2015. 
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Roundtable	Agenda
Roundtable on	Neuromorphic Computing: 
From Materials to	Systems Architecture	

Co-chairs: 

Ivan	K.	Schuller University	of	California,	San	Diego 

Rick	Stevens Argonne National Laboratory and University of Chicago 

DOE	Contacts: 

Robinson Pino Advanced Scientific Computing Research 
Michael	Pechan Basic	Energy	Sciences 

Agenda: 

Thursday, October 29, 2015 

5:00pm Registration 

6:00pm	 Working	Dinner 	with 	Keynote Speaker Stanley Williams 
8:00pm Adjourn 

Friday,	October	30,	2015 

8:00am Continental Breakfast and	Registration 

8:30am Morning	Session: 	Overview	talks 
10:30am Break 

10:45am Guided	Discussion	Session 

12:00pm Working	Lunch 

1:00pm Breakout	Sessions 
3:00pm Reports-outs 
4:00pm Closing Summary 

5:00pm Adjourn 
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Disclaimer 
This	 report was	 prepared	 as	 an	 account of	work sponsored	 by	 an	 agency	 of	 the	 United	
States Government. Neither the United States Government nor any agency thereof, nor any 
of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus,	 product,	 or process disclosed,	 or represents that	 its use would not	 infringe 
privately	owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or	any	agency	thereof.	The	views	and	opinions	of	authors	expressed	herein	do	
not necessarily state or reflect those of the United States Government or any agency thereof. 
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