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Preface
At the request of the U.S. Department of Energy’s (DOE) 
Office of Science (SC) Advanced Scientific Computing 
Research (ASCR) program office, a workshop was held June 
2–3, 2015, in Gaithersburg, MD, to identify potential long term 
(10 to +20 year) cybersecurity fundamental basic research and 
development challenges, strategies and roadmap facing future 
high performance computing (HPC), networks, data centers, 
and  extreme-scale scientific user facilities. This workshop 
was a follow-on to the workshop held January 7–9, 2015, 
in Rockville, MD, that examined higher level ideas about 
scientific computing integrity specific to the mission of the 
DOE Office of Science. Issues included research computation 
and simulation that takes place on ASCR computing facilities 
and networks, as well as network-connected scientific 
instruments, such as those run by various DOE Office of 
Science programs. Workshop participants included researchers 
and operational staff from DOE national laboratories, as well 
as academic researchers and industry experts. Participants 
were selected based on the submission of abstracts relating to 
the topics discussed in the previous workshop report [1] and 
also from other ASCR reports, including “Abstract Machine 
Models and Proxy Architectures for Exascale Computing” 
[27], the DOE “Preliminary Conceptual Design for an Exascale 
Computing Initiative” [28], and the January 2015 machine 
learning workshop [29]. The workshop was also attended by 
several observers from DOE and other government agencies. 

The workshop was divided into three topic areas: (1) Trustworthy 
Supercomputing, (2) Extreme-Scale Data, Knowledge, and 
Analytics for Understanding and Improving Cybersecurity, 
and (3) Trust within High-end Networking and Data Centers. 
Participants were divided into three corresponding teams based 
on the category of their abstracts. The workshop began with 
a series of talks from the program manager and workshop 
chair, followed by the leaders for each of the three topics and a 
representative of each of the four major DOE Office of Science 
Advanced Scientific Computing Research Facilities: the Argonne 
Leadership Computing Facility (ALCF), the Energy Sciences 
Network (ESnet), the National Energy Research Scientific 
Computing Center (NERSC), and the Oak Ridge Leadership 
Computing Facility (OLCF). The rest of the workshop consisted 
of topical breakout discussions and focused writing periods that 
produced much of this report.

Executive Summary
Contributors to the previous DOE ASCR Cybersecurity for 
Scientific Computing Integrity workshop, held in January 
2015, defined several key reasons why the DOE should 
address issues surrounding scientific computing integrity, and 
moreover, provided numerous findings and recommendations 
regarding what research is necessary in order to understand how 
specifically those issues can be addressed [1] for example:

“The large-scale science and energy research 
funded by DOE increasingly relies on large-scale 
computational modeling and simulations, as well as 
on capturing data from scientific instruments, and 
then analyzing, transmitting, storing, and sharing that 
data all within computational environments. Much 
of that research has results that are purely scientific, 
while some of the research findings, including those 
from computational results, can also inform national 
security and policy decisions. Moreover, the areas 
for which DOE is uniquely responsible, including 
energy, environment, and nuclear energy, all directly 
affect our nation’s future economic prosperity and 
security. And in each case, scientific computing 
integrity is extremely important. ... it is vital that 
the results can ultimately be trusted ... the integrity 
of the computations and the data used to achieve 
these results is critical to provide confidence in any 
resulting policy decisions, as well as ensuring the 
safety of DOE’s own scientific instrumentation and 
infrastructure” [1].

This report builds on our previous report [1] with more 
specific details, aiming to define a long-term, 10- to +20-year 
fundamental basic research and development strategy and 
roadmap regarding scientific computing integrity facing future 
high performance computing (HPC) and scientific user facilities. 

Specifically, this report describes potential research paths in three 
central areas: Trustworthy Supercomputing, Extreme-Scale Data, 
Knowledge, and Analytics for Understanding and Improving 
Cybersecurity, and Trust within High-end Networking and Data 
Centers. Within each of the three topic areas the report then 
addresses key technical areas. For each technical area, the report 
outlines the scope of the topic and potential milestones associated 
with research progress toward answering key questions raised in 
the topic.
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More specifically, the workshop participants envision a future 
in science in the United States in which failures of scientific 
computing integrity in extreme-scale scientific computing 
systems, due to accident, natural fault, or malice, are as unlikely 
as one can expect computing failures to be within other high-
assurance environments, such as computerized elements of 
military, avionics, and space systems [2,3]. The participants 
envision systems to support such a vision that leverage assured 
“co-designed” hardware and software computing, networking, 
and storage components. As many such components as possible 
should be a part of a process [4] and lifecycle in which they are 
specified, designed, implemented, configured, maintained, and 
operated leveraging foundational security principles [5 §I–VI]; 
with high-assurance methods [5 §VI, 6 Ch. 25–26, 7, 8]. Finally, 
when the resulting system is used for scientific computing 
purposes, deviations from scientific computing integrity should 
be “ideally provable, often measurable; and at minimum, possible 
to order and bound” [9].

Sometimes, methods for proving or measuring scientific 
computing integrity may not be not possible, because techniques 
are intractable or because using them causes undue interference 
with to the primary mission of producing science, such as 
those that generate excessively high energy consumption or 
computational performance overhead. In such cases, it is at least 
imperative that failure modes, including their possible causes and 
effects, are well understood, documented, and accounted for in 
hardware and software engineering design and implementation, 
and system operation. 

Extreme-scale scientific computing systems must also contain 
means of generating evidence—highly detailed, and likely 
extremely high volume provenance data—to describe all aspects 
of the system pertaining to scientific computing integrity. 
Combined with new data ingress and storage systems that can 
capture and store both real-time computation data and also this 
provenance data, novel computing methods must be developed 
to analyze this vast amount of data and either demonstrate the 
integrity of scientific computing or provide indication of how 
integrity has failed and what the source of that failure was. 

We envision that such systems must also enable and provide 
means for reproducibility of scientific computing results, taking 
all levels of the hardware and software stack into mind to 
account for subtle variations, such as compiler configuration, 
chip design, or some sort of non-determinism, that could affect 
scientific computing results. 

Finally we envision an operational environment in which domain 
scientists are able to develop the software needed to perform 
scientific computing and system and network administrators are 
able to operate, configure, and maintain computing, storage, and 
network systems that contain as many of the same processes 
that support high-assurance scientific computing integrity as the 
development of these computing systems did to begin with.

Accomplishing all of these goals will not be easy. While at 
first glance much of it may “simply” seem like engineering, 
considerable research is necessary in numerous computer 
science, mathematics, engineering, and interdisciplinary 
domains. It is also vitally important to research methods for 
addressing competing and potentially contradicting elements 
to system design, including, first and foremost, maximizing the 
performance of scientific instruments to support its primary 
purpose: conducting science—and, not just “ordinary science” 
but extremely large-scale science of the type envisioned 
originally by Professor Ernest Orlando Lawrence using large 
teams of domain scientists and massive arrays of network-
connected scientific instruments and other computational 
machinery. To this end, the workshop participants stress that 
scientific computing integrity should be viewed as an enabling 
technology, a core part of the scientific method, and a vital 
component of DOE’s modern, open science. It should not, as 
computer security is often implemented, be implemented in a 
way that interferes with the science that must be performed. 
Other elements clearly include development cost, system 
usability, and energy needed to power extreme-scale scientific 
computing systems and any supporting systems performing 
analytics on high-resolution provenance data.

With all of these long-term goals in mind, the resulting product 
of the workshop, we believe, is a set of potential milestones and 
metrics that form a cohesive long-term research path of the type 
necessary to address needs surrounding scientific computing 
integrity at extreme-scale. This document describes that research 
roadmap and potential ideas for consideration. 
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1. Introduction

1.1 Problem Summary

“The Department of Energy (DOE) has the 
responsibility to address the energy, environmental, 
and nuclear security challenges that face our nation. 
Much of DOE’s enterprise involves distributed, 
collaborative teams; a significant fraction involves 
‘open science,’ which depends on multi-institutional, 
often international collaborations that must access 
or share significant amounts of information between 
institutions and over networks around the world. 
The mission of the Office of Science is the delivery 
of scientific discoveries and major scientific tools 
to transform our understanding of nature and to 
advance the energy, economic, and national security 
of the United States. The ability of DOE to execute 
its responsibilities depends critically on its ability to 
assure the integrity and availability of scientific user 
facilities and computer systems, and of the scientific, 
engineering, and operational software and data that 
support its mission” [1].

Computer security is a significant challenge in virtually every 
place in which computers are used. Scientific, high-performance 
computing environments are no exception—security issues and 
incidents have occurred in such environments at least since the 
1980s [10, 11]. In some sectors of society, a particularly valuable 
solution may simply be to disconnect critical systems from the 
Internet or perhaps any network [12]. But the requirements 
of open and international scientific computing environments 
preclude such a solution. Indeed, any such solution must support 
the fundamental open, international scientific functions required 
by scientific computing challenges. Furthermore, scientific 
computing integrity solutions must address failures not only 
from malicious actors—though such actors, including even in 
the context of hardware supply chain, software supply chain, 
and insider threats must be considered—but also includes faults 
involving flaws and bugs in the hardware, core software, operating 
system, libraries, compilers [13], and HPC infrastructure design 
and implementation errors. It must even include user error, errors 
in scientific codes and workflows, and natural faults such as bit 
flips due to cosmic rays or hardware component failures. Finally, 
solutions must also simply be usable by domain scientists and 
ultimately enable high-quality, reproducible science—a simple 
sounding term but a concept ultimately devilishly difficult—using 
the necessary computing machinery. Thus, these constraints help 
to define necessary research.

The contributors to the first DOE ASCR Cybersecurity for 
Scientific Computing Integrity workshop in January 2015 
defined a key problem and recommended a solution:

“The large-scale science and energy research 
funded by DOE increasingly relies on large-scale 
computational modeling and simulations, as well as 
on capturing data from scientific instruments, and then 
analyzing, transmitting, storing, and sharing that data 
all within computational environments. Much of that 
research has results that are purely scientific, while 
some of the research findings, including those from 
computational results, can also inform national policy 
decisions. Moreover, the areas for which DOE is 
uniquely responsible, including energy, environment, 
and nuclear energy, all directly affect our nation’s 
future security and prosperity. And in each case, 
scientific computing integrity assurance is extremely 
important. ... it is vital that the results can ultimately 
be trusted ... the integrity of the computations and 
the data used to achieve these results is critical to 
provide confidence in any resulting policy decisions, 
as well as ensuring the safety of DOE’s own scientific 
instrumentation infrastructure. ...

“DOE science relies on both commodity and exotic 
technologies, including software, data, and hardware 
computing assets that have risk profiles that are 
poorly understood by the research and computer 
security communities. Even when DOE science 
uses commercial off-the-shelf (COTS) computing 
infrastructure, the science being supported has 
workflows often not seen elsewhere in the computing 
community, meaning that the consequences of 
security risks to scientific computing integrity 
are not well understood. Research is needed into 
security techniques appropriate for open scientific 
environments” [1].

That problem and the high-level solution from the first workshop 
was discussed by the contributors to the second DOE ASCR 
Cybersecurity for Scientific Computing Integrity workshop  
June 2-3, 2015. 

The aim of this report, derived from discussions at the 
second workshop, is to define a long-term, 10- to +20-year 
fundamental basic research and development strategy and 
roadmap to address scientific computing integrity issues facing 
future high performance computing (HPC) and scientific user 
facilities, leveraging the findings discussed at the first ASCR 
Cybersecurity Workshop in January 2015, and presented in the 
subsequent report [1].

This report examines the research, design, development, 
implementation, deployment and application of computer 
security for scientific computing integrity technologies from data 
produced in experiments, simulations, emulations, transmitted, 
or at rest from sources or data centers. While excellent work 
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has been done on models and architectures for  extreme-scale 
computing, much of this work has not addressed security and 
scientific computing integrity issues directly. Research and 
development into secure architectures and related analytics that 
integrate both security and integrity into an effective co-design 
process is very much needed, which is what this report attempts 
to describe.

1.2 Goals, Findings, and Objectives:

In our original report [1] from January 2015, a set of high-
level recommendations were made about what the research 
and development needs are in order to enable scientific 
computing integrity and computer security, namely, “by 
achieving repeatable, reproducible workflows that produce 
computing results whose process, origin, and data provenance 
is understood, whose correctness is understood, and for which 
uncertainty estimates are provided” [1].

To address those recommendations with a more specific 
roadmap, this report describes research paths in three central 
areas: Trustworthy Supercomputing; Extreme-Scale Data, 
Knowledge, and Analytics for Understanding and Improving 
Cybersecurity; and Trust within High-end Networking and 
Data Centers. Within each of the three topic areas the report 
then addresses key technical areas. For each technical area, the 
report outlines the scope of the topic and potential milestones 
associated with research progress toward answering key 
questions raised in the topic, and means for measuring and 
evaluating success toward accomplishing those milestones.

In addition, the workshop contributors envision a future in 
science in the United States in which failures of scientific 
computing integrity in extreme-scale systems, due to 
accident, natural fault, or malice are as unlikely as one can 
expect computing failures to be within other high assurance 
environments, such as computerized elements of military, 
avionics, and space systems [2,3]. We envision systems to 
support such a vision that leverage assured “co-designed” 
hardware and software, networks, and storage systems. As many 
such components as possible should be a part of a process [4] 
and lifecycle in which they are specified, designed, implemented, 
configured, maintained, and operated leveraging foundational 
security principles [5 §I–VI] with high-assurance methods [5 
§VI, 6 Ch. 25–26, 7, 8]. Finally, when such future systems are 
used for scientific computing purposes, any result deviations 
should be “ideally provable, often measurable; and at minimum, 
possible to order and bound” [9].

And, where such methods are not possible, due to intractable 
reasons or those contrary to the primary mission of producing 
science, such as those relating to energy consumption or 
computational performance overhead, or failure modes 
including their possible causes and effects are well understood, 

documented, and accounted for in hardware and software 
engineering design and implementation, and system operation. 

Extreme-scale scientific computing systems must also contain 
means of generating evidence—highly detailed and likely 
extremely high-volume provenance data—to describe all aspects 
of the system pertaining to scientific computing integrity or its 
failure. Combined with new data ingress and storage systems 
that can capture and store the required provenance data, novel 
computing methods must be research and developed to analyze 
the vast amount of data and either demonstrate the integrity 
of scientific computing or provide effective indication of how 
integrity has failed and what were the source(s) of failures. 

We envision that such systems must also enable and provide 
means for reproducibility of scientific computing results, taking 
all levels of the hardware and software stack into mind to 
account for subtle variations, such as compiler configuration, 
chip design, or some sort of non-determinism that could affect 
scientific computing results. 

Finally, we envision an operational environment in which domain 
scientists are able to develop the software needed to perform  
extreme-scale scientific computing, and system and network 
administrators are able to operate, configure, and maintain 
computing systems, that contain as many the same processes 
that support high assurance scientific computing integrity as the 
development of these computing systems did to begin with.

Accomplishing all of these goals will not be easy. While at 
first glance much of it may “simply” seem like engineering, 
considerable research is necessary in numerous computer science, 
mathematics, engineering, and interdisciplinary domains. It is 
also vitally important to research means for addressing competing 
and potentially contradicting elements to system design, 
including, first and foremost, maximizing the performance of 
scientific instruments to support its primary purpose: conducting 
science—and, not just “ordinary science” but extremely large-
scale science of the type envisioned originally by Professor 
Ernest Orlando Lawrence using large teams of domain scientists 
and massive arrays of network-connected scientific instruments 
and other computational machinery. To this end, the workshop 
participants stress that scientific computing integrity should be 
viewed as an enabling technology, a core part of the scientific 
method, and a vital component of DOE’s modern, open science. 
It should not, as computer security is often implemented, be 
implemented in a way that interferes with the science that must 
be performed. Other elements include development cost, system 
usability, and energy needed to power extreme-scale scientific 
computing systems and any supporting systems performing 
analytics on high-resolution provenance data.

This is clearly an ambitious scope, not completely unlike the 
roadmap to build security enhancements into Multics [14, 15, 16, 
17] for the Department of Defense back in the 1960s and 1970s. 
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We also know all too well that there is no “silver bullet” to solve 
these problems [18]. However, we believe it to be substantially 
more tractable than the issues that Multics sought to address, 
given more than 40 years of advances in computer science, 
computational capability [19], and a significantly more narrow 
scope in terms of scientific computing integrity, rather than 
security requirements that must also deeply consider deep issues 
pertaining to military-specific confidentiality needs, or the needs 
of the ordinary Internet more broadly [7, 8, 20, 21]. For example, 
perhaps not all computational components within extreme-scale 
scientific computing require general-purpose computing systems 
[9, 20, 21, 22, 23] and therefore carry with them their complexity 
and, consequently, their challenge of analyzing their properties 
relating to security and integrity. Other examples of highly assured 
systems, both old [24] and new [25], though smaller in scope, give 
hope for the prospects of future success with larger systems, as 
well. However, even research that enables nominally improved and 
more rigorous standards [26] that enable measurement of scientific 
computing integrity, in the context of scientific computing 
integrity, would be a substantial improvement over the current state 
of practice in high-performance, scientific computing.

1.3 Metrics of Success

As described in the previous report:

“Success in scientific computing integrity would ideally 
be to have provably secure extreme-scale computing 
systems and workflows. In the absence of provably 
secure systems, success would entail having extreme-
scale systems with some provably secure components 
and reliable, useful data describing the events taking 
place in those systems, that, with the proper analytics, 
can accurately characterize security-related events that 
affect scientific computing integrity” [1].

We note that overarching all of the technical research areas 
that we discuss in this document is a need to understand 
key scientific computing integrity properties for numerous 
applications of scientific computing in order to better 
characterize the constraints and need of potential solutions, 
and subsequently, metrics with which to measure success 
toward those goals. This is important to answer so that new 
architectural developments can be assessed. For example, there 
are a number of generally accepted key performance factors and 
metrics for HPC systems: power consumption, message-passing 
latency, floating-point operations per second (FLOPS) counts, 
cache coherency, addressability, etc. 

Ultimately, the community must develop additional and 
effective scientific computing integrity-focused metrics that 
can be used to measure progress, to drive new innovation, and 
to assess the impact of new architectural changes on scientific 
computing integrity. This will be an ongoing aspect of all 

research in this effort, but we propose some high-level metrics 
throughout this document as examples.

1.4 Definitions and Organization  
of this Report

In this report, we describe potential research paths in three 
central areas, mapping to the topics of the breakout groups 
that were used at the June 2015 workshop. Those areas are: 
Trustworthy Supercomputing; Extreme-Scale Data, Knowledge, 
and Analytics for Understanding and Improving Cybersecurity; 
and Trust within High-end Networking and Data Centers. We 
note that there are overlapping aspects as well as symbiotic 
aspects between all three of these areas. This is both inevitable 
and intentional as the overlap suggests natural places where 
cross-disciplinary teams will need to work together to understand 
common problems and challenges and solve them together.

We largely define the scope of the Trustworthy Supercomputing 
topic in terms of the ways in which hardware and software 
need to be re-designed or enhanced, partially or fully, to assure 
and measure scientific computing integrity. This also includes 
the end-to-end nature of scientific computing workflows, as 
it includes the need to capture information from a variety of 
computing systems, and thus suggests re-design of any such 
system participating in that workflow.

We largely define the scope of the Extreme-Scale Data, 
Knowledge, and Analytics for Understanding and Improving 
Cybersecurity topic as a combination of: (1) the analysis of 
scientific computing integrity-related provenance data produced 
through experimental sources or computing systems, (2) the design 
and development of systems capable of collecting, representing, 
and analyzing that data, and (3) the simulation of supercomputers 
and scientific computing workflows.

Our definition of the scope of the Trust within High-end 
Networking and Data Centers topic is partially centered 
around the partial or full re-design and/or improvement of core 
networking protocols, systems, and technologies (separate from 
HPC), and also partially centered around the ways in which 
operational security personnel within data centers interface 
with computer systems, and thus the way in which systems 
are configured over time, and the way that security alerts and 
incidents are responded to.

Within each of the three topic areas we then address key technical 
areas. For each, we outline the scope of the technical area and 
potential milestones associated with each area.

At the end of the report we outline a few high level ideas on 
measuring progress down the path to successful research in  
this area.
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2. Research Paths 
for Trustworthy 
Supercomputing

The first workshop report indicated a need to: 

Enhance the “trustworthiness” of DOE supercomputers  
by developing:

• means to build solutions for assuring scientific computing 
into the design of supercomputers;

• robust means for evaluating ways in which a system 
composed of interconnected, networked elements can affect 
scientific computing integrity;

• precise and robust means of capturing the right data to 
provide concrete evidence of scientific computing integrity 
such that reproducibility is possible and also so that integrity 
can be verified when it is maintained or diagnosed when  
it cannot;

• metrics for quantifying the trustworthiness of scientific 
data, capturing the likelihood and potential magnitude of 
errors due to uncertain inputs, incomplete models, incorrect 
implementations, silent hardware errors, and malicious 
tampering; and

• significantly improved means for balancing the assurance 
of scientific computing integrity between hardware and 
software to best monitor and maintain integrity while also 
minimally impacting the throughput of scientific research [1].

Given these recommendations, technical research areas 
appropriate for the Trustworthy Supercomputing R&D program 
are ones that bridge several technical domains. This is due to 
the recommendation that hardware and software be co-designed 
as much as possible to maximize the ability to perform key 
scientific computing integrity functions early on and in the 
most appropriate layer(s) of the hardware/software stack. In 
this section, we discuss aspects of this co-design that could be 
examined and a set of potential milestones intended to drive and 
measure progress toward scientific computing integrity goals.

2.1 Foundations of High-Integrity, 
Trustworthy Supercomputing 

Today, computer users must place complete trust in the hardware 
and software stack of a computer, the system administrators that 
operate the computer, and typically anybody who has physical 
access to the computer. Similarly, an HPC scientific computing 
user is required to also implicitly trust the hardware, software 
libraries and codes they employ for mathematics, physics, output, 
and parallel and distributed programming.

In order to assure such systems and validate such presumptive 
trust, we seek a system, bootstrapped from first principles that are 

“ideally provable, often measurable; and at minimum, possible to 
order and bound” [9].

All scientific computing integrity rests on proper specification 
of the behavior of each component of the computing system, 
collectively and independently, as well as proper specification of 
the science, the scientific computation, and the tolerable variation 
in scientific computing integrity. Suitable specification languages 
are needed to enable proper and as complete and granular of 
specification and subsequent analysis of that specification 
as possible. Such languages must be analyzable by both the 
humans who create and review those specifications, as well as 
by the computers that must use automated algorithms to analyze 
specifications for internal consistency, adherence to fundamental 
properties, and avoidance of key design flaws.

Implementation is commonly separate from specification. In 
order to verify implementation, programming languages that 
are easier to verify are needed given the state space explosion 
problem of model checking and the computability limitations 
of automated theorem proving. Such languages should also 
aim to reduce the most pernicious programmer errors resulting 
in vulnerabilities and other implementation bugs in scientific 
parallel software. [30, 31] Such languages may even have 
reduced flexibility and functionality as a consequence of 
increased security without compromising scientific computing 
integrity. However, of particular importance to scientific 
computing integrity, these languages that reduce scientific 
computing integrity failures must not compromise the primary 
goals of computational throughput required in extreme-scale, 
parallel, scientific computing environments. Finally, such 
specification and programming languages must easily integrate 
with scientific workflow languages, including expected  
inputs/outputs.

However, as mentioned earlier, implementations are often 
separate from specifications. Thus, a final key property is 
that specification and programming languages must enable 
specifications, source code, and system configurations to be 
mapped to each other to verify consistency between the three.

That said, not all system components will be practical to 
formally verify or build in a formally verifiable way, due to cost, 
performance overhead, energy consumption, etc. Indeed, there 
are some fundamental tradeoffs that must be investigated to make 
decisions about the willingness of scientists to trust hardware and 
software components within extreme-scale HPC systems. Thus, a 
key question that reflects more near-term research might be: What 
system components can we really treat in a high assurance way, 
and if we did treat those components in a high assurance way, 
would that make a difference to scientific computing integrity?

For example, vulnerabilities in hardware designs such as the 
possibility of malicious circuitry being inserted by a chip 
designer, design tool, or at a fabrication facility have been 
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identified. To what degree should scientists trust that such 
extreme-scale HPC systems are absent of such vulnerabilities? 
If hardware cannot be trusted, techniques to mitigate the impact 
of embedded malicious logic should be explored to determine 
its utility in the context of extreme-scale scientific computing 
systems. On the other hand, if hardware can be trusted, it can also 
be used to provide trust anchors to increase the trustworthiness of 
software or to improve the efficiency of techniques that improve 
the integrity of software. Current examples of leveraging trusted 
hardware include encryption keys, trusted boot, and instruction 
set support for encryption and memory management support 
for virtualization and/or container domains. Potential future 
techniques include (but are not limited to) bounds checking, 
integer overflow exceptions, data tagging and provenance 
tracking, and hardware configuration checking techniques. 
Thus, perhaps a root of trust can be established and chaining 
mechanisms can reliably attest to the bootstrap configuration of 
the full scientific computing software stack. Another potential 
near-term research approach might be to assume the HPC 
hardware is trusted and consider the ways in which such an 
assumption can be leveraged to provide assured scientific 
computing integrity.

A great deal of the work described in this topic area relates 
to high-assurance engineering, and may seem on the surface 
not necessarily to include novel research. However, given the 
overriding specific context of scientific computing integrity, 
numerous open research questions exist, particularly questions 
about the applicability of many assurance techniques in an HPC 
environment and the trade-offs between cost, energy use, and 
performance if the techniques are implemented in extreme-scale 
machines. Research questions go well beyond these, however, 
and include fundamental issues in programing languages, 
compilers, and software engineering, as well. For example, what 
programming language properties and/or advances in compilers 
are needed in order to mitigate state space explosion problems 
when verifying software properties pertaining to scientific 
computing integrity? Or, what verification techniques can 
identify and eliminate properties entirely outside the specification 
(e.g., “weird machines”) that could also impact scientific 
computing integrity? 

In conclusion, we note that a number of these areas may 
represent early goals along the way, concurrent with longer-
term research toward systems more specifically assured for 
scientific computing integrity. We do wish to note in passing, 
however, that looking to the future, neuromorphic and quantum 
computing are two potential future computational paradigms 
that each hold great promise for extreme-scale scientific 
computing. These architectures will need to be followed 
and researched as they become practical and effective. If 
so, scientific computing integrity research will need to be 
conducted on and for these architectures to understand the 
suitability for identifying and solving scientific computing 
integrity challenges particularly.

Potential Milestones

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Identification of what system components can be treated  
in a high assurance way, and the effects on scientific 
computing integrity if we did treat those components in  
a high assurance way.

2. Identification of ways in which hardware roots of trust 
can be bootstrapped and leveraged to provide scientific 
computing integrity assurance, given the assumption of 
trusted HPC hardware.

3. Means of capturing specification (of specific properties) 
explicitly developed to capture scientific specifications, be 
analyzable, and be automatically and formally mapped to  
a programming language to verify correctness.

4. Identification of properties to be specified most relevant  
for HPC applications allowing different communities  
to focus on the specification and verification of those 
identified properties.

 a.  Specification of key scientific drivers, built in  
this paradigm.

 b.  Specification of key system components, built in  
this paradigm.

 c.  Specification of complete scientific workflows, built in 
this paradigm.

5. Programming languages, frameworks, APIs, etc., explicitly 
developed to balance software performance, hardware 
power consumption, ease of use, and verifiability for 
extreme-scale parallel computers.

6. Design and implementation of next-generation operating 
systems that specifically target extreme-scale parallel 
computers consisting of distributed heterogeneous many-
core processors. Inherent mechanisms need to be provided 
by the operating system to allow performance and security 
isolation without sacrificing power efficacy and throughput.

7. Implementation of core components specified, built, and 
verified using new language(s) and/or using diverse, 
redundant components.

8. Dependence graph of the current hardware/software stack 
(all libraries, modules, components, firmware, etc.).

9. End state: Development of a software/hardware architecture 
that provides the necessary primitives and structure to 
enable the full stack of security and integrity measures.

 

2.2 Isolation and Virtual Supercomputers

Much as in traditional computing environments, it is necessary 
in scientific computing to provide assurances that the actions 
of one user (and their software) do not affect the integrity of 
other system users. Memory management units are a classic 
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example of an enforcement mechanism that can be used to 
implement a variety of security and programming models. 
Hardware and software assurance, and co-design as described 
in the previous section, is a solution for this. By leveraging 
those assured components, however, it may be possible to 
increase functionality to create “virtual supercomputers” that are 
provisioned and instantiated for a specific job. This is similar to 
enforcing isolation within traditional dynamic “cloud computing” 
resources, though this concept focuses specifically on scientific, 
extreme-scale computing by providing users with a high-
performance, parallel computing environment complete with 
low-latency, high-performance networks, wide area networks, co-
processors, remote memory access and messaging middleware, 
run-time systems, and application software. Combining these 
properties with security isolation is a co-design challenge that 
builds upon the previous technical area and further requires all 
hardware components and their operating systems or firmware 
to either have high-assurance virtualization capabilities or to be 
assigned in their entirety to a single virtual supercomputer at a 
time and to have a high-assurance “reset” to a known good state  
between users.

There has been significant effort in the area of virtualization 
both in networks and system virtualization to provide isolation 
between users and processes in the area of cloud computing. 
This is currently extended to the network through the use of 
software-defined networking (SDN). The HPC community will 
need to adopt some of these approaches to provide isolation as 
well. Much of the focus of this topic, particularly in the near 
term, might leverage the techniques built as part of the previous 
technical area, although a parallel effort could assume that the 
software will not be secure. Secure software takes time and 
resources, and while new approaches may address these areas 
through the new language development, we will still have some 
remaining amount of legacy code. 

Dynamic provisioning of resources in extreme-scale systems 
brings both new challenges and opportunities with respect 
to scientific computing integrity. For example, it may be 
harder to target a process or job that may be executed on 
resources that are determined dynamically, especially if the 
dynamically provisioned resources can be heterogeneous, 
which provides a sort of obfuscation for potential attackers. 
Additionally, virtualization can improve integrity by 
facilitating checkpointing and providing separation. On the 
other hand, virtualization also requires new techniques for 
certain capabilities, such as how to checkpoint and provide 
live migration for accelerators with separate memory spaces 
and how to share such resources without reducing the integrity 
of scientific computations. Additionally, allowing the use 
of dynamically provisioned resources adds complexity and 
volume to creating logs and performing audits and other sorts 
of monitoring. Finally, as we move toward extreme-scale 
computing, and given the corresponding drastic reductions 
in power consumption that will be required; the trend toward 

combining multiple components within a single component 
is likely to continue, such that it may be more difficult to 
devote an entire node or rack to one process, thus potentially 
increasing the risks for side channel attacks.

Potential Milestones:

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Review existing isolation technologies that could be applied 
toward scientific computing integrity, including indications 
of their efficacy and gaps in existing technologies. Establish 
isolation metrics and performance overhead bounds.

2. Proof-of-concept virtually provisioned HPC “cloud” using 
a combination of efficient hardware support and potentially 
inefficient overlay mechanisms (such as encryption). 
Identifiy technology gaps to be filled to improve security 
and performance.

3. Virtual cluster co-design that provides quantified 
improvements to efficiency and security and includes 
multiple kinds of heterogeneous processing elements and 
considers both hardware and software techniques. This  
must become a sustained effort integrated into other 
 co-design activities.

4. Work on introspection technologies for monitoring scientific 
computing integrity within job enclaves.

2.3  Automated Verification & Testing 
in Extreme-Scale Computing 
Environments

Reference workloads and benchmarks are used to test system 
performance and reliability. Similarly, formal verification has, 
since its inception, tested key properties of software. We lack a 
similar set of automated tests that validate scientific computing 
integrity properties of large, complex systems, as well as the 
ability to formally verify large groups of software and hardware 
components at scale. Existing techniques have limitations even in 
commodity computing, but these techniques need to be scaled to 
large, complex, distributed systems and specific architectures to 
find vulnerabilities and single points of failure, or regressions in 
the security assurances provided by systems.

Model checking has become a well-known approach for the 
automatic verification of program properties. The so called state 
explosion problem presents a significant challenge to model 
checking as the number of different program states can increase 
exponentially in an analysis. If the number of computed states 
exceeds the resource limitations of an analyzer, the desired 
property cannot be proven. Exhaustive analysis methods, 
which investigate all states of an application in some order, 
run out of resources for any system with an infinite number of 
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states. However, abstraction has shown to be a powerful tool 
to ameliorate the state explosion problem. The aim is to only 
inspect parts of the program that suffice to prove the desired set 
of properties. For example, counterexample-guided abstraction 
refinement serves as a concept to generate a coarse model of 
the analyzed program automatically. This allows one to better 
address the resource usage of a verifier, but still can require a 
substantial amount of resources. 

Due to improvements in software verification algorithms, 
combined with increased computing power, verification techniques 
that a decade ago worked only for very simple programs are now 
applicable to real-world programs. In particular, if the national 
labs can utilize their own supercomputers for model checking 
and also use methods for abstraction refinement to address the 
state explosion problem, we can target much larger programs. 
How far can we push verification by utilizing supercomputers? 
If we are truly able to scale verification using supercomputers, it 
may also allow us to check HPC programs before they are run on 
supercomputers to ensure their integrity, similar to how we use 
supercomputers to develop supercomputers. Near-term research 
for verification of scientific software could and should certainly 
address this question for today’s architectures while longer-term 
research should focus on future, extreme-scale architectures. 
Finally, functional testing of patches, updates, etc., could be 
made more rigorous. Could model checking used for this purpose 
identify examples that diverge between the unpatched and patched 
versions, and then more computationally intensive techniques, 
such as symbolic execution, be used to determine the effect of the 
patch or update?

Where programs cannot practically be verified, another 
verification technique might be the use of multi-version 
programming of scientific codes help to audit a scientific 
workflow, based on its inputs and outputs, and configuration for 
security/scientific computing integrity properties. For example, 
multiple versions or vendors of cores, codes, etc., all running in 
parallel could be built and a system bootstrapped from these [9] 
in order to perform the verification on an ongoing basis rather 
than just at compile time. This represents an opportunity for 
near-term research. Longer-term research could focus on the 
application of Byzantine consensus techniques for maintaining 
scientific computing integrity in extreme-scale systems.

Finally, an interesting part of the workshop interaction involved 
discussing the ways in which the scientific peer review and 
validation process, itself, can help discover and correct scientific 
errors. The scientific peer review process has demonstrated 
an ability to differentiate between significant and flawed work 
in the long term, though has been shown to be fairly noisy 
discriminator in the short term. While scientific peer review 
should undoubtedly continue to be a technique used for 
validating scientific programs, it is an open research question 
as to exactly how useful this technique is for assuring scientific 
computing integrity. There are other related, open questions, 

such as “What is known about the time frames necessary 
for one to state with confidence that the peer review/citation 
history is sufficient to conclude something meaningful about 
a particular body of work?” Additionally, how might more 
complete information on the experiments (provided it can be 
delivered in a form that is useable by the review process) help 
improve the efficacy of the peer review process? How do we 
leverage the peer review/scientific self-correcting issue? How 
can we assist the peer review process? Where does peer review 
fail? Does validation of provenance data at various points, such 
as against physics models, conservation laws, and independent 
results also provide useful insight?

In this technical area, we emphasize five, broad categories:

• Development of program verification techniques that can 
meaningfully leverage HPC capabilities to perform the 
verification (e.g., via parallelism).

• Use of diverse redundancy of scientific codes to evaluate 
degree of independence of the system on current systems.

• Large-scale, automated “stress testing” of HPC environments 
(particularly inputs to HPC programs) to evaluate accuracy.

• Formal verification, including model checking, theorem 
proving, and fault tree analysis at very large scales (and 
leveraging HPC platforms themselves to do so), including 
model checking of entire scientific workflows, including 
HPC hardware, systems software, scientific instruments, 
and network systems. This will help to find single points of 
failure and thus the places that are the most vulnerable to 
integrity failure.

• Analysis of application of the scientific method/process 
itself to evaluating scientific computing integrity failures.

We note that this technical area leverages the language and 
compiler design elements from the first technical area.

Potential Milestones

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Fault tree analysis for a set of key  extreme-scale science 
drivers for a preliminary  extreme-scale system.

2. Experimental analysis of multi-version programmed 
science applications that demonstrate deviations in 
scientific computing integrity for a set of key extreme-
scale science drivers.

3. Development of models of how accurate the scientific peer 
review/citation impact measurements (e.g., impact factor, 
h-index) are at identifying flawed experiments at various  
time scales.

4. Methodology for long-term evaluation of bodies of  
work taking into account automated verification, 
experimental replication, and analysis of the response  
of the scientific community.
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5. Method to develop and update necessary specifications 
from the imperfect starting requirements with traceability 
supported (so code does not drift from specifications without 
the specification also changing) via automated tools.

6. Scalable formal evaluation of sets of individual but 
significantly large components (whole OS, large science apps, 
individual hardware components, etc.). This also requires that 
components and their interfaces are all clearly defined.

7. Ability to derive composable specifications from 
components and to reason about their potential and actual 
compositions, enabling the ability to reason about the 
interaction of large sets of such components.

8. Implementations of diverse, redundant components of key 
system components at single points of failure based on fault-
tree analysis (FTA).

9. Characterization of key elements of the value of the 
scientific peer review and evaluation process to correct 
errors, including indications of time frames, efficacy, means 
for improvement, failure modes, etc.

10. End State: ability to perform parallel, scalable formal 
verification (model checking, automated theorem proving, 
and fault tree analysis) across the entire hardware/software/
scientific stack.

2.4  Scientific Computing Evidence 
Records—Provenance of  
Extreme-Scale Scientific Workflows

Not all properties of scientific software can be proven and 
evaluated at compile time. Some things must be done at runtime 
for computability, cost, or efficiency reasons. Moreover, we must 
capture not only elements that cannot be proven but elements 
that provide solid evidence of integrity or lack thereof, as well as 
scientific computing reproducibility. Measurement and recording 
of the context in which results were achieved is vital to the 
latter. This suggests data capture and analysis for provenance 
and configuration in either near-real time, post hoc, or both. 
Co-design could include several layers of the software-hardware 
stack working in concert to do this. Given this, however, what 
log and configuration data should be captured, and where in the 
process to provide evidence of scientific computing integrity? 
What mechanisms could be useful to enable data to be “born” 
with digital signatures from the outset? How do we specify and 
analyze a scientific workflow (inputs/outputs) configuration for 
security/scientific computing integrity? How do we perform 
ultra-high resolution capture, reproducibility, and analysis of 
entire, distributed hardware and software environments?

A research program that builds on the results and output of 
existing scientific workflows to help influence or develop 
cybersecurity-minded workflows that target trusted computers 
that can exploit heterogeneous hardware and improve or ensure 

scientific computing integrity could make a significant impact on 
the productivity of trusted supercomputing in the extreme-scale 
computing era while improving the integrity of science produced 
on those platforms.

This research area, and its adaptation to existing systems, 
has challenges across numerous fronts, including impact on 
computational efficiency, hardware power use, and insight into 
scientific computing integrity. For example, audit data is often 
quite opaque—methods to reduce the semantic gap between the 
provenance data and the executing workflows should be explored 
and incorporated directly into the software stack. New security 
features needed at the runtime layer could inform a new OS 
design and in turn require changes to the compiler, linker, and 
even the hardware to accommodate these features. In parallel, 
numerous open research questions involving extreme-scale 
architecture arise as well, such as “With the colossal number of 
processors available, how can spare cores be used to run domain-
specific data checking algorithms?” and “Are low-impact, out-
of-band data operations for integrity checking or provenance data 
collection purposes practical on  extreme-scale systems?”

The development and exploitation of scientific workflows may 
provide the opportunity to address the two extreme-scale scientific 
computing challenges of how to improve programmability of 
complex heterogeneous architectures and scientific computing 
integrity. Because workflows often implement restricted or 
specialized computational models, it becomes more feasible to 
perform analysis on them than is possible with more general-
purpose computing. Such analysis can be used to enable 
reproducible scientific computing, to optimize for performance, 
generate code that targets heterogeneous computing elements, and 
to check for scientific computing integrity. 

Potential Milestones:

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Working with domain scientists, identify reproducible 
qualities of key scientific drivers, including gap analysis of 
existing workflow tools, to capture these qualities.

2. Identification of minimal information necessary to 
reproduce scientific results. 

3. Perhaps first for software configuration, then for  
hardware configuration. 

4. Development of capabilities (hardware and software) with 
acceptable performance impact to capture and store the 
necessary runtime and state information.

a. Perhaps first for software configuration, and scientific 
workflow components, and then for hardware.

5. Analysis capabilities to prove the source of failures or  
the absence of errors in the face of claims, evidence,  
or lack thereof.
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6. Human factors experiments to determine how provenance 
information can best be useful to the peer review process 
specifically and the scientific method more broadly.

3. Research Path for 
Extreme-Scale Intelligent 
Data, Analytics, and 
Knowledge (ESI-DAK)

Systems and techniques will need to be developed to autonomously 
and intelligently capture, analyze, and correlate actionable 
information from extremely high volumes of provenance 
information and other data related to scientific computing integrity 
to provide supportive and decisive evidence about scientific 
computing integrity—even in high assurance systems [32]—or 
determine where and how it has failed. This also includes the end-
to-end nature of scientific computing workflows mentioned earlier. 
The scope of the Extreme-Scale Data, Knowledge, and Analytics 
for Understanding and Improving Cybersecurity topic area is 
defined as a combination of: (1) the design and development 
of systems capable of collecting, representing, correlating, and 
analyzing massive amounts of data related to scientific computing 
integrity assurance; and (2) the simulation of supercomputers 
and scientific computing workflows to assess risks and explore 
mitigation strategies, including the need to examine the real-time 
control flow of the software itself. This requires the ability to 
autonomously and dynamically analyze running software, and to 
detect potential threats within very large simulation codes during 
the computing phase.

The January 2015 ASCR Cybersecurity for Scientific Computing 
Integrity report [1] recommended: 

Research and develop means to collect extreme-scale data 
and knowledge, and develop and apply analytics in order to 
understand and improve scientific computing integrity and 
computer security by:

1. developing an analysis framework capable of collecting 
scientific computing integrity data at an unprecedented scale 
from multiple sources that together represent the system 
under study to enable adaptive, streaming analysis for 
monitoring and maintaining scientific computing integrity;

2. developing means of learning and maintaining 
interdependent causal models of the scientific computation, 
exascale system, and computer security in real-time to 
enable better, faster recovery to reduce disruptions to 
scientists’ efforts;

3. developing capabilities to model, quantify, and manage 
exascale performance to allow exascale computing users 
and system operators to effectively manage the tradeoffs 
between scientific throughput and scientific computing 
integrity performance; and

4. developing new methods for meaningful risk measures and 
threat measures of HPC integrity. 

Most notable among these recommendations is the emphasis 
on real-time, in situ analysis of extremely large volumes of 
scientific computing integrity and provenance data. This is due 
to the fact that monitoring of  extreme-scale-class systems will 
generate extremely large amounts of data which cannot easily 
be stored offline for later analysis. This is particularly applicable 
to monitoring HPC systems for executing code integrity, where 
it simply may not be viable to store all the relevant application-
level monitoring data. Thus, analysis will need to be performed 
in situ and in real-time. This means that the methods will need to 
be extremely fast with high throughput, while retaining accuracy, 
and being sufficiently lightweight to not have an adverse impact 
on the scientific computation being monitored. In contrast, 
most current machine learning techniques are very heavyweight 
and thus not suitable for this problem. Substantial research is 
needed in statistical and machine learning approaches that are 
sufficiently lightweight to deal with high-volume, real-time 
streaming data, as well as the analytic infrastructure surrounding 
those learning approaches. In particular, the focus should be on 
the domain of scientific computing integrity, which should enable 
more tailored approaches. 

We identify three main research areas that address the above 
recommendations as follows:

1. Real-Time, In Situ, Scalable Analytics, including Machine 
Learning and Neuromorphic Computing Approaches, 
combining recommendations 1, 2, 3, and 4.

2. System Metrics and Simulations, combining 
recommendations 3 and 4.

3.1  Real-Time, In Situ, Scalable  
Analytics Framework

A key research area involves understanding how to develop 
an analysis framework capable of detecting abnormalities and 
root causes of loss of scientific computing integrity, using data 
from multiple sources that collectively represent the system 
under study. Such sources include data or data products of the 
scientific computation itself; cryptographic hashes, checksums, 
or other representations of that data; data about the state 
of other activities transpiring on the system and network; 
and extremely fine-grained provenance data containing 
representations of hardware and software used, actions within 
the scientific workflow, effects of system and network behavior 
on the scientific computation or its output, non-deterministic 
events, and more. As we discuss in the next section, scientific 
computing integrity-related data will also need to compare these 
analyses with the outputs from various simulations.
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Given the massive amounts of data produced by an HPC 
system, it is likely not feasible to store all of the information 
for later analysis. Compounding the problem, the velocity and 
volume of data will continue to increase at prodigious rates. 
Given this, while data collection and management approaches 
exist in other ASCR programs, this workshop, as well as the 
recent machine learning workshop [29], recommended that new 
techniques be developed to focus specifically on data collection 
and management techniques and analytic methods that may be 
specific to the challenges involved in collecting and analyzing 
data needed to prove scientific computing integrity or determine 
where and how it has failed.

Extreme-Scale Scientific Computing Integrity and 
Provenance Data Collection and Representation: As a first 
step, a capability is needed to collect and represent scientific 
computing integrity data in situ and at an unprecedented scale. 
This data will be from multiple sources, and collectively will 
represent the  extreme-scale computing systems under study 
to enable analysis for monitoring and maintaining scientific 
computing integrity, including reasoning about causes of integrity 
failures. New data representation formats that are able to work 
with a broad range of data formats, in very high volumes and 
with very fast access times, may also need to be developed. 
These representations will also have to potentially capture vital 
temporal relationships that might illuminate key distinctions 
between one computation and another, due to non-deterministic 
concurrency differences, for example.

Extreme-Scale Scientific Computing Integrity and 
Provenance Data Analytics: Beyond means of collecting and 
storing integrity-related and other provenance data, we must 
develop very fast ways to analyze data for integrity-related 
problems, detect when those problems occur, and perform 
real-time responses to ameliorate or limit integrity issues where 
feasible. Thus, analytics must also provide an interpretation of the 
semantic meaning of the provenance data such that anomalies are 
actionable by either human operators, automated systems, or some 
combination of the two. To accomplish all this, new extreme-scale 
statistical, machine learning, and graph-theoretic techniques are 
likely required. Given the limited ability to store massive volumes 
of scientific computing integrity and provenance data, analysis will 
also need to be performed on the fly, in situ, with near-linear time 
complexity for real-time performance. 

Data Reduction: Given the sheer volumes of data generated as 
part of scientific computing, and also specifically collected as 
required for provenance analysis, we recommend developing 
methods to quickly and accurately parse log data separating the 
signal from the noise. A major problem with large log data is 
the need to clean the data and then fuse the data based on time 
or some other feature. Given the complexities of  extreme-scale 
HPC, knowing which data is relevant to the scientific computing 
integrity, a priori, is a research challenge since some data will 
inevitably need to be discarded. For example, when can one throw 

out sensor data after analyzing it, given that a sensor itself may 
be faulty? Despite this significant challenge, to accomplish this 
means that either methods for real-time analysis of the data will 
need to be developed, or alternatively, adaptive sampling methods 
would be needed to quickly expand and steer the sampling of 
data when a loss of scientific computing integrity is identified 
or suspected. Research should certainly focus on interpretable 
dimensionality reduction methods, as well as methods to identify 
recurrent patterns that represent normal system behavior as 
opposed to abnormal behavior. Further, research in extreme-scale 
data fusion and reduction as they relate to scientific computing 
integrity provenance data are likely to be useful.

Statistics and Machine Learning: Real-time anomaly detection 
tools for massive streaming data that correspond to a mixture 
of scientific computations, byproducts of those computations, 
security-related logs to HPC machines, sensor data and system-
logs from HPC systems, as well as outputs of in situ data analysis 
from the simulation to detect malicious or unusual behavior, are 
necessary. This requires anomaly detection that can work with 
different forms, modalities, and fidelities of data from numerous 
sources (simulation, instrumentation of HPC, and logs). Extreme-
scale parallelism must be fully exploited in both model building 
and model querying. Additionally, there need to be new methods 
developed for rule-based statistical methods, outlier detection, and 
probabilistic models. Additionally, we note that the data produced 
by  extreme-scale systems will hold both spatial and temporal 
locality. Since deep learning methods have excelled in applications 
that exhibit these characteristics (e.g., image classification 
and speech recognition), deep learning methods should be 
developed to identify malicious action within these extreme-scale 
systems. Developing such a system will require addressing data 
management, data selection, and training method challenges 
resulting both from the size and unique characteristics of the data. 
Possible uses for these models could be anomaly detection, attack 
recognition, and generating compressed representations of the data.

Graph Analytics: Computer security data, and therefore 
likely also scientific computing integrity provenance data, 
typically represents highly connected data. One way to capture 
interdependencies between security-relevant events is through 
a graph. Storing data in the form of graphs will enable efficient 
querying. However, in the context of extreme scale, these graphs 
will become unwieldy and will need to be stored in a way that is 
amenable to different types of analysis. Data representations for 
scientific computing integrity would require graph models that 
are far more complex than what has been done before. One could 
envision a case where data from multiple sources, applications, 
system sensors and users all being represented, streaming in and 
being analyzed at the same time. The data structures needed for 
such a model have to be dynamic, scalable, and able to handle 
multiple, different attributes on vertices and edges. Graph-based 
methods for this data must also take into account the topology of 
the (event) network, which is complementary to many statistical 
learning-based methods that assume independent and identical 
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distribution of events. As with statistical learning, extreme-scale 
parallelism has to be fully exploited in both model building and 
model querying for graphs as well.

Graph models have traditionally been applied to a variety of 
applications such as scientific simulations, representing node 
architecture of supercomputers, social interaction, and road 
networks. Traditionally, in all of these problems, the graphs 
are treated as representation of static data. With the right data 
structures, graph-based anomaly detection and pattern detection 
will lend information on the integrity of the scientific data in a 
scalable manner.

Graph models of streaming data are interesting because they 
support a compact, discrete representation and can be used to 
model behavioral features associated with computer security 
threats. Dynamic graph models provide a promising approach 
for modeling data movement, network traffic, and application 
interactions in  extreme-scale systems. Research challenges 
include (a) developing infinite-stream streaming algorithms 
(which must analyze data in a single pass), (b) storing partial 
patterns to efficiently support complex pattern matching, and  
(c) co-design of extreme-scale systems to support scalable 
streaming techniques (including both custom hardware and 
system software).

Finally, as mentioned earlier, real-time scientific computing 
integrity analytics will be required not only to process data from 
extreme-scale computations but also from simulations so that 
the results can be compared. And the scale of data from extreme-
scale scientific computing simulations is likely to be massive. 
Lightweight, application-specific graph models are needed that 
can be coupled with extreme-scale systems in situ or ex situ 
analytics for clustering and inference problems for pattern and 
anomaly detection. Data at this scale could also be compressed or 
sampled. For example, sketching based on sampling and random 
projections has been very useful in linear algebra and could help 
reduce the scale of data in memory and/or reduce the cost of the 
analytics. Techniques such as linear algebra-based graph analysis 
tools and partitioning tools for sparse, irregular, temporal data 
will play an important role as well. 

Integrity Data Analytics with Adversarial Robustness: 
Compounding the issue of anomaly detection is the adversary 
who understands the analytics and may seek to subvert our 
analyses. Specifically, our adversaries may have the knowledge 
and know-how to manipulate our analyses to evade detection 
of malicious activity or, potentially worse, to waste valuable 
human resources by causing false alarms that an analyst must 
investigate. For these reasons, “adversarial robustness” of the 
methods is a crucial feature because good intruders have tools to 
blend in as a regular user.

Current and Future HPC Architectures: The analysis of large 
sets of scientific computing integrity data can and should be 

analyzed directly on DOE’s various HPC platforms, including 
those at NERSC, ALCF, and OLCF. A current trend in large data 
analytics is the use of specialized hardware such as large shared 
memory computers and/or systems with large-scale flash-based 
storages. In situ analysis of scientific computing data will require 
scalable data analytics in the supercomputers that are built for 
traditional scientific simulations. Keeping with the trend of the 
predicted extreme-scale hardware, the analytics also have to 
be thread scalable and performance portable for the different 
accelerator hardware in extreme-scale systems. Both scalable 
analytics in HPC platforms and on-node acceleration of these 
analytics are key components of successful analysis of scientific 
computing integrity data.

Potential Milestones

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Methods for performing appropriate data dimensionality 
reduction on scientific computing integrity-relevant 
provenance data.

2. Methods for fusing extreme-scale data of the type and scale 
to collect for scientific computing integrity analysis.

3. Graph-based and statistical/machine-learning techniques that 
capture multimodal data attributes, leverage  extreme-scale 
parallelism, are useful for evaluating scientific computing 
integrity-related data that take into account the topology of 
the (event) network, and present analytic interpretations of 
scientific computing integrity data such that anomalies are 
actionable by human operators.

4. Methods for developing analytic interpretation  
of provenance data so that causes are detectable and 
anomalies are actionable by automated response systems.

5. Statistical, machine learning, and neuromorphic computing-
based detection methods useful for evaluating scientific 
computing integrity-related data robust to adversarial attack.

6. Methods for performing full-stack scientific computing 
integrity data analytics, in situ and in real time on scientific 
computing integrity data.

7. As architectures evolve in the future, statistical, machine 
learning, and graph theoretic methods useful for scientific 
computing integrity that leverage performance of 
neuromorphic and/or quantum computing architectures.

3.2 System Integrity Metrics  
and Simulations

Developing capabilities to model, quantify, and manage  extreme-
scale performance to allow  extreme-scale computing users and 
system operators to effectively manage the tradeoffs between 
scientific throughput and scientific computing integrity is a 
vital but complex research problem. We therefore recommend 
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development of metrics and models to understand risk and 
the relationship between computer performance and scientific 
computing integrity. Proving the complete integrity of a scientific 
computation is likely a very computationally intensive process 
and doing so would impede the progress of science. Considering 
the fact that power and energy requirements of extreme-scale 
systems is a fundamental limitation, expressing security as a 
function of energy consumption (or with power constraint) 
will also be critical. Further, it would be useful to consider 
metrics that evaluate the trade-off between the integrity of the 
computation and the performance penalty. 

To accomplish these goals, it will be necessary to model and 
simulate numerous elements of the  process, including:

Scientific Computing Workflow Models: It is vital to study 
and model how a scientist interacts with an HPC environment 
from a security standpoint to look for potential bottlenecks, 
including those caused by security protocols and potential 
security vulnerabilities. 

Vulnerability Models: The HPC community drives innovation 
in both software and hardware and are often the first adopters 
of custom technologies. This puts the community out on the 
bleeding edge of technology where security is often overlooked 
for features or simply functionality. The ability to model 
interdependencies between software and hardware components 
in a scalable manner is therefore an important research topic. 
Current methods for modeling, such as attack graphs and 
Bayesian attack graphs, are fundamentally limited in their ability 
to scale to the levels of interest to DOE. Multi-level methods can 
be a potential approach for scaling attack graphs by coarsening 
the graph at several levels and accumulating vulnerabilities and 
exploits at those levels. However, tradeoffs between accuracy and 
scalability need further study. Therefore, the documentation of 
threats specific to HPC, as well as continuous research directly 
linked to the security of new technologies as they are proposed 
for inclusion in the HPC system stack are all needed. In some 
cases, threats might even be simply the most common flaws made 
in developing software for extreme-scale systems. 

Failure Models: Identifying failures of scientific computing 
integrity, including that resulting from malicious behavior, 
requires labeled data, which can be generated from previously 
seen threats and red/blue team exercises. Though history and 
experience have shown this to be an incomplete solution at best, 
it can provide useful information. Although one challenge with 
statistics and machine learning for computer security is the high 
dimensionality of the data, the lack of training examples and 
the need for retraining when domains change is an additional 
challenge. Thus, methods need to be developed that can update 
and augment the training data for more accurate classification. 
In addition, methods are needed that can automatically correct 
the model due to drift or domain change. A key challenge 
is developing a framework that supports the integration of 

user feedback on integrity, and thereby supports the overall 
improvement of integrity within an  extreme-scale system. 

Metrics for Automated Response: Coupled with the idea of 
real-time processing is automated response, the ability of systems 
to automatically react to an anomaly or problem without human 
input. The motivation for this is two-fold. First, human operators 
are a scarce resource, and will form a critical bottleneck if they 
have to determine what to do with every anomaly. Second, having 
to wait for a human operator to react means that the damage may 
already be done. What is needed is to stop the attack before it can 
do harm. Of course, automated response is a tricky issue, since 
false positives can result in loss of service and other issues. 

Moreover, it is important that development of automated 
responses take into account how the users might react to the 
methods. For example, if changes are made to a user’s workflow 
that make the process more complicated, confusing, or slower, 
the user might resist the changes—even if the goal of the changes 
is to improve scientific computing integrity—if the benefits 
are not articulated to the user. Similarly, if changes are made 
to enhance defense or detection analysis and the adversarial 
response is not considered, it could place the scientific research 
infrastructure at greater risk. If the adversary knows the 
sampling rates or threshold for the analytics, they could simply 
outwait or fall below the detection levels. This is not “security 
through obscurity”—rather, it is the acknowledgment that users 
(benevolent and malicious) will adapt to a response and long-
term security and stability of the system will be influenced by 
their behavior, as much by any defender actions. Consideration 
that the adversary will adapt should also include countermeasure 
detection. Analytics developed should look for data that may be 
skewing anomaly detection data.

Simulation of HPC Performance with Scientific Computing 
Integrity: Using models of scientific computing workflows, 
vulnerabilities, automated response, and the HPC systems 
themselves, one can run simulations of cause and effect to better 
understand and refine predictions and analytics about potential 
loss of scientific computing integrity, and also to test mitigation 
strategies. For example, modeling and simulation are currently 
being used to predict networking protocol performance and 
software run-time performance on various hardware platforms. 
Modeling of computational patterns has also been used to 
successfully “fingerprint” the types of programs running 
on high-performance computing systems via their runtime 
communication patterns. Tools used for these types of efforts 
may be extended to include methods and analysis for assuring 
scientific computing integrity. The conceptual components of 
a model of computational infrastructure for both HPC systems 
and general communication networks are computer nodes, 
networks that connect nodes, software stacks on the nodes, 
simulation applications, and end-user scientists involved in 
the workflow. An integrated modeling capability for all these 
components could be used for comprehensive evaluation of 
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future systems that includes sensors, tools, and analytics for 
data integrity.

Potential Milestones

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Develop models of key scientific computing workflows .

2. Develop models of key vulnerabilities in scientific 
computing environments. 

3. Develop failure models to scientific computing integrity.

4. Develop metrics of defining the criticality levels of any 
identified vulnerabilities must be developed.

5. Develop metrics and methods that enable measuring, 
analyzing, and characterizing trade-offs between resolution 
of understanding and maintaining scientific computing 
integrity in comparison to performance overhead and energy 
(power) consumption. 

6. Develop metrics that can inform automated response  
to maintain or prevent further loss of scientific  
computing integrity.

7. Develop full-stack hardware/software simulations  
of HPC systems and end-to-end scientific computing 
workflows that can enable comprehensive testing and 
evaluations of scientific computing integrity within  
such environments.

4. Research Path for Trust 
within Open, High-End 
Networking and Data 
Centers

\As discussed in the two previous topic areas, there are 
several operational requirements for scientific data integrity 
in data centers, including both the ability to detect loss 
of data integrity, whether due to natural, accidental, or 
malicious causes; and recover from the loss of data integrity. 
Given those requirements and the assumptions of successful 
implementations via the Trustworthy Supercomputing topic area 
and associated analytics of supporting integrity-related data, the 
questions remain as to how operational security personnel will 
interface with and act on these assumptions and related data, 
and also how these elements will interface with underlying 
networking technologies.

Simultaneously, it is essential to minimize the interference 
(e.g., due to performance overhead) with the core science being 
performed. We also need to minimize the burden on individual 
users, including administrators and scientists, to do the “right 
thing” with regard to security and scientific computing integrity.

Thus, a system that brings core scientific computing integrity 
capabilities together in an operational environment should aspire 
to assure such integrity via visibility, usability, and evidence. It 
should allow us to detect, locate, and attribute any modifications 
made to data produced by an extreme-scale computation, or to 
results derived from that data, regardless of when and where 
that modification occurs. A researcher should be able to readily 
determine the source, provenance, mutation history, location, 
and status of any and all data associated with their research 
computations. A researcher should also be able to reproduce 
scientific computing results.

The first workshop report indicated a need to:

Develop means to assure trust within open, high-end 
networking and data centers by performing research to: 

• understand the resilience of DOE scientific computing to 
integrity failures in order to understand how to best create 
data centers to support increasing computing integrity; 

• explore how the evolution of virtualization, containerization, 
and modular runtime environments impact scientific 
computing integrity, and where control, layering, and 
modularity enhance integrity assurance, and where it adds 
complexity and scaling problems; 

• understand how to create new, scalable techniques that 
enable the secure tagging of data and network packets in 
real-time for subsequent policy management and forensic 
analysis; and 

• create means for developing coherent authorization and 
access controls particular to the open science mission, which 
can maximize integrity and computing efficiency. 

4.1 Trust within Open, High-End  
Data Centers

The end-to-end processes that produce computational science 
results are large, complex and afford many opportunities for 
data to become accidentally or intentionally corrupted or lost. 
Data center services and networks form a layer that links high-
performance computing resources, specialty instruments, other 
experimental data sources, storage, and the international scientific 
community. In particular, this layer also represents the connection 
between computing systems and human operators who may take 
actions related to scientific computing integrity based on insights 
given by real-time system analytics. Thus, any process for 
safeguarding the integrity of scientific computing must consider 
what actions operators, system administrators, and scientists 
might want or need to take. 

Methods for representing scientific computing integrity status, 
recommended actions (such as rollback and recovery), and the 
impact of those actions (e.g., loss of n number of days of work) 
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are essential aspects of this topic. Also important are methods 
for integrating these techniques both within DOE scientific 
instruments themselves (e.g., light sources and particle 
accelerators) as well as providing a framework that DOE 
researchers that they can use with systems outside the DOE  
but nonetheless commonly used by DOE researchers,  
such as the Large Hadron Collider and various computer-
controlled telescopes.

Potential Milestones
Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Develop an evidence-based risk model based on scientific 
computing integrity needs, describing the nature and 
scope of threats to scientific computing integrity to inform 
efficient risk management processes at the DOE labs and 
characterize desirable technical responses, either manual  
or automated.

2. Develop interactive systems, usable by both scientists 
and administrators, for representing scientific computing 
integrity, and provenance state and supporting analytics 
surrounding that data.

3. Develop high-performance means to develop an interactive 
system, usable by both scientists and administrators, 
for recovering from loss of data integrity to last known 
uncorrupted state, and for reproducing questionable 
computational results, based on provenance information.

4. Develop a scientific computing integrity workflow model 
such that all DOE ASCR computing data is associated with 
an identifiable operational computer security entity.

5. Expand the previous milestone to include computing 
systems and instruments outside of DOE’s computing 
environments.

6. Incorporate scientific computing integrity features into 
“data at rest” storage systems, such as a distributed, 
replicated, versioned file system appropriate for use in  
extreme-scale environments.

7. Research and develop federated identity/authorization 
solutions for the DOE ASCR complex and open science 
partners that includes notions of transitive and brokered  
trust relationships.

4.2  Trust within Open, High-End 
Networking Environments

Increased use of encryption, alongside new network 
technologies such as software-defined networking, packet 
optical networking, photonic switching, and other hybrid 
and next-generation equipment, poses challenges to or will 
completely obsolesce current network security analysis 
practices. However, the ability to observe and analyze network 

traffic in real-time will remain essential for monitoring open 
science computing environments.

The following questions describe the major information security 
research questions over the next two decades. In the section 
that follows, we describe some potential shorter-term research 
projects and milestones:

Security in the Context of Encrypted Network Traffic: 
Encryption is quickly becoming ubiquitous not just in banking 
environments but even on common news and search engine 
web sites. Thus it is necessary to understand how anomaly and 
attack detection continue to be effective in a world of ubiquitous 
encryption at multiple layers. For example, it is necessary to 
understand if endpoint analytics are able to replace network 
monitoring while still preserving privacy and confidentiality. 
It is also necessary to understand how encrypted transactions 
can be successfully monitored while continuing to allow for 
confidentiality and whether events, such as exfiltration of data, 
can be identified in real time without having visibility into the 
data stream contents. Correspondingly, it is vital to incorporate 
semantic information bearing on scientific computing integrity 
from sources other than just the network itself—for example, 
end hosts, authentication infrastructure, external intelligence, and 
databases. It must also be necessary to integrate this information 
at very high speed/low latency and with substantial privacy 
protections. As discussed in the other topic areas, it is likely 
also vital to incorporate automated responses at fine-granular 
semantic levels in both hosts and networks, for example, through 
software-defined networking. In parallel to the need to operate on 
encrypted data, it is necessary to determine if host analytics can 
inform data reduction techniques to allow only a small fraction 
of full network traces to be collected and stored, while still 
providing adequately rich inputs to integrity data analytics.

Software-Defined Networking: As networks become more 
programmable and virtual via software-defined networking 
(SDN) techniques, new vulnerabilities may be introduced. So it is 
necessary to determine how to maintain the trust and integrity of 
the network and the data that moves in and out of it. For example, 
it is important to determine how the trust-based nature of the 
Internet resource exchanges (e.g. BGP) be mapped into a software-
defined networking environment where resource authority is 
largely based on the trust model. Can resources be translated, 
authenticated, and verified in near-real time to a level that can be 
deployed analogous to how BGP4 exchanges route prefixes? At 
the same time that SDN introduces new challenges, SDN may also 
introduce opportunities as well [33], such as leveraging new trust 
models, scientific computing integrity-related provenance data 
collection, etc. Thus the introduction and application of SDN in 
scientific computing remains a significant research area with regard 
to scientific computing integrity.

Quantum Networking: Quantum networking describes a set 
of techniques, many under active research, for harnessing 
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quantum-mechanical effects to achieve new capabilities in the 
transfer of information. Two main applications for quantum 
networking have been discussed widely. The first is the ability to 
transfer quantum (non-classical) state between geographically-
distant quantum computers. Such transfer might be required in a 
scenario where quantum computers need to be coupled together 
in order to achieve a required outcome. Some researchers have 
even imagined an architecture and protocols for a future quantum 
Internet, interconnecting a globally distributed set of future 
quantum computers. The second application involves provably 
secure information transfer, using quantum key distribution 
(QKD). Forms of QKD have already been implemented in a 
number of testbeds and research networks. The overall aim is to 
exploit quantum effects to render in-transit data manipulation 
impossible, or statistically infeasible, and enhance information 
transfer integrity. QKD appears conceptually promising as a part 
of a framework that might help to enable scientific computing 
integrity assurance. However, the viability of other quantum 
networking techniques, such as the “Quantum Internet” concept, 
or quantum computing more generally, remain longer-term, open 
research questions.

Integrating and Employing Real-Time Analytics of High-
Throughput Data Streams in Automated Responses: It seems 
clear that the number of distributed sensors analyzing network 
performance and scientific computing integrity are likely to be 
useful in some fashion, but it is unclear how we will best be able 
to actually benefit from rapid real-time data analytics across 
myriad data streams. Open questions include how we can detect 
things that are not otherwise immediately observable, and how 
massive data correlation can play a significant role here? Can 
distributed analytics be used to aid in accomplishing this (e.g., 
using route views, perfSONAR-style distributed sensors, or even 
the RIPE Atlas measurement framework)?

“Clean-Slate” or “Greenfield” Internet Architectures: The 
Internet was not designed for security. What is the architecture 
that will enable trust in scientific computing integrity in the 
Internet of the future? Will that architecture be a “clean slate” or 
“greenfield,” unconstrained by previous design decisions? Can 
the Internet as it exists today be modified and improved in such 
a way that it can reach a level of adaptability that can adjust for 
security incidents, needs, requirements and events similar to 
how routing in layer 3 of the OSI stack heals when resources 
change state? Can collapsed platforms such as packet optical 
routers and other CPU-rich devices aid in the goal by using more 
DPI and flow-based analytics in a programmatic manner (SDN 
or self-[re]provisioning networks)? Information-centric (ICN), 
content-centric (CCN), and named data networking (NDN) 
are all concepts related to a particular aspect of future Internet 
architectures (indeed have, in some cases, been even developed 
as part of NSF’s Future Internet Architectures) program, and 
represent a tremendous opportunity for advancing security in 
networked computing environments. One key reason for this is 
that is that ICN, CCN, and NDN data objects are digitally signed 

“at birth,” thereby providing a key source for assuring integrity of 
data at its instantiation. However, ICN, CCN, and NDN have not 
been integrated into popular use or even custom HPC or scientific 
environments. Nevertheless, all represent specific examples in 
which future networking and computing architectures could 
make substantial advances over current technologies and 
should certainly be examined for their applicability to HPC 
environments and scientific computing workflows. However, it 
is vital that “greenfield” designs be more broadly considered as 
part of a similar redesign/co-design of the trustworthy computing 
hardware and software stack.

Potential Milestones

Potential milestones that we believe will help to lead to and 
measure research progress in this area include:

1. Develop means of real-time monitoring scientific computing 
integrity aspects related to networks in the face of encrypted 
traffic without compromising confidentiality or user privacy.

2. Develop mappings between Internet resource exchanges 
(e.g., BGP routes) based on trust models.

3. Develop means to incorporate automated, real-time analytics 
into triggers to changes in the network environment, e.g., 
via SDN, that incorporate analytic input from the ES-DAK 
topic area to maintain or prevent further loss of scientific 
computing integrity.

4. Conduct initial research in applications of QKD and other 
quantum networking techniques to scientific computing 
environments.

5. Conduct initial research in greenfield networking 
architectures that can be modified to support scientific 
computing integrity.

6. Continue research in greenfield networking architectures 
likely including ICN, CCN, and NDN that can be modified 
to support scientific computing integrity.

7. Implementation of novel high-integrity networking 
techniques, as determined feasible, based on research in 
greenfield networking architectures that can be modified to 
support scientific computing integrity.
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5. Measuring Progress on 
the Path to Success

Ultimately, the real test is measuring broad progress toward 
improved scientific computing integrity by comparing results 
on current systems with results from future systems and 
comparing deviation from acceptable ranges of computing 
integrity as established by domain scientists, and weighing 
these improvements against external costs such as performance 
overhead and energy consumption. Importantly, metrics for 
traditional “security” (e.g., that focus on vulnerability counts) are 
not necessarily applicable here—the specific focus on scientific 
computing integrity is narrower and much more specific.

Each individual topic, technique, and milestone will have its 
own additional set of metrics, however. For example, metrics 
for isolation within trustworthy supercomputing need to account 
for heterogeneous hardware and must scale well beyond 
traditional node-based techniques to extreme-scale systems. 
While such isolation metrics may include assessment of specific 
vulnerabilities, the metrics applied need to consider the effect of 
vulnerabilities on the users and the science they produce. 

Similarly, metrics for success for automated verification and 
testing largely revolve around the ability to identify meaningful 
single points of failure and flaws in software and workflow 
implementation leading specifically to a failure of scientific 
computing integrity, without a prohibitively proportional increase 
in findings of false positives of such flaws. Additional metrics 
required likely include the degree of independence of redundant 
software components. When combined with a fault tree analysis, 
this can indicate the degree of reduced vulnerability to common 
mode failures that can occur even in the presence of redundant 
components that can vote against outliers in a consensus and/or 
accommodate failovers.

Metrics for success for vulnerability classification largely revolve 
around the ability to identify meaningful software vulnerabilities 
leading to a failure of scientific computing integrity, without a 
prohibitively proportional increase in findings of false positives 
of such vulnerabilities. Design flaws may suggest required 
changes to the architecture, hardware, or protocols to ensure 
integrity of operations. 

For provenance log collection, the ability to reproduce scientific 
computing results within certain parameters specified by domain 
scientists is another key metric. Metrics for success for extreme-
scale provenance analysis are primarily successful in terms of 
their efficacy for assuring or identifying failures and determining 
their source, while performing at near-real time. 

Simulation and modeling metrics are largely defined in terms 
of how accurate simulation results compare to actual data, as 
collected and analyzed via the other technical areas.

Metrics for success for research on trust within high-end, open 
data centers largely center around the degree to which changes 
developed via the Trustworthy Supercomputing and Extreme-
Scale Data Analytics topics that are usable by both domain 
scientists and facility system administrators can be built and 
deployed,. Success for research in data centers will also depend 
on the results of key stakeholders using those tools to validate 
scientific computing integrity, or where it has failed, and the 
ability to determine what the sources of those failures are. 

Much as with the Trustworthy Supercomputing topic area, 
metrics for success of research on trust within open, high-end 
networks largely depend on the ability of modifications of 
networking protocols and their implementations to generate 
provenance data that helps to identify sources of loss of 
scientific computing integrity, and the places where those 
elements help to assure scientific computing integrity to avoid 
integrity loss. 

Finally, adversarial or not, there is also a need for an element 
of “ground truth” for testing scientific computing integrity 
solutions within  extreme-scale computing environments. To 
gain this, “red team” / “blue team” exercises using the flaw 
hypothesis methodology might provide an initial set of data to 
test against while also providing DOE with a clearer sense of the 
vulnerabilities that exist in our current HPC systems, and a set of 
benchmark data for program evaluation.

6. Conclusion
This workshop report has described a potential pathway for 
the research and development needed in order to support 
science- and engineering-based solutions to scientific computing 
integrity and overall computer security for high-performance 
computing systems, as scientific results increasingly rely on 
fabulously complex computing systems to collect, transmit, 
store, and analyze data, and to model and simulate aspects of 
the natural world. This report could serve as a starting point to 
inform integrity technologies within the context of the Exascale 
Computing Initiative (ECI); however, our attempt is to look 
beyond ECI. 

As stated in our previous report [1], by supporting strong research 
and development now, ASCR will enable the foundational basis for 
assuring extreme-scale scientific computing integrity as it moves 
well into the 21st century, continuing its leadership, heritage, and 
legacy of large-scale high-performance computing, while also 
discovering and developing techniques that will undoubtedly have 
broad application.
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