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Abstract: 
This report details the findings of the DOE ASCR Workshop on Quantum Computing 
for Science that was organized to assess the viability of quantum computing 
technologies to meet the computational requirements of the DOE’s science and 
energy mission, and to identify the potential impact of quantum technologies. The 
workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from 
members of the quantum computing community. The workshop considered models 
of quantum computation and programming environments, physical science 
applications relevant to DOE's science mission as well as quantum simulation, and 
applied mathematics topics including potential quantum algorithms for linear 
algebra, graph theory, and machine learning. This report summarizes these 
perspectives into an outlook on the opportunities for quantum computing to impact 
problems relevant to the DOE’s mission as well as the additional research required 
to bring quantum computing to the point where it can have such impact. 
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Executive Summary 
Quantum computing uses computational elements that obey quantum mechanical 
laws to potentially provide transformative changes in computational power for 
certain problems of interest to the U.S. Department of Energy. The DOE Office of 
Science Advanced Scientific Computing Research (ASCR) program sponsored a 
workshop to assess the viability of quantum computing technologies to meet 
computational requirements in support of the DOE’s science and energy mission. 
Discussion at the workshop focused on models of quantum computation and 
programming environments and applications of quantum computing technology to 
physical science domains and applied mathematics domains relevant to DOE’s 
science mission. This report summarizes the discussions held during the workshop. 
It includes a broad overview of quantum computing and concludes a summary of 
research opportunities in quantum computing.  
 
Peter Shor’s 1994 breakthrough discovery of a polynomial time quantum algorithm 
for integer factorization sparked great interest in discovering additional quantum 
algorithms and developing hardware on which to run them. The subsequent 
research efforts yielded quantum algorithms offering speedups for widely varying 
problems, and several promising hardware platforms for quantum computation. 
These platforms include analog systems (usually cold atoms) used for simulating 
quantum lattice models from condensed-matter and high-energy physics, quantum 
annealers for combinatorial optimization, boson samplers, and small-scale noisy 
prototypes of digital gate-model quantum computers. Potential applications of the 
various forms of present-day and near-term quantum computation to DOE’s mission 
were explored at the workshop. 
 
In the longer term, the emergence of scalable, fault-tolerant, digital quantum 
computers offers a new direction for progress in high performance computing as 
conventional technologies reach their fundamental limitations. Quantum speedups 
have been discovered for a number of areas of DOE interest, including simulations 
for chemistry, nuclear and particle physics, and materials science, as well as data 
analysis and machine learning. In addition, quantum speedups have been 
discovered for basic primitives of applied mathematics such as linear algebra, 
integration, optimization, and graph theory. These demonstrate the potential of 
quantum computers to yield better-scaling methods (in some cases exponentially 
better) for performing a wide variety of scientific computing tasks. Practical 
realization of this potential will depend not only on advances in quantum computing 
hardware but also advances in optimizing languages and compilers to translate 
these abstract algorithms into concrete sequences of realizable quantum gates, and 
simulators to test and verify these sequences. The development of such software has 
recently seen rapid progress, which can be expected to continue given sufficient 
support. 
 
Quantum computation presents a number of research opportunities for ASCR. These 
opportunities include development and benchmarking of near-term applications of 
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quantum hardware, development of programming environments, languages, 
libraries, compilers, and simulators for quantum computers, and research and 
development on quantum algorithms for physical simulation and applied 
mathematics. 
 
The consensus of participants in the workshop is that quantum computing has 
reached a level of maturity that warrants considering how it will impact the DOE 
mission in the near and long term. As summarized below, the workshop participants 
encouraged the community supported by DOE to investigate how quantum 
computers could be used to perform quantum simulations, how quantum 
algorithms could be leveraged to solve problems in applied mathematics, and how 
quantum computing devices could be made accessible to a broad range of scientists 
and engineers. 
 
Table 1: Summary of quantum computing research opportunities 

• Quantum Simulation: Solve problems in chemistry, materials science, and 
nuclear and particle physics.  

o Research present-day special purpose analog quantum simulators. 
o Develop and optimize simulation algorithms for future general-

purpose digital quantum computers. 
• Quantum Algorithms for Applied Mathematics: Develop speedups for the 

fundamental primitives of applied and computational mathematics. 
o Research quantum algorithms for universal digital quantum 

computers to speed up primitives such as linear algebra, 
optimization and graph theory. 

o Investigate the potential of quantum annealers to outperform 
classical computing for optimization. 

• Models of Computation and Programming Environments: Develop software 
infrastructure for quantum computation. 

o Develop high-level languages for implementing quantum algorithms 
and compilers to translate quantum programs into optimized 
quantum circuits. 

o Develop tools to simulate and debug quantum programs. 
o Formulate metrics for assessing, comparing, and benchmarking 

quantum computations. 
o Quantum co-design: adapt algorithms to hardware and vice-versa. 
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I. Introduction 
High-fidelity modeling and simulation of physical systems is critical for the U.S. 
Department of Energy (DOE) to address some of the most challenging problems in 
energy, the environment, and national security. Problems range from understanding 
the basic science of new materials to the complex interactions that occur over global 
length scales. To address these scientific challenges, the DOE has a long history of 
advancing computation and increasing the capabilities for its high-performance 
computing (HPC) systems. However, current approaches to increase HPC capability 
have begun to stall due to constraints on processor technology and system 
complexity. In particular, longstanding computational methods with the classical 
von Neumann model processor implemented in CMOS technology have hit 
development walls with respect to power, processor frequency, and communication. 
The impact that these limitations will have on future HPC development appears 
bleak. While computing at exascale appears possible, albeit challenging to realize, 
the ability to develop HPC systems beyond exascale is highly uncertain. This forces 
the consideration of alternative computing technologies and how they might be 
leveraged for future scientific inquiries. 
 
A potential “over-the-horizon” technology for future computing systems is quantum 
computing [1, 2]. As detailed below, quantum computing offers a fundamentally new 
approach to computation that promises capabilities not available with today’s 
existing transistor-based processing. So far, the theory of quantum computing has 
found significant speed-ups to a few prominent algorithms in modeling, simulation 
and mathematics, and experimental efforts in quantum computer science have 
recently made great strides demonstrating crude quantum algorithms to solve 
modest problems in physical simulation and applied mathematics. In addition, it is 
believed that the operation of an idealized 100-qubit quantum computer may 
exceed the simulation capabilities of even future exascale computers. This suggests 
that quantum computers may have the potential to enable some aspects of 
computational science to progress far beyond exascale. 
 
Therefore, it is pertinent to assess whether the potential of quantum computing is 
both feasible and practical for DOE mission needs. Solving the wide variety of 
computational problems addressed by the DOE would require quantum computing 
to support a robust and versatile set of algorithms, software and hardware 
architectures. Fundamental questions in computer science and mathematics need to 
be addressed in order to develop quantum computing into this robust 
computational platform. The timeline for this research effort is likely to be lengthy, 
in part because of the concurrent development of quantum computing hardware but 
also because of the underdeveloped potential of quantum computer science. 
 
As a primary stakeholder in future HPC, the DOE is in a unique position to steer the 
growth of quantum computer science to meet future mission needs. Breakthrough 
developments in quantum software, architectures, and algorithms can support 
preparation of new computing strategies including beyond exascale. This offers the 
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DOE the opportunity to maintain its long history of being at the forefront of 
computing technology by guiding the development of quantum computing software 
and hardware. Indeed, similar “co-design” strategies have been used by the DOE to 
develop next-generation processors and software infrastructures for exascale 
computing systems. The reward for embracing this quantum computing co-design 
opportunity is that the DOE will be strategically prepared for its leadership position 
in modeling and simulation as quantum computing technology matures. This will 
permit DOE to address problems of ever-increasing complexity beyond what 
current-scale or even exascale conventional computing may provide.  
 
The DOE Office of Science Advanced Scientific Computing Research (ASCR) Program 
sponsored a workshop to assess the viability of quantum computing technologies to 
meet computational requirements in support of the DOE’s science and energy 
mission. The Workshop on Quantum Computing for Science was held on February 
17-18, 2015 in Bethesda, MD. The workshop explored the viability of quantum 
computing for addressing DOE mission problems, the impact that the quantum 
technologies are expected to have, and the challenges and opportunities that are 
anticipated in adopting quantum computing technologies and developing the 
related infrastructure. Position papers were solicited from across university, 
industrial, and government partners. The submitted papers were then invited to 
make a short presentation in one of three topical areas. The three topical areas 
were: 
 
1. Models of quantum computation and programming environments, including 

computational models (quantum walks, gate- and Hamiltonian-based 
computation), topological computing, error correction and fault tolerance, 
programming and compiling platforms, control theory, resource requirements, 
computational complexity theory. 

2. Physical science applications relevant to DOE's science mission including but not 
limited to quantum field theories, lattice models (Hubbard, Ising, QCD), quantum 
chemistry and molecular structure, materials manufacturing, genomics, 
complexity and thermalization. 

3. Applied mathematics topics including potential quantum algorithms for linear 
algebra, numerical integration, optimization, and graph theory. 

 
This report summarizes the technical and programmatic discussions held during the 
workshop by offering overviews of the potential for quantum computing in the 
three topical areas. It includes a broad overview of quantum computing and 
concludes with a summary of research opportunities for quantum computing. 
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II. Overview of Quantum Information and Quantum Computing 
Quantum computing promises dramatic changes to many aspects of information 
technology. Standard (hereafter classical) computing operates on bits; typically bits 
are expressed in hardware as voltage levels that define the 0 or 1 values 
fundamental to a computing system. There are a variety of classical computing 
devices based on circuits of transistors that perform operations on these voltage 
values to affect computations on the corresponding bits.  
 
One of the triumphs of 20th century physics was understanding how physics at the 
subatomic level is different from our everyday experience. The resulting quantum 
mechanical rules were found to operate differently than similar rules from classical 
physics. More recently, these same quantum mechanical laws were applied to the 
principles of information. Quantum computing and quantum information sciences 
now define the academic disciplines that consider how quantum mechanical rules 
impact computation and information theory. For example, quantum bits (qubits) are 
significantly different than classical bits: a qubit is defined as any of the linear 
superposition states 𝛼|0 > +𝛽|1 >, with |0> and |1> the computational basis, 𝛼 and 
𝛽 complex numbers such that |𝛼|2 + |𝛽|2 = 1, and the extreme classical values of 0 
and 1 that correspond to 𝛼 = 1 and 𝛽 = 1, respectively. Moreover, entangling 
operations are possible that create correlations between two states such that the 
resulting state cannot be factored into a product of the individual states. 
Corresponding to the digital logic of classical computing is a set of single- and two-
qubit operations (often called gates) that can create superpositions and entangling 
operations and can be shown to form a basis for universal computation. Several 
algorithms, including integer factorization, unstructured search, and the simulation 
of quantum many-body systems, have been shown or are believed to be more 
efficient using qubits. This section will consider the quantum computational 
primitives that produce this efficiency and their implications for computation. 

A. Quantum Computational Primitives 

1. Quantum Walks 
Classical random walks provide a general framework for exploring possibly large 
spaces by using simple local displacement rules. They have been applied (as 
algorithms) successfully in many different contexts such as finding satisfying 
assignments in k-SAT problems [3]. Motivated by the success of their classical 
counterparts, quantum walks now play a central role in several quantum algorithms 
(for a review see [4], [5]). The quantum walker begins with a localized wave 
function, and its subsequent evolution—be it discrete time or continuous time—is 
generated by the application of unitary operators that allow the walker to explore 
the space. Unlike the classical random walker whose state is described by a 
probability distribution over the positions, the quantum walker’s state can be in a 
superposition of positions. This key difference has been used to develop quantum 
algorithms that provide polynomial as well as exponential speedups, over classical 
algorithms. For example, in many classical random walk algorithms, a fast hitting 
time, i.e., the first time the walker arrives at a subset of the state space, is crucial to 
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solve the problem. A quantum walk can give rise to an exponential separation 
between the classical hitting time and the quantum hitting time [4]. Ultimately, a 
quantum walk can give rise to an exponential speedup for some oracular problems 
[6]. Grover’s unstructured search algorithm [7], which gives a quadratic speedup 
over its classical counterpart, although not strictly a quantum walk algorithm, can 
be interpreted as such [8], and this new viewpoint has led to important 
generalizations [9]. Ultimately, the quantum walk can be viewed as a universal 
model of quantum computation; any quantum algorithm can be recast as a quantum 
walk [10]. 

2. Quantum Fourier Transform and Phase Estimation 
The efficiency of the quantum Fourier transform is an integral part of many 
quantum algorithms, such as Shor’s factoring algorithm [2], quantum phase 
estimation [11], and the hidden subgroup problem for finite Abelian groups [11]. It 
is the quantum analogue of the discrete Fourier transform; the input of the 
algorithm is a quantum state with weights (in the computational basis) representing 
the input of the discrete Fourier transform, and the output is a new quantum state 
whose weights are the discrete Fourier transform (note that both input and output 
are in a quantum superposition state). The most efficient quantum Fourier 
transform algorithm to date requires only 𝒪(𝑛 log(𝑛)) gates [12], where n is the 
number of qubits. This is in contrast to the classical algorithm that requires 𝒪(𝑛 2𝑛) 
operations for n bits. 
 
Quantum phase estimation allows for the estimation of the eigenphase of an 
eigenvector of a unitary operation U. To accomplish this, the initial state, which is 
the eigenvector of U, is operated on via a sequence of powers of U followed by the 
inverse quantum Fourier transform. This is efficient, assuming that the powers of U 
can be implemented efficiently as quantum circuits. Phase estimation is an 
important subroutine in many quantum algorithms, such as Shor’s algorithm [2] and 
solving well-conditioned sparse systems of linear equations [13]. 
 

3. Topological Quantum Computation 
Universal quantum computation can, in principle, be performed by “braiding” a class 
of particles called “anyons”. Anyons are not believed to exist in nature as 
fundamental particles, but they are believed to arise as quasiparticle excitations in 
certain effectively two-dimensional low temperature condensed-matter systems 
such as those that exhibit the fractional quantum hall effect.  Topological quantum 
computation is of interest for two main reasons. First, topological quantum 
computation is a promising architecture for the implementation of quantum 
computers due to its intrinsic robustness against control error and environmental 
noise. Second, topological quantum computation provides a conceptual framework 
for the design of new quantum algorithms. These quantum algorithms can be run 
efficiently on any universal quantum computer, regardless of whether the 
architecture is, for example, topological or circuit-based. Quantum algorithms for 
approximating topological invariants such as Jones polynomials of knots and 
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Turaev-Viro invariants of three-dimensional manifolds arose quite naturally within 
the framework of topological quantum computation, whereas they might never have 
been discovered by thinking directly in terms of circuit-model quantum 
computation. 

B. Computational Complexity 

 
Figure 1: Anticipated relationship between complexity classes relevant to quantum computing. 

Complexity classes are a useful way to categorize a set of problems based on their 
resource complexity. They usually have a definition of the form: “the set of problems 
with input size n that can be solved by machine M using 𝒪(𝑓(𝑛)) resource R.” For 
example, the class P is the set of decision problems (problems with a yes-no answer 
depending on the input values) that can be solved by a deterministic Turing 
machine using polynomial time. We can contrast this with the class NP, which is the 
set of decision problems where the ‘yes’ answer can be verified in polynomial time 
by a deterministic Turing machine. It is clear that P is contained in NP, and it is 
widely believed but unproven that NP is strictly larger than P.  
 
An important class of problems is the NP-hard problems, to which all problems in 
NP can be reduced in polynomial time. Thus, if any NP-hard problem were solved by 
a polynomial-time algorithm, then all problems in NP would become efficiently 
solvable. Although no proof has been obtained, mathematical evidence strongly 
suggests that neither quantum nor classical computers can solve worst-case NP-
hard problems in polynomial time. Many problems of great importance to science 
and industry are NP-hard. Some important examples include combinatorial 
optimization problems such as the travelling-salesman problem and Boolean 
satisfiability. Due to the overwhelming importance of NP-hard problems, much 
effort within the classical and quantum computer science communities has gone 
into development of polynomial-time approximation algorithms, polynomial-time 
heuristic algorithms for average-case instances, and improved exponential-time 
algorithms for worst-case instances. 
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The class BQP is the class of decision problems solvable by a quantum computer in 
polynomial time. Because quantum computers are inherently probabilistic, the 
definition of BQP allows a small probability of failure. (This probability can be made 
exponentially small by repeating the algorithm). BQP is the quantum analogue of the 
class P. This is clearly an important class of problems for quantum computation 
since it is hoped that many problems that belong in this class cannot be computed 
efficiently using a classical algorithm. Examples of problems that can be solved in 
polynomial time by quantum computers but apparently not by classical computers 
include integer factorization [2], computing discrete logarithms [2], and calculating 
the Jones polynomial at any primitive root of unity [14]. 
 

C. The Scientific Problems That Quantum Information Can Address 
Since its inception, quantum computing has been naturally tied to simulating 
properties of physical systems. In 1982, in what is perhaps the first paper on 
quantum computing, Feynman noted [1] that classical computing systems would 
require exponential resources to simulate quantum systems. Since quantum 
systems can presumably simulate themselves, Feynman suggested that “the 
computer itself be built of quantum mechanical elements which obey quantum 
mechanical laws” [1]. In other words, quantum processors could simulate other 
quantum systems without the exponential overhead required for classical 
processors. This anticipated exponential speedup for quantum simulation remains 
one of the primary drivers behind the development of quantum computing 
resources. Furthermore, the linear algebra underlying the propagation of a quantum 
state closely resembles both solving a linear system and finding the eigenvalues of 
linear operators, suggesting that a variety of problems in applied math might also 
yield quantum speedups on quantum hardware. Given the broad nature of the DOE’s 
mission, the potential enhancement of high-fidelity physical simulation, linear 
algebra, optimization, and other direct applications of quantum primitives offer 
numerous opportunities. The report that follows outlines these opportunities for 
the DOE and ASCR communities. 
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III. Advances Required For Quantum Computation to Transform 
Scientific Computing 

A. Models of quantum computation and programming environments 
In order to turn mature quantum technologies into information-processing devices 
that can meet DOE needs, it is paramount to develop comprehensive software 
architectures for quantum computers.  Such a platform will allow one to map 
quantum algorithms expressed in a high-level programming language into fault-
tolerant quantum computation primitives and finally onto quantum hardware 
operations.  The software environment will also allow users to effectively program 
quantum algorithms and optimize them based on various resource constraints, such 
as a given quantum hardware layout, a restricted number of available qubits, or a 
desired computation time.  The platform should also include a simulation 
environment, allowing one to assess the performance and correctness of those 
quantum algorithms executed in a small scale prior to full execution on a scalable, 
programmable quantum computer.  Examples of objectives within these categories 
include the following: 
 
Enabling reliable quantum computation: 

• Discover and develop hardware-compatible models of quantum 
computation. 

• Discover and develop methods for fault-tolerant quantum computing.  
• Discover and develop methods for optimizing an algorithm expressed in a 

given model of quantum computation. 
 
Programming quantum algorithms: 

• Develop effective languages with which to express quantum algorithms at 
both high- and low-levels of abstraction. 

• Develop automatic methods of synthesizing a classical reversible circuit into 
an efficient quantum circuit. 

• Develop a series of software tools for, e.g. automatic optimization, 
scheduling, layout, success probability optimization, etc. 

• Develop theorem proving systems to handle verification of a quantum 
program. 

• Develop effective debugging quantum programming environments. 
 
Assessing quantum computers: 

• Establish benchmarking quantum computing tests to validate and verify 
performance. 

• Develop methods for emulating features of quantum computers with 
classical computers. 

• Develop automatic methods for estimating resource consumption of a given 
quantum program (quantum algorithm), most notably in terms of quantum 
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device implementation requirements such as number of qubits and quantum 
gates. 

 
In order to have viable software architecture choices, a number of research 
problems in each of these areas needs to be addressed.  These research problems do 
not fall naturally into one of the existing program subdivisions of the DOE ASCR.  
Solving these problems requires a different skill set both from a technical and a 
program management perspective than existing DOE ASCR subdivisions.  
Nevertheless, addressing these research challenges is vital for DOE ASCR supported 
communities to exploit the burgeoning development of quantum computing 
technology for DOE’s modeling and simulation needs in the physical sciences. 

1. Enabling Quantum Computation 
 
The most fundamental challenge facing quantum software architectures is 
discovering and developing methods to enable quantum computation in the first 
place.  The two chief hurdles to overcome are discovering and developing viable 
quantum computation models and discovering and developing fault-tolerant 
quantum computing strategies.  The choices for each then become integrated at the 
lowest levels of the overall software architecture. 
 

a. Models of quantum computation 
Although several theoretical models of quantum computation exist and are well-
studied, such as quantum circuits, topological quantum computation, dissipative 
quantum computing, quantum walks, and the adiabatic quantum computing model, 
each model has its pros and cons in the context of an actual hardware 
implementation.  The space of possible quantum computational models is far from 
fully charted, and developing models in a co-design approach with quantum 
hardware development may benefit both. 
 
In the following, we give three examples of where co-design has led to new quantum 
computational models and fresh insights into harnessing existing quantum 
technologies for information processing tasks.  These examples also point to future 
research opportunities where meaningful progress could be made. 
 
Adiabatic quantum computing 
 
The adiabatic quantum computing (AQC) model was originally proposed as a 
method to solve discrete optimization problems; it was not considered as a model of 
computation in its own right [15].  By adapting a quantum-walk construction by 
Feynman [16], Kitaev not only proved that the AQC model can be made universal, so 
that it can solve BQP-complete problems, but in the course of his proof, he 
established the complexity class now known as QMA, which is the quantum 
analogue of the class NP (or more correctly, MA), namely the class of problems for 
which a “yes” answer can be verified efficiently with high probability on a quantum 



 14 

computer [17].  A series of papers soon followed simplifying the nature of AQC 
Hamiltonians that could achieve universal AQC, suggesting hardware design 
possibilities for future quantum computers [18-24].  There is an opportunity to 
close the co-design loop available by building machines that realize these proposed 
architectures. 
 
In the absence of universal AQC machines, there has been a flourishing research 
environment surrounding AQC for optimization problems.   AQC confined to 
problems in this setting is typically called “quantum annealing.”  D-Wave Systems, 
Inc. has built machines that it bills as quantum annealers; questions surrounding 
these machines have led to the development of numerous assessment methods for 
“quantumness” in information processing devices [25-34].  This continues to be an 
active research area and any attempt to reference all work in this topic is bound to 
be incomplete; progress here is expected to translate to other quantum 
computational models as well.  
 
Practical limitations of the D-Wave machines have led to a better appreciation for 
the need for effective quantum compiling and effective quantum error correction.  In 
the former case, the “embedding problem” has been identified as a key bottleneck: 
this is the problem of mapping a computational task of interest to the machine; 
coming up with the optimal embedding is itself an NP-hard problem, so there is 
ample room for R&D into heuristics [35-37].  In the latter case, the dramatic 
improvements in performance that have been observed by using simple quantum 
and classical error-correcting codes in D-Wave machines suggest that additional 
research into this area will pay big dividends [38-42].  The initial optimism of 
bringing conventional quantum error correction to the AQC model was soon 
tempered by a series of no-go results for practical fault-tolerant quantum computing 
in the AQC model [39, 43-47].  As is often the case in science, this critical thinking 
pointing to potential engineering shortcomings led to more creative approaches.  By 
expanding the AQC model to allow for information processing in degenerate as well 
as nondegenerate groundspaces, a variant of the AQC model known as holonomic 
quantum computing (HQC) has been developed into a fully fault-tolerant 
computational model [48-50].  Current research along these lines focuses on 
streamlining fault-tolerant HQC protocols to accelerate the possibility of 
experimental demonstrations.  
 
Finally, the mere existence of the quantum annealing model itself has recently 
inspired a new approximation algorithm that appears to perform better than any 
classical algorithm can [51, 52].  This is an example of where a computational model 
has inspired a new quantum algorithm that can in principle be translated to any 
other quantum computational model, such as the quantum circuit model.  Investing 
in R&D in alternative quantum computational models like AQC can foster 
algorithmic advances that transcend the model itself; the well of new quantum 
algorithms is expected to be far from dried up at this point. 
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Dissipative quantum computing 
 
Like the AQC model, the goal of dissipative quantum computing (DQC) model is to 
operate in a manifold of states separated from the rest by an energy gap.  This model 
has only recently been explored, but already quantum simulation [53, 54] and, more 
generally, universal quantum computing have been proven to be possible in the 
model [55].  Because dissipative dynamics offer new control possibilities, this model 
opens up new co-design possibilities with hardware developers; the full geometric 
nature of quantum computation in this model has only recently been unraveled [56].  
Additionally, it may inspire new quantum algorithms.  One hope is that the model 
may also offer a certain intrinsic robustness to noise in a real implementation that 
would reduce the complexity of quantum error correction that is needed for a fault-
tolerant implementation [57].  Many low-hanging research fruits exist for this new 
model of quantum computation. 
 
Topological quantum computing 
 
Topological quantum computing (TQC) is a model of quantum computing in which 
transformations are generated by anyons as they braid around each other in 
spacetime [58-60].  Anyons are particles whose exchange statistics differ from 
bosons or fermions in that they can generate “any” phase (or, more generally, even 
nontrivial unitary transformations) when exchanged.  Anyons can arise in quantum 
systems ranging from fundamental particles in quantum field theories to effective 
excitations in condensed matter systems [61-66].  Over a decade ago, Fields-
medalist Mike Freedman and collaborators proved that this model is universal for 
quantum computation [67]. Since then, a number of groups around the world have 
been inspired by the model to build systems exhibiting such anyons, such as 
Majorana fermions in solid-state systems [68-70].  The TQC model has further 
inspired numerous quantum algorithms such as additive approximations of Turaev-
Viro invariants [71-74] and Jones Polynomial invariants [14, 67, 75-80].  The model 
has also inspired numerous new quantum error-correcting methodologies, 
including surface codes [81], color codes [82], Turaev-Viro codes [83],  and quantum 
double codes [84].  TQC continues to inspire new software architecture ideas, 
ranging from quantum compiling [85-89] to fault-tolerant quantum computing 
protocols [90-92]   Continued investment in TQC can be expected to bring quantum 
computing applications of interest to the DOE closer to realization. 
  

b. Fault-tolerant quantum computing methods 
Because physical instantiations of quantum computers are expected to be 
exceptionally sensitive to noise, fault-tolerant design is expected to be necessary for 
any software architecture, regardless of which computational model a device 
realizes.  Fault-tolerance methods for the quantum circuit model are well-
developed, but their cost is high: most estimates suggest that over 90% of the 
resources of a quantum computer might need to be allocated to correcting its own 
faults rather than advancing quantum algorithms [93-95].  Research into methods 
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for reducing this overhead in the circuit model is therefore sorely needed, as is 
research into fault-tolerance in other models of quantum computation where the 
overheads required might be far less. 
 
In the following, we give examples of what some of the challenges in the research 
frontier are in developing fault-tolerant quantum computing methods.  The list is far 
from complete; it is meant merely to highlight some of the key issues that need to be 
resolved.  In particular, we discuss how the cornerstone of fault-tolerant design, 
quantum error-correcting codes, might be brought to the adiabatic and holonomic 
quantum computing models; how ideas from topological quantum computing are 
inspiring more resource-efficient methods for fault-tolerant design in the quantum 
circuit model, and how advances from quantum control theory are helping to bridge 
the gap between quantum hardware capabilities and quantum fault-tolerant design 
requirements. 
 
Error correction for adiabatic and holonomic quantum computers 
 
Developing error correction for Hamiltonian-based quantum computing models 
such as the AQC model is difficult because good codes require high-weight logical 
operators that are impractical to realize with Hamiltonians.  Nevertheless, even 
using small quantum codes can have a positive impact.  Jordan et al. developed the 
first AQC codes [38], and since then several others have also been developed [39, 41, 
42, 96].  Some of these have been applied to actual hardware, with an obvious 
improvement in performance [41].  Developing new strategies for suppressing 
errors in the AQC model continues to be an active research area with clear payoffs. 
 
The related holonomic quantum computation (HQC) model [97] utilizes 
Hamiltonian evolutions with degenerate, instead of non-degenerate ground spaces.  
In this model, it is possible to realize a much richer set of quantum error correction 
possibilities, and in fact full fault-tolerant quantum computation is possible by 
suitable Hamiltonian evolutions [48, 50, 98, 99].  An example of such an evolution is 
depicted in Figure 2. Developing improved error-correction protocols for 
Hamiltonian-based quantum computational models is an active research area that is 
yielding results that can fold into overall quantum software architectures for 
hardware realizing these computational models. 
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Figure 2: A Hamiltonian in which some terms are inactive (gray) in (a) is adiabatically evolved through a 
sequence of Hamiltonians in which other terms are turned off (b-d).  The net effect is an encoded logical 
operation on the ground space of the system. 

 
Topological quantum codes and multi-qubit block code extensions 
 
Topological quantum codes such as surface codes and color codes are among the 
most favored codes at the core of quantum software architectures considered today.  
Devising new methods for programming with and optimizing such codes as well as 
managing the classical computing associated with using such codes are key 
challenges requiring computer science and mathematics expertise. Much of the 
improvements in these areas to date have been generated by hand, such as 
improvements to surface-code magic-state distillation methods [100-102] and 
minimum-weight perfect matching syndrome decoding algorithms [103-108].  By 
bringing to bear automated methods for optimization and tools and techniques 
well-known in the computer science and mathematics communities, significant 
improvements may be possible [109]. 
 
Part of the current research frontier with these codes is developing lower-overhead 
block codes that share as many of the desirable properties of topological codes as 
possible.  For example, quantum low-density parity check (LDPC) codes offer fast 
syndrome extraction at the cost of non-local data access [110-112].  Gauge-fixing 
methods via code deformation offer methods for realizing a universal set of gates 
without having to resort to costly magic-state distillation [113-116].  Finally, clever 
multi-qubit block-codes augmented with teleportation and code deformation 
methods can realize fault-tolerant quantum computing with just a constant-factor 
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overhead [117, 118].  Continued research along these lines is expected to reduce the 
overhead required to achieve fault-tolerant quantum computing in real hardware. 
 
Dynamical decoupling and quantum control 
 
To combat non-stochastic errors, methods other than quantum error correction can 
sometimes be significantly less resource-intensive.  For example, methods such as 
dynamical decoupling (DD) [119] and its generalization, dynamically corrected 
gates (DCG) [120, 121] , can establish noiseless subsystems immune to certain 
classes of quasi-static Hamiltonian noise.  Being able to efficiently compile the pulse 
sequences needed to achieve the gains of these methods is an open research area, 
and further incorporating optimizations of these into programming environments, 
is a quantum software architecture goal.  More broadly, the field of quantum control, 
which seeks to engineer the overall waveforms used to process quantum states, has 
an opportunity to provide gains over either quantum error correction or methods 
like DCG by themselves [122-124] . 
 

2. Programming Quantum Computers 
 
Even with a quantum technology enabled to compute through a mixture of 
hardware and software protocols, it is a nontrivial task to write effective programs 
for quantum computers using those primitives.  At the very least, one needs a 
layered software environment that includes high- and low-level languages, 
compilers, translators, optimizers, and verifiers [125].  It may be beneficial to 
consider an embedded domain-specific language that may take advantage of already 
existing analysis and compilation tools.  The quantum program should be able to be 
efficiently compiled, checked, and extended to a given hardware platform.  A good 
high-level language is also flexible enough to be readily translated to new quantum 
computing models and new methods for fault-tolerant quantum computing.  
Compilation and optimization tools should allow for reduction of quantum 
resources in a given quantum program.  In addition, they should allow compilation 
to a variety of targets, where a target is specified based on a hardware architecture.  
Such specifications must include communication constraints, layout constraints, a 
set of available operations, etc. 
 
In the following, we give examples of what some of the research challenges are in 
programming quantum computers, to highlight opportunities for investment. 
 
Quantum compiling 
 
As mentioned earlier, studies of the AQC model have identified the embedding 
problem as a compiling research challenge.  In the circuit model, Ross and Selinger 
recently solved the optimal ancilla-free quantum compiling problem for Z-rotations 
[126, 127], but research continues into probabilistic compiling algorithms, such as 
Las Vegas or “repeat-until-success” compiling algorithms whose expected runtimes 
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are much faster [128, 129]. When fault-tolerance requirements are taken into 
account, much of the quantum compiling landscape remains open; for example, 
relating the sequence of compiled elements to lower-level noise models and 
performance estimates is an active research area [106, 130].  Developing integrated 
environments that allow the layout, scheduling, and control of quantum circuit 
primitives when implemented via a quantum error-correcting code fault-tolerantly 
remains an open research challenge.  
 
Verification and validation of quantum programs 
 
The first step in being able to reason about quantum programs is creating languages 
based on well-grounded semantic models.  This is a well-studied area in 
conventional computer science but a relatively nascent idea in quantum computer 
science.  At the same time, the desire to have high-level constructs needs to be 
balanced with the ability to synthesize efficient quantum circuits, which gets back 
into quantum compiling R&D.  With a well-formed language, it should be possible to 
assert a variety of purely quantum correctness constraints, such as the no-cloning 
rule on quantum programs [131].  Ideally, it will be possible to develop automated 
theorem provers for quantum code in a well-designed language.  At the very least, it 
will be important to include standard computer-science constructs that facilitate 
debugging, such as types, model checking, and symbolic execution.  Very few of 
these ideas have been rigorously translated to quantum programming—the field is 
ripe for the picking.  In the short term, before large-scale quantum computers are 
available, it will furthermore be important to develop small-scale quantum 
computer emulators so that quantum software can be tested and improved for when 
large-scale quantum computers do become available. 

3. Assessing Quantum Computers 
As quantum computers become available, it will be critical to ascertain whether, in 
fact, the performance of quantum computers exceeds that of conventional 
computers and if so, whether that gain is due to quantum effects that can be 
expected to scale.  Developing clear metrics for assessing quantum computers now 
is therefore an important exercise to understand how to fairly compare resource 
usage between quantum and “classical” computers, and how to even compare 
different types of quantum computers. 
 

4. Computational Support for Quantum Algorithm Development 
In this next section, we address some of the computational challenges facing the 
development of quantum algorithms for applied mathematics. These challenges 
come in the form of both software and architectural issues that can impact the 
expected performance of an algorithm implementation. Whereas conventional 
algorithmic development draws on a robust base of programming and profiling 
tools to test new ideas, the same computational support for quantum algorithms is 
currently underdeveloped or does not exist. We explain that quantum algorithms 
research is a relatively young field and that it currently lacks many of the 
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computational tools available to conventional efforts. Future development of 
quantum algorithms will benefit from both exploratory mathematics research and 
development of computational tools for testing implementations.  
 
The benefits from any new algorithm are due to fundamental speed ups in its 
complexity as well as to its ease of integration with existing computational 
frameworks. Quantum algorithms are amenable to demonstrating these benefits 
when they are designed with considerations for the target architecture. For 
example, accelerator-based HPC systems currently make liberal use of hierarchical 
management and process control during application development, and we can 
anticipate that the utility of quantum algorithms will depend significantly on their 
ability to accommodate these system constraints. Many quantum algorithms are 
now developed independently of a machine model. This is due partly to the relative 
immaturity of quantum processor platforms, which have yet to offer a well-defined 
model for testing against.  
 
This suggests the possibility that quantum algorithms will be mismatched with the 
future hybrid HPC systems that might be developed. For example, it is generally 
appreciated that speedups within a classical parallel computing platform are at best 
linear in the number of processors, as given by Amdahl’s law. But this is not the 
behavior expected for the scaling of quantum algorithms, which very frequently are 
not parallelizable in the sense of Amdahl’s law. Instead, quantum algorithms have 
the potential to offer exponential speedup on a per-node basis; that is to say, as the 
size of each processor increases linearly. This argument suggests that an 
asymmetric multiprocessor model is better suited for the direct adoption of 
quantum algorithms as it segments behavior into independent systems. But this 
approach ignores other application concerns such as minimizing data movement 
and system complexity. Consequently, the now well-defined problem of HPC co-
design becomes an essential issue for assessing the performance of quantum 
algorithms. 
 
It may be several more years before quantum hardware is sufficiently robust for 
large- or even modest-scale demonstrations. Nonetheless, it remains possible to use 
abstract machine models for algorithm testing purposes. The benefits derived from 
quantum algorithms can then be measured relative to the forecasted impact on a 
model HPC system. Abstract machine models can offer representations of both the 
quantum processor and the hybrid HPC system level. These representations can 
provide meaningful feedback to algorithm developers on which architectural 
constraints and issues must be addressed. Ultimately, how system architecture 
constrains algorithm implementations is likely to be a key bottleneck for quantum 
algorithm performance in future HPC platforms. 
 
Alongside architectural issues, we expect that programming and execution models 
for hybrid HPC systems will also play a role in shaping quantum algorithms for 
applied mathematics. Programming models define the means by which end users 
make use of quantum algorithm implementations. Highly optimized libraries are 
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frequently used to make implementations of conventional algorithms accessible for 
a wide range of application developers. This permits details of the algorithm 
implementation to be abstracted into a well-defined interface. However, the 
judicious use of these libraries depends to some extent on the acceptable 
algorithmic use cases and details of the system infrastructure. This applies to both 
quantum and classical algorithms. There are currently few conventions for 
developing quantum algorithmic libraries but it is clear that future adoption of these 
libraries will need to reconcile design features with HPC system concerns. This is 
especially true for algorithms that pass reference to quantum register elements, i.e., 
qubits, whose value cannot be copied, but rather must be managed in concert with 
processing statements. The computational models and programming models 
discussed in previous sections are likely to play a role in determining the use cases 
for a quantum algorithm as well as its implementation and overall performance as 
part of an applied mathematics library. In addition, issues related to non-idealized 
implementations including finite-bits of precision and overhead arising from error-
correction methods need to be better understood. Similarly, execution models that 
define the order and precedence with which resources are used and the methods by 
which execution is negotiated must be specified. Even in an abstract setting, these 
execution models can provide insight into the best choices for algorithm 
implementation. 
 
Finally, there is an overall challenge in assessing both the relative and absolute 
measures of performance in quantum computing systems. Time-to-solution and 
scaling laws are often cited for measuring the benefit of a quantum algorithm 
relative to other solutions. However, current HPC co-design efforts have emphasized 
that system-level and end user concerns also play an important role in the future of 
computer. Metrics such as power consumption, processor programmability, source 
code accessibility and portability are not yet defined for quantum algorithm usage 
and may ultimately be deciding factors in adoption of these methods. 
 

5. Relevant Whitepaper Submissions 
With respect to computational tools for algorithm development, WP1 cited the 
importance of benchmarking methods for emerging quantum computing platforms. 
WP6 discussed recent work on finite precision quantum algorithms. WP7 discussed 
the significant interplay between quantum and classical computing resources. 
WP11 cited recent work on programming environments for the development of 
software tools for algorithm design and simulation. WP12 provided an instance of 
how a quantum computer would need to connect with a classical database. WP14 
discussed the integration of quantum optimization algorithms with other classical 
methods. WP16 emphasized the need for computational tools to support 
algorithmic development, including quantum programming languages. WP18 
discussed integration between quantum and classical computing resources. WP21 
highlighted tradeoffs in quantum circuit synthesis methods. WP27 presented new 
methods for large-scale classical simulations of quantum computing systems. WP28 
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emphasized the need for computational tools to support quantum computing 
environments. 

B. Applications for Physical Systems 
Many of the potential applications of quantum computers relate to simulating 
physical systems. As Feynman argued early on in the history of quantum computing, 
building a computer out of quantum mechanical elements could help circumvent or 
at least reduce the exponential overhead that comes from simulating quantum 
mechanical systems on standard (classical) computing hardware [1]. To date, much 
of work in applying quantum computers to physical systems has been along these 
lines of quantum simulation. A variety of techniques are used to map physical 
systems onto qubits, and the types of systems considered include systems from 
chemistry, materials science, and particle physics. 
 
Algorithms for using quantum computing and quantum annealing for machine 
learning have also been proposed. Given the importance of machine learning in 
developing models for many important scientific systems, this application of 
quantum computing and annealing has generated interest. 

1. Quantum Simulation 
Quantum simulation is the emulation by a controlled quantum system of another 
quantum system of interest in the physical sciences. Much recent progress has been 
made, especially in trapped ion and trapped atom systems, in the analogue 
simulation of physical systems. Typically, some lattice system of interest in 
condensed matter physics is mapped to the Hamiltonian of a lattice of trapped ions 
or atoms, and properties of the condensed matter system are obtained by 
measurement of the atomic or ionic system. In contrast, digital quantum simulation 
assumes that the controlled quantum system that is used is a universal digital 
quantum computer. Digital simulation then uses well-established techniques, 
principally Trotter formulae, to implement a simulated time evolution under a given 
Hamiltonian as a sequence of elementary gates. Given such a gate sequence, one can 
then apply quantum error correction to it, so that once the physical device has 
reached the error correction threshold, simulations that exceed the decoherence 
time of the device can be performed. 
 
Digital Quantum Simulation. There are four proposed approaches to digital 
quantum simulation (DQS) of physical systems. Firstly, one may use a grid to 
discretize space, represent the position of each particle on this grid by the binary 
expansion of its components, and evolve forward in time according to the 
Hamiltonian. Typically in this representation the potential will be diagonal in the 
position basis, and all off diagonal terms in the position basis will arise from the 
kinetic term. However, the kinetic term is diagonal in the momentum basis, and the 
change of basis is accomplished by the Fourier transform, which may be performed 
exponentially faster on a quantum computer than even the Fast Fourier Transform 
on a classical computer. The cost of applying the potential is simply given by the cost 
of classically computing the potential at a point. For Coulomb interactions this is 
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tractable. This approach is appealing for the simulation of chemical reactive 
scattering problems, where it is in fact preferable to retain all nuclear coordinates 
explicitly, thus also allowing for the direct treatment of diabatic effects such as those 
of interest at conical intersections in chemistry [132]. 
  
Secondly, one may perform a simulation based directly on the second quantized 
Hamiltonian. This is appealing for problems such as molecular electronic structure 
where a localized orbital basis provides a more economical representation of the 
wavefunction than a Cartesian grid. Here the Jordan-Wigner or Bravyi-Kitaev 
transformations are used to map the fermionic second quantized operators to 
operators on qubits, and evolution under the Hamiltonian is performed using the 
Trotter method. This approach has the advantage that the couplings in the 
Hamiltonian are control parameters for the quantum simulation and may be 
classically precomputed. The digital simulation of molecular electronic structure has 
been well-studied over the last ten years, with particularly rapid progress being 
made in the last year [133-137]. 
  
Thirdly, one may take the Configuration-Interaction (CI) matrix of a fermionic 
system as the starting point for the simulation. In this case the challenge is 
simulation of the time evolution using the Trotter method in the absence of any 
tensor product structure or natural decomposition into local terms. Here it is the 
sparsity of the matrix that makes it amenable to quantum simulation. The CI matrix 
is sparse, and can be decomposed into one-sparse matrices that contain only a 
single nonzero entry in each row and each column. The time evolution operator is 
simulated by Trotterizing the CI matrix into a product of evolutions under one-
sparse Hamiltonians. Each one-sparse matrix can be efficiently simulated provided 
that the matrix elements can be quantum computed coherently [138]. 
 
Fourthly, a different approach is needed for the simulation of the quantum dynamics 
of fields. Unlike a collection of finitely-many particles, which can be fully described 
by a finite list of their spatial coordinates, a field is fully determined only by its 
values at all points in space, which are continuously infinite. This creates additional 
challenges for digital simulation of quantum field theories, such as those that 
describe relativistic phenomena observed in particle accelerators and within nuclei.  
Nevertheless, by discretizing space onto a lattice, storing approximate field values at 
each lattice point using qubits, and carefully taking into account discretization 
errors as determined through renormalization, one can show that quantum 
computers have the potential to efficiently simulate processes in quantum field 
theory that require exponential time to simulate using classical supercomputers 
[139]. 
 
For future work there are several productive directions that could impact ASCR 
goals. In the context of first quantized grid-based methods, new methods for 
implementation of the potential computation require study to determine their 
efficacy on problems of chemical interest [140]. This type of study would echo the 
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recent work [133-137] that has been done in the case of electronic structure 
calculations. 
  
For the second quantized algorithms the emerging detailed understanding of errors 
in Trotter decompositions should be extended to realize near-optimal scaling for 
these methods. There are two approaches to the mapping of fermions to qubits that 
have been used in quantum simulation. These are the Jordan-Wigner and Bravyi-
Kitaev transformations. Circuits based on the Jordan-Wigner transformation, which 
naively imposes a large overhead in terms of gates, have been optimized to remove 
this overhead. The Bravyi-Kitaev transformation, which removes the overhead at 
the level of the Hamiltonian, has not yet been so optimized and currently it is 
unclear which of these transforms is best for quantum simulation algorithms. 
Theoretical work to determine the truly optimal second quantized digital simulation 
algorithms is high impact as it brings the early implementation of these methods 
much closer. 
  
In terms of the sparse algorithms there is also the possibility for rapid and high 
impact progress. The major opportunity in this area is the recent development of 
optimal techniques for the simulation of sparse Hamiltonians, with nearly optimal 
dependence on all parameters. For a given degree of error in simulating the time 
evolution operator, these methods scale as the log of the reciprocal of the error, as 
compared with a power of the reciprocal of the error for conventional Trotter 
methods. These new methods use the same type of sparse decomposition 
investigated for chemistry [141], and they face the same challenge. The matrix 
elements of the CI matrix must be computed within the quantum algorithm so that 
they may be accessed coherently in superposition. These elements are determined 
by molecular integrals over the basis functions, and this represents a large and 
potentially problematic obstacle to the practical use of these methods. 
  
The careful characterization, optimization and simulation of these algorithms are 
required to determine whether they can in fact beat second quantized approaches 
for problems of interest to DOE. This area is very open at present as both the 
methods and their application to chemical problems are very much at the research 
frontier. The exponential improvement in scaling with precision, if not 
overwhelmed by the overhead of the method, makes these methods worthy of 
serious study. 
  
It is interesting that classical chemistry faced a similar problem in the period prior 
to 1950. The so-called “nightmare of the integrals” was the problem of determining 
the molecular integrals in hydrogenic orbitals. Only with the introduction of 
Gaussian basis sets, which persist to the present day, was it possible to calculate the 
CI matrix elements efficiently. Today the major challenge in the use of the 
asymptotically optimal quantum algorithms for fermionic quantum simulation is 
also the “nightmare of the integrals” – the necessity to perform these calculations 
coherently as a subroutine of a quantum simulation. This naturally raises the 
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question of whether the continued use of 65 year old classical basis sets for the 
representation of the wavefunction is appropriate in a quantum context. 
 
One very promising approach that might be realizable in the nearer term than full-
scale digital quantum simulation is using shallow quantum circuits to evaluate the 
energy of a wave function that can be prepared as a function of a variety of 
parameters that may then be varied and optimized on a classical computer. This 
variational quantum eigensolver approach promises significant improvements for, 
notably, unitary coupled cluster wave functions, which could serve as a “gold 
standard” for high-accuracy chemical electronic structure calculations [142]. 
 
Analog quantum simulation. Analog quantum simulation (AQS) refers to 
arranging physical qubits so that their Hamiltonian (or master equation) closely 
approximates that of an interesting quantum system that we wish to simulate, then 
studying their evolution or equilibrium behavior. AQS has real promise for 
computing properties of lattice systems, materials, and perhaps even molecules. 
Potentially, it avoids the need for active error correction precisely because 
interesting properties of useful physical systems must themselves be robust to 
environmental perturbation, and if the analog device is sufficiently faithful to the 
system being simulated, then it inherits that robustness. AQS is a rapidly developing 
field full of interesting scientific challenges and opportunities [143]. There is a 
critical need for both (1) theoretical analysis to model and understand the source 
and reliability of analogue simulation's robustness, and (2) experimental 
implementation of controllable, configurable hardware that will confirm or deny the 
usefulness of this methodology. 
 
AQS has been applied to study hard problems in a number of different fields of 
physics. Greiner et al. [144] used a two-dimensional optical lattice of atoms to 
simulate different parameter regimes of the Bose-Hubbard Hamiltonian, controlling 
the lattice potential depth so as to probe different values of the ratio of the on-site to 
tunneling energy parameters. The observation of a phase transition in the optical 
lattice, where individual sites began to be doubly occupied, corresponds to a phase 
transition in the Bose-Hubbard Hamiltonian. 
 
In a similar experiment, Friedenauer et al. [145] used two trapped calcium ions to 
simulate the quantum Ising model. In this instance, varying external laser fields 
provided an analog interaction to the spin-spin interaction term in the Ising 
Hamiltonian, and paramagnetic to ferromagnetic to antiferromagnetic phase 
transitions could be observed. 
 
Algorithms using AQS to solve lattice quantum chromodynamics (QCD) problems 
have also been proposed. The physics of neutron stars, including their formation, 
composition, and ultimate fate is an urgent subject of modern science. Despite 
several decades of intense study, the inaccessibility of cold dense nuclear matter to 
experimental probes, coupled with the restriction of lattice QCD simulations to zero 
density by the “fermion sign problem,” has inhibited any significant advancement in 
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our understanding of neutron star matter. In particular, the importance of 3-, 4-, and 
higher-order many-body forces to the nuclear equation of state, which determines 
neutron star structure, are only poorly understood. As a result of these limitations, 
all calculations of the neutron star equation of state have relied either on nucleonic 
potential models inapplicable at high density, or on symmetry-based models 
designed to capture the essential aspects of dense QCD. But given the richness of the 
QCD phase diagram, it is extremely difficult to unambiguously identify these 
essential aspects, and a new computational architecture capable of probing the 
strongly-coupled, dense regime of QCD is required. 
 
Quantum simulation of QCD provides a natural resolution of the fermion sign 
problem, as a quantum simulator is inherently a phase-manipulating system. That is, 
by employing an inherently quantum system to simulate another quantum system, 
one computes in precisely the same way that nature itself “computes”. Not only 
would quantum simulation of QCD eliminate the technical challenge posed by the 
sign problem, it would also vastly expand the universe of soluble problems to 
include the real-time evolution of strongly-correlated systems, direct measurement 
of transport properties, and many others. While the full implementation of a QCD 
simulator will require a number of theoretical and technical developments, the 
ability to simulate certain classes of both Abelian and non-Abelian gauge fields in 
the laboratory, using highly tunable ultracold atomic gases, has already been 
realized. These systems provide an excellent testing ground for the simulation of 
quantum gauge theories and the further development of more complex simulation 
techniques. Moreover, the work required to take steps toward a fully quantum 
mechanical simulation of QCD promises to revolutionize the study of complex many-
body phenomena including superfluidity, the spin-Hall effect, and strongly-coupled 
physics, enabling an exhaustive exploration of these phenomena in a manner 
impossible with conventional experimental probes. 
 
One notable advantage to AQS is that it is anticipated that these simulators will be 
robust to the presence of errors up to a certain threshold. It is anticipated that 
interesting properties of useful physical systems must themselves be robust to 
environmental perturbation, and, if the analog device is sufficiently faithful to the 
system being simulated, then it inherits that robustness. In particular, the study of 
quantum phase transitions, due to their being collective phenomena, should be 
stable to minor variations in the control parameters. Such robustness could reduce 
or eliminate the need for active quantum error correction, dramatically reducing the 
physical requirements needed for a useful implementation of quantum simulation. 
The existence and the extent of this robustness is an open and important problem in 
the field. 
 

2. Machine Learning 
Data science, and, in particular, machine learning (ML), have emerged as central 
components of scientific computation. Recent results such as the detection of the 
Higgs boson would not have been possible without the development of 
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sophisticated machine learning techniques to detect faint signals within the data. 
Although such techniques have led to a revolution in data processing, they are often 
computationally intensive and as a result many of the most sophisticated methods 
have not yet been brought to bear against scientific problems. Quantum algorithms 
promise to rectify this by not only dramatically speeding up existing machine 
learning approaches but also promising new methods that are not known to be 
otherwise classically tractable. 
 
Apart from accelerating data processing, quantum machine learning algorithms can 
be used in tandem with quantum simulators. This would allow a quantum computer 
to scan through an exponentially large family of candidate materials to find a family 
of candidates that are promising for use in, for example, solar cells, dramatically 
accelerating the development time for such materials. As such, quantum machine 
learning is a natural partner with quantum simulation within any program that 
wishes to investigate automated discovery of materials, drugs or quantum device 
certification. 
 
Machine learning is a multi-disciplinary field of study that combines techniques 
from artificial intelligence, statistics, mathematics and condensed matter physics to 
train computers to solve problems involving pattern recognition in complex sets of 
data. Machine learning is a broad field and, in fact, many of the techniques that 
scientists and engineers use on a daily basis, such as least squares regression, can be 
thought of as a form of machine learning. 
 
The successes of machine learning in understanding big data sets have sparked a 
revolution within industry. Entire businesses, such as Google search and Microsoft's 
Bing are powered by these insights. The major leaps that have been made in natural 
language processing and image recognition also owe no small debt to the revolution 
that is ongoing within machine learning. Similarly, modern genomics is only 
possible because of machine learning methods. Despite their relative ubiquity in 
industry, machine learning methods rarely appear within the physical sciences 
outside of high-energy physics. That being said, the success of machine learning at 
those problems strongly suggests that machine learning will also play a 
transformative role more broadly within the next few years. 
 
Classification is a critical application of machine learning. The goal of such 
algorithms is to train a computer to automatically classify data from an experiment 
or other data source. In such applications, the user chooses a rich family of models 
that can generate a rich set of data sets. In the simplest approach to training, each 
data example is paired with a label that is supplied by a trusted expert and the goal 
is to find the model within the class of allowable models that is most likely to assign 
the correct label to each of the data examples in the set. This form of learning is 
called supervised machine learning and is perhaps the simplest form of machine 
learning. Unsupervised machine learning, on the other hand, solves a similar problem 
except that the computer assigns its own labels to tag the data without direct human 
intervention. 
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As an example, classification methods have been applied to the joint European torus 
(JET) fusion experiment to predict when the plasma in the device becomes unstable. 
Such instabilities not only cause the experiment to fail but also dissipate enough 
power to cause the torus to literally leap off the ground resulting in substantial 
downtimes. The use of a supervised machine learning algorithm (the support vector 
machine algorithm) has been used to successfully predict when the plasma is about 
to become unstable with accuracy greater than 80%. The use of machine learning 
promises to predict when such instabilities occur and perhaps lead to methods that 
can re-stabilize the plasma. 
 
Unsupervised classification algorithms are also extremely important in data 
processing. Unsupervised machine learning searches for patterns in data sets that 
the user may not even know exist. Perhaps the simplest such algorithm is clustering. 
Clustering algorithms take a set of data for which no a priori pattern is known to 
exist in the data and assigns the data to some number of distinct clusters that best 
represents the data. Such algorithms are useful because not only they provide 
insight into the data but they also allow computers to identify such patterns without 
human assistance. This application may be of particular use in material and drug 
discovery algorithms and may also help scientists find patterns in complex data sets 
that cannot be readily visualized. 
 
Machine learning can also be used to predict the behavior of a system. For example, 
the exact same methods can be used to find energy usage patterns and predict how 
much power a city will use as a function of time based on usage patterns provided to 
the system beforehand. Similarly, the exact same approach could be used to learn an 
empirical model for a system of interest such as a high-temperature superconductor 
or a detector used in a cyclotron. These empirical models can then be used as part of 
a larger program to accurately predict the behavior of the device or material in a 
much larger system. 
 
Training a classifier can be very time and data intensive. It can require millions of 
training examples to obtain a model that understands the pattern behind the 
examples without overfitting the data. Consequently, some of the more 
sophisticated methods (such as deep convolutional neural networks) may take days 
or weeks of computer time to merely train the classifier. The search for improved 
methods for training machine learning models is consequently a very important 
goal in machine learning and by extension throughout the physical sciences. 
 
The development of machine learning algorithms for application in the physical 
sciences is of interest to ASCR supported communities as illustrated by the 
workshops that ASCR has sponsored on the topic in recent years. This significance 
stems from the fact that classical machine learning will be a major application for 
exascale computing when the technology arrives within the next several years. 
Similarly, the ASCR community is well poised to take a leadership role in the 
discovery and development of quantum approaches to machine learning. We lay out 
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the cases below for the various forms of quantum machine learning that arose in our 
discussion and discuss their promise in relation to the ASCR mission goals. 
 
Machine learning via quantum computing: Although machine learning was 
proposed as a possible application of quantum computation nearly a decade ago, it 
is only relatively recently that concrete proposals have been made for using 
quantum computers for tasks within machine learning. Quantum algorithms for data 
fitting, clustering, nearest-neighbor classification and deep learning have recently 
been proposed. All of these methods offer polynomial speedups over their classical 
counterparts and, in some restricted cases, may even exponentially accelerate 
machine learning. 
 
The discussions within the quantum simulation focus group identified several 
promising new avenues of inquiry that involve the use of quantum computing or 
quantum simulation. 

• New quantum algorithms for machine learning. 
• Applications of quantum machine learning to materials and drug design and 

to other problems within the DOE mission (examples are given below). 
• Methods for certifying/testing analog quantum simulators. 

 
The need for the development of new quantum algorithms for machine learning was 
a common theme in many of the discussions in the session. Although quantum 
algorithms are known to accelerate a diverse array of machine learning algorithms, 
a common challenge that many of them face is that a large quantum memory will be 
needed in most practical applications. In particular, if a machine learning algorithm 
is being trained with a database of a million training examples then a quantum 
database containing millions to billions of qubits may be needed. Since quantum 
computers of this scale are not anticipated in the foreseeable future, new algorithms 
that do not require a large quantum memory may be needed for the training 
process. 
 
An example of such a machine learning algorithm was presented in the quantum 
simulation session. This result showed an algorithm for quantum deep learning that 
not only does not require extensive quantum memory but also provides a quantum 
speed advantage over classical methods and promises better training while 
revealing new classes of efficiently trainable models that are not known to be 
tractable classically. Since deep Boltzmann machines represent a state of the art 
method for machine learning, this represents an important step forward for 
quantum machine learning. Yet there is still much work that needs to be done. 
Further quantification of the training advantages of the algorithm relative to 
existing classical approaches is needed (a presently difficult task that will become 
easy once quantum hardware to run the algorithm on exists). Also all algorithms 
proposed so far strongly mimic existing classical training algorithms. The search for 
a manifestly quantum model for machine learning remains an important unrealized 
goal within quantum machine learning. 
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What impact would a quantum machine learning algorithm have on science? 
The most evocative answer that emerged from the panel discussion is that a 
quantum machine learning algorithm could be used to identify promising materials 
or drugs in concert with a quantum simulator. To see how this might work, consider 
the following. Imagine that you want to find a potential candidate for a cancer 
therapy. The user would begin by compiling a list of known compounds that are 
effective or ineffective for fighting a particular form of cancer. The user then decides 
a class of molecular features that they believe will be useful for deciding the 
effectiveness of a drug. Quantum simulation algorithms could then be used to 
calculate these features for use in data for a supervised quantum machine learning 
algorithm. A quantum computer could subsequently use Grover's search to rapidly 
scan over a database of potential candidate molecules in search of one that the 
trained model believes will have therapeutic properties. This approach is by no 
means unique to drug design. It can also be used in materials design tasks such as 
engineering photovoltaics or high-temperature superconductors, tailoring optimal 
catalytic agents by mapping the potential energy surface for adsorption onto a 
substrate by quantum principles, or even to design new experiments in high energy 
physics. 
 
Such applications would otherwise require an exascale or larger classical cluster, 
whereas a quantum computer with a few hundred logical quantum bits may be able 
to achieve the same task with exponentially less power consumption and 
computation time. ASCR has the opportunity to foster the development of an end to 
end algorithm that combines ideas from quantum simulation and data science to 
move beyond simple simulation and lead to automated methods for gaining insight 
into the structure of physical systems. This has the potential to revolutionize the 
way we approach solving challenging design problems using quantum hardware. 
 
Machine learning via quantum annealing. Quantum annealing is a recent 
technology that opens up the possibility of obtaining quantum speedups for 
important optimization and machine learning problems using existing hardware. 
Quantum annealers, such as the D-Wave 2, use a variant of adiabatic quantum 
computing where an initial state is slowly evolved into a target state that encodes 
the answer to the optimization or machine learning problem. The quantum 
adiabatic theorem promises that slow evolutions do not excite the system out of its 
(instantaneous) minimum energy configuration, which means that if both the initial 
and final states are chosen to be minimum energy (instantaneous) states of the 
slowly varying quantum system then the resultant quantum state will yield the 
answer to the problem at hand. This approach is known as quantum annealing 
because it is strongly analogous to annealing in metallurgy. Quantum annealing 
differs subtly from adiabatic quantum computing because the system is not required 
to be in an eigenstate throughout the computation in quantum annealing. 
 
Unlike most circuit-based quantum computers, quantum annealing is robust to 
many common forms of noise because of the large energy barrier between the 
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ground states of the system and the manifold of excited states. In particular, a large 
gap creates a significant impediment for the environment exciting the system out of 
its ground state. In fact, such transitions will become effectively impossible if the 
environment cannot provide enough energy to excite the system out of the ground 
state. Therefore the quantum annealer will be expected to be robust against thermal 
excitement if the energy gap is much greater than the temperature of the 
environment. Controlling a quantum annealer is also comparatively simple since the 
slow evolutions require little bandwidth. These properties mean that devices 
consisting of hundreds of qubits are commercially available; however, existing 
devices are not universal and their quantum nature remains hotly debated. 
 
Nearest-neighbor classification provides an excellent example of how quantum 
annealing can be used to classify data. The algorithm seeks to classify a piece of data 
by assigning it to the same class that the most similar piece of training data was 
assigned. A quantum annealer would solve this machine learning task by comparing 
the test data to each of the examples in the training set and applying an energy 
penalty for each bit where one of the data examples differs from the training 
example. Therefore the closest example (using the Hamming distance) is the one 
that has the least energy. Since quantum annealing aims to map low energy states to 
low energy states, the outcome of the protocol is likely to be a data point that is 
close to the one being classified. This solves the problem of nearest neighbor 
classification. Similar strategies have also been considered for classical machine 
learning (specifically training restricted Boltzmann machines). 
 
No conclusive evidence has yet been found of quantum annealers providing an 
advantage (a speedup, reduction in the computational resources, or a reduction in 
the asymptotic scaling of the algorithm) over existing classical computers. 
Verification of this conjecture remains a major open problem in quantum 
information processing. 
 
Members of our panel showed considerable interest in this form of machine 
learning. White papers were submitted on a number of different issues such as using 
this approach to process data from the LHC (Large Hadron Collider) and the use of 
quantum annealing to predict plasma instabilities in future fusion experiments. 
Other results were presented that show that quantum annealing may have 
advantages for rapidly mining large databases of materials or to model protein-DNA 
binding using experimental data, with enormous impact on understanding 
regulatory functions of non-coding genome sites [146]. In the latter case, quantum 
annealing outperformed other machine learning methods for some (but not all) 
instances of the problem. Similar advantages (e.g. finding improved optima or 
finding optima a larger percentage of the time) may also be seen for problems in 
material science and catalyst design, by using training-testing approaches to model 
potential energy surfaces of reactants on surfaces [147, 148].  
 
Another potential application of quantum annealing within the umbrella of machine 
learning is software validation and verification. Software validation and verification 
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is a computationally important task for aircraft testing. Supercomputers are often 
required in such applications to exhaust enough of the input space for avionics 
systems to ensure that catastrophic bugs in the software are sufficiently rare. 
Software verification and validation is also of great interest outside the aerospace 
industry: it is highly relevant for other mission critical systems such as control 
software for nuclear reactors and other energy infrastructure. By assigning a lower 
energy to inputs that produce the correct output without crashing, quantum 
annealing can be used to search for bugs. The ability of quantum systems to tunnel 
through energy barriers into low energy sectors raises the hope that quantum 
annealers may find use for software validation if they, indeed, exploit quantum 
tunneling. 
 
Perhaps the biggest opportunity that quantum annealing provides is the ability to 
use existing hardware as a “white box” to probe the advantages that quantum 
mechanics can provide long before scalable quantum computers become available. 
Serious scientific investigation into the potential that such quantum architectures 
may have for rapidly solving problems that would otherwise be beyond the 
capabilities of an exascale (or larger) supercomputer is needed. It should also be 
noted that, quantum annealing promises to disrupt current approaches to data 
processing and optimization within a short time frame and it therefore presents the 
possibility of yielding new quantum algorithms for optimization that are radically 
different than those that would arise from the traditional circuit model of quantum 
computing. 

3. Boson Sampling 
Boson sampling is a recent technology proposed by Scott Aaronson and Alex 
Arkhipov [149] that aimed at probing the strong Church-Turing thesis. The Church-
Turing thesis is the hypothesis that all physically realistic processes in the universe 
can be efficiently simulated by a Turing machine. Colloquially, this is equivalent to 
saying that the universe is not intrinsically more powerful than a classical computer. 
Quantum theory has revealed that the strong Church-Turing thesis is likely false. 
Instead it is commonly believed that quantum computers are needed to efficiently 
simulate many physical phenomena. Not all quantum systems are difficult to 
simulate classically and it is unclear, in general, whether any particular class of 
physical systems will permit an efficient classical simulation. 
 
Boson sampling was devised to address this issue. It works by preparing a set of 
single photon states and feeding them into a network of polarizers and beam-
splitters. Aaronson and Arkhipov showed that if a classical computer could 
efficiently sample from the resulting distribution of photons yielded by the linear--
optical network then the polynomial hierarchy would partially collapse. Such a 
collapse of the polynomial hierarchy has absurd consequences for computer science 
and as a result such collapses are nearly universally believed to be impossible. The 
simplicity of Boson sampling provides a platform that may be even more likely than 
quantum annealing to provide evidence for a quantum advantage over classical 
computing. 
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Boson sampling does not, unfortunately, answer a decision problem. Instead it 
illustrates that nature can sample from distributions that it would not be able to if 
the strong Church-Turing thesis were true (modulo complexity theoretic 
assumptions). Recent work discussed in our session suggests that Boson samplers 
may actually be able to solve problems in chemistry [150]. The vibrational structure 
of a molecule can be probed using a Boson sampler by tuning the beam splitter 
parameters precisely and replacing the input single photon states with squeezed 
vacuum states. This problem is not known to be tractable using classical computing. 
This form of Boson sampling is a form of analog quantum simulation that can 
investigate phonon dynamics in chemicals or materials using a much simpler system 
than would be required by quantum annealing or a full quantum computer. 

4. Relevant Whitepapers 
WP11 summarized recent progress in digital quantum simulation. WP17 discussed 
opportunities around analog simulation and other simulations that could be run on 
near-term hardware. WP8 described opportunities for analog simulation around 
neutron star material and lattice QCD. WP8 discussed computation using 
configurable quantum networks. WP23 surveyed deep learning progress and 
discussed opportunities for quantum machine learning. WP10 discussed 
applications of machine learning via quantum annealing for Higgs particle search. 
WP24 discussed applications of machine learning for predictive fusion applications. 

C. Applications for Applied Mathematics 
Some quantum algorithms correspond directly to certain scientific applications, 
such as the quantum chemistry and high-energy physics algorithms considered in 
the previous section. In that setting, a quantum algorithm is designed specifically 
towards an application goal, e.g., recovering ground state energies or scattering 
amplitudes. But other quantum algorithms can be used more generally, for example, 
as subroutines that support a broad range of applications or numerical solvers. In 
this applied mathematics setting, quantum and classical algorithms work together, 
perhaps in parallel, and may exhibit non-trivial dependencies on each other. Their 
use is not application specific but rather driven by the varying demands of HPC end 
users. Quantum algorithms for applied mathematics therefore represent a very 
broad and revolutionary approach to algorithmic development for high-
performance computing. 
  
In this section, we review state of the art and open challenges of quantum 
algorithms for applied mathematics. We examine use cases of quantum algorithms 
for linear algebra, integration and summation, optimization, and graph theory 
problems as prototypical examples of applied mathematics. A comparison of the 
algorithmic complexities to state of the art classical results emphasizes the potential 
for quantum algorithms to make substantive differences across many scientific 
domains.  
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Several quantum algorithms have been discovered that offer substantial speedup 
over classical algorithms for problems in applied mathematics that may be of 
relevance to DOE’s mission. In particular, quantum algorithms achieving 
exponential speedup over known classical algorithms have been discovered for 
certain problems in linear algebra [13] and combinatorial optimization [51]. In 
addition, quantum algorithms achieving polynomial speedup have been discovered 
for integration [151] and summation [152], extraction of certain graph-theoretic 
properties, and optimization on structured objective functions [153, 154]. Adiabatic 
quantum computation and quantum annealing also show promise for optimization 
problems [15]. Their performance relative to classical computation is currently a 
highly active area of research [25-28, 31, 155]. This section summarizes known 
results and areas of ongoing research in quantum algorithms for applied 
mathematics. 

1. Linear Algebra 
Solving systems of linear equations is one of the most basic and ubiquitous 
problems in scientific computing. A canonical version of this problem is, given an 
invertible 𝑁 × 𝑁 matrix 𝐴, and a vector 𝑏, solve Ax=b. The standard classical 
algorithm for this problem runs in time 𝒪(𝑁3) for worst-case (i.e. non-sparse) 
instances. The asymptotically fastest classical algorithm for this problem runs in 
time 𝒪(𝑁2.373) time, but is not practical [156]. For sparse A, classical algorithms still 
require time scaling at least linearly with N. In a 2009 breakthrough, Harrow, 
Hassidim, and Lloyd (HHL) discovered [13] a quantum algorithm for certain 
instances of this problem that runs in 𝒪(log𝑁) time, thereby obtaining an 
exponential speedup. 
 
For an arbitrary 𝑁 × 𝑁 matrix A, it is impossible to solve Ax = b using classical or 
quantum approaches in time less than 𝒪(𝑁2)because it takes N2 time just to read all 
the entries of A. However, for some applications, the entries of A may be determined 
by mathematical formulae either purely theoretically or from a smaller underlying 
set of empirical parameters. In this case, it is possible for quantum computers to 
query the matrix elements in superposition and achieve exponential speedup. For 
the HHL algorithm to achieve exponential speedup, the matrix A must be well- 
conditioned and sparse, and the vector b must correspond to an efficiently 
constructible quantum state. Furthermore, the answer x cannot be read out in its 
entirety (which would necessarily take time N). Rather, one can extract 
approximations to quantities of interest such as xT M x for sparse matrices M. At the 
core of the HHL algorithm is a technique for simulating Hamiltonian time evolution. 
Thus, advances in quantum simulation algorithms directly lead to improved 
versions of the HHL algorithm that either run faster or can handle broader classes of 
matrices. 
 
Finding problems of practical interest that can be reduced to linear algebra 
problems fitting the conditions of the HHL algorithm is a current area of research 
that has attracted substantial attention from the quantum algorithms community. In 
particular, quantum algorithms based on the HHL algorithm have been proposed for 
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estimating classical electromagnetic scattering cross sections [157], solving linear 
differential equations [158], estimating electrical resistance of networks [159], 
least-squares curve-fitting [160], and machine learning [161-164]. Due to the highly 
varied and strongly problem-instance-dependent performance of machine learning 
algorithms, the advantages of quantum machine learning algorithms relative to 
classical heuristics are a continuing subject of research and debate [165]. In [166] it 
was shown that quantum computers can invert well-conditioned matrices using 
only logarithmically many qubits, whereas polynomially many classical bits are 
required, thus providing a substantial reduction in computational resources for 
large systems. Therefore, solving linear systems of equations may be a promising 
application for small scale near-term quantum computers. 

2. Integration and Summation 
Given a list of N numbers, the classical complexity of exactly computing their sum is 
of order N. One can also approximate the sum by random sampling. By standard 
statistics, approximating the sum to within ±ε requires 𝒪(1/𝜀2) samples. In 1999, 
Nayak and Wu showed that by querying the numbers in quantum superposition 
rather than sampling randomly, one can approximate their sum to within ±ε in time 
𝒪(1/𝜀), thus achieving a quadratic speedup over classical randomized algorithms 
[152]. Nayak and Wu also obtained quantum speedups for related tasks such as 
approximating the median of data sets. Their quantum algorithms for these tasks 
are generalizations of Grover’s search algorithm. Building upon this work, a 
quantum algorithm achieving quadratic speedup for the approximation of 
continuous integrals (with sufficiently well-behaved integrands) was given in 2001 
[151]. 
 
Quantum algorithms for integration and summation are no longer a highly active 
area of research in quantum algorithms. However, they are certainly worth 
mentioning due to their widespread applications. In addition, these algorithms 
serve as examples of a more general phenomenon: polynomial quantum speedups 
over classical randomized algorithms obtained by adapting Grover search [167] and 
its generalizations such as amplitude amplification [168] and quantum walks [169]. 
Any classical randomized algorithm that succeeds with probability p must be run 
𝒪(1/𝑝) times to achieve success with high probability, and the runtime of the 
algorithm has a corresponding factor of 1/p. Using amplitude amplification, a 
corresponding quantum algorithm can be obtained where this factor is reduced to 
√1/p. A currently active area of research in quantum algorithms is to take state of 
the art classical algorithms and investigate what degree of speedup is achieved by 
applying amplitude estimation or quantum walks to any subroutines to which they 
can be applied. Speedups have been obtained this way for simulated annealing 
[170], verification of matrix products [171], and the subset sum problem [172]. It is 
likely that further quantum speedups for applied mathematics problems could be 
discovered in this vein. 
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3. Optimization 
The general optimization problem is, given some objective function f, find the x 
within the domain of f that minimizes (or maximizes) f. Applications of optimization 
algorithms are extremely varied, ranging from airline scheduling, to circuit layout, 
to machine learning. The difficulty of optimization problems and the corresponding 
suitable strategies also vary widely depending on the structure of the objective 
function. Many of the widely used classical algorithms are heuristic methods that 
lack rigorous performance guarantees and may only find approximate solutions. 
Quantum algorithms for optimization similarly vary widely. For certain highly 
symmetric objective functions, quantum algorithms achieving provable polynomial 
speedups have been found [153, 154]. For problems amenable to solution by 
classical simulated annealing, a quadratic quantum speedup can be achieved [170]. 
For more difficult problems, including NP-complete combinatorial optimization 
problems, a number of quantum heuristic methods have been proposed [15, 51], 
whose performance is currently a subject of intense theoretical and experimental 
study. 
 
For some optimization problems, the costliest part of the algorithm is the evaluation 
of the objective function. In such cases, the number of queries to the objective 
function is a good metric of computational cost. The query complexity is also a 
convenient metric for analysis— in simple cases upper and lower bounds on query 
complexity for classical and quantum algorithms can be proven. In particular, 
consider the final stages of a numerical optimization algorithm for a smooth 
objective function. Sufficiently close to the minimum, the objective function should 
be well approximated by a Taylor series about the minimum. In this region, it will be 
given approximately by a positive-definite quadratic form. The problem of 
minimizing a quadratic form is thus a simple but important case of numerical 
optimization. The classical query complexity of minimizing a quadratic form in d 
variables has been proven to be of order d2 [173]. By evaluating the objective 
function in quantum superposition and taking advantage of the quantum algorithm 
for gradient estimation [174] one can find the minimum of a quadratic form using 
𝒪(𝑑) quantum queries [154]. More generally, any classical algorithm using 
numerical gradient estimation for an objective function on d variables can be 
similarly sped up by a factor of d using quantum gradient estimation. Finding a 
lower bound for the number of quantum queries needed to minimize a quadratic 
form is an open problem. 
 
A second example of a simple optimization problem admitting polynomial speedup 
was given in [153]. The objective function takes strings of n bits as input and 
outputs the number of bits that differ from the optimal bit string. This objective 
function is in some sense a discrete analog of a conical basin; its value is 
proportional to the Hamming distance (rather than Euclidean distance) from the 
optimal solution. As shown in [153], the fastest possible classical algorithm for this 
problem requires n queries to find the minimum, whereas a single query suffices for 
the quantum algorithm. This quantum algorithm and the quantum algorithm for 
minimizing quadratic forms are similar in that they operate on objective functions 
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without local minima and achieve a speedup by a factor of the dimension of the 
domain of the objective function. Whether these two results can be subsumed as 
special cases of a more general quantum speedup for optimization problems with 
simple objective functions is an area of current research. 
 
For objective functions that are relatively smooth but populated with local minima 
that would trap simple gradient descent, a popular classical heuristic algorithm is 
simulated annealing. Simulated annealing is a randomized algorithm in which 
“uphill” moves are accepted with some probability thus allowing escape from local 
minima. As shown in [170], classical simulated annealing can always be 
quadratically sped up by adapting the quantum algorithmic techniques from [169]. 
This quantum speedup is achieved within the standard quantum circuit model and 
should not be confused with quantum annealing, which is discussed below. 
 
In 2000, Farhi et al. proposed a new form of quantum computation called adiabatic 
quantum computation [15]. Adiabatic quantum computation can be simulated by 
quantum circuits and vice-versa [175]. However, most attention has focused on the 
possibility of using adiabatic quantum computation to solve optimization problems, 
for which it appears naturally suited. The central question about quantum adiabatic 
algorithms is which optimization problems, if any, admit speedup by adiabatic 
quantum computation over classical computation. Through the adiabatic theorem, 
the runtime of an adiabatic quantum algorithm can be bounded using the 
eigenvalues of the algorithm’s Hamiltonian. Numerical evaluation of these 
eigenvalues is very difficult due to the high dimension of the Hamiltonian matrices, 
although some progress has been made numerically (cf. [176, 177]). Analytically, we 
know that adiabatic optimization can find minima in polynomial time in cases where 
simulated annealing and other classical local search algorithms fail to do so [178, 
179]. Conversely, on some examples, adiabatic quantum optimization can fail in 
cases where gradient descent succeeds [180]. Characterizing the instances in which 
adiabatic optimization can be expected to yield advantage is a difficult mathematical 
research problem currently being pursued. 
 
One of the attractive features of adiabatic quantum optimization is that it may be 
easier to implement than a general purpose quantum computer based on the 
quantum circuit architecture. Prototype quantum optimization hardware with 
hundreds of qubits is now commercially available from D-Wave systems (The extent 
of the quantum nature of the D-Wave hardware is still a matter of intense debate). 
The computation performed by D-Wave hardware differs from Farhi’s original 
proposal for adiabatic quantum computation in several respects. First, the system 
inevitably has coupling to thermal and other environmental noise, which may wash 
out some quantum effects. Secondly, the rate at which the algorithms are run is 
limited by the hardware rather than determined by the eigenvalues of the 
Hamiltonian. The form of computation performed by the D-Wave machine is often 
referred to as quantum annealing. The goal of quantum annealing is usually to find 
approximate solutions to optimization problems rather than obtaining true optima 
by remaining in the ground state, as is done in adiabatic algorithms. Whether 
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quantum annealing has the potential to solve optimization problems faster than 
classical computing is currently a matter of intense debate and research [25-28, 31, 
155]. 
 
Recently, a new form of quantum algorithm for optimization was proposed, called 
the Quantum Approximate Optimization Algorithm (QAOA) [51]. It shares with 
adiabatic algorithms the feature that they are both easy to define but its 
performance is nontrivial to analyze. Nevertheless, an example of a combinatorial 
optimization problem has now been found for which QAOA provably finds, in 
polynomial time, a better approximation than is found by any published polynomial-
time classical algorithm [51]. Time will tell whether this exponential speedup 
generalizes to a broader class of problems and whether it holds its lead against 
further progress in classical approximation algorithms. 

4. Graph Theory 
Quantum algorithms offering polynomial speedup have been discovered for a 
variety of graph theoretic problems, including finding spanning trees, locating 
cliques, and deciding bipartiteness. Originally, these algorithms were discovered 
individually without the aid of any general and powerful underlying theory. 
Recently, however, a more systematic understanding has started to emerge through 
the use of span programs and generalized adversary bounds. Thanks to these new 
tools, rapid progress is being made in finding quantum algorithms offering 
polynomial speedup for a variety of problems that can be formulated in terms of 
query complexity. This includes many graph-theoretic problems of potential 
interest within applied and computational mathematics. We may anticipate further 
progress along these lines in the near term. 

5. Relevant Whitepaper Submissions 
With respect to quantum algorithm development for applied mathematics, WP4, 
and WP10 addressed applications of machine learning. WP6 discussed the 
development of finite precision algorithms for linear algebra. WP9 presented efforts 
to find quantum algorithmic advantages beyond speedups. WP14 discussed 
quantum optimization as a heuristic for combinatorial optimization solvers. WP15 
presented algorithms for optimization and quantum simulation. WP19 discussed 
algorithms for linear systems and Hamiltonian simulation as well as ground state 
problems. WP22 presented methods for topological and geometric data analysis 
using quantum machine learning. WP23 discussed machine learning extensions 
based on quantum deep learning networks. 
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IV. Research Opportunities 
This report has identified a number of key research problems in quantum 
computing that are relevant to its future applicability for DOE and ASCR missions. 
These problems have aligned broadly with the topics of quantum computational and 
programming models, quantum algorithms for applied mathematics, and scientific 
applications of quantum computing. We provide a summary outline of the near-term 
research opportunities in these areas. 
  
Quantum computational devices capable of high-fidelity operations on multiple 
qubits are just starting to appear. There is an outstanding need for protocols that 
test, validate, and benchmark these emerging “micro-QC” devices with respect to 
their theoretical performance expectations.  Clear research opportunities include 
the development of validation methods for micro-QC devices based on simple 
calculations and algorithm testing. This also hints at opportunities to explore the 
utility of few-qubit devices for solving computational problems. The results of those 
efforts may be useful for guiding the future hardware development by setting 
performance expectations. These questions can be further focused to ask: What 
quantum algorithms can be implemented on a micro-QC that is too small or too 
noisy to incorporate useful error correction?  To what degree can those algorithms 
demonstrate the quantum nature or advantage of the device?  Which algorithms and 
applications are best suited to demonstrate “quantum supremacy” (i.e., a 
computational improvement over the best performance achievable with purely 
classical resources)? 
  
A related but distinct research opportunity is to address the question of “How do we 
compare and rank different quantum computational devices?”  Validating and 
benchmarking methods are needed for a variety of development scenarios. 
Meaningful measures of comparison are to evaluate quantum computational devices 
that (a) operate using different base technologies, (b) operate with different noise 
models, (c) operate with widely disparate numbers of qubits, and (d) operate with 
different computational models. Similarly, methods are needed to validate that a 
device or processor distinctly behaves quantum mechanically.  A striking example of 
this research challenge is illustrated by early attempts to validate and benchmark 
first generation quantum annealing machines for performance and capability 
relative to classical hardware, a question which still remains only partially 
answered.  We anticipate that advancing the size and features of quantum 
computing technologies will make such comparisons only more difficult. Ultimately, 
these efforts will likely need to lead to specifications for quantum technology 
certification that might be used in future HPC acceptance criteria. 
  
Quantum software development is another broad and critical area of research need. 
What tools can or will play the roles of programming languages, libraries, compilers, 
and debuggers for quantum software? Are there useful abstract machine models 
that can simplify the process of addressing different hardware 
platforms?  Programming tools and software will be needed for expressing quantum 
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algorithms and building quantum-enabled applications. These tools include 
programming languages capable of expressing quantum constructs, compilers for 
translating these languages into machine instructions, and system execution models 
for carrying out those instructions. In addition, program debuggers and simulators 
will be necessary for validating code and verifying implementations. 
  
Sustained efforts in both the foundational mathematics of quantum algorithms and 
the computational infrastructure to support their development are needed.   
Each of the quantum algorithms discussed in this document presents specific 
research opportunities, many of which are discussed in their relevant sections. 
However, quantum simulation deserves specific mention here.  In digital quantum 
simulation, there is urgent need for research that reduces resource requirements 
(notably computation time), and that generalizes simulation algorithms beyond 
molecular systems. Analog quantum simulation also appears promising (for near-
term hardware), but there is critical need for better understanding of analog 
simulations’ robustness to noise and decoherence.  Another promising research 
opportunity is the development of methods to apply results from one analog 
simulation to more general systems, along the lines of what is currently done with 
Ising or Hubbard models. 
  
Quantum algorithms that offer speedup to the basic primitives of applied 
mathematics, such as linear algebra, integration and summation, discrete and 
continuous optimization, and graph theory have already been developed. Further 
fundamental research is needed for discovering new quantum algorithmic 
techniques, and new classes of mathematical problems admitting quantum speedup. 
Further development is needed to improve the efficiency of known classes of 
quantum algorithms and adapt them to realistic hardware and to problem instances 
of practical interest. Speedups for these basic operations of applied mathematics can 
have broad impact due to their widespread application throughout scientific 
computing. 
 
In addition to mathematical research, the field of quantum algorithms requires 
computational infrastructure to support robust testing and validation of new ideas. 
In the absence of reliable quantum processor platforms, it seems likely that some 
form of quantum programming and simulation environment is needed. Small scale 
quantum computers and classical simulations of quantum computers can influence 
the development of new quantum algorithms, and the discovery of new quantum 
algorithms can in turn influence the design of quantum hardware. At a higher level, 
abstract machine models for hypothetical quantum coprocessors and the larger HPC 
environments that they operate in are needed to provide both context and direction 
to algorithm developers. These machine models will themselves require research 
and development, in a quantum variation of the now familiar HPC co-design 
problem. 
  
Near-term research problems facing quantum computing are naturally cross-
disciplinary as they span the domains of computer science, mathematics, and 
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physics. These problems cross the traditional boundaries between the program 
offices within the DOE Office of Science. In particular, whereas ASCR has 
responsibility for research and development of computer science and mathematics 
to address future high-performance computing applications, quantum physics falls 
naturally into the Basic Energy Science (BES), High-Energy Physics (HEP), and 
Nuclear Physics (NP) program offices.  
 
Some problems in quantum computer science can be undertaken as standalone 
efforts. For example, quantum algorithm development is nearly solely within the 
domain of applied mathematics, while high-level languages, programming tools, and 
abstract machine models are familiar to computer science. The feedback from 
domain scientists required for these efforts is likely similar to existing HPC co-
design efforts. But there are also problems whose solutions will benefit from mixing 
the physical and computational disciplines. This includes the development of 
specific scientific applications, such as quantum simulation, that will require close 
collaboration between the expected use cases and the application development.  
  



 42 

V. Conclusions 
This report summarizes the findings of the DOE ASCR Workshop on Quantum 
Computing for Science. The workshop goals included assessing the viability of 
quantum computing technologies to meet the computational requirements in 
support of the DOE’s science and energy mission, and identifying the potential 
impact of quantum technologies. With input from the presentations and discussions 
at the workshop, this report has broadly surveyed those topics in quantum 
computing that are most likely to bear future relevance on DOE’s scientific 
computing mission.  
 
The variety of research opportunities found in the topics of quantum computational 
and programming models, quantum algorithms for applied mathematics, and 
quantum applications for scientific problems indicate that there is great potential 
for quantum computing to impact the DOE mission. However, much work in the 
fundamentals of computer science and mathematics will be needed to mature these 
ideas into computationally viable solutions for DOE. This includes the development 
of robust programming environments, languages, libraries, compilers, and 
computing environments for developing quantum applications, as well as the 
exploration and refinement of quantum algorithms. We expect these tools will be 
needed well before the availability of large-scale quantum computing resources, for 
example, to develop and benchmark near-term quantum computing applications 
using few-qubit processors.  
 
Quantum computing research opportunities in computer science and applied 
mathematics are naturally aligned with the ASCR supported program areas, while 
others, specifically scientific application development, are likely to require 
coordination with BES, HEP, and NP stakeholders. We expect that solving the 
challenges facing quantum computing will require the broad skill sets represented 
by all the program offices with the Office of Science. Addressing these near-term 
research challenges is vital for DOE ASCR supported communities to exploit the 
burgeoning development of quantum computing technology for its modeling and 
simulation needs in the physical sciences. 
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Appendix B: Workshop Agenda 
Presentations from the workshop are available for download from  
 

http://www.csm.ornl.gov/workshops/ascrqcs2015/agenda.html 
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Breakout Session 3: Physical Science Applications 

Table B.4 Agenda for breakout session on physical science applications 
Topic 3 
Quantum Algorithms for Quantum Simulation and Science Applications 
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