

Report of the HPC Correctness Summit

Jan 25–26, 2017, Washington, DC

report authors

Ganesh Gopalakrishnan University of Utah
Paul D. Hovland Argonne National Laboratory
Costin Iancu Lawrence Berkeley National Laboratory
Sriram Krishnamoorthy Pacific Northwest National Laboratory
Ignacio Laguna Lawrence Livermore National Laboratory
Richard A. Lethin Reservoir Labs, Inc., Yale University
Koushik Sen University of California, Berkeley
Stephen F. Siegel University of Delaware
Armando Solar-Lezama Massachusetts Institute of Technology

October 4, 2017

DISCLAIMER

This report was prepared as an account of a summit sponsored by the
U.S. Department of Energy. Neither the United States Government nor any
agency thereof, nor any of their employees or officers, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof. The views and
opinions of document authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof. Copy-
rights to portions of this report (including graphics) are reserved by original
copyright holders or their assignees, and are used by the Governments li-
cense and by permission. Requests to use any images must be made to the
provider identified in the image credits (if any) or the first author.

1

Contents

1 Introduction 4
1.1 Reasons for the correctness crisis 4
1.2 What is in scope, what is not 6
1.3 Suggested research foci, targeted time-frames 10

1.3.1 Short-term (1-2 years) 10
1.3.2 Medium-term (2-5 years) 10
1.3.3 Long-term (5 years and beyond) 11

2 Rigorous Methods for Correctness 11
2.1 What is the Correctness Problem? 12

2.1.1 Specification . 12
2.1.2 Verification . 14

2.2 Challenges in High Performance Computing 16

3 State of the Art and Successes 19
3.1 Testing . 20
3.2 Infrastructure for Bug Detection and Localization 22

3.2.1 Static Analysis . 22
3.2.2 Dynamic Analysis . 23
3.2.3 Formal Methods . 24
3.2.4 Control of Non-determinism 24
3.2.5 Anomaly detection . 25
3.2.6 Conventional Parallel Debugging 25

3.3 Correctness through Correct-by-Construction Certification . . 26
3.4 Successes due to rigorous and systematic methods 26

4 New Research, Impact 29
4.1 Static methods . 29

4.1.1 Runtime system focused thrust 29
4.1.2 Numerical algorithms focused thrust 30
4.1.3 Specifications Thrust 32
4.1.4 Verification of compilers and libraries 33
4.1.5 Other thrusts . 34

4.2 Dynamic methods . 34
4.3 Debugging . 35
4.4 Pragmatic thrusts . 36

2

5 Next steps 38
5.1 ASCR Focus Areas . 38

5.1.1 Short Term . 38
5.1.2 Medium Term . 39
5.1.3 Long Term . 40

5.2 Moonshots . 40
5.2.1 Project 1: Fully certified molecular dynamics simulation 41
5.2.2 Project 2: Multiphysics 42
5.2.3 Project 3: Verified Compiler/Runtime Components . . 42

5.3 HPC correctness workshop . 42
5.4 Competitions for verification of HPC software 43

3

1 Introduction

Technologies for verification and debugging have made significant strides in
the context of general systems software. An investment in such technologies
to make them applicable for High Performance Computing (HPC) could lead
to substantial improvements in the productivity and sustainability of HPC
software development. Such improvements will be essential to fully exploit
new exascale computer architectures. Without such investment, there is
the possibility of a substantial crisis in our ability to advance the field of
HPC, as the complexity of our architectures, algorithms, and applications is
moving beyond the ability of our developers. As HPC is of strategic impor-
tance to our nation, forming the bedrock of its scientific and technological
capabilities, such investment is highly warranted.

1.1 Reasons for the correctness crisis

While the general correctness problem in computer science is well researched,
specific reasons that cause HPC-specific correctness methods to turn into an
urgent priority include the following (see Figure 1 for an overview).

Growing heterogeneity: Given the widening disparities between CPU,
memory, and I/O speeds, computations will be supported by a heteroge-
neous architectures that include CPUs, GPUs, and special-purpose acceler-
ators [63]. Even today, programs in this space exist around a patchwork of
semantic abstractions that are poorly understood individually, and whose
emergent behavior is poorly understood.

Massive scale: Attaining exascale will require proper coordination and
synchronization across many tasks, threads, and processes [41]. Disciplines
that guide programming in this space do not exist, nor do testing methods
that unearth defects in this space. Left unchecked, this will lead to deployed
systems that yield untrustable results or crash during long-running simula-
tions. Fixing the root cause of bugs in these settings will incur huge latencies
during which science domain experts may sit idle or be unproductively en-
gaged with debugging. These costs are known to be already very high (see
the sidebars for some concrete examples of costly field bugs in HPC).

Non-intuitive behaviors: The push toward significant energy savings
will lead to the use of reduced floating-point arithmetic, delayed state up-
dates across weak memory consistency models, non-determinism caused by

4

Static
Methods

Dynamic
Methods

Debugging

Pragmatic
Thrusts

Correctness
Challenges in HPC Research in Correctness

Heterogeneity

Massive scales

Non-intuitive behaviors

Cognitive overload

New algorithms

Unpreparedness

Impact

Trust
Trust of scientific results

Productivity
Less wasted programing time

Sustainability
Science continues to build on

previous results

Performance
Keep optimizations safe

1 2 3 4

Figure 1: Overview of the existing challenges in correctness for HPC and
the research areas that need extensions to address these challenges.

dynamic voltage/frequency scaling, fault recovery steps and inherent ap-
plication non-determinism. It is impossible to employ ad hoc debugging
methods in these situations.

Cognitive overload: The manner in which people write as well as config-
ure full applications is evolving in a direction where human reasoning about
correctness is impractical. For example, the NWChemEx computational
chemistry code is bringing together SPMD and task parallelism, multiple
programming models and runtime interfaces, code generation, and dynamic
and adaptive selection of execution configurations. In these settings, man-
ually reasoning about correctness of the application, or even an individual
execution, has gone beyond the scope of the individual developers; the need
to bring in more automated and/or formal ways has become quite apparent.

New scalable algorithms: New algorithms for numerical computing of-
fer the potential for major improvements in the asymptotic requirements
for computation [86]. Kernel-independent and generalized Fast Multipole
Methods (FMM) enable matrix vector multiply to be achieved in O(N)
time. Support preconditioner methods will enable sparse systems of equa-
tions to be solved in near-linear time. Randomized linear algebra and com-
pressive methods will enable systems to be simulated in sampled or com-
pressed form. Such algorithms will bring complex new execution patterns
and complex tradeoffs between precision, probability, and time. The ability
to exploit these algorithms will require tools to facilitate reasoning about
the correctness of their application and implementation.

5

Undoing an optimization
leads to a difficult bug

Tensor contraction expressions in
Coupled Cluster methods involve
products of multiple anti-symmetric
tensors. In NWChem, these expres-
sions are computed as a chain of pair-
wise tensor contraction to minimize
operation count. An effort to reop-
timize these contractions in the new
generation of tensor contraction en-
gine (TCE) by undoing the chaining
and reoptimizing the contraction se-
quence in the existing TCE led to in-
correct results. Isolating the source
of the error was a manual process:
transforming subsets of the contrac-
tions and checking for differences.
After months of effort, it was found
that, depending on the chaining, an
additional coefficient needed to be in-
troduced in a key intermediate step,
referred to as symmetrization. Ex-
plicit specification of the optimiza-
tion rules and checking whether or
not the transformations satisfy the
rules could have identified this bug
quickly.

Community unpreparedness:
Compared to sequential program-
ming abstractions that are more fa-
miliar to an application scientist,
future HPC systems will involve a
large slew of semantic abstractions
(and relatively newer abstractions
such as tasking) whose correct and
efficient usage are not first nature to
the broad application development
community.

Ways to insulate application
developers through domain-specific
languages (DSL) are badly needed;
yet, progress is lacking in this di-
rection. A related but severe prob-
lem is that HPC application devel-
opers do not have the mindset (or
the necessary common repositories)
for sharing best practices (includ-
ing sharing information on bugs and
bug-fixes). This lack will hamper
the transitioning of new verification
research results into practice.

1.2 What is in scope, what
is not

Current issues in scope: Any defect a programmer can correct by modi-
fying and/or repairing existing programs and/or their support runtime logic
are well within the scope of this report. These include the classic sequential
program bugs, errors relating to concurrency (e.g., race conditions, incor-
rect programming under weak memory models), and numerics (e.g., errors in
realizing the numerical algorithm using finite-precision floating-point num-
bers). Defects that may manifest only when a code is scaled up and not
during lower-scale testing are also in scope.

We also consider defects that can be eliminated by disciplined code trans-
formations from higher-level, or can be eliminated through better compo-
sition and software engineering practices. Defect prevention methods that
can be incorporated into best practices, pedagogy, mineable bug reposito-

6

ries, expert tutorials, and IDEs that can prevent or issue warnings about
possible bugs are also of great importance, and are well within scope.

A Hard-To-Debug Large-
Scale Error
A bug in ddcMD, a parallel
molecular-dynamic code, manifested
as an intermittent hang when run
at large scale on BlueGene/L at
LLNL. It took a significant amount
of person hours and debugging effort
to find the root cause: a message
race in which a process could hang
waiting for a message that was
intercepted by another process.
More specifically, the hang occurred
when two independent instances of a
user-level I/O layer were simultane-
ously processing two separate sets of
buffers—an infrequent pattern that
occurred when a small data set was
written immediately after a large
data set. Due to the semantics of
MPI send/recv operations and the
use of fixed tags, messages from a
small set could be confused for those
for a large set and vice versa, thus
triggering the hang. Later, after the
bug was fixed by the programmer,
the bug was used in a blind study,
in which researchers developed a
tool to isolate this class of bugs
without having details of the error
(more in [75]). This shows that
documenting bug cases can be useful
in developing and testing advanced
correctness tool.

When defining the correctness
of HPC programs, it is important
to keep in mind that the behavior
of a user-written program is heav-
ily influenced by the behaviors of
the underlying libraries. Not only
are the sequential (e.g., numerical
and C/Fortran) libraries important,
the behavior of communication and
runtime libraries (e.g., MPI and
OpenMP) directly impact how a
user program executes and whether
it even makes forward progress.

In this context, it is important
to detect and eliminate erroneous
arguments supplied to library func-
tions that may cause a program
crash. For example, MPI calls
must adhere to conventions perti-
nent to the source language (For-
tran or C). However, resource as-
pects of the runtime and communi-
cation libraries are a whole different
matter. For example, it is possible
to write a user program that may be
perfectly correct as far as the users’
mental model of an “idealized MPI
library” goes, but unfortunately a
given MPI library may be unable
to park all the asynchronous sends
that the user program has issued. Such user programs can either deadlock
or crash an MPI library.

Most libraries are underspecified, and their implementations often do not
come with strong guarantees, such as about the amount of resources provided
(e.g., amount of buffering) or whether forward progress or a response within
a deadline is guaranteed. These issues are clearly also important, but must
be relegated to a longer-term pursuit that involves cooperation from library
and runtime designers.

7

In the same vein, the inability to control the evolving semantics of li-
braries and programming languages must be kept in mind, requiring cooper-
ation among participant communities. For instance, if a library guarantees
a certain order of accuracy for its results (e.g., “9 digits of accuracy”) for
specific platforms, we may not be prepared to detect the violation of such
contracts by another library on a newer platform to which the code is ported.

When More Than print
Debugging Is Needed
A scientist experienced hangs in a
laser-plasma interaction code (named
PF3D) when scaling it to 524,288
MPI processes on LLNLs Sequoia
BlueGene/Q system. The scientist
spent months trying to debug the
problem through print statements to
no avail. Moreover, the scientist
was unable to reproduce the hang
at smaller scales where fully fea-
tured, heavyweight debuggers would
be more plausible. Using STAT
(Stack Trace Analysis Tool), the sci-
entist was able to debug the prob-
lem, a race condition between two
distinct but overlapping communica-
tion code regions. The bug was the
result of the application migrating
from one version to another more
scalable but incompatible one. Dur-
ing migration, the application ran
through a compatibility layer that in-
troduced the race condition and ulti-
mately caused the timing- and scale-
dependent hangs (more in [76]). This
case shows that, although print de-
bugging can be a useful debugging
method, the HPC community can
benefit from advanced correctness
methods and tools to isolate bugs
that otherwise can consume months
of effort and millions of CPU hours
to fix.

Upcoming issues in scope dur-
ing exascale: We also realize that
this report is being written in
a timeframe where the underly-
ing designs of exascale systems are
experiencing significant disruptive
changes. In this era, hardware will
often be poorly specified, particu-
larly with regard to features related
to the memory model, concurrency
and synchronization. With exas-
cale, new hardware features for con-
trolling voltage and frequency, are
appearing, as well as advanced fea-
tures for task scheduling, communi-
cation, and synchronization. There
will be heavy uses of heterogeneous
types of memory (e.g., non-volatile,
scratchpad spaces that do not pro-
vide cache coherence, etc.). Con-
sider the behavior of an adaptive
congestion algorithm [67] in the
communications fabric, which may
affect or permute the ordering of de-
livery of messages. If such features
are not specified or are incorrectly
specified to the runtime or MPI li-
braries, it will be impossible for any
verification technology to guarantee
correctness of the software running

on it.
The performance behavior of hardware is also moving into the arena of

8

correctness and even safety, where exascale hardware systems are likely to
be over-provisioned with transistors, so that not all parts of the system can
be used simultaneously while still remaining below the power and cooling
limits of the facility, and within the limits for safe and correct operation of
the machine. This will impose requirements on firmware, system software
and applications to maintain resource usage.

All these issues clearly point to an even greater demand for formal spec-
ifications from the hardware vendors on these behaviors and requirements.
It will also correspondingly demand that our formal verification and debug-
ging tools use these hardware level formal specifications in order to provide
overall correctness guarantees.

Heterogeneity-caused
arithmetic divergence
results in deadlock
In a recent project [84], an attempt
to port some of the MPI processes
to run on Xeon-Phis while leaving
others running on Xeons caused a
curious deadlock that took days
to debug. The root cause was the
Xeon-Phis calculating the number
of messages to be sent (through
an expression bp/cc) differently
from how the Xeons calculated
the number of messages to be
received (also governed by bp/cc).
Unfortunately, the developers had
not applied due precautions to their
compilation flags, resulting in 63
messages being sent but only 62
attempted to be received, which
then caused the deadlock. This
bug tells us that a combination of
factors—processors being different,
floating-point roundoff differing due
to the inconsistent use of compiler
optimization flags, and the delicate
MPI semantics allowing the number
of receives posted to exceed the
number of sends posted (but not
vice versa)—may lead to bugs.

The following issues are not di-
rectly within scope: There are
many issues that are important to
keep in mind, but are best relegated
to other pursuits that are better
able to focus on them. We now men-
tion a few examples of such issues
(by no means exhaustive). HPC
programs may be brought down
by hardware logic errors in micro-
processors, GPUs, memory subsys-
tems, and buggy interconnect pro-
tocol implementations. Soft er-
rors may corrupt program behav-
ior, but are not considered human-
introduced defects. Version control
and security-related issues are again
somewhat tangential. Finally, the
numerical algorithm itself can be
incorrect. For instance, errors in
the design of the numerical scheme
to approximate the idealized mathe-
matics, including incorrectly sched-
uled coarse/fine meshing, lack of
conditioning of the problems, etc.,
can be considered algorithmic de-
fects and not software defects.

9

1.3 Suggested research foci, targeted time-frames

We now summarize some of the key short-term, medium-term, and long-
term directions identified and elaborated in the rest of this report.

1.3.1 Short-term (1-2 years)

The following short-term foci are overdue, in order to bootstrap the process
and bring the community together:
• Launch efforts to apply existing best-of-breed tools to challenge prob-

lems, extend those tools, and generally work with HPC applications
code as-is. These tools include existing commercial tools as well as
those being developed within the research community.
• Advance these tools to address cross-cutting concerns adequately (e.g.,

tie-in to debuggers and formal tools, instrument existing OpenMP and
MPI runtimes to produce event streams, standardize verification tool
design around such event streams).
• Bringing advances from the non-HPC community to HPC. These mea-

sures could begin as modest as ensuring the capture and sharing of
bugs and their fixes, and in general, incorporating lessons from Em-
pirical Software Engineering [85].
• Learn from other communities. For example, study and adapt tech-

niques for concurrency verification from the embedded system veri-
fication community. Also, adapt techniques for verifying numerical
computations from the cyberphysical systems community.

1.3.2 Medium-term (2-5 years)

The following medium-term directions deserve significant attention:
• Correctness verification of important properties in common HPC soft-

ware components, including math libraries and widely-used runtime
systems such as OpenMP and MPI.
• Building infrastructure to document previously solved correctness is-

sues in the form of bug databases, bug test cases, best testing practices,
as well as lightweight mechanisms to automate the extraction of such
cases in HPC centers.
• Standardize interfaces to allow composability of correctness checkers,

defect isolation tools, and debuggers.
• Investments in the modeling and specification of numerical algorithms,

ontologies for the mathematics of the underlying algorithms.

10

• Support for reasoning about statistical and randomized systems, Un-
certainty Quantification and Automatic Differentiation.

1.3.3 Long-term (5 years and beyond)

Investments in these long-term directions will go a long way toward closing
the gap between growing system complexity and verification capabilities:
• A few “moonshot” projects, including verification of fundamental logic

and numerical properties in multi-physics applications.
• Define metrics for achievable and communicable levels of correctness,

especially in simulations with geopolitical consequences, such as weather
simulations.

2 Rigorous Methods for Correctness

Formal methods are rigorous mathematical techniques for exhaustively check-
ing that the model of a system under analysis satisfies a set of desired prop-
erties. The model in question could be: (1) a piece of code (e.g., the model of
a numerical routine); or (2) a set of rules or axioms describing the behavior
of some aspect of the system (for example, partial orders can describe the
guarantees provided by a memory model, or a set of mathematical rules can
describe the behavior of floating point arithmetic). The second perspective
is an example of formal methods that are “baked into” analysis procedures
or developed to support specific lines of reasoning.

Following the well-known Intel Pentium fiasco, all major chip manufac-
turers have now adopted formal analysis to verify floating-point hardware.
In a recent project at Intel [69], formal methods were deemed so success-
ful in examining critical arithmetic units of Intel’s core i7 that traditional
simulation-based testing was largely eliminated.1

Achieving this degree of adoption of formal methods in HPC is a coveted
goal. However, driving a formal methods agenda forward in HPC requires
prudence, given the absence of an obvious failure cost model (as happens
when chips emerge with silicon defects, where each mask re-spin costs mil-
lions of dollars), and also given the sheer complexity of HPC software. More
practical are approaches where formal methods are baked into tools so that
everyday users are not confronted with modeling their idiosyncratic pieces
of code.

1In recognition of this success, the leader of this project, Roope Kaivola, won Mi-
crosoft’s prestigious verified software award of 2014.

11

2.1 What is the Correctness Problem?

Correctness of systems hinges on hav-
ing validated specifications and ver-
ification methods that find defects.
Challenges in these areas with re-
spect to HPC include the oracle prob-
lem, nondeterminism, performance
focus, concurrency, scale, domain-
specific mathematical abstractions,
the use of floating-point arithmetic,
and issues that stem from the un-
derlying programming language and
runtime support.

A program is correct when it be-
haves as expected on any execution.
This definition begs the question,
what behavior is expected? This is
in general a difficult question to an-
swer and will naturally vary from
program to program. Hence the
question of correctness involves two
related activities: specification—the
process of rigorously defining what
a program is expected to do—and
verification—the process of estab-
lishing that a program complies with its specification, i.e., that it is correct.

2.1.1 Specification

Generic vs. application-specific properties. Certain aspects of the
specification of a program come “for free.” These include requirements im-
posed by the programming language used to develop the program. For
example, any correct C program should never attempt to read or write to a
memory location beyond the bounds of an object, divide by 0, or dereference
a null pointer. These requirements are specified in the C Standard, and are
inherited by any program written in C.

The application program interfaces (APIs) of libraries and other lan-
guage extensions used by the program may impose additional requirements.
The Message Passing Interface (MPI) standard, for example, requires that
all processes belonging to a communicator issue the same sequence of col-
lective calls on that communicator. The OpenMP Standard forbids data
races on shared variables. As with C, violations of these restrictions lead to
undefined behavior, and should never occur in a correct program.

As important as these language-level requirements are, they do not suf-
fice for specifying correct program behavior. The C program

int main() {}

satisfies all such requirements, but will not correctly compute the solution to
a partial differential equation or the effective neutron multiplication factor
of a fission reactor. Clearly, additional techniques must be used to specify
application-specific properties.

12

Assertions. Assertions are a standard way of specifying application-speci-
fic properties. An assertion specifies a boolean expression which is expected
to evaluate to true whenever control reaches that statement. Most program-
ming languages support assertions in some way. In C, for example, assert
statements are checked at runtime and a diagnostic message is printed if one
fails. Assertions can also be turned off to save time in production runs, but
this limits their ability to establish correctness of HPC applications, since
many defects appear only at large scale.

While useful for expressing certain correctness properties, assertions are
limited to the primitives available in the programming language and cannot
easily express relations across different states. It is difficult to assert “forall
integers i, if 0 ≤ i < n then the value of x(i) when control exited this
function is twice the value of x(i) when control entered the function.”

Contracts. More sophisticated specification systems such as contract lan-
guages overcome some of these limitations. For example, the ANSI C Spec-
ification Language (ACSL) is used to specify the behavior of C functions.
The language provides first-order quantifiers (“for all”, “exists”) and many
other primitives beyond those available in C. ACSL function contracts spec-
ify pre-conditions (conditions assumed to hold when control enters the func-
tion) and post-conditions (expected to hold when control exits); they also
allow one to specify relations between the pre- and post-states.

ACSL contracts are inserted as comments in the code, so they do not
impact the usual workflow of compiling and executing the program. Spe-
cialized tools (for performing verification or other tasks) use the contracts
in different ways. The Frama-C platform, for example, can be used to ver-
ify ACSL function contracts using deductive (theorem proving) techniques.
Contracts may also be added with respect to collective calls in programming
models based on the Bulk Synchronous Parallel (BSP) Model [111].

Certificates. In certification systems, proofs or correctness can be idi-
cated as tactics scripts [10] (e.g., written in Coq [35]). In these systems,
both the proof and the imperative code that runs can be auto-generated
from the tactics; this is how the certified compiler CompCert [79] and the
Certified Kit Operating System CertiKOS [23] are implemented.

Golden models. Finally, sometimes the simplest way to specify an al-
gorithm is to provide an implementation. This implementation could be a
simple, inefficient sequential expression of the algorithm. It can then be used

13

as a “golden model” against which production-quality implementations can
be compared. Methods that can establish the functional equivalence of two
programs could then be used to verify the production implementation.

2.1.2 Verification

It is well-known that the verification problem is undecidable: there does
not exist an algorithm that can always answer correctly the question, does a
program satisfy its specification?. But a technique does not have to be perfect
to be useful, and over the years, a large number of practical verification
approaches have been studied and implemented. Roughly speaking, we may
divide these into two categories.

Tools in the first category attempt to prove that a program (with spec-
ification) is correct. If the tool succeeds, the program is guaranteed to be
correct. The tool can fail to find a proof for a number of reasons: the
program is incorrect, the resources required (e.g., time or memory) exceed
what the user can afford, or the tool is just not capable of finding the proof.
Hence these tools can sometimes show a program is correct, but cannot show
a program is incorrect.

Tools in the second category attempt to find defects in programs. If the
tool finds a defect, it has shown that the program is incorrect. However,
such tools may fail to find existing defects—because they are not capable
of finding such defects, or cannot do so within reasonable resource limits—
and they may report “false alarms”—possible defects which are not actual
defects. Such tools can show a program is incorrect and provide valuable
debugging information, but they cannot show a program is correct.

In reality, this distinction is not black-and-white. Rather, these two
categories are two extreme points on a spectrum, with most tools falling
somewhere in between. For example, model checking techniques can be
used to prove that a program satisfies specified properties within certain
finite bounds (e.g., on the number of processes or inputs sizes) but leave
open the possibility that a defect exists outside of those bounds. Contract-
based techniques can show that one function in a program is correct under
the assumption that other functions behave correctly. Other approaches can
give probabilistic guarantees.

In what follows, we outline some of the major currents in software veri-
fication research and practice.

Testing. The most widely-used approach to the correctness problem, test-
ing involves executing the program on a selection of inputs and examining

14

the results. Testing has become a more rigorous discipline over the last 20
years. A variety of techniques for selecting test sets satisfying certain criteria
(e.g., statement, branch, or path coverage) have been explored. Language-
specific properties, assertions, and even contracts can be tested. The main
limitation is that testing cannot establish the program behaves correctly
on an input not in the test set. Other limitations in the HPC context are
discussed in Section 2.2.

Static analysis. These automated techniques attempt to reason about
a program without executing it. Compilers use static analyses to prove
properties such as: a variable is never used before it is defined; a variable
is only assigned a value of a compatible type; and control never reaches the
end of a function body without issuing a return statement. The types of
properties that can be proved are generally simple (see Table 1).

Dynamic analysis. In this approach, properties are checked as a program
executes, or after the program stops using traces that are gathered when
the program executes (see Table 1). Like testing, specific inputs are needed,
but dynamic analyses can detect defects that are not normally detected by
testing, such as the occurrence of a “potential deadlock” even when no actual
deadlock occurred during the execution.

Deductive reasoning [57]. This family uses theorem-proving techniques
to prove a program satisfies its specification. They can be fully automated
or require substantial human interaction. Verification Condition Genera-
tion is one increasingly popular approach that generates a number of small
theorems from a program+specification which can then be independently
“discharged” (proved) using a variety of theorem provers. These approaches
often require at least some help from the user, such as code annotations
(e.g., loop invariants) or guidance through more difficult proofs.

Symbolic execution [73, 21, 112]. These techniques “execute” a pro-
gram in an abstract sense, using symbols (X1, X2, . . .) in place of concrete
values as inputs. The “values” returned by operations are symbolic expres-
sions (e.g., X1 − 2.7 ∗ X2). Symbolic execution can be used to generate
high-quality test sets automatically, to find bugs, and even to prove prop-
erties (usually with some restrictions such as bounds on input sizes or loop
iterations).

15

Model checking [32]. This approach is particularly effective for checking
temporal properties of concurrent systems, e.g., “no process calls function f

until every process has exited the ghost-cell exchange.” It is standard in the
hardware industry and is the basis of many software verification techniques
for parallel programs. Typical model checking techniques compute a set
of reachable states of a finite transition system. When applied to software
this usually enables exhaustive verification of properties with small bounds
on the number of processes and other parameters. Model checking can be
combined with symbolic execution to cover a wide range of concurrency
behaviors and a wide range of inputs.

Certification. In the certification approach, proofs are constructed by
the programmer along with the software. Proof assistants automate aspects
of this task to multiply programmer effectiveness in generating code with
associated proofs. Certifying compilers [78] preserve the proof through code
optimization, to produce optimized code along with the compacted proof,
in a certificate, of its correctness. The certificate can be rapidly checked
against the binary, e.g., as the program starts, to ensure that the resulting
binary code meets the specification.

2.2 Challenges in High Performance Computing

The correctness problem takes on a number of special characteristics in high
performance computing. Here we enumerate some of the most important
points. These points illustrate why specification and verification are partic-
ularly needed now in HPC, and identify specific challenges that will need to
be overcome.

The oracle problem. HPC programs are often attempting to do new sci-
ence, so the expected results are usually not known. This makes traditional
testing techniques, in which the actual result computed by the program is
compared with an expected result, impossible. (There are often specific cases
in which the expected result is known, but these are exceptional.) Hence
HPC requires verification approaches that do not require knowledge of all
expected results. An example would be a tool that proves the functional
equivalence of a complex, optimized implementation of some algorithm with
a simple, trusted implementation of that algorithm.

Nondeterminism. Many HPC programs are nondeterministic. One source
of nondeterminism is concurrency—varying the interleavings of actions from

16

different threads or processes and the computed results may change. The
transition to exascale is expected to lead to even more nondeterminism;
hardware components will dynamically adjust their execution rates; soft-
ware implementations will embrace asynchrony to save time and energy; and
linear algebra libraries will increasingly employ randomized algorithm tech-
niques to achieve asymptotic speedups [114]. Testing becomes extremely
problematic for nondeterministic systems, because a correct execution for
some input does not even guarantee the program will behave correctly on a
second execution with the same input.

There is no one-size-fits-all approach to nondeterminism. For many pro-
grams, the final result is expected to be completely independent of the pro-
gram’s “internal nondeterminism.” For others, the final result is expected
to vary in expected ways, for example, any difference should result only
from the non-associativity of floating-point operations. In addition, many
HPC algorithms, such as Monte Carlo simulations, rely on randomness in an
essential way. For such “externally nondeterministic” programs, new spec-
ification techniques may be needed, for example, to express correctness in
terms of probability distributions.

Performance-focus. In traditional software domains, programmers try
to express algorithms in the simplest and most natural ways possible. This
makes code easy to understand, maintain, and modify. In HPC, there is a
tension between these goals and the need for good performance. Simple algo-
rithms that could be expressed in a few lines of code, such as matrix-matrix
multiplication, are often re-written using a combination of optimizations,
such as loop tiling, loop permutation, and loop unrolling. The program-
mer must also introduce explicit parallelism. Even though such loop op-
timizations and loop parallelization can be easily performed by a compiler
(automatically or interactively), many HPC programmers persist in per-
forming these optimizations manually, introducing the chance for bugs. The
programs are often highly parameterized, and provide multiple implementa-
tions of many functions, since different parameters and versions are needed
to obtain adequate performance on different platforms. All of these forces
lead to programs that are considerably more complex than they would be if
performance were not an overriding goal. The increased complexity makes
defects much more likely and verification even more necessary.

Concurrency. HPC programs are parallel programs. While some of the
verification techniques discussed in Section 2.1 are applicable to parallel pro-

17

grams, the vast majority of verification work targets sequential programs.
For example, the ACSL specification language is very mature and used by
a number of tools, but has no support for concurrency. Furthermore, mod-
ern HPC programs are increasingly hybrid programs which invoke multiple
concurrency models in a layered approach. These programs are extremely
difficult to reason about informally. Yet even among those verification tools
targeting parallel programs, very few can be applied to hybrid programs.
Finally, the use of weak shared memory consistency models—expected to
increase in the exascale era, in order to hide memory latencies—adds an-
other layer of complexity and will require new verification techniques.

Scale. Modern HPC programs are intended to run at an extreme scale,
with astronomical input sizes, numbers of processes or threads, execution
time, and so on. Often, defects are not observed at small scale. This makes
traditional testing and debugging techniques difficult. It can be very expen-
sive and difficult to obtain time on the machines that can support that scale.
It can take a tremendous amount of time to run tests at that scale. And
debugging a trace involving millions of steps and thousands of threads is
an extreme sport. Traditional model checking techniques also scale poorly.
Therefore HPC requires (1) verification techniques that can scale to that
massive scale, (2) techniques that “downscale” programs so that defects
that normally manifest only at large scale will manifest in the downscaled
version, or (3) techniques whose cost is independent of scale.

Mathematical abstractions. Many HPC programs use mathematical
subjects such as multivariate calculus, differential equations, linear algebra,
and (directed) graphs. Specifying algorithms in these areas is extremely dif-
ficult if the specification language does not provide appropriate abstractions,
such as derivative, matrix, or strongly-connected component. Similarly, proof
systems or automated verification techniques must be developed to support
those abstractions. Many libraries of this sort exist (see e.g., [40]) but there
is much work to increase their adoption in the HPC community and to fill
out needed gaps.

Floating-point arithmetic. Many HPC programs involve extensive float-
ing-point computations. The notion of correctness in such programs is inti-
mately tied up with floating-point issues, such as round-off error. Increas-
ingly, developers are reducing floating-point precision to reduce communica-
tion costs, and the effect of these tweaks on the output is difficult to gauge.

18

Tools that can analyze the extent of error introduced by these tweaks and de-
termine whether it is within safe margins for a given application are needed.
However, with few exceptions, support for floating-point reasoning is very
weak in existing verification systems. Floating-point arithmetic also wreaks
havoc on testing-based verification, since it can be difficult to determine the
magnitude of an acceptable discrepancy.

Another aspect of floating-point arithmetic is how compilers treat float-
ing-point optimizations. All compilers support a slew of “IEEE-unsafe”
floating-point optimization flags that can yield a manyfold improvement in
performance, but at the expense of changing the results of floating-point
calculations. The flags themselves vary from platform to platform. This
aspect of floating-point result variability can render applications incorrect,
especially if applied with a performance-focus alone (not minding correctness
or result-reproducibility).

Programming language. Most HPC programs are implemented in For-
tran or C++ (or both), while many verification tools target C or Java. While
many of the ideas and even specific techniques are language-independent,
significant engineering effort is required to extend existing verification tools
to new programming languages.

3 State of the Art and Successes

There have been several notable suc-
cesses in establishing rigorous meth-
ods in support for HPC. Many of
today’s successes lie in the use of
static analysis, dynamic analysis, fo-
cused testing with non-determinism
control, anomaly detection specific
to HPC, and debuggers focused on
HPC. The use of rigorous and sys-
tematic methods in many recent
projects, while not as mature, has al-
ready shown considerable promise.

Todays correctness practices com-
prise a body of domain-specific test-
ing, and tools and frameworks to de-
bug, pinpoint, and fix errors that
escaped the testing phases. Most
of these practices are ad hoc—they
often require heavy-weight program
instrumentation and analysis, and
are tailored to specific classes of
bugs (e.g., data races), program-
ing models (e.g., MPI), and runtime
systems and platforms. In addition,
they are largely not composable, and are often difficult to adopt in practice
in the workflow of large scientific code bases. As a result, it is not uncom-
mon for programmers to end up chasing elusive bugs by “printf” debugging.
When an error is reproducible, parallel debugging tools can be very helpful

19

in diagnosing an error, though this process tends to be manual and requires
a significant amount of domain expertise.

We split the state-of-the-art practices into two broad categories: testing
and tools for bug detection and localization.

3.1 Testing

Although testing scientific software is generally considered to be difficult [72],
it is nevertheless the mainstay of today’s verification approaches. Conven-
tional testing, such as regression testing, white and black box testing, and
functional testing are used to check exceptional situations and corner cases.
Finer-grained levels of testing, such as unit testing, are however less com-
mon, specially in legacy HPC applications [60], as the effort of generating
these tests is difficult to justify for domain scientists. State-of-the-art test-
ing practices rely on the reproducibility of results under fixed inputs, and
usually check domain-specific physics laws. Assertions are used to check
expected behaviors and results at different code locations.

Validation through the use of analytical solutions to check results against
experimental data is also employed to some degree. Verification is also
supported through techniques such as methods of manufactured solutions
(checking against solutions to made-up idealized cases) as well as higher
level criteria such as the order of convergence.

Challenges of Testing. The main challenge to test scientific codes is
the large effort in generating test cases, specially for complex multiphysics
codes. Tests require data input, and in HPC applications this can be very
large; thus exhaustively and manually testing every input is infeasible. An
option for HPC codes is to scale down the domain, but is often infeasible to
do without introducing inconsistencies. HPC codes tend to use user-defined
data types and complex and long data structures, which may be passed
through functions, and initializing these structures to create different test
cases is a huge effort. Non-determinism and lack of tool support are other
important impediments to testing.

Most testing today is limited to a small-scale setting (small number of
processes and threads, and small input size). HPC resources are shared and
it is practically impossible (or at least very costly for an HPC center) to
perform frequent testing (e.g., nightly testing) of all applications at large
scale. This limits the scope of bugs that can be covered by testing—it is
expected that the behavior that is checked at small scale extrapolates to
large scale, though that is often not the case in practice.

Some of the tools that are used to test HPC software include: tools to

20

Table 1: Some of the existing tools and frameworks to detect and localize
bugs in HPC programs

F
or

m
al

M
et

h
od

S
ta

ti
c

A
n
al

ys
is

D
yn

am
ic

A
n
al

ys
is

C
on

tr
ol

of
N

on
-d

et
er

m
.

A
n
om

al
y

d
et

ec
ti

on
P

ar
al

le
l
d
eb

u
gg

in
g

Serial Code

Clang Static Analyzer–static analysis bug detection in C/C++ [29] X X

Clang Sanitizers–runtime bug detection (e.g., AddressSanitizer) [30] X

Klocwork–on-the-fly, scalable static analysis [74] X

Multi-threaded Code

Valgrind–memory management error detection and threading bugs [121] X

Intel Inspector–memory and threading error debugger [65] X X X

CUDA-MEMCHECK–memory access errors detection in GPU code [36] X

ThreadSanitizer–data-race detection for multi-threaded programs [31] X

ARCHER–data-race detection for OpenMP programs [5] X X

GMRace–data-race detection in GPU programs [131] X X

GKLEE–concolic verification GPU programs [80] X X X

GPUVerify–static (SMT-based) verification of GPU programs [28] X X

DTHREADS–deterministic execution of multi-threaded programs [81] X X

CUDA-GDB–NVIDIA CUDA gdb-based debugger X

Insure++–runtime error detection [64] X

Multi-process Code

MUST–MPI deadlock detection [54] X X

UMPIRE–dynamic error detection for MPI [123] X

ISP–dynamic formal verifier for MPI [120] X X

FlowChecker–communication errors in MPI [26] X X

AutomaDeD–anomaly detection in parallel programs [17] X X

Prodometer–progress-dependence analysis to diagnose hangs [88, 75] X X

Vrisha, WuKong–scale-dependent bug detection [133, 134] X X X

Scale-dependent overflows detection [77] X X

MPIWiz–record-and-replay for MPI [128] X X

Retrospect–deterministic replay of MPI applications [14] X X

ReMPI–record-and-replay for MPI [102] X X

NINJA–noise injection to make ND bugs in MPI manifest faster [103] X X

SReplay–record-and-replay for one-sided communication [97, 96] X X

Hybrid (multi-threaded, multi-process) Code

CIVL–formal Verification of parallel programs [132] X X

Relative Debugging–comparison of two program executions [39] X X X

STAT–stack trace analysis tool [2] X X

TotalView–parallel debugger [118] X X

DDT–parallel debugger [37] X X

LGDB, CCDB–Cray command-line parallel and comparative debuggers X X

21

write regression tests for numerical software, such as ATS (Automated Test-
ing System) [4] developed at LLNL, continuous integration frameworks, such
as Bamboo [3], and C/C++ testing frameworks, such as Google Tests [49],
and Boost Tests [13].

3.2 Infrastructure for Bug Detection and Localization

There exists a variety of tools and techniques that have been proposed to
detect and to isolate software defects in HPC applications. We categorize
these frameworks in six groups: static analysis, dynamic analysis, formal
methods, anomaly detection, non-determinism control, and parallel debug-
ging. We present a short definition of each of these methods as follows, and
Table 1 lists some of these tools. Note that different methods are not mutu-
ally exclusive and it is common for tools to use a combination of methods;
for example, a tool may perform static analysis in one phase, and then to
perform dynamic analysis or formal verification in a another phase.

3.2.1 Static Analysis

Static analysis examines the code without executing the program and it is
perhaps the first line of defense against bugs for programmers. These checks
are typically performed when the program is compiled and can warn the pro-
grammer of possible errors in the program. At the moment of writing, the
Clang compiler has currently more than 670 diagnostic flags. Static checks
are performed as well in Integrated Development Environments (IDE), which
can detect errors even before the compilation phase (Eclipse [20]). Kloc-
work [74] is an on-the-fly static code analysis tool that is used at LLNL and
other DOE laboratories to detect bugs at early stages.

More advanced static analysis tools can reason about the semantics of
code and find bugs that traditional compiler warnings cannot find. These
tools may use symbolic execution and abstract interpretation techniques to
explore all execution paths in the program. An example in this category is
the Clang Static Analyzer [29].

While compilers perform a large number of static checks, this all re-
lies on compilers being correct themselves. However, compilers can have
bugs that often arise when performing optimizations (specially under con-
currency [24])—these in turn may yield application bugs in extreme cases
that are very hard to isolate. The test and check of code transformations
that are semantic preserving are an active area of research [78]. Commercial
compiler vendors dedicate major resources to assembling test cases and re-

22

gression testing and have years of experience in the engineering of compilers
for correctness and performance; this is why the best commercial compilers
continue to outpace their open source counterparts in correctness.

3.2.2 Dynamic Analysis

Most of the existing bug detection and localization tools for HPC perform
dynamic analysis [76]. Dynamic analysis involves checking correctness by
executing the program with an specific input (or a set of inputs). There are
two broad categories of dynamic analysis, online and offline; in the former,
checks are performed during the application’s execution time, whereas in the
latter the checks are performed after the application has finished execution,
usually by analyzing traces of the application that were gathered during the
application run. For HPC programs that run on multiple processes (e.g.,
MPI programs), traces are usually gathered from all processes and then
aggregated for further analysis.

A large group of dynamic checkers are memory checkers since many bugs
arise due to incorrect use of memory. The Valgrind memory checker [121],
for example, supports MPI programs and can perform memory checks in all
MPI processes. A subgroup of memory checkers, detects data races in multi-
threaded programs, including checking in heterogeneous systems with accel-
erators. The Intel Inspector [65] and ThreadSanitizer [31] support data-race
detection of pthread programs. ARCHER [5] performs data-race detection
in OpenMP programs on top of ThreadSanitizer and static analysis.

Other dynamic analysis frameworks for bug detection are tools to detect
deadlocks and synchronization problems in MPI (e.g., MUST [54], ISP [120],
and DAMPI [124]), tools to detect errors at the message-passing layer (e.g.,
FlowChecker [26]), and tools to perform progress analysis of processes to
isolate the origin of hangs (e.g., Prodometer [88, 75]).

In hybrid programming models, data races occur easily and are notori-
ously hard to find. Conventional state-of-the-art data race detectors exhibit
10×−100× performance degradation and do not handle hybrid parallelism.
UPC-Thrille [92, 93, 91, 119] is the first complete implementation of data
race detection for distributed memory programs. In benchmark programs,
UPC-Thrille found all previously known data races with at most 50% over-
head when running on 2048 cores.

Finally, dynamic analysis techniques have been proposed to tune the pre-
cision of floating-point programs. Precimonious [101] is a dynamic analysis
approach that performs a search on the types of the floating-point program
variables trying to lower their precision subject to accuracy constraints and

23

performance goals. Blame Analysis [100] can be used to further speedup
the precision tuning of Precimonious. Blame Analysis functions by exe-
cuting floating-point instructions using different levels of accuracy for their
operands. Evaluation on ten scientific programs shows that Blame Analysis
is successful in lowering operand precision.

3.2.3 Formal Methods

Formal methods, which allow specification and verification of software, haven
been used to certain degree in HPC. The SPIN model checker [58] has
been used in various approaches to check properties of parallel program-
ing models, including MPI [110] and distributed task-based models [89].
CIVL [132] is a symbolic execution-based verifier that can analyze pro-
grams using many HPC-relevant parallel programming models, including
MPI, OpenMP, Pthreads, and CUDA. The ARCHER race detector [5] based
on formal loop carry independence analysis and happens-before analysis
detects race conditions in OpenMP programs. Verification of producer-
consumer synchronization achieved through the use of named barriers is
studied in [109]. Additional success cases of formal methods are listed in
Section 3.4.

3.2.4 Control of Non-determinism

When debugging a parallel program, programmers must first reproduce the
bug; however, because of the non-determinism that comes from parallelism
and non-deterministic inputs, reproducing bugs can be a challenge. Some
data- and message-race bugs, only manifest themselves one time every many
(possible hundreds) runs. Thus, programmers often use tools to control the
non-determinism of parallel programs when debugging. A common method
is to use record-and-replay techniques [102] to record the execution of a
program when the bug manifests, and then to replay the same execution
deterministically using a parallel debugger. Other tools allow programmers
to speedup the manifestation of the bug, i.e., to make it manifest with more
likelihood in less runs (NINJA [103]). SReplay [97, 96] is the first software
tool for deterministic record and replay for one-sided communication. A key
innovation in SReplay is that it allows the user to specify and record the
execution of a set of threads of interest (sub-group), and then determinis-
tically replays the execution of the sub-group on a local machine without
starting the remaining threads.

24

3.2.5 Anomaly detection

Anomaly (or outlier) detection—detection of behavior that is significantly
different from the expected (or normal) behavior—can be used to isolate
software defects. Here, behavior can be broadly defined in terms of per-
formance or correctness metrics, from slower-than-usual execution times to
out-of-range floating-point computations or unusual logic actions (e.g., some
branches taken more often than others). Most methods in this domain use
traces that are obtained under error-free runs to define normal behavior,
and then traces that are collected when an error manifests are used to
detect and localize problems. Some of the work in the area include DM-
Tracker [44], Mirgorodskiy et al. [87], AutomaDeD [17], and Bronevetsky et
al. [18]. Anomaly detection has been used as well to detect scale-dependent
bugs, i.e., bugs that hide themselves at small scale but that manifest at large
scale (Vrisha [133], WuKong [133]).

3.2.6 Conventional Parallel Debugging

Parallel debuggers allow programmers to control and to examine the state
of threads and processes in a parallel program. These tools have advanced
graphical interfaces that support a wide range of features to visualize the
value of variables in the program and can operate under several parallel
programming models, including OpenMP, CUDA, and MPI. Two of the
most used commercial options are TotalView [118] and DDT [37].

A very effective way to debug large-scale parallel programs is stack trace
analysis; the STAT [2] tool provides a lightweight method to gather and
merge stack traces of parallel processes and to present them to program-
mers in an intuitive way. Relative Debugging [39] can assists programmers
to locate errors by observing a divergence in relevant data structures be-
tween two versions of the same program as they execute, and is particularly
effective when code is migrated from one platform to another.

LGDB (Cray Line Mode Parallel Debugger) is a GDB-based parallel
debugger developed by Cray that is used in DOE scientific computing fa-
cilities, such as the National Energy Research Scientific Computing Center
(NERSC) and Argonne Leadership Computing Facilitys (ALCF). CCDB is
a GUI tool for comparative debugging that runs LGDB underneath. Its
interface makes it easy for users to interact with LGDB for debugging.

25

3.3 Correctness through Correct-by-Construction Certifica-
tion

As mentioned above, in the certification approach, a rigorous software de-
velopment methodology involves writing the proof of code correctness along
with the code, using a proof assistant. In some cases, one does not write
the code at all – it is auto-generated, along with the proof, and the layer
specifications, from a sketch written in a tactics language [126]. Recently
this approach has showed great promise in the systems software field, with
certifying compilers and ways of developing efficient code along with strong
proofs of correctness. The certified software is engineered for proof modu-
larity, so that independently certified parts can be linked for ensuring cor-
rectness of the overall system. The scope of proofs within this community
includes reasoning about concurrency, security, storage systems and floating
point correctness. A rich library of code, proof objects, and mathematical
ontologies are available for developers to draw on in creating larger systems.
There is great pick-up of this technology within the computer systems re-
search community—it is now expected and rewarded by the top conferences
that new systems software technologies are accompanied with the formal
proofs of correctness [25]. The certification approach is also rapidly gaining
traction in the embedded computing field (for correctness of systems with
respect to safety requirements) and cybersecurity field (for proofs of freedom
from particular vulnerabilities). Although the software engineered with this
approach is highly modularized, e.g., into “Deep Specifications” [50], the
certification approach does not impose significant performance penalties.
Full and performant concurrent operating systems are available that are
fully certified [51]. Hardware cores have been designed that export their
functional properties (e.g., opcode semantics, memory model, and synchro-
nization semantics) and are formally verified to these specifications. The
specifications are exported so that the software above can be certified in the
context of proved hardware semantics. Recently there has been progress in
applying certification approaches to randomize algorithms [8], which might
lead to ways to certify numerical methods based on statistical assumptions.

3.4 Successes due to rigorous and systematic methods

We enumerate some recent advances in the field of verification that are re-
lated to HPC. While small scale and initial prototypes, and in some cases
very difficult to achieve, they indicate the feasibility of verifying HPC pro-
grams, the availability of powerful initial tools, and that the field is primed

26

for success.

• Certification of C programs with floating point: Ramananandro et.
al. [99] developed a tool VCFloat that demonstrated that floating-
point computation can be verified in a homogeneous verification set-
ting based on Coq only. Ramananandro used a new formal specification
of IEEE 754 Floating point called Flocq [12].

• Verification of a C numerical solver for a wave equation. Boldo et.
al. [11] used a tool Frama-C that statically analyzes a C program to
produce a proof that can be checked by a range of different tools,
including Coq with Flocq, and also SMT solvers.

• Rigorous mixed-precision floating-point tuning methods, such as in
FPTuner [27], promise to lead to optimization methods that can re-
duce data movement and energy consumption, while providing rigor-
ous absolute-error related guarantees.

• UPC-Thrille [92, 93, 91, 119] is the first complete implementation of
data race detection for distributed memory programs. The implemen-
tation tracks local and global memory references in the program and
it uses two techniques to reduce the overhead: 1) hierarchical function
and instruction level sampling; and 2) exploiting the runtime locality
specific to Partitioned Global Address Space applications.

• CIVL [132] is the first symbolic execution-based verifier that can an-
alyze programs using many HPC-relevant parallel programming mod-
els, including MPI, OpenMP, Pthreads, and CUDA. It has also been
applied to “hybrid” programs that use more than one programming
model. It has found bugs in several shorter examples, including race
conditions in an OpenMP code offered in tutorials.

• The ARCHER race detector [5] based on formal loop carry indepen-
dence analysis and happens-before race checking helped detect a nasty
race condition (that previously defied debugging for months) within
HYDRA, a large multiphysics application developed at LLNL, which is
used for simulations at the National Ignition Facility (NIF) and other
high energy density physics facilities.

We list success cases of rigorous and systematic methods that are outside
of HPC but that exemplify how these methods can successfully be applied
in other complex systems:

27

• Since 2011, engineers at Amazon Web Services (AWS) have used for-
mal specification and model checking to help solve difficult design
problems in their systems [90]. The use of Temporal Logic of Ac-
tions (TLA+) helped Amazon find several bugs and to improve the
overall confidence of their systems. This is an excellent example of
how formal methods have been used in large real-world distributed
systems.

• The STACK [125] analysis system uses symbolic execution to identify
points in the code that can lead to errors because of undefined behav-
ior. In particular, it has been very successful in identifying checks that
could be removed by the compiler because of undefined behavior. The
tool was used to find over 150 bugs that got repaired in open source
programs including the Linux kernel and the Postgres database sys-
tem. The program has also been used successfully at companies such
as Intel [52].

• Concolic Testing (also known as DART: Directed Automated Random
Testing or Dynamic Symbolic Execution) alleviated the limitations of
classical symbolic execution by combining concrete execution and sym-
bolic execution [47, 108]. Concolic testing [22] has been demonstrated
as an effective technique for generating high-coverage test suites and
for finding deep errors in complex software applications. The success
of concolic testing in scalably and exhaustively testing real-world soft-
ware was a major milestone in the ad hoc world of software testing
and has inspired the development of several industrial and academic
automated testing and security tools such as PEX, SAGE, YOGI,
and Vigilante at Microsoft, Apollo at IBM, ConBol and Jalangi at
Samsung, CATG at NTT Laboratories, and SPLAT, BitBlaze, jFuzz,
Oasis, and SmartFuzz in academia. Some of these tools have been
successfully applied to discover critical functional abugs and security
vulnerabilities in real-world software. For example, SAGE [48] has
found many new expensive security bugs in many Windows applica-
tions, and is now used daily in various Microsoft groups. SAGE found
one-third of all Win7 WEX security bugs.

• In recent work, file sharing and synchronization services supported by
DropBox was subject to property-based testing [62]. This shows that
large scale distributed systems, developed in an ad-hoc way without
formal methods, can have major holes, even when in massive use, and
that formal methods can be practically used to close these gaps.

28

4 New Research, Impact

In this section, we identify extensions to existing state-of-the-art prac-
tices and research needed to make the correctness techniques described so
far work in the context of HPC applications. Our description covers static
methods §4.1, dynamic methods §4.2, debugging §4.3, and pragmatic is-
sues §4.4.

4.1 Static methods

Static techniques for program analysis and verification could help increase
confidence in HPC results, as well as reduce development time by reduc-
ing the effort needed to track down and fix bugs. This potential research
agenda can be broadly divided into the following thrusts: runtime focused
thrust §4.1.1, numerical algorithms thrust §4.1.2, specification thrust §4.1.3,
and thrust towards verification of compilers and libraries §4.1.4.

4.1.1 Runtime system focused thrust

Many recent successes in applying formal reasoning techniques to systems
software could be applied directly to the runtime systems underlying a lot
of HPC codes. In particular, the MPI and OpenMP runtimes could be good
targets for such an effort.

New research in support of the cor-
rectness challenges in HPC is needed
in the areas of static methods, meth-
ods that have runtime system focus,
numerical algorithm focus (with em-
phasis on floating-point usage), and
focus on verifying compilers and li-
braries. The use of dynamic meth-
ods, debugging, and many pragmatic
thrusts (even smart IDEs) can go a
considerable way. Rigorous methods
are essential for many aspects of con-
currency, including shared memory
consistency models.

There is a wide range of ap-
proaches that could be applied to
these runtimes; at one end, we could
attempt to verify these runtimes for
the absence of memory errors and
race conditions. At the other ex-
treme, recent successes in the devel-
opment of fully verified system com-
ponents, from file systems to com-
pilers, suggest that it would be pos-
sible to develop fully verified imple-
mentations of at least some parts of
the MPI or OpenMP runtimes.

Another potential target for this approach is the compiler itself; there
is already significant work on verified compilers, but additional resources
could help push this work to focus on verifying the kinds of optimizations
that are most relevant to HPC code, such as cache optimizations.

29

This agenda would have the benefit of immediately eliminating entire
classes of bugs from HPC systems without the need for any buy-in from the
HPC application development community; application developers would just
swapp one library for another.

There are a variety of techniques that can find memory errors and data-
races in existing software. Applying these techniques to the runtimes that
support most HPC applications could yield some insights, helping improve
confidence on such systems. A more ambitious goal would be to gradually
rewrite major components of the standard HPC runtime using mechanisms
more suited for verification. The goal would to move beyond verifying the
absence of memory errors and data races, and towards verifying important
functional properties, such as ensuring that no messages will be dropped by
the runtime. In addition to the implementation effort, this approach requires
new research into the formalisms necessary for verifying such properties.

4.1.2 Numerical algorithms focused thrust

The second thrust would involve verifying the numerical computations them-
selves, under some assumption that the underlying runtime systems are cor-
rect. This has the potential for much bigger payoff relative to verifying the
runtime system, given that most HPC developers run into errors of their
own making more often than they run into MPI bugs.

On the other hand, this also requires significant new research around two
major issues: reasoning about numerical and floating point computation,
and making it possible for HPC users to write specifications.

Automated reasoning for reals and floating point Numerical compu-
tations can be analyzed at two levels; first, they can be analyzed assuming
ideal, real-valued computation. In reality, however, computation involves
floating-point numbers. In many settings, the assumption of real-valued
computation can help uncover outright bugs in the computation, but rea-
soning about floating points is necessary to reason about issues such as
convergence and precision.

There has been significant recent work on automated reasoning tech-
niques for real-valued computation. For example, the dReal [45] system
is able to reason about logical formulas involving transcendental functions
such as sin, cos, log and exponents, as well as formulas involving integrals.
Support for transcendental functions is provided by recent tools such as FP-
Taylor [113] that underlies FPTuner [27], a rigorous floating-point precision

30

tuner. These tools are yet to be scaled to the sizes often required by DOE
physics codes.

The complexity of reasoning about numerical code depends on the gap
between the specification and the implementation. For example, in checking
that a tiled implementation of a computation is equivalent to an un-tiled ver-
sion, the gap between specification and implementation is relatively small.
Such a verification problem does not require deep reasoning about the prop-
erties of real-valued or floating-point computation, since both versions are
performing the same computation, only in different order, so a modern veri-
fication tool can abstract away the details of the floating-point computation
and focus on verifying that the loop structures are equivalent. This level of
reasoning can be achieved with existing technology, and is indeed performed
by systems such as STNG [116], which reasons about the equivalence be-
tween low-level stencil implementations and their high-level specifications.

At the other extreme, reasoning about the fact that Conjugate Gradient
will indeed find the solution of a linear system of equations is extremely
challenging, and requires detailed knowledge of linear algebra to be encoded
in the verification system. Doing so is likely quite possible and could yield
substantial benefits in correctness.

For floating-point arithmetic and associated error versus performance
tradeoff analysis, formal methods can provide safety nets for enabling what
practitioners like to do—i.e., push on performance while skimping on preci-
sion. Formal methods are essential to define what is safe for the situation at
hand (error containment, ensuring convergence), as floating-point precision
tuning is often not that effective without modeling the usage context.

Unsafe optimizations for floating point: One aspect of compilation
that has received very little attention is how fast the code can be made by
pursuing “unsafe math” optimizations (upto 5 times faster for some codes,
thus a highly tempting option), and yet, these optimizations introduce far
more than the normal IEEE round-off error. A recently developed tool
FLiT [43] is able to portray the number of different answers one can obtain
even for a single test routine. Unfortunately, the meanings of compiler opti-
mization flags vary across compilers. All this can lead to result variability to
an uncalibrated extent, affecting both correctness and reproducibility. This
is another aspect of the aforesaid error versus performance trade-off analysis
that merits rigorous support.

31

4.1.3 Specifications Thrust

One of the major roadblocks in the adoption of verification and formal rea-
soning technology is the difficulty of writing formal specifications. There are
two ways in which other communities have addressed this problem. First
is to focus on general properties that every program should satisfy (such
as memory safety or race freedom). Tools can be designed to verify such
properties without the need for the tool user to have to provide individual
specifications for every program.

Second is to focus on specific domains and write specification languages
that are tailored to those domains. In the HPC context, there is a recent
trend towards domain specific languages that has been fueled by recent
successes in generating very high-performance implementations from high-
level domain specific notations. Examples of such high-performance systems
include TCE [9, 56], Halide [98] and Spiral [95].

A move towards domain-specific languages can help sidestep the veri-
fication problem and make it possible to introduce verification technology
without burdening the user. This can be done in a few different ways. First,
verification can serve as a form of translation validation. Most production
compilers are developed by large organizations and used on millions of pro-
grams, so they have no obvious errors.2(the CSmith [129] work has shown
how buggy production compilers can be). Domain-specific languages are
less likely to have either of these characteristics, so they are more likely to
have bugs. A general verification infrastructure to guarantee that the out-
put of the DSL compiler is consistent with its input could be very useful.
Moreover, the DSL compiler could provide a trace of its derivation steps
that could significantly simplify the verification task. Verification could also
help in those (hopefully rare) cases where the output of the DSL compiler
needs to be modified for any reason.

Recent work in the context of stencils [70] has shown that domain-specific
compilers can interact with verification in other ways. In the STNG system,
a low-level stencil computation is analyzed to extract a high-level specifi-
cation of the computation in the Halide DSL. This automatic extraction
of the specification can make it possible to leverage the power of the high-
performance DSL in the context of a low-level legacy implementation.

A DSL can also be embedded in a regular “host” programming lan-
guage; simple C is perfectly able to express loops for linear algebra, sten-

2There are two ways of constructing a piece of software: One is to make it so simple
that there are obviously no errors, and the other is to make it so complicated that there
are no obvious errors. - Tony Hoare

32

cils, and solvers in a clear and compact “textbook” way and high perfor-
mance codes can be automatically generated from such specifications [82];
no DSL is needed for such domains. A Domain-Specific Embedded Language
(DESL) [61] has many advantages such as avoiding a “tower of Babel” of
many different DSLs, clear semantics for linking with other modules, and
benefiting from ongoing research and development for the host language.
Investment in optimization and verification of the host language benefits all
programs in that language.

4.1.4 Verification of compilers and libraries

The compiler technology has advanced enough to automate many optimiza-
tion steps: loop transformations, data layouts, vectorization, etc. HPC ap-
plications increasingly rely on optimizing compilers, auto-tuners, and opti-
mized libraries to achieve portable performance. This trend is advantageous
from a correctness perspective. Beyond verifying every manual optimiza-
tion in an application, ensuring correctness of the compilers and libraries
can help us ensure more parts of the software toolchain are correct.

Given the shift toward automated data layout and iteration-space opti-
mizations achieved through portability layers such as RAJA [59] and Kokkos
[42], the integrity of such “tall compilation stacks” can become single points
of failure due to bugs they can introduce in all their generated code. Code
generation may also be able to encompass the generation of complex data
structures that are not feasible for humans to originate. On the flip side,
these stacks can also serve as single opportune points of intervention for
maximally impactful uses of formal methods.

Polyhedral optimizations involve the use of well-specified transforma-
tions implemented through complex tool chains. Whereas the test suites
associated with the tool chains can catch some bugs, they can be sensitive
to initialization values used for inputs [7, 104]. Verifying the code generated
by a polyhedral optimizer, through a combination of verification, exhaustive
testing, and certification, is an attractive yet feasible endeavor.

One possible route for a verified HPC compiler is to base it on Com-
pCert [115]. Most commercial and open source compilers are implemented
with traditional non-certified programming techniques, making their verifi-
cation difficult. The route would follow the path of engineering the range
of optimizations for HPC on an existing certified compiler. Once this is
done, domain-specific embedded languages (DESLs, see Section 4.1.3) im-
plemented in the certified host language and compiler would benefit from
the certification capabilities.

33

4.1.5 Other thrusts

Formal methods based on automata-theoretic modeling can be applied to
expressing component interfaces in the form of interface automata [38], or
learning the behavior of code that a human expert does not understand
(the latter has been successfully applied in the Android operating system
context).

In the area of formal shared-memory consistency models, formal meth-
ods are the only satisfactory approach in that while ad hoc testing and
manual reasoning may find missed cases, they do not help provide rigorous
guarantees that cover all possible executions allowed by a memory model.

More importantly, formal methods can eminently point to formalized
testing adaptations, as in a recent paper [127], where formalizing the under-
lying relations of memory models in Alloy allowed the authors to generate
tests that distinguish subtly different memory consistency models.

4.2 Dynamic methods

Static methods are widely acknowledged for their soundness and precision,
but face challenges when applied to large realistic code bases. Code sizes,
layers of abstraction, and combinations of programming languages (e.g.
C++ and Fortran) all pose problems to static methods.

In recent years, dynamic methods have emerged as a practical and pow-
erful alternative to static approaches. Dynamic methods make inferences
based on observed execution(s) of the program. While no guarantees can
be provided for any other unobserved execution, the hope is these infer-
ences are generic and useful to developers. Tools such as Valgrind, and Intel
ThreadChecker have widespread adoption in the software community and
have been shown to be able to handle very complicated codes, such as the
Linux kernel. Compared to static approaches, dynamic methods require a
guided process that invloves developer feedback and steering.

Dynamic symbolic execution (or concolic testing) [22, 47, 108, 21] is a
dynamic analysis method where constraint solvers are used to steer the pro-
gram execution along various feasible execution paths of a program. Though
dynamic symbolic execution has been successfully applied to find subtle bugs
and security vulnerabilities in sequential software, little has been done to
scale it for parallel and concurrent software [106, 107]. Research is needed to
combine conventional model-checking and active-testing techniques [105, 68]
for concurrent programs with dynamic symbolic execution to make them
work for HPC programs.

34

Online dynamic analysis methods have the advantage of being deploy-
able in production environments and in conjunction with the actual libraries
available on a platform. Therefore, they are practical and can provide guar-
antees pertinent to a particular realization. However, these approaches can-
not store or process complete traces and need to minimally perturb the
application. Online analysis can benefit from further research into the iden-
tification and analysis of relevant interleavings (the partial order) in the
presence of multiple concurrency models. Offline dynamic trace analysis
methods can afford to perform multiple potentially expensive error analysis
passes on the traces from large-scale runs. These methods rely on methods
to lower the tracing overhead, including the identification and discovery of
relevant events to instrument so as to perform the analyses of interest.

Both online and offline analysis require research to improve their scal-
ability with concurrency and input size. Often, traces contain low-level
operations not immediately correlated with the source level. Examples in-
clude basic-block level fine-grained control-flow information or load/store
information. Formal methods can help narrow the gap between low level
traces and human understanding of the code. These inverse-mapping rela-
tions are crucial to explain bugs in higher level terms. Formal methods can
play a significant role in critical design choices such as flowing traces into
a checker, shifting between offline and online analysis, and the use of sta-
tistical (sampling) based approaches to reduce the amount of tracing done
while providing probabilistic guarantees (e.g., [19]).

If support for automated code transformation is desired, research is
needed in developer presentation tools that can provide reverse mappings
across multiple levels of abstraction. Ideally, the tools could suggest source-
level transformations to fix an identified correctness problem. In a large
HPC application composed from many libraries, these analyses should be
composable and not interfere in terms of correctness or performance. While
they can aid in debugging HPC applications, bugs in these analyses can
dissuade user adoption. A well-constructed verified toolbox of analysis can
complement verified HPC runtimes in ensuring that the bugs identified are
indeed from the user’s application.

4.3 Debugging

Traditional debugging tools and techniques help to identify the root cause
of errors by allowing programmers to control the application and to inspect
the applications state (e.g., value of variables) in an execution. Parallel de-
buggers control and inspect the execution of many threads and processes, a

35

task that can be computationally expensive given the high degree of paral-
lelism in todays largest HPC systems. A disadvantage of these methods is
that they are manual in nature, i.e., the programmer has to reason about
the program and manually find the bug. Advanced debugging techniques
and tools help programmers to automatically pinpoint bugs—some with
fine granularity, e.g., lines of code. These automatic methods, however,
are mostly dynamic (i.e., they can only make decisions based on a given
input and execution) and may suffer from high false-positive rates. There
exists complementary techniques that aid in the debugging process, such
as record-and-replay techniques, which allow programmers to deterministi-
cally reproduce bugs. These techniques are of great help to isolate software
defects that manifest themselves rarely or non-deterministically.

Extensions to the state-of-the-art debugging methods are required in the
following areas:

• Scalable debugging tools to isolate software defects that manifest at
large scale, where scale represents number of threads, number of pro-
cesses, and/or input size. Two categories are important in this area:
(i) scalable tools to help control and analyze a program in a large-
scale execution when a bug manifests itself, and (ii) debugging tools
to isolate scale-dependent bugs using small-scale runs.

• Accurate automatic debugging techniques to help programmers auto-
matically find the origin of errors to a fine degree of granularity, such
as the line of code, function, or code component. In particular, re-
search is needed to improve the accuracy of existing techniques in this
category. Metamorphic testing is promising in this regard [71].

• Methods to control non-determinism when debugging, such as record-
and-replay, thread/process schedule controlling, and thread/process
schedule enforcing techniques, are needed.

4.4 Pragmatic thrusts

Smart IDEs. In the recent years, Integrated Development Environments
(IDEs) have gotten smarter in dicovering bugs and common programming
mistakes at development time. As a programmer types her/his program,
these IDEs perform on-the-fly code analysis and instantaneously report syn-
tax errors and complex static errors. Examples of such smart IDEs include
Eclipse, Intellij IDEA [66], and CLion [33]. These IDEs not only perform
on-the-fly analysis and report static programming errors, they also utilize

36

state-of-the-art program analysis techniques to help programmers with code
refactoring and navigation. In practice, smart IDEs have been found to sig-
nificantly improve programmer productivity. In supporting HPC software
development, smart IDEs can be extended to find concurrency related bugs,
such as data races, deadlocks, and atomicity violations. Existing smart IDEs
cannot reason about hybrid programming models often used in HPC pro-
grams. Correctness tools and techniques can be made easily accessible to
HPC programmers if the formal program analysis techniques developed for
HPC programs can be integrated into these IDEs.

Software design, specification, and testing practices. An HPC cor-
rectness campaign can target a few key steps in the software development
lifecycle to improve our confidence in their correctness. First, many of the
target DOE applications for correctness verification are monolithic and lack
formal specification. Research is needed into methods for “reverse engi-
neering” specifications, such as the lifting technique implemented in He-
lium [83]. This process will be helped by the design of tools and techniques
to decomposing monolithic applications into verifiable units and compos-
ing the results of verification. Second, conventional software engineering
teams employ code guidelines, such as Code C++ guidelines, Google style
guide, etc. to avoid common design and programming errors. Many of these
coding guidelines are associated with tools that can check for conformance.
The availability of such tools for HPC software (e.g., precluding the use of
MPI COMM WORLD would help improve software quality and end-user’s
trust in their correctness. Third, a significant challenge in regression test-
ing of computational science applications is assessing when a change in the
program output is significant. Often, mandating that the output remain bit-
wise equivalent is too strong a requirement and may not be possible in the
case of non-deterministic applications, but selecting an arbitrary numerical
tolerance may result in missed bugs. Research is needed to adapt regression
testing to applications with large amounts of floating-point arithmetic.

Bug Repositories. Many open-source projects maintain public bug track-
ing systems, which can be used to identify bugs found “in the wild.” These
repositories encourage the development of practically useful tools and to
evaluate research tools on real-world bugs. While many HPC projects are
open source, the use of bug-tracking systems needs to be promoted among
the DOE application developers. Going beyond bug-tracking systems, devel-
oping guidelines for sharing bugs and code snippets to reproduce them can

37

accelerate the development of tools that can handle HPC-specific correct-
ness challenges. Ideally, tools can help automatically mine bug repositories
to isolate bugs from other sources of errors (software configuration, user
errors, etc.), validate the bugs, and extract relevant code harness from the
patches used to close a bug. Even the study of job failures on HPC clus-
ters and the reasons for such failures (e.g., [130]) would be valuable for the
community to compile and share.

5 Next steps

5.1 ASCR Focus Areas

There are many opportunities for return on investment in HPC correctness.
These returns and investments would fall into the short, medium and long
term time scales.

5.1.1 Short Term

Advances for production use. Investment focused on supporting the
current efforts to program and perform computational science on leadership
computing facilities. Such effort would apply best-of-breed existing tools
(commercial as well as those being researched by the community), extend
those tools, and generally work with HPC applications code as-is. Such work
would encompass extending the existing HPC tools infrastructure (debug-
gers, compilers, etc.) with features for larger scale verification and debugging
in the more complex HPC contexts being encountered today.

We propose many directions broken
down into short, medium and long-
term components. We also propose
an agenda for a correctness work-
shop as well as a few “moonshot”
projects that can bring in added cre-
ativity through added time and re-
source pressures.

Importing successful ideas from
non-HPC domains. This effort
would focus on bringing the tools
and technologies currently being de-
veloped to prove correctness and
safety properties of non-HPC code,
to the HPC community. This would
bring software currently being used
to formally prove hardware, secu-
rity, safety, and performance—as applicable—to HPC. Research in the for-
mal verification of cyber-physical systems could be applied to the verifi-
cation of simulated physical systems. Research in embedded computing -
e.g. verification of controls, and verified hardware, e.g. flight safety, could

38

Year 1 Year 2 Year 3 Year 4 Year 5 Beyond

Short term
• HPC	Correctness	Workshop
• Advances	for	production	use
• Import	from	successful	non-HPC	domains
• Learn	from	other	communities

Medium term
• Verification	of	common	components	(MPI,	OpenMP)
• Bug	databases,	test	cases,	best	test	practices
• Standardize	interfaces	for	tool	composability
• Invest	in	specification	of	numerical	algorithms

• Verification	of	multiphysics applications
• Fully	certified	molecular	dynamics	application
• Define	metrics	for	achievable	correctness
• Correctness	of	beyond	Moore	computing

Long term

Figure 2: Short, medium, and long term goals identified to advance the field
of correctness in HPC

be applied to verifying the controls for current HPC systems. Certifica-
tion techniques for large scale distributed systems (e.g., Amazon, DropBox)
could be brought to HPC for reasoning about large scale parallel computing
systems (and HPC file systems).

5.1.2 Medium Term

Community-wide impact: Medium term focus must target achieving
community-wide impact through projects that take on the challenges of
verifying critical software components such as widely-used runtime systems
(e.g., OpenMP and MPI implementations) and math libraries. There must
also be significant emphasis placed on the collection of bug incidence reports,
as well as search for past solutions that detail how these bugs were fixed.
Finally, tool interfaces and runtime event collection mechanisms must be
standardized to support tool composition.

Ontologies of mathematics / algorithms. This effort would focus on
developing specific infrastructure for verification and debugging unique to
HPC. In particular, investments in the modeling and specification of numer-
ical algorithms, ontologies for the mathematics underlying such algorithms,

39

and reasoning about statistical and randomized systems, would be advanced.
There would likely be a close relationship between these efforts and Uncer-
tainty Quantification and Automatic Differentiation, since such efforts are
aimed at giving confidence in the results of scientific simulations. Research
would be aimed at tools for automated reasoning and verification about top-
ics in Applied Mathematics of relevance to ASCR, in particular numerical
methods for scalable solving of PDEs, discretization, optimization, multi-
scale computing, and multi-physics. The effort would be directed toward
formalizing mathematics otherwise expressed in “prose” in mathematical
research papers. The effort would try to parallel the development seen in
the computer systems research community, where new systems software re-
search papers (operating systems, file systems, etc.) are now expected to
come with the formal expression of the algorithm and the proof of its cor-
rectness. Such an effort would nudge and enable the engineering of these
new mathematical advances to be done with the most modern software en-
gineering practices, with the modularity, specifications, and proofs needed
to achieve correct by construction HPC systems.

5.1.3 Long Term

Beyond Moore. Focus on Beyond Moore computing would clearly be
an appropriate long term focus. In particular, ensuring correctness of new
computing paradigms such as neuromorphic, probabilistic, and quantum
computation. Application areas such as machine learning would also be a
focus of the correctness research. Machine learning in particular seems to
offer opportunities for new advances in correctness, particularly developing
systems for proving that a ML system will work within bounds, and for
explaining the conclusions or decision made by a machine learning system.

“Moonshot” projects. Longer term investments would be achieved by
moonshot projects that seek to build end-to-end, demonstrable successes,
with both immediate benefits and which also become the basis for advances
in the field. A few potential moonshot projects are described in §5.2.

5.2 Moonshots

Well-chosen “moonshot” challenges can help increase the pace of progress
and demonstrate what is possible. While these projects are ambitious, they
are probably feasible with just a few years of focused effort. Consider that
the first sequencing of a human genome took about ten years and billions of

40

dollars, but now such sequencing is routinely practiced within a few hours in
a doctor’s office lab for a few hundred dollars. Once feasibility is established
in the projects below, the engineering of tools to reduce costs and speed
the results will rapidly advance. For verification in particular, consider that
proof libraries and tools are cumulative, and can lead to building of capa-
bilities. The first efforts to formalize floating point took years to achieve,
but the formal specifications for floating point are now available and can be
downloaded for free.

5.2.1 Project 1: Fully certified molecular dynamics simulation

Molecular dynamics (MD) packages such as Desmond [16] would serve as ex-
cellent “moonshot” projects. The tools and science of projects such as Deep
Specification [94] could be applied, extending them to the special tuned num-
ber representations and operators of DESMOND, through bond models and
approximations, and through the compiler, systems software, and runtime.
One would certify the property of bit-reversibility through to the implemen-
tation. The components of such a project (e.g., a fully certified concurrent
dynamic runtime task scheduler, certified parallel 3D FFT) could then be
used in other projects.

Longer term, this technique could be used to provide certifications and
verification that a long running numerical simulation running on a special
purpose scientific computer proves a scientific result [117]. This would not
just be an academic exercise; vital missions of the Department of Energy
(e.g., the NNSA) depend on simulation on complex, custom constructed
high performance computers to assure the safety and performance of our
nation’s strategic nuclear arsenal. Advances in NNSA simulations of kinetic
plasma on the special Roadrunner supercomputer [15] used optimizations
and coding techniques closely relate to those of DESMOND. The results
of such moonshot projects could immediately carry over to kinetic plasma
simulations of the type that runs on Roadrunner. Furthermore, such a cer-
tification system could be used to assess the implications of new hardware
architectures (e.g., network communications protocols), representations (re-
ducing the precision of values) and algorithms (e.g., communication avoiding
or sparse high dimensional FFT) on future high performance kinetic plasma
simulations.

41

5.2.2 Project 2: Multiphysics

Multiphysics software systems—simulations that consists of more than one
component governed by its own principles—are used in many large-scale
physical simulations. An impactful project would be full verification of
important logic and numerical properties (e.g., energy conservation prop-
erties or others) underlying multiphysics applications. This exercise can
force the examination of how individual subsystem guarantees help meet
whole-system correctness goals. Some examples of HPC multiphysics soft-
ware infrastructures that could be targeted are Chombo [34], PETSc [6],
SUNDIALS [55], Trilinos [53], and Uintah [46].

5.2.3 Project 3: Verified Compiler/Runtime Components

Verifying some of the key software infrastructural components of an HPC
system can bootstrap the development of rigorous methods that help harden
support for large-scale runs of HPC simulations. Of special interest would
be the verification of the MPI library, going by the MPI 4.0 standard, trac-
ing through various device layers and ending in optimized infrastructural
code that supports rapid messaging using lock-free programming methods.
Similarly, verifying the polyhedral compilation toolchain and linear algebra
libraries can ensure correctness of large and highly reused code bases.

5.3 HPC correctness workshop

The exercise of bringing this limited set of report authors together for sharing
ideas has resulted in good cross fertilization of ideas for HPC correctness:
making us aware of useful tools for our own research in HPC, and some of
the larger challenges. But with the breadth of the problem, and the richness
of the verification and debugging community outside, HPC, more is needed.

Advancement in this area of correctness could be facilitated by a work-
shop on HPC correctness that could bring together the larger community of
experts on correctness techniques and tools with DOE stakeholders, espe-
cially the developers of DOE HPC applications.

Such a workshop would provide an opportunity for HPC software devel-
opers to communicate current practices and discuss the primary obstacles
to achieving correctness in HPC software development and for correctness
experts to identify promising research directions that offer the potential to
overcoming these obstacles. A two day workshop comprising a small number
of invited presentations, 5–10 minute presentations based on 2-page position
papers solicited from the community, and 3–4 1-hour round table discussions

42

to stimulate a dialogue between the correctness experts and stakeholders is
recommended. We anticipate that this dialogue will reinforce many of the
summit findings, possibly identify additional research opportunities, and
help prioritize future research directions.

5.4 Competitions for verification of HPC software

In recent years, several verification competitions have evolved within the
general software verification community. For example, the annual SV-COMP
competition, currently in its seventh year [1], is a fully automated compe-
tition in which participants submit tools which are all fed a long series of
C programs with corresponding properties that are expected to hold or fail.
The VerifyThis competition [122], in its sixth year, is an interactive com-
petition in which participants are given a set of problems which they are
expected to implement and verify over the course of a day using any tools
they desire. These competitions have had several beneficial impacts: they
provide objective and consistent comparisons of tools, they provide a recog-
nized measure of the current state-of-the-art, and they have created large
verification benchmark suites that are widely used beyond the competition
itself.

As discussed above, HPC software has many specific characteristics, and
these are not covered in the existing general-purpose software competitions.
Therefore, a HPC-specific verification competition could be held, say, during
the course of one day at SC17 with multi-agency sponsorship. Similar to
VerifyThis, participants could be given a set of programs of increasing com-
plexity, together with written specifications of expected behavior, and asked
to formally specify and verify as much as they can, using any tools they de-
sire. A panel of judges would examine and evaluate the results. Participants
could also be given an opportunity to present their solutions.

43

References

[1] Annual SV-COMP competition. https://sv-comp.sosy-lab.org/

2017/.

[2] Arnold, D. C., Ahn, D. H., De Supinski, B. R., Lee, G. L.,
Miller, B. P., and Schulz, M. Stack trace analysis for large scale
debugging. In IEEE International Parallel and Distributed Processing
Symposium (2007), IEEE, pp. 1–10.

[3] Bamboo. https://www.atlassian.com/software/bamboo.

[4] Automated testing system (ATS). http://computation.llnl.gov/

research/mission-support/WCI/automated-testing-system.

[5] Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D. H.,
Laguna, I., Schulz, M., Lee, G. L., Protze, J., and Müller,
M. S. ARCHER: effectively spotting data races in large OpenMP ap-
plications. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium, (2016), IEEE, pp. 53–62.

[6] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Kne-
pley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.
Petsc. See http://www.mcs.anl.gov/petsc (2001).

[7] Bao, W., Krishnamoorthy, S., Pouchet, L., Rastello, F.,
and Sadayappan, P. Polycheck: dynamic verification of iteration
space transformations on affine programs. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016 (2016), pp. 539–554.

[8] Barthe, G., Espitau, T., marco Gaboardi, Gregoire, B., Hsu,
J., and Strub, P.-Y. Formal certification of randomized algorithms.

[9] Baumgartner, G., Auer, A., Bernholdt, D. E., Bibireata,
A., Choppella, V., Cociorva, D., Gao, X., Harrison, R. J.,
Hirata, S., Krishnamoorthy, S., Krishnan, S., chung Lam,
C., Lu, Q., Nooijen, M., Pitzer, R. M., Ramanujam, J., Sa-
dayappan, P., and Sibiryakov, A. Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models.
Proceedings of the IEEE 93, 2 (2005), 276–292.

44

https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/
https://www.atlassian.com/software/bamboo
http://computation.llnl.gov/research/mission-support/WCI/automated-testing-system
http://computation.llnl.gov/research/mission-support/WCI/automated-testing-system

[10] Bertot, Y., and Castéran, P. Interactive theorem proving and
program development: CoqArt: the calculus of inductive constructions.
Springer Science & Business Media, 2013.

[11] Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M.,
Melquiond, G., and Weis, P. Wave equation numerical resolu-
tion: a comprehensive mechanized proof of a c program. Journal of
Automated Reasoning 50, 4 (2013), 423–456.

[12] Boldo, S., and Melquiond, G. Flocq: A unified library for proving
floating-point algorithms in coq. In Computer Arithmetic (ARITH),
2011 20th IEEE Symposium on (2011), IEEE, pp. 243–252.

[13] Boost test library. http://www.boost.org.

[14] Bouteiller, A., Bosilca, G., and Dongarra, J. Retrospect:
Deterministic replay of MPI applications for interactive distributed
debugging. In European Parallel Virtual Machine/Message Passing
Interface Users Group Meeting (2007), Springer, pp. 297–306.

[15] Bowers, K. J., Albright, B. J., Yin, L., Daughton, W.,
Roytershteyn, V., Bergen, B., and Kwan, T. Advances in
petascale kinetic plasma simulation with vpic and roadrunner. In
Journal of Physics: Conference Series (2009), IOP Publishing.

[16] Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood,
M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I.,
Moraes, M. A., Sacerdoti, F. D., et al. Scalable algorithms for
molecular dynamics simulations on commodity clusters. In Proceed-
ings of the 2006 ACM/IEEE conference on Supercomputing (2006),
ACM, p. 84.

[17] Bronevetsky, G., Laguna, I., Bagchi, S., de Supinski, B. R.,
Ahn, D. H., and Schulz, M. AutomaDeD: Automata-based de-
bugging for dissimilar parallel tasks. In 2010 IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN) (2010),
IEEE, pp. 231–240.

[18] Bronevetsky, G., Laguna, I., de Supinski, B. R., and Bagchi,
S. Automatic fault characterization via abnormality-enhanced classi-
fication. In IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2012) (June 2012), pp. 1–12.

45

http://www.boost.org

[19] Burckhardt, S., Kothari, P., Musuvathi, M., and Na-
garakatte, S. A randomized scheduler with probabilistic guarantees
of finding bugs. In Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA, March 13-17,
2010 (2010), J. C. Hoe and V. S. Adve, Eds., ACM, pp. 167–178.

[20] Burnette, E. Eclipse IDE Pocket Guide. O’Reilly Media, Inc., 2005.

[21] Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems pro-
grams. Proc. 8th USENIX Symposium on Operating Systems Design
and Implementation (2008).

[22] Cadar, C., and Sen, K. Symbolic execution for software testing:
Three decades later. Communications of the ACM 56, 2 (February
2013), 82–90.

[23] Certikos: Certified Kit Operating System. http://flint.cs.yale.

edu/certikos/.

[24] Chakraborty, S., and Vafeiadis, V. Validating optimizations of
concurrent c/c++ programs. In Code Generation and Optimization
(CGO), 2016 IEEE/ACM International Symposium on (2016), IEEE,
pp. 216–226.

[25] Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek,
M. F., and Zeldovich, N. Using crash hoare logic for certifying the
fscq file system. In Proceedings of the 25th Symposium on Operating
Systems Principles (2015), ACM, pp. 18–37.

[26] Chen, Z., Gao, Q., Zhang, W., and Qin, F. FlowChecker: De-
tecting bugs in MPI libraries via message flow checking. In 2010 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC) (2010), IEEE, pp. 1–11.

[27] Chiang, W., Baranowski, M., Briggs, I., Solovyev, A.,
Gopalakrishnan, G., and Rakamaric, Z. Rigorous floating-point
mixed-precision tuning. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017 (2017), pp. 300–315.

46

http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/

[28] Chong, N., Donaldson, A. F., Kelly, P. H. J., Ketema, J.,
and Qadeer, S. Barrier invariants: a shared state abstraction for the
analysis of data-dependent gpu kernels. In 28th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’13) (10 2013), pp. 605–622.

[29] Clang static analyzer. https://clang-analyzer.llvm.org/.

[30] Clang sanitizers. https://clang.llvm.org/docs/.

[31] Threadsanitizer data-race detector. https://clang.llvm.org/docs/
ThreadSanitizer.html.

[32] Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. Model
Checking. MIT Press, Cambridge, 1999.

[33] CLion. https://www.jetbrains.com/clion.

[34] Colella, P., Graves, D., Ligocki, T., Martin, D., Modiano,
D., Serafini, D., and Van Straalen, B. Chombo software package
for amr applications-design document, 2000.

[35] The Coq Proof Assistant. https://coq.inria.fr/.

[36] Nvidia CUDA-MEMCHECK correctness checking tool. http://docs.
nvidia.com/cuda/cuda-memcheck/.

[37] DDT debugger. https://www.allinea.com/products/ddt.

[38] de Alfaro, L., and Henzinger, T. A. Interface automata. In
Proceedings of the 8th European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering 2001, Vienna, Austria, September
10-14, 2001 (2001), pp. 109–120.

[39] DeRose, L., Gontarek, A., Vose, A., Moench, R., Abramson,
D., Dinh, M. N., and Jin, C. Relative debugging for a highly paral-
lel hybrid computer system. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (New York, NY, USA, 2015), SC ’15, ACM, pp. 63:1–63:12.

[40] Ding, C., and Mondet, S. A curated list of awesome coq frame-
works, libraries and software. https://github.com/uhub/awesome-
coq/blob/master/README.md.

47

https://clang-analyzer.llvm.org/
https://clang.llvm.org/docs/
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://www.jetbrains.com/clion
https://coq.inria.fr/
http://docs.nvidia.com/cuda/cuda-memcheck/
http://docs.nvidia.com/cuda/cuda-memcheck/
https://www.allinea.com/products/ddt

[41] The exascale computing project. https://exascaleproject.org/

exascale-computing-project/.

[42] Edwards, H. C., Trott, C. R., and Sunderland, D. Kokkos:
Enabling manycore performance portability through polymorphic
memory access patterns. J. Parallel Distrib. Comput. 74, 12 (2014),
3202–3216.

[43] Floating point litmus testing (flit) framework. www.cs.utah.edu/fv/
FLiT/Analysis.html.

[44] Gao, Q., Qin, F., and Panda, D. K. DMTracker: finding bugs in
large-scale parallel programs by detecting anomaly in data movements.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing
(2007), ACM, p. 15.

[45] Gao, S., Kong, S., and Clarke, E. M. dReal: An SMT solver for
nonlinear theories over the reals. In Proceedings of the 24th Interna-
tional Conference on Automated Deduction (CADE) (2013), pp. 208–
214.

[46] Germain, J. D. d. S., McCorquodale, J., Parker, S. G.,
and Johnson, C. R. Uintah: A massively parallel problem solv-
ing environment. In The Ninth International Symposium on High-
Performance Distributed Computing, 2000. Proceedings. (2000), IEEE,
pp. 33–41.

[47] Godefroid, P., Klarlund, N., and Sen, K. DART: Directed au-
tomated random testing. In ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation (PLDI’05) (2005),
pp. 213–223.

[48] Godefroid, P., Levin, M. Y., and Molnar, D. A. SAGE: white-
box fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44.

[49] Google Tests. https://github.com/google/googletest.

[50] Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X. N.,
Weng, S.-C., Zhang, H., and Guo, Y. Deep specifications and
certified abstraction layers. In ACM SIGPLAN Notices (2015), ACM.

[51] Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V.,
and Costanzo, D. Certikos: an extensible architecture for building

48

https://exascaleproject.org/exascale-computing-project/
https://exascaleproject.org/exascale-computing-project/
www.cs.utah.edu/fv/FLiT/Analysis.html
www.cs.utah.edu/fv/FLiT/Analysis.html
https://github.com/google/googletest

certified concurrent os kernels. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16) (2016), USENIX
Association.

[52] Hardesty, L. Dude, wheres my code?
http://news.mit.edu/2013/system-flags-useful-code-compilers-might-
discard-1016.

[53] Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra,
R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R.,
Pawlowski, R. P., Phipps, E. T., et al. An overview of the trilinos
project. ACM Transactions on Mathematical Software (TOMS) 31, 3
(2005), 397–423.

[54] Hilbrich, T., Schulz, M., de Supinski, B. R., and Müller,
M. S. MUST: A scalable approach to runtime error detection in MPI
programs. In Tools for high performance computing 2009. Springer,
2010, pp. 53–66.

[55] Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L.,
Serban, R., Shumaker, D. E., and Woodward, C. S. Sundials:
Suite of nonlinear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software (TOMS) 31, 3 (2005), 363–
396.

[56] Hirata, S. Tensor contraction engine: Abstraction and automated
parallel implementation of configuration-interaction, coupled-cluster,
and many-body perturbation theories. The Journal of Physical Chem-
istry A 107, 46 (2003), 9887–9897.

[57] Hoare, C. A. R. An axiomatic basis for computer programming.
Communications of the ACM (1969), 576–580.

[58] Holzmann, G. J. The model checker spin. IEEE Transactions on
software engineering 23, 5 (1997), 279–295.

[59] Hornung, R. D., and Keasler, J. A. The raja portability layer:
Overview and status. Tech. rep., 2014.

[60] Hovy, C., and Kunkel, J. Towards automatic and flexible unit test
generation for legacy hpc code. In Proceedings of the Fourth Interna-
tional Workshop on Software Engineering for HPC in Computational
Science and Engineering (2016), IEEE Press, pp. 42–49.

49

[61] Hudak, P. Domain-specific languages. Handbook of Programming
Languages 3, 39-60 (1997), 21.

[62] Hughes, J., Pierce, B. C., Arts, T., and Norell, U. Mysteries
of Dropbox: Property-based testing of a distributed synchronization
service. In International Conference on Software Testing, Verification
and Validation (ICST) (Apr. 2016).

[63] Hwu, W.-M. What is driving heterogeneity in hpc?
https://bluewaters.ncsa.illinois.edu/documents/10157/

169216/hwu_heterogeneity.pdf, 2016.

[64] Insure++. https://www.parasoft.com/product/insure/.

[65] Intel inspector. https://software.intel.com/en-us/

intel-inspector-xe.

[66] IntelliJ IDEA. https://www.jetbrains.com/idea.

[67] Jiang, N., Kim, J., and Dally, W. J. Indirect adaptive routing on
large scale interconnection networks. In ACM SIGARCH Computer
Architecture News (2009), vol. 37, ACM, pp. 220–231.

[68] Joshi, P., Naik, M., Park, C.-S., and Sen, K. An extensible
active testing framework for concurrent programs. In 21st Interna-
tional Conference on Computer Aided Verification (CAV’09) (2009),
vol. 5643 of Lecture Notes in Computer Science, Springer, pp. 675–681.

[69] Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A.,
Whittemore, J., Pandav, S., Slobodova, A., Taylor, C.,
Frolov, V., Reeber, E., and Naik, A. Replacing testing with
formal verification in Intel CoreTM i7 processor execution engine val-
idation. In CAV (2009), pp. 414–429.

[70] Kamil, S., Cheung, A., Itzhaky, S., and Solar-Lezama, A.
Verified lifting of stencil computations. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (New York, NY, USA, 2016), PLDI ’16, ACM, pp. 711–726.

[71] Kanewala, U. https://www.cs.montana.edu/upulee.kanewala/

research.html. Application of Metamorphic Testing to HPC: Some
examples.

50

https://bluewaters.ncsa.illinois.edu/documents/10157/169216/hwu_heterogeneity.pdf
https://bluewaters.ncsa.illinois.edu/documents/10157/169216/hwu_heterogeneity.pdf
https://www.parasoft.com/product/insure/
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://www.jetbrains.com/idea
https://www.cs.montana.edu/upulee.kanewala/research.html
https://www.cs.montana.edu/upulee.kanewala/research.html

[72] Kelly, D., and Sanders, R. The challenge of testing scientific
software. CAST 2008: Beyond the Boundaries (2008), 30.

[73] King, J. C. Symbolic execution and program testing. Communica-
tions of the ACM 19, 7 (1976), 385–394.

[74] KLOCKWORK Static Analyzer. http://www.klocwork.com/.

[75] Laguna, I., Ahn, D. H., de Supinski, B. R., Bagchi, S.,
and Gamblin, T. Probabilistic Diagnosis of Performance Faults in
Large-scale Parallel Applications. In Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (New York, NY, USA, 2012), PACT ’12, ACM, pp. 213–222.

[76] Laguna, I., Ahn, D. H., de Supinski, B. R., Gamblin, T., Lee,
G. L., Schulz, M., Bagchi, S., Kulkarni, M., Zhou, B., Chen,
Z., and Qin, F. Debugging high-performance computing applications
at massive scales. Communications of the ACM 58, 9 (Aug. 2015), 72–
81.

[77] Laguna, I., and Schulz, M. Pinpointing scale-dependent integer
overflow bugs in large-scale parallel applications. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (2016), IEEE Press, p. 19.

[78] Leroy, X. Formal verification of a realistic compiler. Communica-
tions of the ACM 52, 7 (2009), 107–115.

[79] Leroy, X., et al. The compcert verified compiler. Development
available at http://compcert. inria. fr 2009 (2004).

[80] Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I.,
and Rajan, S. P. Gklee: Concolic verification and test genera-
tion for gpus. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (New York, NY,
USA, 2012), PPoPP ’12, ACM, pp. 215–224.

[81] Liu, T., Curtsinger, C., and Berger, E. D. Dthreads: effi-
cient deterministic multithreading. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (2011), ACM,
pp. 327–336.

51

http://www.klocwork.com/

[82] Meister, B., Vasilache, N., Wohlford, D., Baskaran, M.,
Leung, A., and Lethin, R. R-stream compiler. In Encyclopedia of
Parallel Computing, D. Padua, Ed. Springer, 2011, pp. 1756–1765.

[83] Mendis, C., Bosboom, J., Wu, K., Kamil, S., Ragan-Kelley,
J., Paris, S., Zhao, Q., and Amarasinghe, S. P. Helium: lifting
high-performance stencil kernels from stripped x86 binaries to halide
DSL code. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015 (2015), pp. 391–402.

[84] Meng, Q., Humphrey, A., Schmidt, J., and Berzins, M. Pre-
liminary experiences with the uintah framework on intel xeon phi and
stampede. In Proceedings of the Conference on Extreme Science and
Engineering Discovery Environment: Gateway to Discovery (XSEDE)
(2013), pp. 48:1–48:8.

[85] Menzies, T. Understanding software: Recent lessons from em-
pirical software engineering. https://figshare.com/articles/

Understanding_Software_Recent_Lessons_from_Empirical_

Software_Engineering/4680961, 2017. Talk presented at the SI2 PI
meeting, Arlington, February 21.

[86] Messina, P., and Lee, S. Exascale computing project – soft-
ware. https://science.energy.gov/~/media/ascr/ascac/pdf/

meetings/201704/ECP_Update_ASCAC__20170419.pdf, 2017. AS-
CAC Meeting, Arlington, VA.

[87] Mirgorodskiy, A. V., Maruyama, N., and Miller, B. P. Prob-
lem diagnosis in large-scale computing environments. In Proceedings
of the ACM/IEEE SC 2006 Conference (Nov 2006), pp. 11–11.

[88] Mitra, S., Laguna, I., Ahn, D. H., Bagchi, S., Schulz, M., and
Gamblin, T. Accurate Application Progress Analysis for Large-scale
Parallel Debugging. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (New
York, NY, USA, 2014), PLDI ’14, ACM, pp. 193–203.

[89] Murthy, K., Paul, S. R., Meel, K. S., Cogumbreiro, T., and
Mellor-Crummey, J. Design and verification of distributed phasers.
In Proceedings of the 22Nd International Conference on Euro-Par
2016: Parallel Processing - Volume 9833 (New York, NY, USA, 2016),
Springer-Verlag New York, Inc., pp. 405–418.

52

https://figshare.com/articles/Understanding_Software_Recent_Lessons_from_Empirical_Software_Engineering/4680961
https://figshare.com/articles/Understanding_Software_Recent_Lessons_from_Empirical_Software_Engineering/4680961
https://figshare.com/articles/Understanding_Software_Recent_Lessons_from_Empirical_Software_Engineering/4680961
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201704/ECP_Update_ASCAC__20170419.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201704/ECP_Update_ASCAC__20170419.pdf

[90] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker,
M., and Deardeuff, M. How amazon web services uses formal
methods. Communications of the ACM 58, 4 (2015), 66–73.

[91] Park, C.-S., Sen, K., Hargrove, P., and Iancu, C. Efficient
data race detection for distributed memory parallel programs. In In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11) (2011), ACM, p. 51.

[92] Park, C.-S., Sen, K., and Iancu, C. Scaling data race detection
for partitioned global address space programs. In 27th International
Conference on Supercomputing (ICS’13) (2013), ACM, pp. 47–58.

[93] Park, C.-S., Sen, K., and Iancu, C. Scaling data race detection
for partitioned global address space programs (short paper). In 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (2013), ACM, pp. 305–306.

[94] Pierce, B. C. The science of deep specification, Nov. 2016. Invited
keynote at SPLASH / OOPSLA.

[95] Puschel, M., Moura, J. M., Johnson, J. R., Padua, D.,
Veloso, M. M., Singer, B. W., Xiong, J., Franchetti, F.,
Gacic, A., Voronenko, Y., Chen, K., Johnson, R. W., and
Rizzolo, N. Spiral: Code generation for dsp transforms. Proceedings
of the IEEE 93, 2 (2005), 232–275.

[96] Qian, X., Sen, K., Hargrove, P., and Iancu, C. Opr: De-
terministic group replay for one-sided communication. In 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (2016), ACM. Poster Paper.

[97] Qian, X., Sen, K., Hargrove, P., and Iancu, C. Sreplay: De-
terministic group replay for one-sided communication. In 30th Inter-
national Conference on Supercomputing (ICS’16) (2016), ACM.

[98] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand,
F., and Amarasinghe, S. P. Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image pro-
cessing pipelines. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013 (2013), pp. 519–530.

53

[99] Ramananandro, T., Mountcastle, P., Meister, B., and
Lethin, R. A unified Coq framework for verifying C programs with
floating-point computations. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs (2016), ACM, pp. 15–26.

[100] Rubio-Gonzalez, C., Nguyen, C., Mehne, B., Sen, K., Dem-
mel, J., Kahan, W., Iancu, C., Lavrijsen, W., Bailey, D. H.,
and Hough, D. Floating-point precision tuning using blame analysis.
In 38th International Conference on Software Engineering (ICSE’16)
(2016), IEEE.

[101] Rubio-Gonzalez, C., Nguyen, C., Nguyen, H. D., Demmel, J.,
Kahan, W., Sen, K., Bailey, D. H., Iancu, C., and Hough, D.
Precimonius: Tuning assistant for floating-point precision. In Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC’13) (November 2013), ACM.

[102] Sato, K., Ahn, D. H., Laguna, I., Lee, G. L., and Schulz, M.
Clock delta compression for scalable order-replay of non-deterministic
parallel applications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(2015), ACM, p. 62.

[103] Sato, K., Ahn, D. H., Laguna, I., Lee, G. L., Schulz, M.,
and Chambreau, C. M. Noise Injection Techniques to Expose Sub-
tle and Unintended Message Races. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (2017), ACM, pp. 89–101.

[104] Schordan, M., Lin, P.-H., Quinlan, D., and Pouchet, L.-N.
Verification of polyhedral optimizations with constant loop bounds
in finite state space computations. In International Symposium On
Leveraging Applications of Formal Methods, Verification and Valida-
tion (2014), Springer, pp. 493–508.

[105] Sen, K. Race directed random testing of concurrent programs. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08) (2008), ACM, pp. 11–21.

[106] Sen, K., and Agha, G. Cute and jcute : Concolic unit testing and
explicit path model-checking tools. In 18th International Conference
on Computer Aided Verification (CAV’06) (2006), vol. 4144 of Lecture
Notes in Computer Science, Springer, pp. 419–423.

54

[107] Sen, K., and Agha, G. A race-detection and flipping algorithm
for automated testing of multi-threaded programs. In Haifa verifica-
tion conference 2006 (HVC’06) (2006), vol. 4383 of Lecture Notes in
Computer Science, Springer, pp. 166–182.

[108] Sen, K., Marinov, D., and Agha, G. CUTE: A concolic unit test-
ing engine for C. In 5th joint meeting of the European Software Engi-
neering Conference and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE’05) (2005), ACM, pp. 263–
272. ACM SIGSOFT Distinguished Paper Award.

[109] Sharma, R., Bauer, M., and Aiken, A. Verification of producer-
consumer synchronization in GPU programs. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015 (2015),
pp. 88–98.

[110] Siegel, S. F. Model checking nonblocking MPI programs. In In-
ternational Workshop on Verification, Model Checking, and Abstract
Interpretation (2007), Springer, pp. 44–58.

[111] Siegel, S. F., and Zirkel, T. K. Collective assertions. In Verifica-
tion, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011.
Proceedings (2011), pp. 387–402.

[112] Siegel, S. F., and Zirkel, T. K. TASS: The Toolkit for Accurate
Scientific Software. Mathematics in Computer Science 5, 4 (2011),
395–426.

[113] Solovyev, A., Jacobsen, C., Rakamarić, Z., and Gopalakr-
ishnan, G. Rigorous estimation of floating-point round-off errors with
Symbolic Taylor Expansions. In Proceedings of the 20th International
Symposium on Formal Methods Formal (FM) (2015), pp. 532–550.

[114] Spielman, D. A., and Teng, S.-H. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear systems.
In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing (2004), ACM, pp. 81–90.

[115] Stewart, G., Beringer, L., Cuellar, S., and Appel, A. W.
Compositional compcert. In Proceedings of the 42Nd Annual ACM

55

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (New York, NY, USA, 2015), POPL ’15, ACM, pp. 275–287.

[116] Stng: Automatically leverage gpus for your high-performance compu-
tation with verified lifting. http://stng.uwplse.org/.

[117] Sussman, G. J., and Wisdom, J. Chaotic evolution of the solar
system. Tech. rep., DTIC Document, 1992.

[118] Totalview debugger. http://www.roguewave.com/

products-services/totalview.

[119] UPC Thrille. http://upc.lbl.gov/thrille.shtml.

[120] Vakkalanka, S. S., Sharma, S., Gopalakrishnan, G., and
Kirby, R. M. ISP: a tool for model checking MPI programs. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming (2008), ACM, pp. 285–286.

[121] Valgrind instrumentation framework. http://valgrind.org/.

[122] VerifyThis competition. http://www.verifythis.org.

[123] Vetter, J. S., and De Supinski, B. R. Dynamic software testing
of MPI applications with Umpire. In ACM/IEEE 2000 Conference of
Supercomputing (2000), IEEE, pp. 51–51.

[124] Vo, A., Aananthakrishnan, S., Gopalakrishnan, G.,
De Supinski, B. R., Schulz, M., and Bronevetsky, G. A
scalable and distributed dynamic formal verifier for MPI programs.
In High Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for (2010), IEEE, pp. 1–10.

[125] Wang, X., Zeldovich, N., Kaashoek, M. F., and Solar-
Lezama, A. Towards optimization-safe systems: analyzing the impact
of undefined behavior. In ACM SIGOPS 24th Symposium on Operat-
ing Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013 (2013), pp. 260–275.

[126] Weng, S.-C. DeepSpec: Modular Certified Programming with Deep
Specifications. PhD thesis, New Haven CT, 2016.

[127] Wickerson, J., Batty, M., Sorensen, T., and Constantinides,
G. A. Automatically comparing memory consistency models. In

56

http://stng.uwplse.org/
http://www.roguewave.com/products-services/totalview
http://www.roguewave.com/products-services/totalview
http://upc.lbl.gov/thrille.shtml
http://valgrind.org/
http://www.verifythis.org

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20,
2017 (2017), pp. 190–204.

[128] Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W.,
Zhang, Z., and Voelker, G. MPIWiz: Subgroup Reproducible Re-
play of Mpi Applications. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New
York, NY, USA, 2009), PPoPP ’09, ACM, pp. 251–260.

[129] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and
Understanding Bugs in C Compilers. In Proceedings of 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 2011) (June 2011).

[130] Yuan, Y., Wu, Y., Wang, Q., Yang, G., and Zheng, W. Com-
puters & Mathematics with Applications 63 (Jan. 2012), 365377.

[131] Zheng, M., Ravi, V. T., Qin, F., and Agrawal, G. Gmrace: De-
tecting data races in gpu programs via a low-overhead scheme. IEEE
Transactions on Parallel and Distributed Systems 25, 1 (2014), 104–
115.

[132] Zheng, M., Rogers, M. S., Luo, Z., Dwyer, M. B., and Siegel,
S. F. Civl: Formal verification of parallel programs. In 2015 30th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (Nov 2015), pp. 830–835.

[133] Zhou, B., Kulkarni, M., and Bagchi, S. Vrisha: using scaling
properties of parallel programs for bug detection and localization. In
Proceedings of the 20th international symposium on High performance
distributed computing (2011), ACM, pp. 85–96.

[134] Zhou, B., Too, J., Kulkarni, M., and Bagchi, S. WuKong: au-
tomatically detecting and localizing bugs that manifest at large system
scales. In Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing (2013), ACM, pp. 131–
142.

57

	HPC Correctness Cover
	report-hpc-correctness-final-Oct-4
	Introduction
	Reasons for the correctness crisis
	What is in scope, what is not
	Suggested research foci, targeted time-frames
	Short-term (1-2 years)
	Medium-term (2-5 years)
	Long-term (5 years and beyond)

	Rigorous Methods for Correctness
	What is the Correctness Problem?
	Specification
	Verification

	Challenges in High Performance Computing

	State of the Art and Successes
	Testing
	Infrastructure for Bug Detection and Localization
	Static Analysis
	Dynamic Analysis
	Formal Methods
	Control of Non-determinism
	Anomaly detection
	Conventional Parallel Debugging

	Correctness through Correct-by-Construction Certification
	Successes due to rigorous and systematic methods

	New Research, Impact
	Static methods
	Runtime system focused thrust
	Numerical algorithms focused thrust
	Specifications Thrust
	Verification of compilers and libraries
	Other thrusts

	Dynamic methods
	Debugging
	Pragmatic thrusts

	Next steps
	ASCR Focus Areas
	Short Term
	Medium Term
	Long Term

	Moonshots
	Project 1: Fully certified molecular dynamics simulation
	Project 2: Multiphysics
	Project 3: Verified Compiler/Runtime Components

	HPC correctness workshop
	Competitions for verification of HPC software

