
ENERGY
U.S. DEPARTMENT OF

Report on the
Workshop on Extreme-Scale Solvers:
Transition to Future Architectures
March 8-9, 2012, Washington, D.C.

U.S. Department of Energy
Office of Advanced Scientific Computing Research

Cover image credits:
(Top left) Communication pattern between processors (each of
which holds a column and a row communication group) in an
implementation of the Lanczos algorithm for computing eigenvales
of a sparse matrix; courtesy of H. M. Aktulga, Lawrence
Berkeley National Laboratory.

(Top middle) Communication pattern for one of the coarse levels
of the setup phase in an implementation of the algebraic multigrid
method; courtesy of H. Gahvari and W. Gropp, Univ. of Illinois at
Urbana-Champaign.

(Top right) Matrix from the solution of Maxwell's equation for a high-
frequency circuit using finite-element modeling. The matrix is taken
from the Univ. of Florida Sparse Matrix Collection and is courtesy of
the Center for Computational Electromagnetics at the Univ. of Illinois
at Urbana-Champaign.

(Bottom) A branch-and-bound tree search by MINOTAUR
when solving a problem of selecting an optimal configuration for
chemical synthesis; courtesy of S. Leyffer and A. Mahajan, Argonne
National Laboratory.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831-0062
 phone (865) 576-8401
 fax (865) 576-5728
 reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

Workshop on Extreme-Scale Solvers:
Transition to Future Architectures

Sponsored by
U.S. Department of Energy

Office of Advanced Scientific Computing Research

March 8-9, 2012
American Geophysical Union, Washington, DC

Workshop Report Committee
Jim Ang (Sandia National Laboratories)

Katherine Evans (Oak Ridge National Laboratory)
Al Geist (Oak Ridge National Laboratory)

Michael Heroux (Sandia National Laboratories)
Paul Hovland (Argonne National Laboratory)

Osni Marques (Lawrence Berkeley National Laboratory)
Lois Curfman McInnes (Argonne National Laboratory)
Esmond Ng (Lawrence Berkeley National Laboratory)

Stefan Wild (Argonne National Laboratory)

DOE/ASCR Point of Contact
Karen Pao

Abstract

This report presents results from the DOE workshop on Extreme-Scale Solvers: Transition to
Future Architectures held March 8–9, 2012, in Washington, D.C. The workshop brought together
approximately 50 experts in the development of scalable solvers to determine research areas needed
both in the near term for next-generation 100-petaflop supercomputers and in the longer term for
the supercomputers expected at the end of the decade. The report also describes ways to make a
smooth transition from the present solvers to the extreme-scale solvers of the future.

Contents

Table of Contents . i

Executive Summary . iii

1 Introduction 1

2 Potential Impact 2

3 Challenges Faced by the Solver Community 3

4 Solver Research Opportunities 5

4.1 General Classes of New Algorithms . 5

4.1.1 Communication/Synchronization-Hiding Algorithms 6

4.1.2 Communication/Synchronization-Reducing Algorithms 6

4.1.3 Mixed-Precision-Arithmetic Algorithms . 7

4.1.4 Fault-Tolerant and Resilient Algorithms . 7

4.1.5 Energy-Efficient Algorithms . 8

4.1.6 Stochastic Algorithms . 8

4.1.7 Algorithms with Reproducibility . 9

4.2 Near-Term Research Opportunities for 100 PF Machines 9

4.2.1 Enabling and Exploiting Mixed-Precision and Variable-Precision Arithmetic . 9

4.2.2 Optimizing Data Placement and Movement 10

4.2.3 Circumventing Memory Bandwidth Limitations 10

4.2.4 “Semi”-Asynchronous Solvers . 11

4.2.5 Nonblocking Algorithms via Nonblocking Collectives 11

4.2.6 Exploiting Processor and Memory Hierarchies via Algorithmic Hierarchies . . 11

4.2.7 Solver Components and New Composition Models 12

4.2.8 Implicit-Explicit and Partitioned Time Integration 12

4.2.9 Parallel-Time Integration . 12

4.2.10 Application-Oriented Solvers . 13

4.2.11 Move to Greater Interoperability among Solver Libraries 13

4.3 Longer-Term Research Opportunities for 100 PF through Exascale Computers . . . 13

4.3.1 Solver Algorithms and Power Awareness and Management 14

4.3.2 Selective Data and Computation Reliability 14

4.3.3 Approximate and Probabilistic Solvers . 14

4.3.4 Coupled Nonlinear Solvers for Large-Scale Multiphysics 15

4.3.5 Dynamic Load Balancing and Scheduling Millions of Tasks 15

4.3.6 Incremental Load Balancing . 15

4.3.7 Higher Levels of Abstraction for Ensemble Computations, Uncertainty Quan-
tification, Stochastic Models, and Design Optimization 16

4.4 Needs from the External Community . 16

5 Transitioning to New Solvers 17

5.1 Evolutionary Algorithmic Research . 18

5.2 Transition to New Application-Library Interfaces . 18

5.3 Community Interactions to Facilitate Longer-Term Algorithmic Research 18

5.4 Revolutionary Algorithmic Research . 19

ASCR Workshop on Extreme-Scale Solvers i

6 Conclusions 19

Acknowledgments 20

References 21

Appendices 27
Workshop Participants . 27
Workshop Agenda . 28

ii ASCR Workshop on Extreme-Scale Solvers

Executive Summary

This report presents results from the DOE workshop on Extreme-Scale Solvers: Transition to Future
Architectures held March 8–9, 2012 in Washington, D.C. The workshop brought together experts
in the development of scalable numerical solvers, with the goal of identifying research needed for
solvers to effectively utilize 100-petaflop (PF) systems and beyond.

The needs of extreme-scale science are expected to drive a hundredfold increase in computational
capabilities by mid-decade and a factor of 1,000 increase within ten years. These 100 PF (and
larger) supercomputers will change the way scientific discoveries are made; moreover, the technology
developed for those systems will provide desktop performance on par with the fastest systems
from just a few years ago. Since numerical solvers are at the heart of the codes that enable
these discoveries, the development of efficient, robust, high-performance, portable solvers has a
tremendous impact on harnessing these computers to achieve new science. But future architectures
present major challenges to the research and development of such solvers. These architectural
challenges include extreme parallelism, data placement and movement, resilience, and heterogeneity.

To identify the research needed for numerical solvers to address these challenges, 50 solver ex-
perts from DOE laboratories, academia, and industry gathered at the American Geophysical Union
for a 1½-day workshop. In addition to identifying near-term and longer-term research opportuni-
ties, the participants identified what is needed from the external community to develop efficient
solvers for 100 PF machines and beyond, including architecture simulators, tools, and portable
programming models. The participants also discussed how to transition the user community to
the new solvers. Crucial to this transition are increased interactions among the communities of
hardware designers, algorithm and solver developers, and applications scientists. Also essential is
encapsulation of the most promising approaches in reusable solver libraries that can bridge between
lower-level issues in computer science and higher-level perspectives in applications.

Solver research opportunities include new classes of algorithms that need to be developed:

• Communication/synchronization hiding and reducing algorithms
• Mixed-precision-arithmetic algorithms
• Fault-tolerant and resilient algorithms
• Energy-efficient algorithms
• Stochastic algorithms
• Algorithms with reproducibility

These algorithmic areas as well as near-term and long-term research opportunities are dis-
cussed in detail in the report. Identified near-term research opportunities include minimization of
data movement, circumvention of memory bandwidth limitations, semi-asynchronous solvers, algo-
rithms using nonblocking collectives, exploitation of algorithmic/memory hierarchies, partitioned
and parallel time integration, and improved algorithmic composition. A key characteristic of these
near-term opportunities is that the results will also be useful for exascale simulations. Longer-term
research opportunities include power awareness and management in solvers; selective data and
computation reliability; probabilistic solvers; dynamic load balancing and scheduling of millions of
solver tasks; and the need for working at higher levels of abstraction for ensemble computations,
uncertainty quantification, stochastic models, and design optimization. These near- and long-term
research activities will bring previously unavailable capabilities to scientific users, not simply faster
or larger simulations.

The workshop participants emphasize that extreme-scale architectures require revisiting the
mathematical, algorithmic, and software infrastructure that underlie today’s solvers, and the com-
munity must pursue fundamentally new advances to enable next-generation extreme-scale science.

ASCR Workshop on Extreme-Scale Solvers iii

iv ASCR Workshop on Extreme-Scale Solvers

1 Introduction

Enabling extreme-scale science is a major ASCR priority. The thousandfold increase in com-
putational capabilities expected over the next decade and a similar increase in the data volume
from experimental facilities will change the way scientific discoveries are made. A DOE workshop
on Extreme-Scale Solvers: Transition to Future Architectures was held March 8–9, 2012, at the
American Geophysical Union in Washington, D.C. The workshop brought together experts in the
development of scalable solvers to determine research areas needed for extreme-scale algorithms
and software to effectively utilize 100-petaflop (PF) systems and beyond. Additional information
is available at the workshop website: http://www.orau.gov/extremesolvers2012/.

Over fifty researchers from DOE laboratories, academia, and industry participated in the work-
shop. Their collective expertise spanned numerical algorithm design, deployment of numerical
methods on high-performance computers, numerical libraries, science applications, computer sci-
ence, and hardware architecture.

One purpose of the workshop was to explore opportunities for the solver community to influence
the design of future extreme-scale computers. Helping with this exploration were attendees from
Cray, IBM, Intel, and NVIDIA. The 100 PF systems appearing around 2015 are expected to be
evolutionary modifications from the 20 PF-class systems being deployed today, likely employing
variants of today’s CPU and GPU technologies. The yet-to-be-determined architectures of extreme-
scale systems are expected to be radically different from these 100 PF systems. Nevertheless, one
can identify common characteristics of these extreme-scale systems, independent of the actual
systems designs, that will require serious rethinking of today’s numerical algorithms for large-scale
scientific simulations.

Architectural features that are the most salient to the design, implementation, and deployment
of all numerical algorithms for parallel, high-performance scientific computing include the following:

Extreme parallelism: Estimates of 2 to 3 orders of magnitude of parallelism over today’s levels
will require solvers to pay particular attention to Amdahl’s law.

Data placement and movement: Optimizing data placement and movement will be key to per-
formance, as well as a primary way for solvers to reduce power consumption.

Resilience: The number of failures is expected to increase with concurrency, requiring solvers that
can run through or detect and recover from faults.

Heterogeneous architectures: Heterogeneity will be needed to meet the power requirements of
the 100 PF systems; but little has been done to develop portable, hybrid codes that can run
across different types of architectures.

The workshop attendees discussed how architectural features will affect the design and im-
plementation of the numerical algorithms—especially algorithms such as direct and iterative linear
solvers, nonlinear solvers, and eigensolvers—that are often the most computationally intensive parts
of high-performance computer (HPC) science application codes. Attendees were divided into three
breakout groups, each having a good mix of all the areas of expertise described above. The breakout
groups were presented with a series of questions to discuss, including:

• What do mathematicians and computer scientists need to know about future architectures to
be able to write efficient, robust, scalable, and portable high-performance solvers?

• Are specific architectural features needed or desired for the development of extreme-scale
solvers?

ASCR Workshop on Extreme-Scale Solvers 1

http://www.orau.gov/extremesolvers2012/

• What do code developers need in terms of development tools and programming environments
to deal with extreme parallelism and minimization of communication and data movement?

• What are some architecture-specific and architecture-independent solutions, and what are
their respective strengths and weaknesses for extreme-scale solvers?

• How do we evolve from today’s solvers to the extreme-scale algorithms and software needed
for these 100 PF systems and architectures of the future?

The next two sections describe the potential impact of extreme-scale solvers research and the
challenges faced by the solver community. Section 4 describes several overarching classes of algo-
rithms that need fundamental research. This section also presents the near-term and long-term
research opportunities in extreme-scale solvers that were identified at the workshop. Section 5
presents the experts’ thoughts on how to make a smooth transition for the users from the present
solvers to the extreme-scale solvers of the future.

2 Potential Impact

Applied mathematics is at the heart of all major science codes, and the numerical algorithms
driving these science codes account for the majority of all floating-point operations performed
on the nation’s largest supercomputers. To effectively utilize the next generation of 100 PF and
exascale machines, research and development must be conducted to devise numerical algorithms
that can exploit the architectural characteristics of these future computers.

Increasing the efficiency of numerical solvers will significantly improve the ability of computa-
tional scientists to make scientific discoveries, because such solvers account for so much of the com-
putation underlying scientific applications. Even theoretically scalable algorithms such as multigrid
have practical limits of parallelism due to small, coarse-grid solves on large-scale systems. These
fundamental issues mean that any efforts to improve the robustness and parallel execution of solvers,
or reformulate problems, will have a tremendous impact on the types and fidelity of problems we
can address.

Figure 1: Comparison of time spent in the mul-
tiphysics application Charon vs. time spent in
the linear solver (algebraic multigrid with GM-
RES), on 64 to 100,000 cores of a Cray XE6
(Cielo) using weak scaling. As core count and
problem size increase, the fraction of time spent
in the solver also increases. Although we use
a state-of-the-art multilevel preconditioner, this
trend is typical for many applications. The
problem setup time is nearly constant from 64 to
100,000 cores, but solver time steadily increases.
(Data courtesy of Paul Lin)

Solver Dominance. Figure 1 shows performance trends that extend a study found in [57]. These
results show that as processor count and problem size increase, the time spent in the linear solver

2 ASCR Workshop on Extreme-Scale Solvers

relative to the application grows and soon dominates the total execution time. These specific results
are for a bipolar junction transistor (BJT) simulation using an algebraic multilevel preconditioned
GMRES solver with smoothed aggregation and a local ILU smoother. Although Figure 1 focuses
on weak scaling of a specific problem, these trends are typical of many science and engineering
problems, and the behavior is essentially the same when strong scaling is considered.

To further demonstrate the dominance of solvers in scientific and engineering applications, two
examples are given below.

Nuclear Structures. In nuclear structure calculations using an ab inito approach for light nuclei,
sparse eigenvalue problems with over a billion degrees of freedom may have to be solved. In a
calculation to study the reason for the isotope 14C to have an extraordinary long half-life,1 the
dimension of, and the number of nonzero elements in, the matrix were, respectively, 1.1 × 109

and 39 × 1012, and the eigensolver took over 65% of the total execution time using 216K cores on
JaguarPF [60]. For nuclear structure calculations of heavier nuclei, the eigenvalue problems will
become much larger. In some cases, the eigensolver is expected to take as much as 90% of the total
execution time.

Atmospheric Modeling. For atmospheric climate models, petascale machines have enabled
configurations of the dynamical core at fine horizontal spatial scales to resolve subglobal features
by favorable weak scaling [22]. However, additional model features needed at these scales, such
as the aerosol indirect effect and additional tracer quantities [64], dominate the computational
cost and will need to be coupled to the current solver infrastructure. This situation creates both
larger linear systems to solve and more nonlinear couplings—and also opportunities for increased
parallelism.

Thus, highly scalable and efficient numerical solvers are needed and will continue to be abso-
lutely crucial on future 100 PF and exascale supercomputers to enable these types of large-scale
calculations. Additional benefits of solver redesign for 100 PF systems and beyond include the abil-
ity to add new model details and mathematical representations that have not been easily scalable,
are prohibitively expensive with current machines, or both (see, e.g., [50]). Perhaps the most impor-
tant contribution that extreme-scale solvers will make to DOE scientific advances is when they are
embedded within new multiphysics scenarios and ensemble computations for uncertainty quantifi-
cation, stochastic models, and design optimization because these will bring previously unavailable
capabilities to scientific users.

Experts across the computational science landscape, from application developers to hardware
designers, will be involved in enabling applications to run effectively on future supercomputers.
Hence, research on extreme-scale solvers will provide a source of new ideas that will have broad
benefits beyond the applied mathematics community.

3 Challenges Faced by the Solver Community

The solver community will have to address numerous challenges for the development and deploy-
ment of efficient solvers on 100 PF computers and beyond (see, e.g., [24–26]). The impact of the
architectural features of these computers—such as more levels of memory, more concurrency with
less memory per core, and heterogeneous cores—will be felt across the whole software stack. Ap-
plications have traditionally benefited from solvers implemented in highly optimized libraries that

1The half-life of 14C is about 5, 730 years, but other isotopes of carbon have much shorter half-lives.

ASCR Workshop on Extreme-Scale Solvers 3

have transparently evolved over time to respond to changes in processor and system architectures.
New approaches for the interplay between applications and solvers are likely to be needed in order
to exploit the levels of parallelism expected on 100 PF computers.

Extreme levels of concurrency. Power and cooling constraints have already halted increases
in microprocessor clock speeds; henceforth, improvements in performance will be achieved only
through much higher levels of parallelism (see discussion in [71]). It is expected that major in-
creases in parallelism will take place on chip, entailing a reorganization of CPU cores and memory.
Technology trends suggest extreme-scale computers consisting of millions of nodes with thousands
of lightweight cores or hundreds of thousands of nodes with more aggressive cores. In either case,
solvers will need to accommodate a billion-way concurrency with small thread states.

Resilience and non-deterministic behavior. Extreme-scale systems will likely incur a high
number of hardware faults because of the large number of devices on which they will be built [19].
Consequently, applications are expected to be subject to a large number of hard interrupts (failure
of a device) and soft errors (change of a data value associated with faults in logic latches). Of
particular concern is the dramatic growth predicted for soft errors in sub-45 nm technologies [61].
With these increases we are likely to see an increase in soft errors that are undetected by the
hardware or system software, such that libraries and applications will be exposed to them.

Existing fault-tolerance approaches (i.e., approaches based on traditional, full checkpoint/restart)
on these systems may incur significant overhead and not be viable options. Therefore, solvers will
also have to play a role in the solution for failures (in particular if the mean time between failures
is proportional to each solve); solvers will need to be equipped with mechanisms for detecting and
dealing with interrupts and software errors, with minimal impact on an application, while providing
appropriate feedback to the application.

Reduced memory sizes per core. The cost of memory technology is not decreasing as rapidly
as the cost of devices designed for floating-point operations. Recent system trends already exhibit
a small increase in the memory per node and a decrease in memory per core. Consequently,
overall cost considerations are expected to limit the memory available on extreme-scale systems
even further. Hence, solvers will need to exploit parallelism by performing more computation on
local data, minimizing synchronization, and shifting the focus from the usual weak scaling (i.e.,
more resources to solve problems of larger sizes) to a scenario that favors strong scaling (i.e., more
resources to solve a problem of fixed size to reduce time to solution).

Data storage and movement. On a node, data movement will be much more costly, relative to
other operations. Furthermore, data access will be much more sensitive to how data are organized.
Streaming memory systems, coalesced accesses, and non-uniform memory systems will require much
more careful organization of data layout, in addition to concerns about efficient use of data once
they are accessed. Across nodes, networks will provide similar challenges and opportunities.

Deep memory hierarchies. The cost for moving data from memory closer to the chip is com-
parable to a floating-point operation, while that cost is much higher for memory far from the chip.
The adopted solution for reducing the overall cost of data movement across the chip has been a
more complex memory hierarchy consisting of several levels (possibly up to four). This means that
extreme-scale solvers may also need to be hierarchical, grouped in a way to exploit the locality

4 ASCR Workshop on Extreme-Scale Solvers

of data access in the memory subsystem (reminding one of the notion of “cache-oblivious” algo-
rithms). While solvers could potentially benefit from an explicit software management of memory,
such management may not be simple and might even require changes in the hardware.

Portability with performance. Existing numerical libraries, and the solvers implemented
therein, have transparently provided performance and portability, by encapsulating the complex-
ity of system software and hardware. To a great extent that has been possible through MPI,
or a combination of MPI and OpenMP. On current systems we already have other programming
possibilities—such as directives for many integrated core co-processors, OpenACC directives, and
CUDA—but these are not interoperable. Extreme-scale systems likely will make portability more
challenging, given potentially very different architectures, memory hierarchies, and power consider-
ations. While autotuners may help, higher levels of abstractions for solvers will need to be devised.

4 Solver Research Opportunities

Section 3 provides the context and motivation for and constraints on solver research. In this
section we discuss the core content of the workshop: solver research opportunities. The list of
topics presented here is not necessarily complete, but represents the opportunities identified by a
large, representative group from the solver community.

The content is arranged in four subsections:

• Section 4.1: General classes of new algorithm development. The workshop identified the
need for fundamental research on several classes of new algorithms over the next decade.
Many of the near- and longer-term activities listed in this report feed into these overarching
research areas that include, for example, communication reduction, energy efficiency, and
fault tolerance, among others.

• Section 4.2: Near-term research addressing the needs of 100 PF computers. We expect that
topics listed here can be at least partially realized within the 100 PF timeframe.

• Section 4.3: Longer-term research needed in the 100 PF through exascale timeframe. Al-
though full realization of these efforts may go beyond the 100 PF timeframe, we believe
efforts must start in earnest in order to make timely future delivery.

• Section 4.4: Needs from the external community. This subsection identifies several require-
ments from the greater community that are needed to facilitate the design and development
of extreme-scale solvers.

A common theme in most of the topics is how to exploit emerging architectural features, by
adapting existing algorithms to effectively use new architectures, by developing new techniques
to cope with the architectural challenges, or by expanding the scope of the problem to increase
available parallelism. Another theme is how to address the extreme environmental constraints we
face, especially power and resilience. A third theme is how to use this time of “disruptive change”
as an opportunity to better coordinate solver development efforts.

4.1 General Classes of New Algorithms

We begin by outlining several broad classes of algorithms identified by the workshop participants
as presenting significant opportunities for fundamental research. In some instances these are new

ASCR Workshop on Extreme-Scale Solvers 5

classes of algorithms emerging in response to revolutionary challenges at scale. Other classes build
on and extend techniques from the dawn of computing (such as the error analysis of Wilkinson [70])
to address the challenges of today’s computational landscape.

4.1.1 Communication/Synchronization-Hiding Algorithms

Data movement is widely recognized as the dominant cost for today’s large-scale solvers with respect
to execution time (and energy as well, which is discussed in detail in Section 4.1.5). On a single node,
data moves through the memory hierarchy; and on a parallel computer, data also moves across the
network. In both cases, because the cost of moving this data greatly exceeds the cost of computing
with it on current HPC systems, communication is a bottleneck [55]. The hardware trends that
have led to this communication bottleneck are predicted to continue (see Section 3), thus justifying
an approach to algorithm development where reducing the communication cost is considered. To
speak more concretely about communication costs, we use a latency-bandwidth model in which
contiguous words of data are moved in messages; the communication cost of a message is the sum
of a fixed latency cost, representing the overhead of a message, and a bandwidth cost, based on the
number of words in the message.

One way to reduce communication cost is through communication hiding . A communication-
hiding algorithm hides some fraction of the total communication cost by performing other useful
work while waiting for data. It is often straightforward to overlap communication and computa-
tion without significantly reformulating an algorithm (e.g., by using nonblocking message-passing
routines); however, this optimization promises at most a 2× speedup. One can achieve much larger
speedups by overlapping communication with other communication, although this approach often
requires a substantial algorithmic reformulation. As an example, consider Krylov methods, which
form a class of iterative solvers for sparse linear systems, where the bottleneck is often the dot prod-
uct operation in the innermost loop. A Krylov method can be reformulated so that dot products
and the interposed sparse matrix-vector multiply (SpMV) operations are overlapped. By pipelining
this overlap, a communication-hiding Krylov method can reduce the effective cost of a dot product
to the cost of a SpMV. In order to achieve this reformulation, additional computation must be
performed; but this extra cost is justifiable because it is typically small compared with the commu-
nication savings. This communication-hiding approach offers potential speedups for GMRES (see,
e.g., [34]). Nevertheless, while this pipelining approach appears to generalize easily to other Krylov
methods, new algorithmic development is needed to generalize it to other types of computation
with costly synchronizations, such as global dot products.

4.1.2 Communication/Synchronization-Reducing Algorithms

Rather than hiding communication, as described above, a communication-reducing algorithm ac-
tually moves less data or sends fewer messages than do conventional approaches, typically by
improving data reuse. In some cases, this approach increases the computations performed (e.g.,
redundantly computing some quantities to avoid communicating), but the communication savings
may outweigh this additional cost. In other cases, the approach increases memory requirements by
storing duplicated data to avoid data movements. A communication-reducing algorithm may also
move extra data in order to pack multiple messages together to reduce the overhead. Returning
to the example of Krylov methods, the bottleneck is often the overhead (latency) of synchronizing
the processors to perform the dot product and SpMV operations in the innermost loop. One can
reduce the parallel latency costs by O(s) by fusing together s Krylov iterations and performing the
dot products and SpMVs with O(1) synchronizations (instead of O(s)). Although this algorithmic

6 ASCR Workshop on Extreme-Scale Solvers

formulation reduces latency, however, it increases the bandwidth and computational costs.

As is the case with communication-hiding algorithms, this tradeoff is often beneficial because
the bandwidth and communication costs of dot products and SpMV kernels are typically dominated
by the latency costs. Results for GMRES [62] show that this approach attains speedups in practice.
Similar ideas also apply to multigrid solvers, in which repeated smoother applications are fused to
reduce the number of synchronizations; such approaches have already demonstrated benefits [35].

Although communication-reducing algorithms have been developed for several linear algebra
problems, such as dense LU and QR factorizations and sparse matrix-vector multiplication [6,
21, 44], much work is needed to develop communication-reducing algorithms for other classes of
solvers. Moreover, the algorithmic reformulation may alter the numerical properties of the original
algorithms; work is needed to ensure that the communication-reducing (as well as communication-
hiding) variants are stable alternatives.

4.1.3 Mixed-Precision-Arithmetic Algorithms

Mixed-precision arithmetic has often referred to the use of a combination of single- and double-
precision arithmetic in a calculation. The rationale behind the use of mixed-precision arithmetic is
that single-precision arithmetic is generally faster than double-precision arithmetic. On the other
hand, one usually cannot perform the entire computation using single precision, since certain parts
of the calculation may be so sensitive to roundoff errors that double precision must be used. As an
example, the recent work in [3] has focused on the use of mixed-precision arithmetic in dense and
sparse matrix computations. For the solution of dense systems of linear equations using iterative
refinement, Baboulin et al. perform the LU factorization and the subsequent triangular solutions
using single-precision arithmetic. In the iterative refinement phase, the residual calculations and
the updates of the solution are performed by using double-precision arithmetic in order to avoid
catastrophic cancellations. Significant performance improvements over the full, double-precision
implementation were reported for a parallel implementation [3].

The use of mixed precision arithmetic not only improves the time to solution but also can reduce
memory requirements. As the memory available on current and future HPC systems is becoming
relatively small, there is an increasing need to reformulate algorithms in order to reduce memory
usage. If multiple precisions are available, then the use of lower-precision arithmetic means that less
memory is required to store the data; hence, fewer bytes of data will need to be moved through the
memory hierarchy or communicated between processes, thus reducing the overhead incurred. This
may prove to be the primary reason for using mixed-precision arithmetic on future HPC systems.

Research is needed to identify what classes of algorithms can benefit from the use of mixed-
precision arithmetic. In particular, researchers need to understand the numerical behavior of such
an approach and to quantify when such an approach is appropriate. Also crucial in the presence of
mixed-precision arithmetic is a solid understanding of how roundoff errors propagate through the
software stack and how they may affect the accuracy achieved in application codes.

4.1.4 Fault-Tolerant and Resilient Algorithms

As the number of cores increases in HPC systems, the number of hard and soft errors also in-
creases; see Section 3. One possibility for handling hard errors is through checkpoint/restart. The
efficiency of checkpoint/restart depends on how fast the I/O system is and whether the file system
can save the amount of data needed to restart a computation. A possible avenue of research is to
investigate the use of localized checkpoints and asynchronous recovery to avoid global synchronous
checkpoint/restart on extreme-scale systems. Another avenue is data compression. At the work-

ASCR Workshop on Extreme-Scale Solvers 7

shop, data compression was mentioned as a possible approach for reducing the size of the data that
must be kept in memory. One benefit is to allow large problems to be solved. Another benefit of
data compression is to reduce the size of the data that must be checkpointed.

For soft errors, if they are memory errors and if error-correcting code is available, then the
faults may be handled by the hardware or firmware. Otherwise (e.g., when bit reversals occur in
the processors), other means to recover the faults will be needed. Recent work has been focused on
algorithm-based fault tolerance (ABFT). Much of the ABFT work on linear solvers is based on the
use of checksum [18, 46, 59]. Research is needed to determine to what extent the idea of checksum
can be applied to other numerical linear algebra solvers, as well as other classes of solvers. Also
open is the question of what other techniques are available or feasible for fault recovery (see, e.g.,
[15]).

4.1.5 Energy-Efficient Algorithms

As alluded to in Section 3, power usage is going to be a significant challenge facing future HPC
systems. Hardware design, such as incorporating low-energy accelerators, will lower the power
requirement; but other means are needed to further lower the energy consumption. Algorithmic
research offers one possible avenue. Many algorithms inherently have different degrees of concur-
rency. Sparse matrix algorithms—including those for direct methods, iterative methods, multigrid
methods, and domain decomposition methods—are good examples, and they are often heavily used
in the innermost loops of many large-scale scientific applications. These algorithms exhibit concur-
rency at the fine, medium, and coarse scales. For sparse matrix algorithms, these scales correspond,
respectively, to the nonzero elements, rows/columns, and submatrices of the sparse matrix.

Execution time scalability depends on how effectively the available concurrency can be mapped
to the available parallelism in the hardware, which ranges from fine (instructions or threads level), to
medium (thread groups), to coarse (multicore cores with or without accelerators) scales. Hardware
energy-efficiency relates to execution time speed-up, or performance efficiency. Ideally, energy
should be directed where useful work can be done. The feasibility of such an approach has been
demonstrated for sparse matrix computations expressed as weighted task graphs [14, 53], for which
significant energy savings—with only a small degradation in performance—are achieved by using
dynamic voltage and frequency scaling for CPUs and links that are not on the critical path. By
utilizing attributes of the problem and by taking advantage of the power management capabilities
provided by the hardware (at the CPU, link, and disk levels), it is conceivable that not only can
energy be saved but speed-up can also be increased (e.g., by acceleration along the critical path).

The interaction between computations and hardware attributes represents a rich opportunity
in algorithmic research for driving lightweight optimizations at execution time, including hardware
power control features, acceleration modes, and low-power functional structures such as scratch-
pads or in-memory/in-network computations.

4.1.6 Stochastic Algorithms

A recurring theme in the workshop was that algorithm developers and users should accept and
embrace nondeterminism in computations at scale. Tolerating nondeterminism in data and opera-
tions is a useful, and likely necessary, feature to enable the fault-tolerant/resilient and asynchronous
algorithms discussed above. Fundamental to the success of such solvers is analysis to identify the
degree of stochasticity that individual computations and their mathematical operators can tolerate.
In the face of stochasticity, analysis/metrics will need to be developed or rediscovered to define the
nature of a solution and conduct error and stability analysis based on this stochasticity. Stochastic

8 ASCR Workshop on Extreme-Scale Solvers

algorithms tend to be naturally flexible, so that one does only as much work as is needed to obtain
a solution either within a given accuracy or with a given probability of correctness. Inevitably,
this stochasticity can cause an algorithm to fail, for example because unrelaxable mathematical
or physical properties and assumptions are violated. Opportunities exist for algorithms that can
specify a level of stochasticity in their dependencies or recover from an unacceptable realization, or
both. For example, an algorithm may benefit from reductions in global communication by using
stochastic estimates of an inner product or linear solve, but these benefits will not be realized if
the estimates result in a failure or significant increase in the number of iterations required.

Algorithms that employ pseudorandom numbers to reduce time to solution or solve higher-level
problems also present a wealth of opportunities at the extreme scale. Monte Carlo-like approaches
can increase orders of magnitude more concurrency by employing stochastic replications to resolve
dynamics, propagate uncertainties, and find robust designs. Gains in performance, however, may
require deeply embedding higher-level algorithms so that the computational components required
throughout an algorithmic stack can be localized through amortized analysis. Other large classes of
problems require stochastic approaches fundamentally different from Monte Carlo (e.g., stochastic
dynamic programming [40]). In both cases, in order to perform well at scale, the higher-level opti-
mization, calibration, and uncertainty problems, which are often an afterthought in the simulation
sciences (e.g., after the physics has been gotten right), need to be moved to the forefront.

4.1.7 Algorithms with Reproducibility

Until recently, many scalable parallel applications could expect that results would be bit-wise
identical from one run to another, as long as the same number of MPI processes were used. With
the emergence of manycore nodes and dynamic parallel execution, this expectation cannot be
maintained without prohibitive performance costs. The reason is that no guarantee exists that
the order in which communication and data movement occur will be the same for repeated runs.
This nondeterminism can lead to nonreproducible results, particularly if the calculation is forward
unstable. This phenomenon is expected to worsen when parallelism increases.

In contrast, high-consequence decisions based on modeling and simulation, such as the certifi-
cation of nuclear reactors, require some kind of reproducibility. The mathematical challenge is how
to guarantee that answers which differ bitwise are simply a result of non-associative arithmetic and
not some serious flaw in the algorithms or execution environment.

4.2 Near-Term Research Opportunities for 100 PF Machines

In order to provide a foundation of approaches and infrastructure that can extend toward exascale,
the near-term opportunities discussed here for 100 PF machines emphasize longer-term perspectives
and more generalized approaches than current work.

4.2.1 Enabling and Exploiting Mixed-Precision and Variable-Precision Arithmetic

The extreme computational environments of emerging systems demand a careful consideration of all
data storage. One opportunity for improved efficiency or higher quality computations is to consider
the precision of floating-point data, both in storage and computation. One obvious opportunity is to
store and compute with 32-bit floating-point data. Single-precision operations are often about twice
as fast as the corresponding double-precision operations; and the performance of many algorithms
can be significantly enhanced, while maintaining accuracy where needed, by using an appropriate
combination of 32-bit and 64-bit arithmetic. For example, using mixed-precision computations in [1]
resulted in a near-2× speedup without significantly reducing the overall accuracy in the simulation

ASCR Workshop on Extreme-Scale Solvers 9

of high-temperature superconductors. In contrast, 128-bit floating-point arithmetic can be used to
mitigate the impact of roundoff error, for example using a high-precision accumulator for a norm
or dot product, which can all but eliminate variability in answers [65].

As indicated in Section 4.1.3, many research questions must be addressed in both algorithms and
data structures. One possible approach is to reformulate algorithms to find corrections rather than
solutions (e.g., as in [3]). Another approach is to determine tolerable levels of precision adaptively
or at execution time. In each case, the goal is to develop highly efficient solvers that operate on
only as much data as necessary to obtain a result to a required precision.

4.2.2 Optimizing Data Placement and Movement

Data movement already dominates the cost of many simulations, and this trend will become more
severe on emerging architectures. Many parallel algorithms already explicitly control data motion
horizontally (e.g., off-node via message-passing communication), and much progress has been made
to reduce vertical data movement, both through reordering of data and/or computation and through
development of multistep (communication-reducing) and block algorithms. In the latter case, much
of the work has been focused on specific areas of numerical computation, such as linear algebra.
Other classes of algorithms may also benefit from the incorporation of communication-reducing
techniques.

The energy constraints of 100 PF systems and beyond require new algorithms and data struc-
tures to address increasing vertical and horizontal hierarchies, with explicit acknowledgment that
moving data is expensive whereas floating-point operations are cheap. Also important is increasing
algorithmic intensity (e.g., through higher-order discretizations) and reformulating approaches to
minimize poor-performing operations in favor of better performing alternatives. Related needs for
appropriate metrics and tools to measure data movement are discussed in Section 4.4.

4.2.3 Circumventing Memory Bandwidth Limitations

Sparse matrix computations, which form the computational kernel of many DOE simulation codes,
are severely memory bandwidth limited. In the best of circumstances one cannot achieve more than
15 to 20 percent of the processors’ performance in such computations because the processors are
waiting on memory loads for much of the time. Such computations arise because the paradigm for
solving nonlinear PDEs is to iteratively perform a global linearization and then solve a sparse matrix
linear problem. The linearization involves computing a sparse matrix approximation to a nonlinear
problem, which is stored in main memory. The linear solution process requires constantly moving
the sparse matrix entries from main memory into the CPU, where a small number of computations
are performed using those values, before more values need to be loaded. Thus, no register or cache
reuse of the sparse matrix entries occurs. In contrast, function evaluation code that encapsulates the
physics of models tends to have much higher flops/load than do matrix kernels in Newton-Krylov
and segregated solvers.

Research is therefore needed on techniques that require less memory bandwidth. Promising
linear approaches that completely bypass sparse matrices include coefficient-matrix-free represen-
tations (see, e.g., [54]) and fast multipole methods [38]. Promising nonlinear approaches include
nonlinear Schwarz (see, e.g., [13]) and full approximation scheme (also called nonlinear multi-
grid [9]), as well as nonlinear accelerators such as Anderson mixing [2, 68]. While preliminary work
on such methods is promising [11, 47, 69], much research is still needed on algorithmic analysis and
computer science techniques to make using such methods straightforward for application codes.

10 ASCR Workshop on Extreme-Scale Solvers

4.2.4 “Semi”-Asynchronous Solvers

Relaxation and reduction of synchronization are among the most important extreme-scale require-
ments, with a potential benefit of relieving pressure on load balancing. While eliminating periodic
synchronization in solvers is likely impossible, many algorithms could be written in styles that re-
quire significantly less synchronization than occurs using current programming practices. Examples
of tasks that need not be performed in synchronization with overall iterative algorithms include com-
puting linear operators and refreshed preconditioners for the solution of successive linear systems
arising in nonlinear and time-dependent problems, as well as in testing for convergence. While an
algorithm progresses, such tasks could be performed asynchronously and dynamically redistributed
to improve load balancing. Likewise, additive algorithmic variants (with no synchronization among
components) may be favorable compared to multiplicative counterparts [51]. Relaxing synchrony
could help overcome well-known scaling limitations for vector norms and dot products, used in
many algorithms for convergence testing and orthogonalization.

4.2.5 Nonblocking Algorithms via Nonblocking Collectives

Nonblocking collectives are a crucial abstraction for hiding network latency. MPI-3 adds nonblock-
ing variants of all standard collective operations, thereby creating opportunities for development
of nonblocking algorithms. Nonblocking collectives enable the initiation of a collective operation
followed by an overlapping, simultaneous execution of some other computation while the collective
completes. If the overlapped computation is sufficiently long, we may see substantial improvements
in scaling because of the inherent hiding of collective communication overhead and because any
“OS jitter” that can limit scalability may also be hidden (see Section 4.1.1). A related issue is the
need for better support for user-defined collective operations; currently no standard mechanism
exists by which other libraries can implement nonblocking collectives that make progress.

Utilizing nonblocking collectives requires new or reformulated algorithms, but this work cannot
be done without regard for numerical stability. Often formulations that expose more concurrency
also tend to reduce robustness, unless care is taken in the formulation.

4.2.6 Exploiting Processor and Memory Hierarchies via Algorithmic Hierarchies

As emerging architectures incorporate deeper levels of processor and memory hierarchies, numerical
algorithms that leverage such hierarchies to exploit finer-grained parallelism will provide signifi-
cantly higher performance than those that do not. In other words, algorithms need inner kernels
that work on data in the local cache, nested within mid-level kernels that work on data in the most
local memory (associated with a subnode of the compute node), nested with higher-level kernels
that use data on the node’s memory, nested with parallel internode computations. Explicitly dealing
with these hierarchies presents profound opportunities for leveraging the natural synergies among
hierarchies in architectures, modeling, algorithms, and software—and for fundamentally rethinking
problem formulations to exploit these relationships. Moreover, we can raise the level of abstraction
of scientific problems, as further discussed in Section 4.3.7, thereby incorporating additional levels
of algorithmic hierarchies whose parallel potential is independent of forward solves, resulting in
a multiplicative speedup. An example is multilevel optimization, where lower-level discretization
structures are exploited to reduce time to solution (see, e.g., [37, 63]).

ASCR Workshop on Extreme-Scale Solvers 11

4.2.7 Solver Components and New Composition Models

Because of both architectural challenges and the complexities of multiscale and multiphysics sim-
ulations expected to dominate on 100 PF systems, applications will encounter steep performance
penalties for suboptimal code. Consequently, single-source solvers will be inadequate. Composable
multilevel algorithms and data structures that can be automatically tuned to exploit operator-
specific insight as well as memory and thread hierarchies are essential to address these issues.
While preliminary work on composable data structures (see, e.g., [4]) and composable solvers (see,
e.g., [10, 66]) have demonstrated the promise of such approaches, much research is needed on com-
posable algorithms, for example, hybrid and hierarchical preconditioners that leverage operator-
specific knowledge and custom implicit-explicit time integration methods that handle stiff and
nonstiff system components. Furthermore, even within the category of standard iterative methods,
robust versions of s-step iterative methods such as CA-GMRES [44] require a different component
model for integrating preconditioners.

Additional opportunities include research on computer science techniques, such as code gen-
eration schemes and abstract data-structure-specific languages, to facilitate solver composition at
higher levels of abstraction and injection into the HPC code development process.

4.2.8 Implicit-Explicit and Partitioned Time Integration

Time-marching strategies, typically used in all unsteady simulations, pose significant challenges for
extreme-scale computing. While only implicit schemes can handle stiff problems and enable larger
timesteps, they require the solution of a large-scale (non)linear system at each timestep; in contrast,
explicit algorithms are limited to very small steps because of stability reasons, but they parallelize
well and confer data locality. In many situations, however, different problem components evolve
on different temporal scales. Thus, in practice, PDE discretizations often cannot be effectively
integrated in time by using a single timestepping strategy. Partitioned methods overcome these
difficulties by exploiting the advantages of multiple approaches and alleviating the shortcomings
of using a single fixed strategy. Implicit-explicit (IMEX) methods, also known as semi-implicit
schemes [17], are a class of partitioned time integration methods that generalize explicit and im-
plicit schemes and handle stiffness. At the same time, they preserve as much data locality as
possible [36] and accommodate variable redundant computations in favor of more scalable algo-
rithms [16, 23]. Thus, by integrating the advantages of locality to facilitate scalable algorithms and
implicitness to address stiff problems, partitioned methods offer an additional layer of flexibility
to reach extreme-scale computing. Research needs include the development of architecture-aware
schemes that facilitate dynamic and runtime partitioning strategies with reliable error and stability
analysis.

4.2.9 Parallel-Time Integration

Current methods for transient simulations in production parallel applications are almost exclusively
sequential in time. Regardless of how spatial domains are discretized, progress in time is accom-
plished by using one or more solutions from previous timesteps to compute the next. Therefore, the
time to solution for a transient application is determined by how fast one timestep can be computed
times the number of timesteps. Since high-fidelity simulations often require many timesteps and
since explicit formulations often impose artificial timestep limitations for numerical stability, this
sequentiality is a critical performance issue.

Parallel-time algorithms have been studied for many years. Some of the best known are
parareal [32, 58] and spectral deferred correction [8, 27, 56]. These algorithms typically use a

12 ASCR Workshop on Extreme-Scale Solvers

sequential predictor that is relatively cheap to compute, followed by parallel-in-time correction it-
erations. The challenge these methods face is that they generally require more computation and
increase parallelism only incrementally. Even so, emerging approaches such as Krylov deferred
correction [45, 48] permit accurate integration and exhibit sufficient parallelism to be promising.
Furthermore, the timestep sequentiality bottleneck in current parallel applications is such a critical
problem that we must continue research in this area.

4.2.10 Application-Oriented Solvers

While general-purpose solvers that provide interfaces at high levels of abstraction are essential for
mainstream application scientists, solvers that exploit application-specific knowledge have already
proved more robust, efficient, and scalable than general-purpose approaches for many application
areas (see [28] and [49] for two of many examples). Solvers tailored to particular sets of equations,
physics knowledge, and discretizations will have even greater importance in the 100 PF era and
beyond. Solver libraries should provide opportunities for application scientists to customize those
phases of solution deemed of highest priority for their particular simulations, while still leverag-
ing library-provided capabilities for other aspects of work. Examples include application-specific
preconditioners that can be used with library-provided Krylov solvers for scalable and efficient
solution of linear systems and customized time-integration schemes that exploit application knowl-
edge about stiff and nonstiff system components to achieve rapid time to solution, while leveraging
library components for vector and matrix kernels and the solution of (non)linear systems.

4.2.11 Move to Greater Interoperability among Solver Libraries

Numerous areas of algorithmic research are essential to address the broad scope of extreme-scale
opportunities, and diverse and complementary aspects of algorithms naturally are the focus of dif-
ferent researchers throughout the HPC community. Encapsulating the best algorithms and data
structures in solver libraries is an effective approach to make these tools available to applications
scientists. In fact, many applications currently employ solver libraries and application-specific
frameworks that hide some of the parallelism so that application programmers need not be con-
cerned with low-level message-passing details. These software layers will continue to be important
on 100 PF and exascale machines and may help ease the transition to new systems.

Currently, many of the major DOE solver libraries have good interoperability. For example,
PETSc [5] provides access to hypre [29] and ML (a Trilinos [43] package); Trilinos provides access to
hypre and accepts PETSc data objects (matrices and vectors); and SuperLU [20] is an often-used
component for hypre, PETSc, and Trilinos. Nevertheless, although the community has already
made significant strides in interoperability among solver libraries, we believe that even stronger
levels of interoperability will be needed to harness the intellectual contributions of the solver com-
munity into suites of tools that can be seamlessly employed by end users. Furthermore, migration
to many-core architectures, which will require substantial refactoring of data structures and in-
terfaces, and preparation for new classes of problems [41, 50], provides opportunities for tighter
collaboration and commonality.

4.3 Longer-Term Research Opportunities for 100 PF through Exascale Com-
puters

Although this workshop focused primarily on requirements and ideas for 100 PF computing systems—
anticipated to be built using components and system software similar to what we have today—we
want to ensure that any proposed activities are aligned well with future exascale systems. Topics

ASCR Workshop on Extreme-Scale Solvers 13

discussed in this section are important for exascale systems and, although likely not to be fully
realized in the 100 PF timeframe, require efforts today in order to build toward exascale capabilities.

For each topic, we discuss the core goals and the activities that were identified in order to realize
these goals.

4.3.1 Solver Algorithms and Power Awareness and Management

One overarching concern for all future leadership-class systems is power and energy efficiency. Since
solver solution times can dominate the overall execution time of an application on these large-scale
systems, making algorithms “power-aware” is attractive [12, 14]. Exascale systems are likely to
have hardware support for power management APIs, which are exposed to solvers through the
runtime system software stack. If algorithm choice and implementation can be informed by power
usage metrics, or by some useful model, we can reason about tradeoffs in performance vs. power
or more easily select the most power-efficient approach from two that have similar performance.

Challenges in this pursuit include (1) characterizing power usage correlations between concepts
that are meaningful to hardware designers and algorithm designers, (2) determining an interface
that will allow applications and libraries to interact with the system, and (3) developing an under-
standing of what power management features are tunable (if any) by the user.

One near-term outcome from activities in this area would be power usage models correlated with
algorithms concepts. Questions we would like addressed include the following: How does algorithm
data access impact power usage? What is the relative cost difference between computation and
data access? What is the relative cost of data access at each level in the memory hierarchy?

4.3.2 Selective Data and Computation Reliability

Without proper handling of the soft errors described in Section 3, long-running solvers and appli-
cations will almost certainly realize data corruption at some point during their execution.

One approach to mitigating the impact of these faults is to introduce selective reliability into our
programming models, with underlying support from the runtime/operating system and hardware,
which should be available in a similar way to power management by the time exascale systems
emerge. By allowing a user to specify certain data and computations as more reliable than the
default, we can reason about which data and computations must be reliable and which can tolerate
potential soft errors. The goal of this distinction is to be resilient in the presence of soft errors while
minimizing the amount of highly reliable data and computation. Such an approach may require
solver and application developers to rethink how their algorithms and application codes should be
designed and structured.

4.3.3 Approximate and Probabilistic Solvers

Traditionally solvers have been deterministic and exact up to some tolerance, ignoring the impact of
roundoff error. One characteristic of these solvers is a strict sequentiality (within which parallelism
is certainly present) that ultimately determines the potential for parallel execution. Another broad
class of solvers relaxes the certitude of intermediate results and produces an answer that represents
an approximation, or a family of approximate solutions. Algorithms of this class typically offer a
much larger resource of parallelism and dramatically reduce the number of global synchronizations
that can plague existing algorithms [39].

These approaches, however, require a more context-dependent usage and a more sophisticated
integration of the solver answer into the application results. As a result, a “black-box” usage seems
far away. Moreover, this class of approximate and probabilistic algorithms exhibits a large degree

14 ASCR Workshop on Extreme-Scale Solvers

of parallelism but typically performs much more overall work, so the potential payoff may be seen
only on our largest systems.

4.3.4 Coupled Nonlinear Solvers for Large-Scale Multiphysics

One natural approach to increasing the degree of parallelism for large-scale computation is to simul-
taneously solve multiple components of a coupled system that were previously solved in sequence.
Such an approach can greatly improve convergence in some cases but also lead to scale resolution
challenges. Often multicomponent and multiphysics simulations have very different temporal and
spatial scales represented in each component such that decoupled approaches—which benefit from
uniformity in scale within each component—can more easily solve a given problem in finite-precision
arithmetic.

As a result, coupled approaches will require research into new nonlinear and time integration
algorithms that can bridge the scale differences across components. By doing so, we can realize an
increase in the amount of parallelism for coupled problems that will carry forward to all future par-
allel systems. Additional challenges and opportunities for multiphysics simulations at the extreme
scale are discussed in [52].

4.3.5 Dynamic Load Balancing and Scheduling Millions of Tasks

The bulk synchronous SPMD computing model, represented by common usage of MPI, and MPI+X
(where X is some node-local threading model such as OpenMP), rely heavily on an implicit task-
to-processor mapping that is assumed to be static and one-to-one, although the X in MPI+X can
support more general execution patterns. An emerging programming and execution model adopts
a different strategy: manytasking. This strategy proposes a simple contract with the programmer
such that, as long as the programmer can provide a sufficient number of parallel tasks that the
runtime can schedule and execute simultaneously (and switch between when one task stalls on a
resource request), then application performance will reach the active constraint of the algorithm
being executed.

Since solvers are one of the primary computations on large-scale systems, a manytasking pro-
gramming model has important implications for the design of new solver algorithms and implemen-
tations. For example, an active global address space (where subdomains are not permanently pinned
to a process) and a lightweight manytasking programming and execution model (e.g., [33, 67]) could
permit the scalability of data-driven task graph computations with strong implications for robust
preconditioned iterative methods that are not possible today but are essential for the future.

4.3.6 Incremental Load Balancing

Complementary to the manytasking model is a repartitioning approach that addresses how we
can incrementally balance workloads and keep the cost of our dependency analysis updates pro-
portional. Presently most partitioning and domain decomposition algorithms require a complete
rebuilding of data structures, factorizations, and parallel scheduling queues regardless of how min-
imal a repartitioning of data and work balance is.

As synchronization penalties of high end computers grow, we cannot afford global reconstruction
of logically shared, physically distributed entities. If we are to adjust loads on a large-scale system
in the presence of changing work demands, we need to develop new approaches such that the cost
of rebalancing is proportional to the amount of change.

ASCR Workshop on Extreme-Scale Solvers 15

4.3.7 Higher Levels of Abstraction for Ensemble Computations, Uncertainty Quan-
tification, Stochastic Models, and Design Optimization

Presently most DOE application scientists run single-point simulations—that is, a relatively small
number of physical simulations with specific initial and boundary conditions. Extreme-scale com-
puting provides the capability to replace this paradigm with the routine running of large ensemble
computations for uncertainty quantification, stochastic models, and design optimization. This ap-
proach is favorable for extreme-scale computing because ensemble computations are closely related
problems at the ODE level, the nonlinear solver level, and the linear solver level. Taking advantage
of these relationships offers the chance for a great deal of data reuse, more data locality, and larger
aggregates for communication, all of which lead to higher and more efficient utilization of emerging
hardware.

It is often the case, when properly implemented, that running n related ensemble simulations
has much lower execution time than n times that of a single simulation. However, at the linear
solver level, most applications today use large-scale solvers in a way that is strongly biased to
the solution of a single linear system of the form Ax = b, with little to no reuse of information
that might be common to a family of such systems (even if some libraries support this reuse).
Ensemble, uncertainty quantification, stochastic models, and design optimization often produce a
family of related systems that have common properties, such as simultaneous multiple right-hand-
sides (AX = B), sequential multiple right-hand-sides (Axi = bi, i = 1, . . .), or general families
(Aixi = bi), where the Ai have a strong fundamental relationship (e.g., A1 is a perturbation of A0).
These relationships and others are currently underutilized in algorithm formulations and solver
library infrastructure. Also, such optimization problems need different primitives that facilitate
dealing with inequalities. As these new “metaproblems” involving systems and aggregate formula-
tions become far more important, we will need new solver algorithms, data structures, and kernels
in our libraries in order to realize optimal results [42].

4.4 Needs from the External Community

The workshop participants identified several requirements from the greater community that must
be met in order for applied mathematicians to design and develop solvers that can fully exploit the
capabilities of extreme-scale architectures.

Abstract machine models. An abstract machine model is required in order to develop new
solver algorithms. The multicomputer model of homogeneous von Neumann machines connected via
an opaque interconnection network is becoming increasingly inappropriate. New abstract machine
models are needed in order to express the heterogeneity, hierarchical organization, and dynamic
execution environment of contemporary and future architectures.

Programming models. Closely related to the need for abstract machine models is the need for
well-defined programming models. Although the traditional message-passing programming model
probably will not suffice for the 100-petaflop and exaflop machines under consideration, MPI+X—
where X is a thread-based node-level programming model—seems likely to work for 100-petaflop
systems. For exascale systems, however, it is unclear whether MPI+X will suffice or whether an
as-yet-undetermined programming model or collection of interoperable programming models will
be required.

16 ASCR Workshop on Extreme-Scale Solvers

Architectural simulators and performance modeling tools. Architectural simulators are
required in order to test algorithm prototypes and to characterize both node-level performance and
scaling behavior. In addition, performance modeling tools are needed to help predict the perfor-
mance of algorithms and implementations on future architectures. The simulators and performance
models should provide a characterization not just of execution time but also of memory footprint,
peak power demands, and overall energy consumption. The simulators should also support software-
controlled architectural resilience mechanisms and software-controlled memory subsystem behavior.

Performance measurement tools. Performance measurement tools are needed in order to
guide the implementation of algorithms. These tools should measure all aspects of performance,
including execution time, memory performance, data movement, faults, and energy consumption.
The tools should provide not only graphical user interfaces but also APIs so that they can be used at
execution time to guide the behavior of algorithms and enable adaptivity in solver implementations.
A related capability is the ability at execution time to identify system components that may not
be reliable.

Architectural features. The participants identified several architectural features as necessary
for the development of scalable, high-performance solver algorithms. User management of cache,
control over cache versus scratchpad memory, and control over the memory hierarchy were deemed
critical to performance. Hardware support for resiliency is imperative. For the most efficient com-
putation, however, this hardware support must be under software control. Solver developers can
best determine how to respond to faults (fail, restart, ignore) and what level of reliability is required
for different algorithmic phases. Hardware support for a diverse collection of nonblocking collec-
tives could provide orders of magnitude improvements in scalability over the current generation of
blocking collectives implemented in software.

Solver developers also require early information about the likely properties of future architec-
tures. Among the characteristics deemed especially important are the ratio of compute capability to
memory/network bandwidth, details on how collectives are computed, the frequency of “bit flips”
during data transfer and during computation, the cache coherence model, the number of cores per
node, and the topology within a node and across the system.

5 Transitioning to New Solvers

Specific and measurable pathways to transition from current solvers to those that effectively use
100 PF computing systems are needed to ensure successful development and incorporation of solvers
across a range of application codes. These pathways begin with the development and optimization
of algorithms on available petascale architectures that already contain heterogeneous processor
layouts, while also keeping an eye toward likely performance on future systems. Initial developments
can provide near-term gains for application scientists. The most successful efforts will analyze the
behavior of algorithms that use these solvers on existing systems to identify issues that will prevent
optimal solution behavior on future computing systems (see, e.g., [7, 30, 31]). Significant interaction
across scientific expertise areas, including applied mathematicians, application scientists, computer
scientists, and hardware designers, will assist with the initial analysis and the eventual revolution
in solver development required to reach 100 PF machines and beyond.

ASCR Workshop on Extreme-Scale Solvers 17

5.1 Evolutionary Algorithmic Research

The initial development of algorithms involves evolutionary algorithmic research on near-term avail-
able architectures. Development of architecture-specific algorithms for existing machines, such as
approaches mentioned in Section 4.2, can be optimized for a given system and provide detailed data
regarding performance, robustness, and applicability to application codes. Utilizing externally pro-
vided tools identified in Section 4.4 can assist in this effort. Identification and quantification of
the successes and limitations of these solvers will inform future solver efforts and provide valuable
information for hardware designers, compiler vendors, and other computing capability providers.
Part of this evolutionary process needs to involve the development of novel metrics, such as the
use of memory motion rather than flops, that can predict how architecture-specific algorithms will
perform on future computing systems. Other tools, such as portable translators to transition code
to other architectures, will allow researchers to evaluate solver robustness across existing systems
and minimize rewriting of code.

While identifying algorithms that are most likely to perform well on future systems using infor-
mation about existing implementations is crucial, algorithms that do not perform well with current
systems are still candidates for future systems. These algorithms also need metrics to predict so-
lution capability within the changing landscape of hardware, such as memory layouts and network
topology.

5.2 Transition to New Application-Library Interfaces

Although application-library interfaces for the construction of data objects (e.g., matrices and vec-
tors) have been stable for many years, the departure from an SPMD, MPI-only programming model
brings with it many new challenges when integrating solvers into applications. New application-
library interfaces must support node-parallel execution and must more carefully manage data place-
ment and storage costs. If these interfaces are not successfully redesigned and refactored, any gains
we make in solver parallelism will be prematurely limited in scalability by the setup costs, which
will not scale with increasing core counts per node, and by poor data locality and excessive memory
use by having too many intermediate copies of data.

This transition is further complicated by the manycore transition that applications must make
themselves. Most applications are presently moving or planning to move to MPI+OpenMP, which
provides adequate node-level scalability and the easiest transition. Solvers can utilize OpenMP for
some node-level parallel constructs, but not all, and must use something (such as pthreads, Intel
Threading Building Blocks (TBB) or the emerging C++11 threading standards) in addition to or
instead of OpenMP. Therefore, the node-level parallel environment must support multiple node-
level execution environments. Specifically, the underlying runtime system must efficiently manage
threads from two or more threading models (e.g., OpenMP and TBB), something that is not done
well today.

Finally, all of this work must be done while looking forward to exascale systems and beyond,
where MPI+X itself may not be sufficient.

5.3 Community Interactions to Facilitate Longer-Term Algorithmic Research

The complexity of issues that need to be addressed to extend near-term solver improvements to
achieve successful simulation at the 100 PF requires interactions across many related research com-
munities. Hardware designers and computer scientists need to inform solver developers of ongoing
research and development and vice versa on topics such as application-specific network topology
and memory adaptability. These communities also need to work together to develop correlations

18 ASCR Workshop on Extreme-Scale Solvers

between energy cost, which is the ultimately limiting hardware design constraint, and algorithmi-
cally meaningful metrics to aid in solver development for future machines. Machine performance
models could be useful to solver developers if provided with higher-order information such as re-
producibility. Increased interaction between the solver and application developer communities is
also crucial. On the one hand, solver developers need to know what types of operations will be exe-
cuted more or less frequently in future scientific models. On the other hand, application developers
need to know what types of operations must be minimized and what others will remain or become
inexpensive. If applications must be reformulated to improve problem properties for solvers at
the 100 PF, strong relationships among applications and solver developers will facilitate this work.
Such communication among communities also will enable easier implementation of solvers that
will target model equations and features that are yet to be included but are being considered as
computing systems grow.

5.4 Revolutionary Algorithmic Research

Incorporating solver research results on near-term systems with knowledge from other experts in the
computational science community will set the foundation for revolutionary solver development that
is needed for simulations on 100 PF and beyond. Most important in the process of revolutionary
solver development is to rethink the solver process—the entire solution stack, including both algo-
rithms and programming approaches—where decisions must be informed by performance models
and architectural understanding. Successful revolutionary developments in solver technology are
obviously as yet unknown. However, to maximize algorithmic research breakthroughs, the commu-
nity needs to (1) revisit algorithms that may not perform well on current systems, (2) engage and
co-develop ideas with others in the “human stack” of computational science, and (3) demonstrate
enhanced capability through effective use of evolutionary solver developments. An important as-
pect of this work is open source software development, as breakthroughs occur when many different
ideas reinforce one another, crossing disciplines and narrow ruts of current thought. Novel ideas
for extreme-scale solvers are made concrete in software; open exchange of software enables these
ideas to mix and create a fertile ground for revolutionary advances. Such synergistic activities can
attract the funding and talented staff necessary to support the opportunity to perform wide-open
solver research.

6 Conclusions

This report describes the broad array of challenges in algorithms and software that face the solver
community in the time horizon of 100 PF and beyond. These challenges highlight the importance
of rethinking how solvers can exploit the architectural features of future computers. Because solver
computations often dominate the overall execution time of large-scale applications, research into
creating efficient, robust, resilient, and portable solvers is key to science advances of the next decade.

Moreover, solver research will provide a much-needed focal point of engagement for multidis-
ciplinary research by applied mathematicians, computer scientists, and application scientists. In
particular, the solver regime of the software stack naturally connects both to lower levels for funda-
mental algorithms/computer science issues and to higher levels for essential algorithms/applications
synergy. Addressing the interdisciplinary solver issues for the 100 PF time horizon will help ap-
plications teams exploit the unprecedented computing capabilities of emerging architectures for
scientific inquiry. Moreover, such efforts will lay the groundwork for next-generation paradigm
shifts in new categories of simulations.

ASCR Workshop on Extreme-Scale Solvers 19

Acknowledgments

The organizers are grateful to the participants of the workshop, especially those who served as
plenary speakers (Bill Gropp and Bob Lucas), panel participants (Victor Eijkhout, Robert Falgout,
Tim Mattson, and Barry Smith), and as note-takers and slide-preparers (Karen Devine, Judith
Hill, Mark Hoemmen, Richard Mills, Boyana Norris, and Todd Munson). The organizers are also
grateful to Gail Pieper at Argonne for her editing of this report.

20 ASCR Workshop on Extreme-Scale Solvers

References

[1] G. Alvarez, M. S. Summers, D. E. Maxwell, M. Eisenbach, J. S. Meredith, J. M. Larkin,
J. Levesque, T. A. Maier, P. R. C. Kent, E. F. D’Azevedo, and T. C. Schulthess. New
algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in
high-Tc superconductors. In Proceedings of the ACM/IEEE Conference on Supercomputing
(SC 2008), pages 61:1–61:10, 2008. doi:10.1109/SC.2008.5218119.

[2] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput.
Mach., 12:547–560, 1965. doi:10.1145/321296.321305.

[3] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and
S. Tomov. Accelerating scientific computations with mixed precision algorithms. Comput.
Phys. Commun., 180(12):2526–2533, 2009. doi:10.1016/j.cpc.2008.11.005.

[4] C. G. Baker, M. A. Heroux, H. C. Edwards, and A. B. Williams. A light-weight API
for portable multicore programming. In 18th Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing (PDP 2010), pages 601–606. IEEE, 2010.
doi:10.1109/PDP.2010.49.

[5] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11
- Revision 3.2, Argonne National Laboratory, 2011. URL http://www.mcs.anl.gov/petsc.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical
linear algebra. SIAM J. Mat. Anal. Appl., 32(3):866–901, 2012. doi:10.1137/090769156.

[7] A. Bhatele, P. Jetley, H. Gahvari, L. Wesolowski, W. D. Gropp, and L. V. Kalé. Archi-
tectural constraints to attain 1 exaflop/s for three scientific application classes. In Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2011), pages 80–91. IEEE, 2011.
doi:10.1109/IPDPS.2011.18.

[8] A. Bourlioux, A. T. Layton, and M. L. Minion. High-order multi-implicit spectral deferred
correction methods for problems of reactive flow. J. Comput. Phys., 189(2):651–675, Aug.
2003. doi:10.1016/S0021-9991(03)00251-1.

[9] A. Brandt. Multilevel adaptive solution to boundary value problems. Math. Comp., 31:333–
390, 1977. doi:10.1090/S0025-5718-1977-0431719-X.

[10] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. F. Smith. Composable linear
solvers for multiphysics. Preprint ANL/MCS-P2017-0112, Argonne National Laboratory, 2012.
URL http://www.mcs.anl.gov/uploads/cels/papers/2017-0112.pdf.

[11] P. Brune, M. Knepley, B. Smith, and X. Tu. Composing scalable nonlinear solvers. Preprint
ANL/MCS-P2010-0112, Argonne National Laboratory, 2012.

[12] V. Bui, B. Norris, K. Huck, L. C. McInnes, L. Li, O. Hernandez, and B. Chapman. A
component infrastructure for performance and power modeling of parallel scientific applica-
tions. In Workshop on Component-Based High Performance Computing, pages 6:1–6:11, 2008.
doi:10.1145/1456190.1456199.

[13] X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM J.
Sci. Comput., 24:183–200, 2002. doi:10.1137/S106482750037620X.

ASCR Workshop on Extreme-Scale Solvers 21

http://dx.doi.org/10.1109/SC.2008.5218119
http://dx.doi.org/10.1145/321296.321305
http://dx.doi.org/10.1016/j.cpc.2008.11.005
http://dx.doi.org/10.1109/PDP.2010.49
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1137/090769156
http://dx.doi.org/10.1109/IPDPS.2011.18
http://dx.doi.org/10.1016/S0021-9991(03)00251-1
http://dx.doi.org/10.1090/S0025-5718-1977-0431719-X
http://www.mcs.anl.gov/uploads/cels/papers/2017-0112.pdf
http://dx.doi.org/10.1145/1456190.1456199
http://dx.doi.org/10.1137/S106482750037620X

[14] G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan. Reducing power with performance
constraints for parallel sparse applications. In International Parallel and Distributed Processing
Symposium (IPDPS 2005, Workshop 11). IEEE, 2005. doi:10.1109/IPDPS.2005.378.

[15] Z. Chen. Fault tolerant iterative methods: Algorithm-based recovery without checkpoint-
ing. In Proceedings of the 20th ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC 2011), 2011. URL http://inside.mines.edu/~zchen/

papers/hpdc2011.pdf.

[16] E. Constantinescu and A. Sandu. Extrapolated implicit-explicit time stepping. SIAM J. Sci.
Comp., 31(6):4452–4477, 2010. doi:10.1137/080732833.

[17] M. Crouzeix. Une méthode multipas implicite-explicite pour l’approximation des équations
d’évolution parabolique. Numer. Math., 35:257–276, 1980. doi:10.1007/BF01396412.

[18] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance LIN-
PACK benchmark: A fault tolerant implementation without checkpointing. In Proceed-
ings of the International Conference on Supercomputing (ICS 2011), pages 162–171, 2011.
doi:10.1145/1995896.1995923.

[19] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C. Engelmann, and B. Harrod. High-
end computing resilience: Analysis of issues facing the HEC community and path-forward
for research and development. Whitepaper, Dec. 2009. URL http://www.csm.ornl.gov/

~engelman/publications/debardeleben09high-end.pdf.

[20] J. Demmel, J. Gilbert, and X. S. Li. SuperLU users’ guide. Technical Report LBNL-
44289, Lawrence Berkeley National Laboratory, 2003. URL http://crd.lbl.gov/~xiaoye/

SuperLU/.

[21] J. Demmel, J. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in sparse
matrix computations. In International Parallel and Distributed Processing Symposium (IPDPS
2008). IEEE, 2008. doi:10.1109/IPDPS.2008.4536305.

[22] J. Dennis, J. Edwards, K. J. Evans, O. Guba, P. Lauritzen, A. Mirin, A. St.-Cyr, M. Taylor,
and P. H. Worley. A scalable spectral element dynamical core for the Community Atmosphere
Model. Int. J. High Perf. Comp. App., 26:74–89, 2012. doi:10.1007/978-3-642-01973-9.

[23] P. Deuflhard. Recent progress in extrapolation methods for ordinary differential equations.
SIAM Rev., 27(4):505–535, Dec. 1985. doi:10.1137/1027140.

[24] DOE report. Architectures and technology for extreme scale computing, December
2009. URL http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/

Arch_tech_grand_challenges_report.pdf.

[25] DOE report. Workshop on architectures I: Exascale and beyond, August 2011. URL http:

//www.orau.gov/archI2011.

[26] DOE report. Exascale programming challenges, July 2011. URL
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/

ProgrammingChallengesWorkshopReport.pdf.

[27] A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for ordinary
differential equations. BIT Num. Math., 40(2):241–266, 2000. doi:10.1023/A:1022338906936.

22 ASCR Workshop on Extreme-Scale Solvers

http://dx.doi.org/10.1109/IPDPS.2005.378
http://inside.mines.edu/~zchen/papers/hpdc2011.pdf
http://inside.mines.edu/~zchen/papers/hpdc2011.pdf
http://dx.doi.org/10.1137/080732833
http://dx.doi.org/10.1007/BF01396412
http://dx.doi.org/10.1145/1995896.1995923
http://www.csm.ornl.gov/~engelman/publications/debardeleben09high-end.pdf
http://www.csm.ornl.gov/~engelman/publications/debardeleben09high-end.pdf
http://crd.lbl.gov/~xiaoye/SuperLU/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://dx.doi.org/10.1109/IPDPS.2008.4536305
http://dx.doi.org/10.1007/978-3-642-01973-9
http://dx.doi.org/10.1137/1027140
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Arch_tech_grand_challenges_report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Arch_tech_grand_challenges_report.pdf
http://www.orau.gov/archI2011
http://www.orau.gov/archI2011
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://dx.doi.org/10.1023/A:1022338906936

[28] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A taxonomy and
comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes
equations. J. Comput. Phys., 227(3):1790–1808, Jan. 2008. doi:10.1016/j.jcp.2007.09.026.

[29] R. Falgout et al. hypre users manual. Technical Report Revision 2.8.0, Lawrence Livermore
National Laboratory, 2011. URL https://computation.llnl.gov/casc/hypre/.

[30] H. Gahvari and W. Gropp. An introductory exascale feasibility study for FFTs and multigrid.
In International Parallel and Distributed Processing Symposium (IPDPS 2010), pages 1–9.
IEEE, 2010. doi:10.1109/IPDPS.2010.5470417.

[31] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and W. Gropp. Model-
ing the performance of an algebraic multigrid cycle on HPC platforms. In Proceedings of
the International Conference on Supercomputing (ICS 2011), pages 172–181. ACM, 2011.
doi:10.1145/1995896.1995924.

[32] M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration
method. SIAM J. Sci. Comput., 29:556–578, 2007. doi:10.1137/05064607X.

[33] G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. ParalleX: A study of a new parallel
computation model. In International Parallel and Distributed Processing Symposium (IPDPS
2007), pages 1–6. IEEE, 2007. doi:10.1109/IPDPS.2007.370484.

[34] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication latency
in the GMRES algorithm on massively parallel machines. Tech. report 04.2012.1, Intel Exa-
science Lab, Leuven, Belgium, 2012. URL http://twna.ua.ac.be/sites/twna.ua.ac.be/

files/latency_gmres.pdf.

[35] P. Ghysels, P. K losiewicz, and W. Vanroose. Improving the arithmetic intensity of multigrid
with the help of polynomial smoothers. Numer. Linear Algebra Appl., 19(2):253–267, 2012.
doi:10.1002/nla.1808.

[36] F. Giraldo, J. Kelly, and E. Constantinescu. IMEX formulations of a 3d nonhydrostatic unified
model of the atmosphere (NUMA). In preparation, 2012.

[37] S. Gratton, A. Sartenaer, and P. L. Toint. Recursive trust-region methods for multiscale
nonlinear optimization. SIAM J. Opt., 19(1):414–444, 2008. doi:10.1137/050623012.

[38] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73
(2):325–348, 1987. doi:10.1016/0021-9991(87)90140-9.

[39] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for matrix decompositions, Part I: Introduction. SIAM Rev., 53(2):217–288, 2011.
doi:10.1137/090771806.

[40] F. Hanson. Techniques in computational stochastic dynamic programming. Control Dynam.
Sys., 76:103–162, 1996. doi:10.1016/S0090-5267(96)80017-X.

[41] M. A. Heroux. Software challenges for extreme scale computing: Going from petascale
to exascale systems. Int. J. High Perform. Comput. Appl., 23(4):437–439, Nov. 2009.
doi:10.1177/1094342009347711.

ASCR Workshop on Extreme-Scale Solvers 23

http://dx.doi.org/10.1016/j.jcp.2007.09.026
https://computation.llnl.gov/casc/hypre/
http://dx.doi.org/10.1109/IPDPS.2010.5470417
http://dx.doi.org/10.1145/1995896.1995924
http://dx.doi.org/10.1137/05064607X
http://dx.doi.org/10.1109/IPDPS.2007.370484
http://twna.ua.ac.be/sites/twna.ua.ac.be/files/latency_gmres.pdf
http://twna.ua.ac.be/sites/twna.ua.ac.be/files/latency_gmres.pdf
http://dx.doi.org/10.1002/nla.1808
http://dx.doi.org/10.1137/050623012
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1016/S0090-5267(96)80017-X
http://dx.doi.org/10.1177/1094342009347711

[42] M. A. Heroux. Emerging architectures and UQ: Implications and opportunities. In Proceedings
of the 2011 IFIP Workshop in Uncertainty Quantification for Scientific Computing, August
2011. URL http://math.nist.gov/IFIP-UQSC-2011/slides/Heroux.pdf.

[43] M. A. Heroux and J. M. Willenbring. Trilinos Users Guide. Technical Report SAND2003-2952,
Sandia National Laboratories, 2003. URL http://trilinos.sandia.gov/.

[44] M. Hoemmen. Communication avoiding Krylov subspace methods. PhD thesis, Computer
Science Division, U.C. Berkeley, May 2010. URL http://www.cs.berkeley.edu/~mhoemmen/

pubs/thesis.pdf.

[45] J. Huang, J. Jia, and M. Minion. Arbitrary order Krylov deferred correction meth-
ods for differential algebraic equations. J. Comput. Phys., 221(2):739–760, 2007.
doi:10.1016/j.jcp.2006.06.040.

[46] K.-h. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE
Trans. Comput., C-33(6):518–528, 1984. doi:10.1109/TC.1984.1676475.

[47] F.-N. Hwang and X.-C. Cai. A class of parallel two-level nonlinear Schwarz precondi-
tioned inexact Newton algorithms. Comp. Methods App. Mech. Eng., 196:1603–1611, 2007.
doi:10.1016/j.cma.2006.03.019.

[48] J. Jia and J. Liu. Stable and spectrally accurate schemes for the Navier-Stokes equations.
SIAM J. Sci. Comput., 33(5):2421–2439, Sept. 2011. doi:10.1137/090754340.

[49] D. Kaushik, M. Smith, A. Wollaber, B. Smith, A. Siegel, and W. S. Yang. Enabling high-fidelity
neutron transport simulations on petascale architectures. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis (SC 2009), pages 67:1–67:12,
New York, NY, 2009. doi:10.1145/1654059.1654128.

[50] D. E. Keyes. Partial differential equation-based applications and solvers at extreme scale. Int.
J. High Perform. Comput. Appl., 23(4):437–439, Nov. 2009. doi:10.1177/1094342009347504.

[51] D. E. Keyes. Exaflop/s: The why and the how. C.R. Acad. Sci. II B, 339:70–77, 2011.
doi:10.1016/j.crme.2010.11.002.

[52] D. E. Keyes, L. C. McInnes, C. Woodward, W. D. Gropp, E. Myra, M. Pernice, J. Bell,
J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans, C. Farhat, A. Hakim,
G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras,
A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt, M. Mehl,
R. Pawlowski, A. Peters, D. Reynolds, B. Riviere, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan,
M. Shephard, A. Siegel, B. Smith, X. Tang, C. Wilson, and B. Wohlmuth. Multiphysics Simula-
tions: Challenges and Opportunities. Technical Report ANL/MCS-TM-321, Argonne National
Laboratory, Dec. 2011. URL http://www.ipd.anl.gov/anlpubs/2012/01/72183.pdf. Re-
port of workshop sponsored by the Institute for Computing in Science (ICiS), Park City, Utah,
July 30 - August 6, 2011.

[53] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi. Empirical study on reducing energy
of parallel programs using slack reclamation by DVFS in a power-scalable high performance
cluster. In Proceedings of 2006 IEEE International Conference on Cluster Computing, 2006.
doi:/10.1109/CLUSTR.2006.311839.

24 ASCR Workshop on Extreme-Scale Solvers

http://math.nist.gov/IFIP-UQSC-2011/slides/Heroux.pdf
http://trilinos.sandia.gov/
http://www.cs.berkeley.edu/~mhoemmen/pubs/thesis.pdf
http://www.cs.berkeley.edu/~mhoemmen/pubs/thesis.pdf
http://dx.doi.org/10.1016/j.jcp.2006.06.040
http://dx.doi.org/10.1109/TC.1984.1676475
http://dx.doi.org/10.1016/j.cma.2006.03.019
http://dx.doi.org/10.1137/090754340
http://dx.doi.org/10.1145/1654059.1654128
http://dx.doi.org/10.1177/1094342009347504
http://dx.doi.org/10.1016/j.crme.2010.11.002
http://www.ipd.anl.gov/anlpubs/2012/01/72183.pdf
http://dx.doi.org//10.1109/CLUSTR.2006.311839

[54] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: A survey of approaches
and applications. J. Comput. Phys., 193:357–397, 2004. doi:10.1016/j.jcp.2003.08.010.

[55] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Fran-
zon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick. Exas-
cale computing study: Technology challenges in achieving exascale systems, 2008. URL
http://www.notur.no/news/inthenews/files/exascale_final_report_100208.pdf.

[56] A. T. Layton and M. L. Minion. Conservative multi-implicit spectral deferred correc-
tion methods for reacting gas dynamics. J. Comput. Phys, 194(2):697–715, Mar. 2004.
doi:10.1016/j.jcp.2003.09.010.

[57] P. T. Lin and J. N. Shadid. Towards large-scale multi-socket, multicore parallel simulations:
Performance of an MPI-only semiconductor device simulator. J. Comput. Phys., 229(19):
6804–6818, Sept. 2010. doi:10.1016/j.jcp.2010.05.023.

[58] J. L. Lions, Y. Maday, and G. Turinici. A “parareal” in time discretization of PDE’s. C.R.
Acad. Sci. I-Math., 332(7):661–668, 2001. doi:10.1016/S0764-4442(00)01793-6.

[59] F. T. Luk and H. Park. Fault-tolerant matrix triangularizations on systolic arrays. IEEE
Trans. Comput., 37(11):1434–1438, 1988. doi:10.1109/12.8712.

[60] P. Maris, J. P. Vary, P. Navrátil, W. E. Ormand, H. Nam, and D. J. Dean. Ori-
gin of the anomalous long lifetime of 14C. Phys. Rev. Lett., 106:202502, May 2011.
doi:10.1103/PhysRevLett.106.202502.

[61] S. Mitra, T. Karnik, and N. Seifert. Logic soft errors in sub-65nm technologies design and
CAD challenges. In Proceedings 42nd Design Automation Conference, pages 2–4. IEEE, 2005.
doi:10.1109/DAC.2005.193762.

[62] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in sparse
matrix solvers. In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, page 36. ACM, 2009. doi:10.1137/090769156.

[63] S. Nash. A multigrid approach to discretized optimization problems. Optim. Methods Softw.,
14(1/2):99–116, 2000. doi:10.1080/10556780008805795.

[64] Neale, R. B. et al. Description of the community atmosphere model (CAM 5.0). NCAR Tech.
Note, TN-486+STR, 2010. URL http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/

description/cam5_desc.pdf.

[65] R. W. Robey, J. M. Robey, and R. Aulwes. In search of numerical consistency in parallel
programming in search of numerical consistency in parallel programming. Parallel Comput.,
37(Feb.):217–229, 2011. doi:10.1016/j.parco.2011.02.009.

[66] B. Smith, L. C. McInnes, E. Constantinescu, M. Adams, S. Balay, J. Brown, M. Knepley,
and H. Zhang. PETSc’s software strategy for the design space of composable extreme-scale
solvers. Preprint ANL/MCS-P2059-0312, Argonne National Laboratory, 2012. URL http:

//www.mcs.anl.gov/uploads/cels/papers/P2059-0312.pdf.

[67] SWARM. SWARM (SWift Adaptive Runtime Machine). http://www.etinternational.

com/index.php/products/swarmbeta/.

ASCR Workshop on Extreme-Scale Solvers 25

http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://www.notur.no/news/inthenews/files/exascale_final_report_100208.pdf
http://dx.doi.org/10.1016/j.jcp.2003.09.010
http://dx.doi.org/10.1016/j.jcp.2010.05.023
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.1109/12.8712
http://dx.doi.org/10.1103/PhysRevLett.106.202502
http://dx.doi.org/10.1109/DAC.2005.193762
http://dx.doi.org/10.1137/090769156
http://dx.doi.org/10.1080/10556780008805795
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
http://dx.doi.org/10.1016/j.parco.2011.02.009
http://www.mcs.anl.gov/uploads/cels/papers/P2059-0312.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P2059-0312.pdf
http://www.etinternational.com/index.php/products/swarmbeta/
http://www.etinternational.com/index.php/products/swarmbeta/

[68] H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numer.
Anal., 49(4):1715–1735, 2011. doi:10.1137/10078356X.

[69] H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated fixed-point iteration for
solution of variably saturated flow. In XVIII International Conference on Computational
Methods in Water Resources (CMWR 2010), 2010. URL http://users.wpi.edu/~walker/

Papers/var_sat_flow,CMWR_2010,CIMNE,2010.pdf.

[70] J. H. Wilkinson. Rounding Errors in Algebraic Processes. National Physical Laboratory Notes
on Applied Science No. 32, 1963.

[71] M. Wolfe. Compilers and more: Programming at exascale (Part I); Expose, express, exploit
(Part II); Exascale programming requirements (Part III). HPCWire, March 8, March 28, and
April 14, 2011. URL http://www.hpcwire.com/hpcwire/2011-03-08/.

26 ASCR Workshop on Extreme-Scale Solvers

http://dx.doi.org/10.1137/10078356X
http://users.wpi.edu/~walker/Papers/var_sat_flow,CMWR_2010,CIMNE,2010.pdf
http://users.wpi.edu/~walker/Papers/var_sat_flow,CMWR_2010,CIMNE,2010.pdf
http://www.hpcwire.com/hpcwire/2011-03-08/

Workshop Participants

James Ang, Sandia National Laboratories
Wolfgang Bangerth, Texas A&M University
John Bell, Lawrence Berkeley National Laboratory
David Brown, Lawrence Berkeley National Laboratory
Xiao-Chuan Cai, University of Colorado Boulder
Edmond Chow, Georgia Tech University
Jonathan Cohen, NVIDIA
Ed D’Azevedo, Oak Ridge National Laboratory
Karen Devine, Sandia National Laboratories
Lori Diachin, Lawrence Livermore National Laboratory
Jack Dongarra, University of Tennessee
Milo Dorr, Lawrence Livermore National Laboratory
Sudip Dosanjh, Sandia National Laboratories
Victor Eijkhout, University of Texas at Austin
Howard Elman, University of Maryland
Katherine Evans, Oak Ridge National Laboratory
Robert Falgout, Lawrence Livermore National Laboratory
George Fann, Oak Ridge National Laboratory
Paul Fischer, Argonne National Laboratory
Al Geist, Oak Ridge National Laboratory
William Gropp, University of Illinois at Urbana-Champaign
Ray Grout, National Renewable Energy Laboratory
Anshul Gupta, IBM
Michael Heroux, Sandia National Laboratories
Judith Hill, Oak Ridge National Laboratory
Rob Hoekstra, Sandia National Laboratories
Mark Hoemmen, Sandia National Laboratories
Paul Hovland, Argonne National Laboratory
Victoria Howle, Texas Tech University
Moe Khaleel, Pacific Northwest National Laboratory
Matthew Knepley, University of Chicago
Nick Knight, University of California, Berkeley
Sherry Li, Lawrence Berkeley National Laboratory
Robert Lucas, University of Southern California
Barney MacCabe, Oak Ridge National Laboratory
Osni Marques, Lawrence Berkeley National Laboratory
Tim Mattson, Intel
Lois Curfman McInnes, Argonne National Laboratory
Richard Mills, Oak Ridge National Laboratory
Todd Munson, Argonne National Laboratory
Esmond Ng, Lawrence Berkeley National Laboratory
Boyana Norris, Argonne National Laboratory
Alex Pothen, Purdue University
Martin Schulz, Lawrence Livermore National Laboratory
Barry Smith, Argonne National Laboratory
Marc Snir, Argonne National Laboratory

ASCR Workshop on Extreme-Scale Solvers 27

Pieter Swart, Los Alamos National Laboratory
Keita Teranishi, Cray
Heidi Thornquist, Sandia National Laboratories
Ray Tuminaro, Sandia National Laboratories
Homer Walker, Worcester Polytechnic Institute
Stefan Wild, Argonne National Laboratory
Sam Williams, Lawrence Berkeley National Laboratory
Carol Woodward, Lawrence Livermore National Laboratory

28 ASCR Workshop on Extreme-Scale Solvers

Day 1
8:00 Continental Breakfast
8:20 ASCR Welcome and Introduction ASCR Room A
8:30 Charge to Workshop Participants Organizing Committee
8:45 Keynote Briefing I Bob Lucas
9:15 Keynote Briefing II Bill Gropp
9:45 Q&A

10:00 Break
10:30 Concurrent Breakout Sessions #1:

Architectural Considerations
Rooms A, B, C

12:00 Lunch (on your own)
13:30 Outbrief #1; Q&A Room A
14:00 Concurrent Breakout Sessions #2:

Algorithmic Research and Development Needs
Rooms A, B, C

15:30 Break
16:00 Outbrief #2; Q&A Room A
16:30 Adjourn for the day (dinner on your own)

Day 2
8:00 Continental Breakfast
8:30 Panel Discussion & Q&A Moderator: Mike Heroux

Panelists: TBA
Room A

9:45 Break
10:00 Concurrent Breakout Sessions #3:

Transition Strategy; Gaps
Room A, B, C

11:30 Break
12:00 Outbrief #3; Q&A Room A
13:00 Workshop Adjourns

DOE Workshop on Extreme-Scale Solvers:
Preparing for Future Architectures

March 8-9, 2012
American Geophysical Union

Washington, DC

Workshop Agenda

ASCR Workshop on Extreme-Scale Solvers 29

	Table of Contents
	Executive Summary
	Introduction
	Potential Impact
	Challenges Faced by the Solver Community
	Solver Research Opportunities
	General Classes of New Algorithms
	Communication/Synchronization-Hiding Algorithms
	Communication/Synchronization-Reducing Algorithms
	Mixed-Precision-Arithmetic Algorithms
	Fault-Tolerant and Resilient Algorithms
	Energy-Efficient Algorithms
	Stochastic Algorithms
	Algorithms with Reproducibility

	Near-Term Research Opportunities for 100 PF Machines
	Enabling and Exploiting Mixed-Precision and Variable-Precision Arithmetic
	Optimizing Data Placement and Movement
	Circumventing Memory Bandwidth Limitations
	``Semi''-Asynchronous Solvers
	Nonblocking Algorithms via Nonblocking Collectives
	Exploiting Processor and Memory Hierarchies via Algorithmic Hierarchies
	Solver Components and New Composition Models
	Implicit-Explicit and Partitioned Time Integration
	Parallel-Time Integration
	Application-Oriented Solvers
	Move to Greater Interoperability among Solver Libraries

	Longer-Term Research Opportunities for 100 PF through Exascale Computers
	Solver Algorithms and Power Awareness and Management
	Selective Data and Computation Reliability
	Approximate and Probabilistic Solvers
	Coupled Nonlinear Solvers for Large-Scale Multiphysics
	Dynamic Load Balancing and Scheduling Millions of Tasks
	Incremental Load Balancing
	Higher Levels of Abstraction for Ensemble Computations, Uncertainty Quantification, Stochastic Models, and Design Optimization

	Needs from the External Community

	Transitioning to New Solvers
	Evolutionary Algorithmic Research
	Transition to New Application-Library Interfaces
	Community Interactions to Facilitate Longer-Term Algorithmic Research
	Revolutionary Algorithmic Research

	Conclusions
	Acknowledgments
	References
	Appendices
	Workshop Participants
	Workshop Agenda

