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Executive 
Summary

Exascale Town Hall Meetings 
Letter Report

Lawrence Berkeley, Oak Ridge, and Argonne national laboratories convened three town hall meetings aimed at collecting 
community input on the prospects of a proposed new Department of Energy (DOE) initiative entitled Simulation and 
Modeling at the Exascale for Energy and the Environment, or E3 for short.  

The goal of the town hall meetings was to engage the computational science community in a series of broad and open 
discussions about the potential benefits of advanced computing at the exascale (1018 operations per second) on “global” 
challenge problems in the areas of energy, the environment, and basic science.  

Approximately 450 researchers from universities, national laboratories, and U.S. companies participated at the three 
meetings held in April, May, and June 2007. 

In addition to the scientific and engineering challenges and opportunities, the meetings also addressed needed advances in 
computer science and software technology, large-scale hardware, applied mathematics, and cyberinfrastructure and cyber 
security.

Here we summarize the major conclusions of the town hall meetings.

Feasibility of Exascale Systems
General-purpose exascale computer systems are expected to be technologically feasible within the next 15 years. These 
systems will likely have between 10 million and 100 million processing elements or cores. The major U.S. vendors of 
large-scale systems and processors (e.g., IBM, Intel, Cray, AMD) are in general agreement that these systems will push the 
envelope of a number of important technologies, including processor architecture, scale of multicore integration (perhaps 
into the range of 1000 cores per chip or beyond), power management, and packaging. The projected exascale systems 
themselves will have part counts comparable to those of today’s largest systems (or slightly larger). Detailed cost studies 
have not been done, but the consensus is that costs will be comparable to those of the largest systems being contemplated 
today ($100 million to $200 million per system).

Significant challenges arise in accomplishing exascale computing, in areas that include architecture, scale, power, reliability, 
cost, and packaging. A major source of uncertainty is how quickly the general marketplace will be able to adopt highly 
parallel, single-chip, multicore systems in normal information technology (IT) products. The current belief is that the broad 
market is not likely to be able to adopt multicore systems at the 1000-processor level without a substantial revolution in 
software and programming techniques for the hundreds of thousands of programmers who work in industry and do not yet 
have adequate parallel programming skills.

Extrapolation of current hardware trends suggests that exacale systems could be available in the marketplace by approximately 
2022 via a “business as usual” scenario. With the appropriate level of investments, it may be possible to accelerate the 
availability by up to five years, to approximately 2017.   
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Exascale systems will also require substantial investments in input/output (I/O) and storage research. The current trends in 
disk drives and other storage technologies are optimized for the consumer market and may not have the optimal ratios of 
capacity to bandwidth needed for large-scale systems.

Power efficiency is also expected to be a major problem, with the goal of an exaflops system at less than 20 MW sustained 
power consumption perhaps achievable. Driving the earlier availability of the systems will compromise the power efficiencies 
to some degree.

We note that Japan has outlined in its current petascale initiative a rough roadmap to the exascale that proceeds via three 
systems: a 10 petaflops (PF) system in ~2012, a 100 PF system in ~2017, and a 1000 PF system in the ~2022 timeframe. 
It appears possible for a U.S. computing program to maintain leadership during the next decade in this area – but only if 
increased investments are started immediately and are sustained over the long term. 

Science and Engineering Opportunities
The three town hall meetings examined a range of applications that would be materially transformed by the availability 
of exascale systems. We highlight here several significant opportunities in the areas of energy, climate, socioeconomics, 
biology, and astrophysics.

Energy

Energy research offers significant opportunities to exploit computing at the exascale, in order to advance our understanding 
of basic processes in areas such as combustion, which would naturally lead to a design capability for improving the efficient 
use of liquid fuels, whether from fossil sources or renewable sources. First-principles computational design and optimization 
of catalysts will become possible at the exascale, as will de novo design of biologically mediated pathways for energy 
conversion.  

Access to exascale systems and the appropriate applications codes could have a dramatic impact on nuclear fission reactor 
design and optimization and would help accelerate understanding of key plasma physics phenomena in fusion science 
critical to getting the most from the U.S. investment in ITER.

Exascale systems should also enable a major paradigm shift in the use of large-scale optimization techniques to search for 
near-optimal solutions to engineering problems. Many energy and industrial problems are amenable to such an approach, in 
which many petascale instances of the problem are run simultaneously under the control of a global optimization procedure 
that can focus the search on parameters that produce an optimal outcome.

Environment

Three broad areas relating to the environment were discussed: climate modeling; integrated energy, economics, and 
environmental modeling; and multiscale biological modeling from molecules to ecosystems.

Climate modeling. As the most mature of the three environmental application areas, climate modeling is expected to make 
good use of exascale systems. The impact of these systems will be threefold. First, they will enable the development of much 
higher resolution models that will advance our understanding of local impacts of climate change; second, they will enable 
the dramatic improvement of physical, chemical, and biological process representations in the climate models, which will 
more accurately reflect the real climate system; and third, they will enable a thorough exploration of the parameters that 
give rise to uncertainty in climate models via large-scale ensemble computations. Significant investments will be needed, 
however, to port and improve climate models for exascale architectures, including the explicit targeting of multicore in 
next-generation models and the development of an integrated climate research computing environment that will link climate 
modelers with climate data sources, collaborators, and university and laboratory resources.

Integrating energy, socioeconomics, and environmental modeling. There exists a considerable opportunity to couple 
detailed computer models of energy utilization and production with geospatialized socioeconomic models and, in turn, to 
couple these to an Earth systems model that captures the feedbacks to and from the environment from human activities. This 
integrated modeling suite would enable fundamental research into strategies for sustainable global economic development 
and would lead to exploration of alternative development paths and their impacts on global energy security.
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Multiscale biological modeling. Large-scale computing is starting to have an impact in the biological sciences. Exascale 
computing will enable computational biologists to begin to build models that can bridge the space-time parameters that 
characterize important biological processes, including models of diverse microbial ecosystems from which we may gain 
considerable new biotechnology (bioenergy, carbon sequestration, environmental technology, and industrial processes). 
Bridging the scales from the molecular to the ecosystem offers many challenges for model developers, but it also provides 
many opportunities for coupling research in high-throughput genomics, proteomics, and bioinformatics to applications via 
exascale computing. This activity is key, for example, to accelerating the computing vision of programs such as DOE’s 
Genomics:GTL initiative.

Astrophysics

Simulation opportunities in astrophysics include large-scale structure formation, galaxy formation, stellar evolution, 
supernovae, and compact objects. For example, in the Type Ia supernova problem, exascale computing will enable 
simulations with resolutions down to the Gibson scale (the length scale at which turbulent motion is effectively smoothed 
by the propagation of the nuclear flame) with definitive prescriptions for nuclear energy release and the associated 
nucleosynthesis.

Core collapse supernovae simulations with the spatial resolution required to properly model critical aspects of the explosion 
dynamics (e.g., the evolution of the stellar core magnetic fields and their role in generating the supernova) will require 
much higher resolution than today’s terascale codes. These codes, in turn, will require exascale computing, particularly if a 
number of simulations are to be performed across the range of stellar progenitors and input physics. One such simulation is 
expected to take ~8 weeks, assuming 20% efficiency on an exaflops machine.

Advances in these areas will require the adaptation of existing, and in some cases the development of new solution algorithms 
for the underlying partial differential equations governing the evolution of these astrophysical systems and the codes that 
execute them, as well as the optimization of both as they advance to the exascale.

Computer Science and Applied Mathematics

To realize science at the exascale will require a concerted effort to couple advances in algorithms, programming models, 
operating systems, filesystems, I/O environments, and data analysis tools. In fact, exascale systems are likely to be so 
demanding that they will drive new working relationships between the disciplinary scientists and the computer science and 
mathematics communities.   

Of great interest are methods that will enable the power of exascale computing to advance the use of mathematical optimization 
in many areas of science and engineering.  Examples include the use of ensembles and “outer loop” optimization to iterate 
design parameters of new nuclear reactor designs that would simultaneously improve safety margins and lower cost, or to 
explore the parameter space of technology choices and how they might impact global energy security strategies.

Specific challenges that need to be overcome include development of scalable operating system services that can manage 
10 million to 100 million cores, scalable programming models and tools that will enable developers to express orders of 
magnitude more concurrency in applications, and data storage environments that can scale to exabytes of capacity and 
sustained transfer speeds of terabytes per second. While reaching the needed scaling and performance goals will be a 
challenge, the community believes that it is possible and achievable on a schedule that would not limit the prospect of 
accelerating availability of exascale systems to 2017.

Cyberinfrastructure and Cyber Security

Large-scale computing resources are only a part of the overall computing environment needed to advance science. This 
environment also includes high-performance networking, mid-range and smaller clusters, visualization engines, large-
scale data archives, a variety of data sources and instrumentation including emerging sensor networks, and the tens of 
thousands of workstations that enable access to and are the primary development machines. Complementing the hardware 
and networking is a vast software ecosystem that connects resources and enables them to work as part of a whole, spanning 
networking software, databases, security, and hundreds of domain-specific tools. This overall collection, commonly referred 
to as “cyberinfrastructure,” will require investments to fully exploit the power and promise of exascale computing. The 
quality and robustness of the cyberinfrastructure will impact the productivity of the exascale computing resources. Additional 
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investments in cyberinfrastructure and cyber security are needed to ensure that large-scale systems will be productive and 
secure. While extreme-scale systems are sometimes the targets of security attacks, they are generally well protected by 
layers of infrastructure. On the other hand, the general cyberinfrastructure that provides the rich computing environment 
surrounding the extreme-scale systems is often vulnerable. Clearly, we must be wise in our development of exascale systems 
to make balanced investments in the security of the overall scientific computing environment.

Conclusions
The broad computational science community has a golden opportunity to accelerate the availability of usable exascale 
systems. To take full advantage of this opportunity to deliver exascale computing by 2017 will require an integrated program 
of investments in hardware and software research and development, (R&D). Also required will be a tight coupling to a 
selected set of science communities and the associated applied mathematics R&D. In some cases, such as astrophysics 
and climate, the communities are well on the way to exploiting petascale systems. In other cases, such as socioeconomics 
and multiscale biology, there is great opportunity for acceleration. Computational science and engineering opportunities in 
energy are wide and deep and have an enormous potential impact on advancing energy technology and fundamental science. 
If acceleration is to be achieved—and there is every reason to both desire it and believe that it can be accomplished—then 
every minute will count, and even modest investments early in the cycle (e.g., 2008 and 2009) could have dramatic benefit 
and will reduce uncertainties moving ahead.

Rick Stevens, Argonne National Laboratory
Thomas Zacharia, Oak Ridge National Labortory
Horst Simon, Lawrence Berkeley National Laboratory
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Introduction
The U.S. Department of Energy (DOE) Office of Advanced 
Scientific Computing Research (OASCR) has proposed a 
10-year initiative on Simulation and Modeling at the Exascale 
for Energy, Ecological Sustainability, and Global Security 
(E3). This initiative, which is aligned with the strategic theme 
of scientific discovery and innovation in DOE’s Strategic 
Plan, is designed to focus the computational science experi-
ence gained over the past ten years on the opportunities that 
will be introduced with exascale computing to revolutionize 
our approaches to global challenges in energy, environmen-
tal sustainability, and security. A summary of the E3 initia-
tive is presented in Appendix A. 

Planned petascale and potential exascale systems provide an 
unprecedented opportunity to attack these global challenges 
through modeling and simulation. In combination with theory 
and experiment, computation has become a critical tool for 
understanding the behavior of the fundamental components 
of nature and for exploring complex systems with billions of 
components, including humans. Computing has already been 
used in partnership with theory and experiment to attack such 
problems as the time evolution of atmospheric CO2 concen-
trations originating from the land surface, the activity of the 
cellulase enzyme on a time scale of 50 to 100 nanoseconds 
(ns), the stabilization of lifted flames in diesel engines and 
gas turbine combustors, and the behavior of superheated ionic 
gases in plasmas. 

The deployment in this decade of several systems with peak 
performance in the range of 1018 operations per second (peta-
flops), enabling simulations sustaining hundreds of teraflops, 
should be followed in the next decade by systems with peak 
performance in the exaflops range and simulations sustaining 
a hundred or more petaflops. Exascale computers will have 
processing capability similar to that of the human brain and 

offer the potential to unravel scientific mysteries that we have 
not yet been able to address. Examples relevant to DOE mis-
sions include:

• Resolving clouds, forecasting weather and extreme 
events, and providing quantitative mitigation strategies

• Understanding high-temperature superconductivity

• Developing clean and efficient combustion systems for 
diesel and alternative fuels 

• Developing a detailed understanding of cellulase enzyme 
mechanisms and creating more efficient enzymes for cel-
lulose degradation through protein engineering

• Understanding the interaction of radiation with materials

• Advancing magnetic fusion through predictive capabili-
ties with core-edge coupling, realistic mass ratios, and 
validated turbulence models for ITER

• Explaining and predicting core-collapse supernovae and 
putting theories of general relativity, dense equation of 
state (EOS), and stellar evolution to the test 

Equally important, leading the development, acquisition, and 
deployment of exascale systems has the potential to make 
U.S. industry more competitive and to enable the solution of 
problems of national importance. In response to the OASCR 
initiative, Argonne National Laboratory (ANL), Lawrence 
Berkeley National Laboratory (LBNL), and Oak Ridge 
National Laboratory (ORNL) organized a community input 
process in the form of three town hall meetings (see Table I.1). 
The agendas of these meetings are provided in Appendix B. 
About 450 participants, listed in Appendix C, attended these 
three town hall meetings and contributed to this report.

Location Date Web site
Lawrence Berkeley 
National Laboratory April 17–18, 2007 http://hpcrd.lbl.gov/E3SGS/main.html

Oak Ridge 
National Laboratory May 17–18, 2007 http://computing.ornl.gov/workshops/town_hall/index.shtml

Argonne 
National Laboratory May 31–June 1, 2007 https://www.cls.anl.gov/events/workshops/townhall07/index.php

Table I.1 Town hall meetings on Modeling and Simulation at the Exascale for Energy and the Environment
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The goals of the town hall meetings were

• to gather community input for possible DOE research ini-
tiatives in high-performance computing (HPC), computer 
science, computational science and advanced mathemat-
ics, and to examine how these capabilities could be ap-
plied to global challenge problems;

• to examine the prospects for dramatically broadening the 
reach of HPC to new disciplines, including areas such as 
predictive modeling in biology and ecology, integrative 
modeling in earth and economics sciences, and bottom-up 
design for energy and advanced technologies;

• to identify emerging domains of computation and com-
putational science that could have dramatic impacts on 
economic development, such as agent-based simulation, 
self-assembly, and self-organization;

• to outline the challenges and opportunities for exascale-
capable systems, ultralow-power architectures, and ubiq-
uitous multicore technologies (including software); and

• to identify opportunities for end-to-end investment in new 
computational science problem areas (including valida-
tion and verification).

Each town hall meeting was a day and a half in length and 
combined invited plenary talks and parallel breakout sessions. 
Breakout sessions at each meeting were organized and facili-
tated by a team of leading experts with representation from 
each of the three laboratories. At all three meetings, breakout 
sessions were focused on five application areas and four tech-
nical areas. The application areas and their central goals were 
as follows:
• Climate. Improve our understanding of complex biogeo-

chemical (C, N, P, etc.) cycles that underpin global eco-
systems functions and control the sustainability of life on 
Earth.

• Energy. Develop and optimize new pathways for renew-
able energy production and development of long-term, 
secure nuclear energy sources through computational 
nanoscience and physics-based engineering models.

• Biology. Enhance our understanding of the roles and 
functions of microbial life on Earth, and adapt these capa-
bilities for human use, through bioinformatics and com-
putational biology. 

• Socioeconomics. Develop integrated modeling environ-
ments for coupling the wealth of observational data and 
complex models to economic, energy, and resource mod-
els that incorporate the human dynamic, enabling large-
scale global change analysis.

• Astrophysics. Develop a “cosmic simulator” capability 

to integrate increasingly complex astrophysical measure-
ments with simulations of the growth and evolution of 
structure in the universe, linking the known laws of mi-
crophysics to the macro world.

The four technical areas address the development and deploy-
ment of the tools needed to deliver scientific discovery at the 
exascale: 

• Math and Algorithms. Advancing mathematical and al-
gorithmic foundations to support scientific computing in 
emerging disciplines such as molecular self-assembly, sys-
tems biology, behavior of complex systems, agent-based 
modeling, and evolutionary and adaptive computing.

• Software. Integrating large, complex, and possibly dis-
tributed software systems with components derived 
from multiple application domains and with distributed 
data gathering and analysis tools.

• Hardware. Driving innovation at the frontiers of com-
puter architecture and information technology, preparing 
the way for the ubiquitous adoption of parallel comput-
ing, power-efficient systems, and the software and archi-
tectures needed for a decade of increased capabilities, 
and accelerating the development of special-purpose 
devices with the potential to change the simulation para-
digm for certain science disciplines.

• Cyberinfrastructure. Developing tools and methods to 
protect the distributed information technology infra-
structure by ensuring network security, preventing dis-
ruption of our communications infrastructure, and de-
fending distributed systems against attacks.

Each breakout session was tasked with addressing eight 
charge questions:

• What (in broad brush) is feasible or plausible to accom-
plish in 5–10 years?

• What are the major challenges in the area?

• What is the state of the art in the area?

• How would we accelerate development?

• What are expected outcomes and impact of acceleration 
or increased investment (i.e., what problems would we 
aim to solve or events we would cause to occur)?

• What scale of investment would be needed to accom-
plish the outcome?

• What are the major risks?

• What and who are missing?
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This report provides detailed answers to these questions 
for each breakout topic; the major challenges for each 
application and technical area are summarized in Table I.2. 
The consensus at the town hall meetings was that all of these 
challenges, while formidable, can be overcome if action is 
taken immediately to accelerate the availability of usable 
exascale systems. An integrated program of investments in 

hardware and software research and development (R&D), 
carried out in partnership with key science communities and 
accompanied by applied mathematics R&D, can be expected 
to produce the transformational science and disruptive 
technologies needed to successfully attack global challenges 
in energy, the environment, and basic science.

Major challenges in exascale computing 

Climate 

Energy 

Biology 

Major challengesTopic

 Integrating high-resolution Earth system models with massive assimilation of 
satellite and other data 

 Detailed modeling of controlled and modified ecosystems to fit the environmental 
envelope in which future climate changes will occur 

 Development of process-scale mechanistic models for biogeochemical, 
hydroecological, cloud microphysical, and aerosol processes 

 Rational design and analysis of computer experiments to navigate very large 
parameter space with very large outputs 

 Model-driven high-throughput experimental data generation 
 Improving model development by incorporating genome-scale metabolic networks, 

regulatory networks, signaling and developmental pathways, microbial ecosystems, 
and complex biogeochemical interactions 

 New bioinformatics techniques to address the integration of genomics, proteomics, 
metagenomics, and structural data to screen for novel protein function discovery 

 Molecular modeling techniques that can address multiscale challenges 

 Combustion: 
– Predictive simulation capabilities that can accurately model combustion in new 

high-temperature, low-emission regimes
–  Robust and reliable ignition and combustion models for next-generation engines 

and power plants
–  Multiscale formulations that can exploit the specialized structure of typical  com-

bustion applications
–  Scalable algorithms for multiphysics reacting-flow problems
–  Improved discretization procedures
–  Management of software complexity
–  New tools for data management and information

 Nuclear fusion: 
– Accelerated development of computational tools and techniques to extend the 

scientific understanding needed to develop predictive models  
– Advanced computations (in tandem with experiment and theory) to deliver the 

new science and technology needed to achieve continuous power with higher Q in 
a device similar to ITER in size and magnetic field 

 Solar energy:  
– Exploration of huge parameter spaces  
– Identification of the best materials and designs for device improvement and 

optimization, either through direct numerical material-by-design searches or 
through new understanding of fundamental processes in nanosystems 

 Nuclear fission: 
– Identification of fuel cycles that reduce generation of high-level radioactive waste  
– Reducing the time required for fuel development and qualification 
– New tools for assessing life-cycle performance, addressing safety concerns, and 
predicting fuel rod behavior in accidents 
– Accurate predictions of the behavior of transuranic fuel  

Table I.2 Major challenges in exascale computing
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Topic

Astrophysics  Simulation of the formation of large-scale structures to understand the nature of dark 
energy 

 Detailed simulations of the formation of galaxies to compare with observational data, 
requiring dynamic ranges of order 10,000 in space and time 

 Full-scale simulation with validation quality of the helium shell flash convection 
zone in stars 

 Supernova models that include realistic nucleosynthesis studies 
 Accurate descriptions of binary systems (e.g., a black hole and a neutron star or two 

neutron stars) 

Technical areas 

Math and 
algorithms 

 Systematic approach for quantifying, estimating, and controlling the uncertainty 
caused by (e.g.) reduced models, uncertain parameters, or discretization error  

 Robust and reliable optimization techniques that exploit evolving architectures and 
are easy to use 

 Appropriate algorithms for novel optimization paradigms that can be implemented 
only at the exascale (e.g., hierarchical optimization problems over multiple time stages) 

 Handling of problems with hundreds of thousands of discrete parameters. 
 AMR for efficient solution of linear and nonlinear systems of partial differential 

equations (PDEs)  
 Dynamic load balancing  
 New data representations, data handling algorithms, efficient implementations of 

data analysis algorithms on HPC platforms, and representations of analysis results 
for massive data sets 

Software  Development and formal verification tools integrated with exascale 
   programming models   
 New fault tolerance paradigms  
 Application development tools, runtime steering, post-analysis, and visualization  
 New approaches to handle the entire data life-cycle of exascale simulations (effective 

formats for storing and managing scientific data, automatically capturing provenance,
seamlessly integrating data into scientists’ workflow)

Hardware  Performance per watt 
 Large-scale integration (packaging 10M to 100M cores with their associated 

memories and interconnects) 
 Integrated hardware- and software-based fault management  
 Integrated programming models  

Cyber 
infrastructure 

 Scalable and flexible resources for representing information and reducing 
information overload  

 Federated approach to:  
– Authentication and authorization  
– Creation and management of virtual organizations  

 Higher performance tools and techniques for data management and movement 
 Security products 
 Tools and techniques for system configuration, verification, troubleshooting, and 

management  
 Framework and semantics for integrating information in individual cyber security 

component systems for situational awareness, anomaly detection, and intrusion 
response 

 Data transfer tools that provide dedicated channels for control communication and 
graded levels of control 

Socioeconomic 
modeling 

   Comprehensive suite of validated models of unprecedented geospatial and temporal detail
 Comprehensive error analysis  
 Leverage of state-of-the-art climate modeling activities (to include economic 

prediction models under alternative climate regimes, supported by basic research into 
spatial statistics, modeling of social processes, relevant micro-activity and biosphere 
coupling issues, and relevant mathematical challenges, such as multiscale modeling) 

 Novel, robust numerical techniques and HPC approaches to deal with the expected 
orders-of-magnitude increase in model complexity  

 Assembly and quality control of extensive data collections 

Major challenges

Table I.2 Major challenges in exascale computing



Climate1
How can we improve our understanding of 
complex biogeochemical cycles that under-
pin global ecosystem functions and control 
the sustainability of life on Earth? The ur-
gency of developing a science of global eco-
systems is common for several key questions. 
The U.S. Climate Change Science Program 
and the Intergovernmental Panel on Climate 
Change (IPCC) have concluded that climate 
change will accelerate rapidly during the 21st 
century unless there are dramatic reductions 
in greenhouse emissions [Alley et al. 2007]. 
Assessments by the IPCC and the Military 
Advisory Board [CNA Corporation 2007] 
suggest that global warming could have se-
rious implications for the natural and social 
fabric in many parts of the world. Fortunately, 
sensible policies to reduce greenhouse emis-
sions could be formulated by using reliable 
climate forecasts and developing next-gener-
ation Earth system models (ESMs), including 
processes and mechanisms to represent the 
most likely mitigation strategies that depend 
on ecological and biological process over 
land, over oceans, and below the ground. 

To develop the necessary forecasts, scientists 
must address two major challenges. First, 
how well can we forecast with increased cer-
tainty the committed climate change over the 
next few decades resulting from historical 
emissions? Second, how well can we forecast 
longer-term climate change (Figure 1.1), in-
cluding interactions and feedbacks between 
all components of the ESM and at spatial 
scales of relevance to communities? The 
second question is particularly difficult to 
answer given our rather limited and rudimen-
tary knowledge of biogeochemical cycles and 
feedbacks. 

Meeting these challenges will require a quali-
tatively different level of scientific understand-

ing, modeling capability, and computational 
infrastructure from that represented in the 
current studies of global average quantities 
[National Research Council 2001]. Achiev-
ing this capability may be impossible without 
a concentrated effort over the next 5–10 years 
to develop the detailed process models that 
are demanded by increased spatial resolution 
and driven by societal needs. We believe that 
accelerating scientific development, through 
targeted attack and application of exascale 
simulation, is the best way to make a differ-
ence in the limited time while key decisions 
must be made.

We have identified ten key scientific ques-
tions that address major unsolved issues and 
represent targets of opportunity for computa-
tionally intensive simulation. Resolution of 
these questions will yield a much better, more 
defensible scientific grounding for policy and 
political discourse. Dramatic advances in the 
science will be required, however, to provide 
robust answers and quantitative estimates of 
uncertainty. After describing the urgent ques-
tions, we discuss the scientific advances that 
are necessary to address these issues. Com-
mon to many of the scientific advances are 
more accurate multiscale models that inte-
grate the physical, chemical, and biological 
processes in the climate system. 

A new type of multidisciplinary research pro-
gram is urgently required to advance the state 
of our knowledge, to address the attendant 
scientific challenges, and to project the future 
of Earth’s environment from the local to the 
global scale. Such a program is beyond the 
scope of the current limited, piecemeal ap-
proach to climate modeling adopted by sever-
al U.S. agencies. Required over the next 5–10 
years are focused and well-scoped invest-
ments in rapidly developing process-scale 
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science related to biological and ecological 
processes of the Earth system; new method-
ologies and software tools that can integrate 
these branches of Earth system science with 
the existing ESMs; and significantly larger 
computing resources, such as those proposed 
by the exascale program. The opportunity to 
positively affect the outcome of the current 
global change debate is restricted by the cur-
rent inability of the models to address these 
regional and local-scale impacts effectively. 
Significant investment over the next few years 
can lead to a quantitative impact on this pro-
cess. Climate science is largely data limited, 
and the success of the research is contingent 
on basic measurements and observations nec-
essary to validate, verify, and constrain ESMs. 
Quantifying the uncertainties in predictions is 
expected to require a new level of integration 
between modeling and observational science. 
New mathematical methods and algorithmic 
techniques will also be required to address 
the fundamental challenges of multiscale and 
multiphysics coupling. Even with exascale 
computing, approximations and assumptions 
must be made. Computing power has been 
and will continue to be a key factor in making 
these advances possible. 

1. Urgent Earth System 
Questions 

Each of the ten questions in this section 
present significant scientific challenges. In 
some cases, these challenges can be overcome 
by basic research into processes, better 
observation networks, deeper theoretical 
understanding, and more advanced modeling 
approaches. In all cases, the path will be 
more direct and progress accelerated if we 
can take advantage of petascale and exascale 
computational power. As the demand is 
amplified for accurate and reliable predictions 
of the causes and effects of climate change, 
the best approach that scientists can take is to 
continue the development of comprehensive 
ESMs that can be used as scientific tools 
to determine the safe concentration levels 
for CO2 and other greenhouse gases in the 
atmosphere. While the scientific community 
is engaged in expanding our theoretical 
knowledge and improving our observational 
depth, we are committed to exploiting our 
new understanding to address the societal 
challenges posed by climate change. This 
initiative will allow the science community to 
accelerate these efforts.

1.1 Development of Carbon 
Sequestration Process Models  

Decisions on land use and carbon capture and 
storage technologies will have to be made over 
the next few decades. Can we develop new and 
coupled models representing the microbial, 
ecological, and physiological processes for 
methods that are currently under consider-
ation in oceans, land, and subsurface?   

If we had five years to come up with a se-
questration strategy, we would have to use 
reduced-form models. Major factors are ne-
glected in such models; more detailed models 
clearly are desired to take account of carbon 
allocation under large perturbations, of plant 
mortality, of species migration, and of change 
rates.  The ability to do detailed and opera-
tional forecasting of the carbon cycle and 
climate in the 20- to 50-year range would 
put sequestration strategies on firm scientific 
ground and be a valuable tool in helping soci-

Figure 1.1 Relation between weather prediction and climate change studies. Climate 
prediction covers time scales of months to decades and has great relevance to threat 
assessment in hydropower, ecosystems, and energy sectors. (Image courtesy of 
Kevin Trenberth [NCAR]). 

Quantifying the uncertainties in 
predictions will require a new 
level of integration between 
modeling and observational 
science.
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ety adapt to decadal climate change and sea-
sonal transients.

The predictability of short-term carbon–
climate models must be rigorously assessed 
through evaluation with historical data sets. A 
significant emphasis of this theme will be to 
incorporate measurements and observations 
(Figure 1.2) to develop more mechanistic-
based models of the various ecological and 
biological processes at scales ranging from 
a single tree or plant to scales of ecological 
systems. For example, starting with the year 
1870 (preindustrial conditions), modeled car-
bon budgets driven by land use change and 
increasing atmospheric concentration can be 
performed with some certainty. Since predict-
ability in the decadal range is expected to be 
low (based on theoretical results, Figure 1.3), 
data assimilation techniques for carbon will 
be required to constrain these hindcast pre-
dictions. Because of slow decomposition of 
frozen soils in high latitudes, carbon storage 
in soil and litter is greater in this part of the 
global ecosystem, almost twice as concentrat-
ed in the boreal and tundra regions as in tem-
perate regions. With significant changes to 
the precipitation in high latitudes (up to 20% 
increase for IPCC scenarios), the possibility 
of abrupt changes and release of large stored 
carbon pools needs to be investigated. This 
effort requires model development and data 
collection to understand the processes that 
form the foundation for further model devel-
opment work and ultimate integration into an 
ESM. We do not know the sign of the carbon 
flux signal for many parts of the Earth under 
climate change scenarios.  

1.2 Characterizing and Bounding 
the Coupled Earth System

A systematic understanding of the mathemat-
ics of the climate system has yet to be discov-
ered. Can we develop a theory of internal and 
forced modes of multiphysics, multiscale com-
ponents that interact as a coupled system?

The paleo record provides evidence that the 
carbon cycle is well bounded, especially in the 
interglacial periods, but there are no asymp-
totic analyses of the cycle based on the math-
ematics of carbon–climate models. Clearly 

needed is a more rigorous systems approach, 
utilizing control theory for systems of partial 
differential equations (PDEs). Such a theory 
will allow model developers to determine 
whether important factors and processes are 
missing from current models and to pinpoint 
model components that contain errors when 
compared with the historical climate record.

Abrupt climate change, and the potential for 
rapid shifts from one climate equilibrium state 
to another, could be understood in the context 
of this system theory. The ability to develop 
accurate models that incorporate multiscale 
phenomena from process studies would be 
greatly advanced by such a theory.

1.3 Probability of Extreme Weather 
Events and Significant Shifts in 
Regional Climates 

As climate change accelerates, questions 
arise regarding the frequency and occurrence 
of extreme weather shifts in regional climate 
patterns. How can the climate models be 
adapted to meet these challenges? 

The study of extreme events using ESMs is 
just beginning, but this is just the kind of infor-
mation that affects community needs. Some 
of the largest impacts of climate change are 

Figure 1.2 The terrestrial biosphere as a consumer and producer of chemicals in 
the atmosphere. As chemicals cycle through plants, soil, and atmosphere, the long-
term feedbacks affect where they are stored. Nutrients such as nitrogen stimulate 
plant growth.

Models development is critical: 
In many cases we do not know 
even the sign of the carbon 
flux signal for many parts of the 
earth.
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associated with changes in relatively rare but 
extreme localized phenomena, such as more 
intense hurricanes, violent rainstorms, flash 
floods, and heat waves, as well as low-fre-
quency extremes such as droughts. More tem-
poral and spatial specificity at scales relevant 
for agriculture, industry, and society is not 
yet feasible from a computational viewpoint. 
The ability of existing models to accurately 
simulate extreme temperature and precipita-
tion events is severely limited by horizontal 
resolution constraints. Furthermore, since ex-
treme events are rare by definition, adequate 
statistical characterization of the tails of the 
distribution of weather events is required to 
make quantitative statements about changes 
in their behavior. It is likely that downscaling 
methods will still be needed to reach the local 
scale, even with exascale computing power. 
An important part of this challenge involves 
engaging stakeholders to iteratively define the 
interface and the important metadata needed 
to interpret or interpolate between analy-
sis tools, such as global information system 
(GIS) collections or GoogleEarth. How do 
we tell what is important? Can priorities be 
model-based?

Using models, we should be able to iden-
tify key triggering mechanisms for extreme 
weather and climate events and identify open 

scientific issues that introduce first-order 
uncertainties in climate forecasts. Since sta-
tistics are important for extreme events, a 
computational challenge arises in character-
izing the tails of the distributions where ex-
treme events occur. 

With petascale computing, horizontal reso-
lution can be increased to the 10- to 25-km 
scale, permitting reasonable simulation of 
tropical cyclones. Moderate increases in en-
semble size, from the current state of the art 
of 10 realizations to about 50 realizations, 
should also be possible. Exascale computing 
will permit a combination of further resolu-
tion increases to better resolve individual 
storms and increased ensemble size to better 
capture extreme value statistics. This will of-
fer a great advance in characterizing the un-
certainty of climate models and provide the 
impacts community with reliable expecta-
tions of models. 

1.4 Sustainability of the Tropical 
Rain Forest

Precipitation in the tropics is a leading-order 
factor governing the carbon cycle. What are 
the magnitude and stability of the carbon–
climate feedback for tropical ecosystems?

The Amazon rain forest plays a pivotal role 
in the climate and, in particular, the carbon 
cycle. If this ecosystem were to collapse, a 
large amount of carbon from decaying plants 
would be released into the atmosphere Since 
climate change simulations indicate that pre-
cipitation will decrease in the tropics under 
warming scenarios and that less snowmelt will 
feed the Amazon River basin, a drier Amazon 
could represent a positive feedback for global 
warming. Attempts to forecast this situation 
highlight the possibility of large changes in 
the next 50 years. 

New methods and models are urgently need-
ed, with increased details and significantly 
more species diversity of plant and microbial 
life. Also needed are mechanistic process-
based models of below- and above-ground 
ecology. Figure 1.3 Predictability of weather and climate models: high on the short time 

scales and in the long, asymptotic scales. Since many of the questions to be an-
swered are targeted to the 20–50 year range, the ability of models to provide reli-
able forecasts will be challenged. Image courtesy of Kevin Trenberth (NCAR).



1.5 Stability of the Polar Caps 
and Greenland and Antarctic Ice 
Sheets

Melting or breakup of either the Greenland 
ice sheet or significant portions of the Antarc-
tic ice sheet could cause a sea level rise of 6 m. 
What is the likelihood of this happening and 
on what time scale?

The past 15 years has seen an unanticipated 
acceleration of ice flow into the ocean from 
individual catchments of the Greenland and 
Antarctic ice sheets. If these accelerations are 
sustained, even larger portions of the polar 
ice sheets could become vulnerable to mass 
wasting, with potentially grave consequences 
for society. Sea level rise is likely the great-
est uncertainty in evaluating climate change 
impacts.

Currently we cannot exclude the possibility 
of a >1 m cumulative sea level rise over the 
next century because of partial collapse of the 
major ice sheets, in addition to the 0.5-m rise 
expected due to thermal expansion. This prob-
lem is coupled not only to the climate system 
but also to energy and population security. 
Densely populated coastal areas would be 
severely impacted. Critical infrastructure—
including oil refineries (80% of U.S. refining 
capacity is at ≤ 1.5 m above sea level), nucle-
ar power stations, ports, and industrial facili-
ties—is often concentrated around coastlines. 
Coastal biomes, many of which are implicitly 
part of coastal infrastructure designs, may be 
severely impacted worldwide. 

Exascale simulation is a key tool in predicting 
the likely course of ice sheet dynamics. Pre-
viously unanticipated complexity in ice sheet 
dynamics is emerging, and new observational 
techniques are providing a wealth of data on 
past and present controls on ice sheet change. 
A new dynamic ice sheet model must incorpo-
rate new processes, including ice-stream flow 
regime change, production and transport of 
basal fluids, surface-melt to bed lubrication, 
fracturing, grounding line physics, and ice-
shelf/ocean interactions. Such a model must 
represent scales appropriate for slow creep 
deformation and fabric formation within the 
vast ice sheet interior, fast plug flow and wa-

ter redistribution beneath ice streams, and 
their tributaries, and flow acceleration and 
divergence into an ice shelf. Successive de-
velopment will couple this ice sheet simulator 
to models of the dynamic earth, atmosphere, 
and ocean for predictions of future sea-level 
change. Systematic methods of constraining 
the model against the available datasets us-
ing inverse modeling have very high compu-
tational demands but will help yield robust 
results.

1.6 Release of Methane Hydrates

As warming occurs in the oceans and on land, 
frozen deposits of methane will be released 
into the atmosphere. What is the potential in 
the next 20–50 years for a sudden increase in 
warming as a result of melting of Arctic and 
ocean-shelf deposits of methane hydrates?

Historic records need to be further quantified, 
and new observations are needed to quantify 
the potential for a sudden release and posi-
tive feedback. High-latitude peatland regions 
are rapidly warming, and as permafrost melts, 
the shift from anaerobic to aerobic condi-
tions will need to be part of ESM land sur-
face schemes. Ocean-shelf methane hydrate 
deposits similarly will release methane as a 
threshold temperature is exceeded.   Models 
of methane hydrate deposits need to be de-
veloped and coupled to both the land surface 
process models and deep ocean circulation 
models.

1.7 Sustainability of Sea Life

The increasing concentration of atmospheric 
CO2 is changing the pH of the ocean. What 
level of change will trigger coral reef col-
lapse, impacts on fisheries, megafauna 
changes, and a change in the ability of ocean 
organisms to take up CO2?

The ocean removes a large percentage of CO2 
from the atmosphere. The increased levels of 
CO2 in the ocean reduce the carbonate ions 
available for producing calcium carbonate 
shells. The result is that the skeletal growth 
rates of corals and some plankton can slow, 
and in extreme cases some shells may even 
dissolve. Research is needed to understand 
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Exascale simulation is a key 
tool in predicting the course of 
sheet ice dynamics.
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the ocean’s role as a “sink” for CO2 and to 
determine the potential impacts on the ocean 
food web.

1.8 Sustainability and Agricultural 
Ecosystems

The shift from agricultural or forest produc-
tion to production of crops for biofuel could 
be a significant change in land use patterns 
in 10–20 years. How might this change the 
climate’s hydrologic cycle and affect the 
potential for carbon sequestration of the 
biosphere?

Biofuels offer an attractive alternative fuel 
source that reduces the net emissions of CO2 
into the atmosphere and enhances our inde-
pendence from declining and potentially un-
stable sources of petroleum. Development 
of other fuel sources also looks promising. 
The benefits and drawbacks need to be con-
sidered, however, in the context of a carbon 
sequestration strategy, pollution control, and 
the hydrological cycle. To this end detailed 
models of agricultural ecosystems are needed 
at the level of each crop and associated land 
use (see Figure 1.4). Existing models are fair-
ly simple and parametric [Ma, Shaffer, and 
Ahuja 2001]. A significant investment and 
larger computational resources are urgently 
needed to advance the development of these 
models and their integration into an ESM. 

1.9 Changes in Precipitation 
Patterns and Hydrology

Regional scale shifts in climate patterns could 
stress surface and groundwater resources 
and lead to a disruption of current levels of 
agriculture production and overall econom-
ic sustainability. What is the extent of these 
changes, where do they occur, how often, and 
what do we need in the ESM to predict these 
changes with some certainty?

The intelligence community is calling cli-
mate change a serious threat to global secu-
rity. Competition over water resources under 
stress and regional scale shifts in precipita-
tion patterns could further affect security and 
political stability in many areas of the world.  
An increase in confidence in ESM predictions 

at these scales for precipitation and hydrol-
ogy is essential to effectively address these is-
sues over the next couple of decades. Model 
development focused on methodologies for 
dealing with the stochastic nature of precipi-
tation is urgently needed, as is development 
of more hydrological basin-scale based ap-
proaches for predicting river flow and un-
derground water resources. New approaches 
with remotely sensed GRACE (Gravity Re-
covery and Climate Experiment) water levels 
and data assimilation techniques will reduce 
these groundwater model uncertainties. 

1.10 Dynamical Linking of 
Socioeconomic and Climate 
Responses

At present, there exist one-way and loosely 
coupled flows of information between physi-
cally based ESM and socioeconomic model 
interfaces. How can we ensure two-way dy-
namic feedback between these models? 

Current models are moving from prescribed 
emissions scenarios to dynamic emission 
scenarios, and ESMs are beginning to include 
dynamic feedback from impacts models [Fos-
ter 2007]. Bringing the needed feedbacks into 
a coupled ESM requires a methodology for 
incorporating social response as a function of 
climate into the emissions scenarios, incorpo-
ration of detailed local-to-regional socioeco-
nomic phenomena, and decision-game theory 
mapped into these concepts.

2. State of the Art

The science surrounding the biogeochemi-
cal coupling of climate has become central 
to answering these questions as we learn 
more about how the coupled carbon cycle 
has changed in the fossil record, how it is 
changing now, and how it might change in re-
sponse to global climate change. Addressing 
the science issues will require new observa-
tions and methods of analysis, new theoreti-
cal understanding of the carbon cycle, and 
new models of the Earth system that include 
the interactions between human society and 
the environment. These models play pivotal 
roles in interpreting the paleoclimate records, 
in synthesizing and integrating measurements 
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Competition over water 
resources threatens security 
and political stability in many 
areas of the world: New models 
are needed for predicting river 
flow and underground water.



to study the current carbon cycle, and in pro-
jecting the future responses of human soci-
ety and the natural world to evolving climate 
regimes.

One of the most promising pathways to im-
proving our understanding has been to de-
velop models that represent the complexity of 
interactions in the Earth system as accurately 
as possible. Over the past 30 years, these mod-
els have advanced considerably in spatial and 
temporal resolution and in the representation 
of key processes. However, forecasts of envi-
ronmental and societal responses to climate 
change remain highly uncertain. The principal 
challenges are quantifying the sources of un-
certainty, reducing the level of uncertainty at 
all scales using observations and fundamental 
theory, and understanding the natural and an-
thropogenic feedbacks in the climate system. 
New, multidisciplinary teams of physical, 
biological, and social scientists could accel-
erate progress on these challenges with trans-
formational levels of computing.

The carbon cycle has been characterized 
by using observations from ships, land sur-
face sites, and aircraft. The amounts of CO2 
in and exchanges of CO2 among the atmo-
sphere, ocean, and land have been estimated 
to the first order. Representations of the car-
bon cycle have been introduced into a first 
generation of ESMs. In contrast to earlier 
atmosphere-ocean general circulation models 
(AOGCMs), ESMs can simulate the coupled 
physical, chemical, and biogeochemical state 
of the Earth system. Modern AOGCMs oper-
ate on terascale systems, realistically repro-
duce the historical record of global warming, 
and consistently attribute this warming to 
human-induced changes in atmospheric 
chemistry. 

One method of assessing our state of under-
standing is to compare the process- and sys-
tem-level simulations from multiple ESMs for 
a single scenario for anthropogenic emissions 
in hindcast and forecast modes for integration 
periods ranging from seasons to centuries. 
Recent studies indicate that the simulated 
carbon cycle interacts with climate change 
to increase, not decrease, the uncertainty in 
these forecasts. This uncertainty is caused by 

many factors, but one of the most important 
is the large range of projections for tropical 
precipitation. This illustrates that better un-
derstanding of biogeochemical cycles is, to a 
large degree, contingent on better understand-
ing and simulation of the physical climate. 
Systematic error reduction of the physical 
climate system needs to progress concurrent 
with the advancement of ESMs with biogeo-
chemical processes and ultimately socioeco-
nomic/energy and emissions feedbacks. In 
addition, the simulated carbon cycle tends to 
amplify global warming, although this ampli-
fication is also quite uncertain. The feedback 
is caused by changes in the terrestrial carbon 
cycle that are difficult to test empirically with 
our limited observational network and limited 
process models. The feedbacks could become 
important and could therefore confound ef-
forts to mitigate climate change in the latter 
part of the 21st century.

Human society has been measurably perturb-
ing the natural carbon cycle since the mid-
18th century. Thanks to comprehensive data 
on the production and use of fossil fuels, we 
can quantify the emission of CO2 from these 
fuels and its disposition throughout the cli-
mate system. It is unclear, however, whether 
we have socioeconomic models capable of 
hindcasting or predicting emissions of CO2 
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Figure 1.4 Biofuel production will entail land use changes that interact with the cli-
mate system. National, regional, and local impacts could be modeled in an exascale 
Earth system model.

Exascale computing will 
enable scientists to reduce the 
uncertainty in models of natural 
and anthropogenic feedbacks in 
the climate system.



12

with sufficient accuracy for policy formation. 
This lack of certainty arises especially be-
cause these models can be evaluated only by 
using historical data, whereas the economic 
transformations required to mitigate climate 
change are without historical precedent.

In summary, significant advances in under-
standing biogeochemical cycles will follow 
from

integration of models and observations of • 
the carbon cycle,

process-level modeling of biogeochemi-• 
cal cycles across space and time scales,

accurate models of the coupled physical • 
and biogeochemical system, and 

robust economic models hindcasting and • 
predicting climate-changing pollutants

Attaining these new capabilities requires new 
approaches that extend across the traditional 
disciplines of geophysics, biology, and ecol-
ogy. Major advances are needed in observa-
tional, theoretical, and computational studies 
of our environment.

3. Major Challenges 
Three major technical challenges face scien-
tists in understanding biogeochemical cycles.

3.1 Integration of Models and 
Observations of the Carbon Cycle

Meteorological and oceanic analyses have be-
come an important tool for studying the mean 
state and variability of the current physical 
climate. Such analyses are constructed by 
using a model that is adjusted by incorporat-
ing observations during its integration. These 
analyses have proved particularly useful for 
understanding the relationship between ob-
servations and the underlying dynamics of 
the climate system. It would be especially 
valuable to have a comparable analysis of 
biogeochemical cycles that could relate local 
and global biogeochemical processes. 

No extant analyses encompass the physical, 
chemical, and biogeochemical processes in 
the climate system. Development of these 
analyses will require significant investment 

in assimilation systems for chemical and bio-
geochemical observations from in situ and 
satellite platforms. Also required will be con-
siderably more advanced models to under-
stand the error characteristics of the analysis 
system.

3.2 Process-Level Modeling of 
Biogeochemical Cycles

Simulation of biogeochemical cycles requires 
detailed understanding of terrestrial and oce-
anic ecosystems; the exchange of organic and 
inorganic carbon compounds with other parts 
of the climate system; and the fluxes of en-
ergy, water, and chemical compounds (e.g., 
nutrients) that affect these ecosystems. The 
critical nutrient cycles for ocean and land 
ecosystems span time scales ranging from a 
few days (e.g., nitrogen) to over 1000 years 
(e.g., iron). Modeling over these large time 
scales to fully evaluate the couplings between 
biogeochemical cycles and ecology will be a 
significant computational challenge. The spa-
tial heterogeneity in the biosphere is a funda-
mental issue overlying much of this science. 
New models are needed to develop sensible 
volume/area/mass-averaged and mass-con-
serving idealizations that preserve the het-
erogeneity of the process and still allow for 
a degree of conceptualization. Other major 
challenges are the sophistication of the eco-
logical representations, the effects of high-
frequency spatial and temporal variability on 
the carbon cycle (e.g., fronts and eddies), and 
the behavior of the biogeochemical cycles in 
coastal zones [Doney 2004]. 

The ecosystem representations tend to be 
formulated as paradigms of ecological func-
tions. The field certainly needs more mecha-
nistic models of these ecosystems constructed 
at the level of individual organisms. It also 
needs much more detailed understanding of 
the nutrient networks and how these networks 
affect the carbon cycle. The effects of sharp 
gradients or rapid changes in the physical 
environment of the components of the car-
bon cycle are not well understood. With the 
advent of ultrahigh-resolution ESMs over 
the next decade, scientists should be able to 
probe the effects of rapid variability on scales 
much smaller than the mesoscale. 
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Coupling of biogeochemical 
cycles with ocean and land 
ecosystems requires simulation 
over time sales from a few days 
to thousands of years.



Moreover, the biogeochemistry in coastal 
zones has not been adequately studied. These 
regions have been challenging to simulate in 
global models with insufficient resolution to 
resolve the coastal regions, the discharges of 
river sediments into the regions, and other re-
lated features.

3.3 Accurate Models of 
the Coupled Physical and 
Biogeochemical System

Global models of the Earth system are irre-
placeable tools for studying the past, pres-
ent, and future climate. The accuracy of 
these models can, for some processes, be 
determined through comparisons with fun-
damental theory, with observations, or with 
benchmark computational models. For many 
processes—for example, the formation and 
evolution of clouds and convection—no 
practical fundamental theory exists. These 
processes are represented in AOGCMs and 
ESMs by using simplified statistical repre-
sentations, or parameterizations. There is also 
no mathematical theory for the derivation of 
parameterizations from either observations or 
benchmark computational models. As a re-
sult, the parameterizations in ESMs represent 
a primary source of uncertainty, both in the 
reliability of the models as predictive tools 
and in the fidelity of models to the actual 
processes in nature. This uncertainty is mani-
fest in the uncertainties regarding the sign of 
cloud feedbacks on climate change, the sign 
of convective feedbacks on water vapor, and 
so forth.

While it is relatively easy to evaluate the 
simulations produced by using parameteriza-
tions from observations and benchmark cal-
culations, it has proved extremely difficult to 
determine how to improve the parameteriza-
tions based on these evaluations. It has also 
proved difficult to quantify accuracy—in a 
basic sense, it is not clear what level of ac-
curacy is attainable. It is well known that 
weather cannot be predicted accurately be-
yond roughly one week because of the fun-
damental sensitivity of fluid evolution to the 
initial conditions of the fluid. However, there 
is no analogous theory for seasonal, interan-
nual, decadal, or centennial prediction.

At a minimum, enhanced computing ca-
pability should make it possible to replace 
parameterizations selectively with computa-
tionally intensive representations at the limit 
of our present theoretical understanding. For 
example, with exascale computing it may 
be possible to replace conventional param-
eterizations of the carbon cycle (over limited 
domains) with mechanistic models that repre-
sent individual organisms. It should also be-
come possible to replace conventional cloud 
parameterizations with models of cloud for-
mation based on the fundamental physics of 
condensation. 

Ocean models will make better use of the 
placement of grid points through unstructured 
and adaptive mesh technologies that allow 
for eddy-resolving simulations with dynamic 
coasts, sea-level rise, detailed boundary cur-
rents, and refinement of critical areas of the 
bathymetry such as sills and overflows. De-
tails of tidal mixing—as tides move over ice 
melts and enhance melting—will couple with 
sea and land ice sheet models for accurate pre-
diction of sea-level rise. At the petascale, we 
will simulate for centuries; at the exascale, the 
millennial time scales of the deep circulation 
will be simulated. A seamless suite of climate 
prediction capability would be a potential aim 
of the ESM in the future. 

4. Feasible Objectives over 
the Next Decade
Despite the significant challenges outlined 
above, we are confident that significant prog-
ress can be made in biogeochemical simula-
tion within the next 10 years.

4.1 Integrated Models and 
Measurements of Biogeochemical 
Cycles

Integration of models and observations of 
the Earth system appears feasible in the next 
5–10 years. The integration should include 
new measurements of the carbon cycle from 
planned deployments of automated ocean-
sondes and aerosondes and from new satel-
lites such as the Orbiting Carbon Observatory 
and Earthcare. These new observational data 
streams will give total column CO2 measure-
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Global models of the Earth 
system are irreplaceable tools 
for studying past, present, and 
future climate. 
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ments. They will enable studies critical for 
detection and attribution of changes in the 
carbon cycle, such as the characterization of 
the natural variability in the coupled carbon 
cycle, the response of biogeochemical sourc-
es and sinks to natural variability in physical 
climate, and the ways in which natural dis-
turbances such as fires and volcanoes perturb 
biogeochemical cycles.

The coupling of ocean pH with atmospheric 
CO2 will allow a closer examination of the 
ability of sea life to adapt to and tolerate cli-
mate change. The complexity of the ocean 
ecosystem suggests that the carbon cycle is 
only the first step in coupling the terrestrial 
biosphere with climate. For example, iso-
prene emissions from Pacific Ocean algae 
appear to have an effect on cloud forma-
tion. Models of secondary organic aerosols 
(SOAs), when compared with the best field 
measurements, underestimate SOAs by a 
factor of 10. The treatment of cloud aerosol 
interactions, and particulates in general, will 
be important for predicting radiation changes 
as well as nutrient cycles for land and ocean 
ecosystems. These treatments require devel-
opment of much better microphysical models 
of multicomponent aerosols for the full mul-
tidecade range of particle sizes observed in 
the atmosphere. Physically based and com-
putationally demanding models based on the 
aerosol general dynamic equation should be 
reconsidered. A comprehensive methodol-
ogy for generating SOAs from the poten-
tially numerous organic compounds in the 
atmosphere from anthropogenic and biogenic 
emissions should be developed. This method 
will help in delineating the differences be-
tween the various degrees of biomass in a 
burning plume, a cause for much uncertainty 
for calculating radiative forcing in the current 
models. Cloud-resolving models at very high 
spatial resolution will need cloud condensa-
tion nuclei and droplet activation models that 
go beyond the current parametric representa-
tion and that can account for multicomponent 
aerosols with surfactants and with inert and 
hydrophilic particle nuclei. The impacts of 
biomass burning on air quality give urgency 
to addressing the scientific challenge of un-
derstanding these processes and ensuring that 

the model is doing the right thing for the right 
reasons.

4.2 Development of Next-
Generation Ecological Models 

Ecological models representing the diversity 
of plant life are under development [Stich 
2003]. Most of these models are highly para-
metric, are primarily based on individual data 
sets, and tend to be site specific. The recent 
generation of dynamic vegetation models has 
started taking a more holistic approach to rep-
resenting this diversity and heterogeneity by 
adopting macroscale aggregation based on 
plant functional types. However, agricultural 
ecosystems either are not present or find lim-
ited roles in these models. Since agricultural 
ecosystems are among the largest terrestrial 
ecosystems, better representation of these 
systems in terms of individual crops and cli-
mate zones is needed. 

One possible solution is to build a hierarchy 
of models that can represent the diversity and 
heterogeneity of the ecological processes 
found in agricultural systems. Complexity 
could range from an agricultural crop mon-
oculture to a diverse native prairie, and from 
these models one could develop reduced-
form models with higher levels of abstrac-
tion. These reduced-form models could be 
functionally similar to the current genera-
tion of dynamic vegetation models (DVMs) 
with capability to both affect and respond to 
the dynamics of the more detailed models. 
Individual-based or agent-based modeling 
approaches could be targeted for develop-
ing these detailed models. Development of 
mechanistic process-based models would be 
needed for below-ground soil and microbe 
processes, in addition to the physiology of and 
competition among plant functional groups. 
Approaches such as genomic typing that are 
under consideration for representing micro-
bial life would be evaluated and targeted for 
further development. If implemented, such a 
modeling approach would enhance our ability 
to plan for mitigation strategies such as car-
bon sequestration that involve the biosphere 
and land processes.

Section 1: Climate

A hierarchy of models is needed 
to represent the diversity and 
heterogeneity of ecological 
processes in agricultural 
systems.



4.3 Better Theory for and 
Quantification of Uncertainty

Formulating a firm theoretical foundation for 
uncertainty quantification will require major 
new approaches to error attribution and new 
developments in the mathematical theory for 
complex model systems. The motivation for 
realizing such a foundation follows from the 
challenge to develop demonstrably more ac-
curate models. If we understand the sources 
of uncertainty, we may be able to make mod-
els so good in particular areas that we are at 
the limits of what we can learn from observa-
tion. Conversely, where models are uncertain, 
we may be able to suggest observations or ex-
periments that would significantly add to our 
knowledge of the climate system.

The propagation of uncertainty through a 
coupled model is particularly challenging be-
cause nonlinear and non-normal interactions 
can amplify the forced response of a system. 
New systematic theories about multiscale, 
multiphysics couplings are needed to better 
quantify relationships. Such theories will be 
important as ESM results are used to couple 
with economic and impact models. The sci-
ence of the coupling and the quantification 
of uncertainties through coupled systems are 
necessary groundwork to support complex 
decisions that will be made over the next few 
decades.

5. Accelerating Development
Advances in our understanding require im-
proved observations, theory, and computa-
tionally based models of the climate system. 
Here we focus on three areas that will accel-
erate such development: model development 
teams, close interaction with applied math-
ematicians, and high-end simulation. In each 
case the emphasis is on collaboration with 
ecologists and biologists, social scientists and 
economists, and applied mathematicians and 
systems experts.

5.1 Focused Model Development 
Teams with Dedicated Resources

At present, climate modelers develop ESMs 
in a mode suitable for large scientific enter-
prises. However, assessing the impacts and 

mitigation of climate change requires ESMs 
that have been designed from the outset to 
couple to models for ecology, biology, society, 
and the economy. The design and exploitation 
of these models would be greatly enhanced 
by direct collaborations between the climate 
community and ecologists, biologists, social 
scientists, and experts in public policy. 

The design of mitigation strategies that adapt 
to the changing climate and our understanding 
of those changes requires new combinations 
of econometrics and game theory. The cli-
mate community should collaborate directly 
with mathematical economists to incorporate 
and study the behavior of interactive mitiga-
tion modules in ESMs.

Topics to be addressed by the development 
teams include the following:

High-resolution ESMs with massive as-• 
similation of satellite and other data

Hierarchical unit testable models with re-• 
quirements for accuracy in the ESMs

Detailed modeling of controlled and • 
modified ecosystems to fit the environ-
mental envelope in which future climate 
changes will occur

Greater scalability and identification of • 
greater degrees of parallelism

Process-scale mechanistic models for • 
biogeochemical, ecological, and aerosol 
processes

5.2 Applied Mathematics and 
Computer Science Collaborations

The climate community needs to force much 
closer collaboration with applied mathema-
ticians to address the complexity of climate 
models. Such collaborations could be useful 
in theoretical studies of climate models as dy-
namical systems, new approaches to quantify 
and reduce uncertainty, new methods to syn-
thesize models and data, and techniques to 
parameterize very complicated processes. 

Two cross-cutting developments are critically 
needed: (1) new applications of new algo-
rithms in the physical climate model and (2) 
new software architectures and rapid devel-
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Formulating a firm theoretical 
foundation for uncertainty 
quantification requires 
major new approaches to 
error attribution and in the 
mathematical theory for 
complex model system.
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opment environments to facilitate code refor-
mulation and refactoring.

5.3 High-End Simulation Capability 

Individual ESMs in the next IPCC assess-
ment will produce on the order of a petabyte 
of output. Data volume of this magnitude is 
already taxing traditional (and usually serial) 
analysis techniques and database systems. 
The new class of ESMs for the environment 
and society could produce truly prodigious 
amounts of model data. Extraction of infor-
mation critical for impact studies (e.g., sys-
tematic shifts in precipitation extremes and 
natural modes of variability) will require new 
approaches in data archiving, data mining, 
and feature extraction. Figure 1.5 shows the 
balance of modeling investments that result 
from the availability of terascale, petascale, 
and exascale computers. Factors such as 
model complexity are traded for resolution, 
given limited computational resources.

Specific needs as we move toward the exas-
cale include the following:

Rational design and analysis of computer • 
experiments to navigate very large pa-
rameter space with very large outputs 

Advances in analysis tools with paral-• 
lelized capabilities, and the ability to 
explore the full climate solution space 
using climate experiments based on data 
mining, objective and repeatable metrics 
(e.g., Taylor diagrams), and expert pat-
tern recognition and learning capabilities

Increased computational capacity and ca-• 
pability with dedicated cycles for large 
climate change studies

Given the urgency of finding answers to key 
questions, and the added complexity of the 
modeling enterprise in the exascale environ-
ment, the staffing and training of the next 
generation of Earth and computational scien-
tists are limiting factors. Exascale machines 
will require a new level of engagement from 
the algorithmic point of view. In Table 1.3, 
the shift in algorithmic focus is shown. Mul-
tiscale problems are forcing us to consider 
many new algorithmic approaches. Com-
puter hardware components and the underly-
ing operating systems will also be subject to 
unprecedented demands.  The climate com-
munity will have to form even closer collabo-
rations and alliances with hardware vendors 
and systems developers to address these ma-
jor issues.

6. Expected Outcomes

The most important outcome of acceler-
ated development and understanding will be 
quicker answers to the key questions that the 
climate science community is being asked. 
At the same time, we will be building mo-
mentum for stronger leadership and depth in 
climate research and creating the ability to 
produce reliable climate forecasts.

These activities should enable the develop-
ment of entirely new methods for the attri-
bution of errors in environmental simulation 
and understanding. These methods will be 
based on a hierarchy of ESMs running at var-
ious ultrahigh resolutions combined with a 
hierarchy of process-level models of varying 
complexity. It should become feasible to sep-

Section 1: Climate

Figure 1.5 Investment of exascale and petascale computational resources in sever-
al aspects of a simulation: spatial resolution, simulation complexity, ensemble size, 
etc. Each red pentagon represents a balanced investment at a compute scale.



arate the uncertainties in the model into terms 
associated with the frontiers of understand-
ing at the process and observational level. At 
present, the errors are frequently caused by 
the relatively simple reductions of these pro-
cesses and observations incorporated in cur-
rent AOGCMs. The accelerated development 
should make it feasible to separate model er-
ror into three categories:

Asymptotic process uncertainties — er-• 
rors remaining in the limit of the greatest 
process fidelity (e.g., incorporation of full-
complexity cloud models) based on fun-
damental theory that can be constrained 
by observations. These uncertainties are 
also caused by the interactions of errors 
among process representations.

Asymptotic scale uncertainties — errors • 
in the mean state and uncertainties in its 
high-order statistics (e.g., extremes) re-
maining in the limit of highest possible 
spatial and temporal resolution. These are 
due to couplings between the processes, 
state, and dynamics out of the reach of 
modern observational systems.

Asymptotic state uncertainties — errors • 
in the constituents of the system (the 
mixture of condensed and gaseous spe-
cies) remaining in the limit of the most 
detailed possible constituent treatments. 
Representative treatments include master 
chemical mechanisms and aerosol mod-
ules that track huge ensembles of indi-
vidual aerosol particles.

It should also become feasible to attribute un-
certainties in studies of impacts, adaptation, 
and mitigation to uncertainties in observa-
tion, theory, and computation. For example, 
this type of attribution will be facilitated by 

using massive ensembles of ESMs with per-
turbed physics coupled to models for ecology, 
biology, and society. The expected outcome 
will be twofold:

Detailed and comprehensive informa-• 
tion regarding the probabilistic risks of 
climate change for the environment and 
society

Better engagement of stakeholder com-• 
munities to define information interfaces 
that inform decision processes

7. Major Risks 

The major risks to this enterprise are similar 
to those that have historically impeded better 
understanding of climate and biogeochemical 
cycles. 

Lack of sufficient data to constrain key cli-
mate processes. One major risk is the lack 
of sufficient observational data to develop, 
test, and evaluate new process models. For 
example, there are essentially no routine ob-
servations of the vertical velocity of the atmo-
sphere, and the observations that are available 
are collected at isolated surface sites. The ab-
sence of data on vertical velocities has made 
it much harder to understand and model the 
interactions of aerosols and clouds, the dy-
namics of the boundary layer, and the vertical 
mixing of chemical compounds. 

Slow reduction of model uncertainty due to 
highly intractable or more complicated cli-
mate processes. It may prove quite difficult 
to reduce the uncertainties in hindcasting, 
forecasting, or present-day simulation of the 
coupled climate system. For example, the 
range of equilibrium climate sensitivity has 
remained essentially unchanged over the past 
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Code Structured 
grids

Unstructured 
grids

FFT Dense 
linear 
algebra

Sparse 
linear 
algebra

Particles Monte 
Carlo

Data 
assimilation

Agents

CAM X X X X X X
POP X X X X
CLM X X X X
CICE X X X X X

Table 1.1 The “seven dwarfs” extended for atmosphere, ocean, land, and sea ice models. New developments are highlighted.
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30 years of model development. While the 
transformation of computing over this time 
has enabled the development of much more 
realistic climate models, estimates of sensitiv-
ity from ensembles of AOGCMs have still not 
converged. Although this lack of convergence 
is usually attributed to the rapid increase in 
process complexity, it is caused primarily 
by uncertainties in basic processes that have 
been studied intensively for decades, includ-
ing cloud evolution and convection.

Absence of adequate diagnostic frameworks 
connecting forcing, response, and initial 
conditions. The climate community has not 
developed methods to link errors in climate 
simulation to errors in process representation, 
forcing, or initial conditions. The major dif-
ficulty is in attributing error in highly non-
linear systems with huge numbers of degrees 
of freedom (e.g., AOGCMs). Conversely, the 
absence of a basic theory of error attribution 
complicates efforts to understand the connec-
tions between process-level realism and the 
fidelity of the entire model system. This risk 
is also related to the lack of proper diagnostic 
tools suitable for analysis of complex ESMs.

Overly complicated models. The rapid de-
velopment of ESMs could produce models 
that are too complicated or too expensive for 
adoption by the academic, impacts, or mitiga-
tion communities. 
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Energy:
Combustion2A

Combustion currently provides 85% of U.S.  
energy needs.  Furthermore, because of large 
infrastructure costs, combustion will continue 
to be the predominant source of energy for the 
near and middle term. However, environmen-
tal, economic, energy security, and American 
competetiveness concerns, coupled with the 
specter of a diminishing supply of oil, are 
driving a shift toward alternative fuel sources. 
New combustion systems are needed to utilize 
these fuels with high efficiency while meet-
ing stringent requirements on emissions. For 
example, new power plant concepts based on 
clean coal technologies, such as FutureGen 
[DOE Office of Fossil Energy 2004], require 
novel combustion systems that can burn ei-
ther hydrogen or syngas. For transportation, 
new engine concepts will be needed to reduce 
emissions while simultaneously shifting to 
operate with alternative fuel sources. These 
new sources—whether oil shale, oil sands, 
biodiesel, or ethanol—all have physical and 
chemical properties that vary significantly 
from traditional fuels. 

1. State of the Art

Land-based stationary gas turbines constitute 
a significant portion of the power generation 
industry. As part of the overall system design 
for next-generation power plants, there is 
considerable interest in developing clean and 
efficient burners for turbines that can oper-
ate with a variety of fuels such as hydrogen, 
syngas, and ethanol. Concepts based on lean 
premixed burners have the potential to meet 
these requirements because of their high ther-
mal efficiency and low emissions of NOx due 
to lower post-flame gas temperatures. How-
ever, combustion in this regime occurs near 
the lean flammability limit, making the flame 
susceptible to local extinction, emissions of 

unburned fuel, and large-amplitude oscilla-
tions in pressure that can result in poor com-
bustion efficiency, toxic emissions, or even 
mechanical damage to turbo machinery. A 
fundamental understanding of the dynamics 
of premixed flame propagation and structure 
for a variety of different fuels is needed to 
advance combustion modeling capability and 
thereby achieve the engineering design goals 
for new power plants. 

Transportation is the second largest consum-
er of energy in the United States, responsible 
for 60% of our nation’s use of petroleum, an 
amount equivalent to all of the oil imported 
into the United States. Virtually all transpor-
tation energy today comes from petroleum. 
The nature of transportation technologies pro-
vides opportunities for significant (25–50%) 
improvements in efficiency through strate-
gic technical investments in both advanced 
fuels and new low-temperature engine con-
cepts [DOE Office of Basic Energy Sciences 
2006]. Such enhanced efficiency will aid in 
energy conservation and minimize environ-
mental impact. Methods involving low-tem-
perature compression ignition (LTC) engines, 
such as homogeneous charge compression 
ignition, offer diesel-like efficiency with the 
environmental acceptance of current gaso-
line-fueled cars. These engines operate under 
high-pressure, low-temperature, dilute, and 
fuel-lean, oxygen-rich conditions compared 
to current designs. These new concepts rely 
on subtle control mechanisms that require a 
fundamental understanding of combustion 
science in these relatively uncharted regimes 
of combustion for their optimal implemen-
tation. Although LTC-based designs have 
shown promise in reducing energy consump-
tion, pollutant emissions, and greenhouse 
gas emissions, the combination of unex-

To achieve the design 
goals associated with lean 
combustion, researchers need 
a fundamental understanding of 
the dynamics of premixed flame 
propagation.



20

Section 2A: Energy: Combustion

plored thermodynamic environments and new 
chemical fuel properties results in complex 
interactions among multiphase fluid mechan-
ics, thermodynamic properties, and chemical 
kinetics—the so-called aero-thermo-chemical 
interactions—that are not understood even at a 
fundamental level.    

These new design concepts for both power 
generation and transportation will operate in 
combustion regimes that are not well under-
stood. Effective design of these systems will 
require new computational tools that provide 
unprecedented levels of chemical and fluid 
dynamical fidelity. Current engineering prac-
tice is based on relatively simple models for 
turbulence combined with phenomenological 
models for the interaction of flames with the 
underlying turbulent flow. Design computa-
tions are often restricted to axisymmetric 
flows or relatively coarse three-dimensional 
(3D) models with low-fidelity approxima-
tions to the chemical kinetics. Although these 
approaches have proven extremely effective 
for traditional combustor design, a dramatic 
improvement in fidelity will be required to 
model the next generation of combustion de-
vices. Next-generation, alternative-fuel inter-

nal combustion engines and power plants will 
operate in nonconventional, mixed-mode, 
turbulent combustion under previously unex-
plored aero-thermo-chemical regimes. Com-
pared to current devices, combustion in these 
next-generation devices is likely to be char-
acterized by higher pressures, lower tempera-
tures, higher levels of dilution, and excess air 
(fuel-lean). In this environment, near-limit 
combustion sensitivities are amplified—for 
example, ignition, flammability, and extinc-
tion (see Figure 2A.1). These near-limit flame 
characteristics not only govern efficiency, 
combustion stability, and emissions but also 
determine the very existence of combustion 
in many situations. 

Combustion processes in these environments, 
combined with new physical and chemical 
fuel properties associated with non-petro-
leum-based fuels, result in complex interac-
tions that are unknown even at a fundamental 
level. These unknown parameters place new 
demands on simulation and severely restrict 
our ability to predict the behavior of these 
systems from first principles and our ability to 
optimize them. There is an urgent demand for 
high-fidelity simulation approaches that cap-
ture these aero-thermo-chemical interactions 
and, in particular, capture and distinguish 
the effects of variations in fuel composition. 
Future combustion technologies will require 
an unprecedented level of fundamental un-
derstanding to develop a new generation of 
predictive models that can accurately repre-
sent the controlling combustion processes for 
evolving fuel sources.

To achieve these goals, we need a deeper sci-
entific understanding of the combustion pro-
cesses and advanced modeling technologies 
to encapsulate that understanding in engi-
neering design codes. Theory and experiment 
alone cannot address these issues.  Theory 
cannot provide detailed flame structure or 
the progression of ignition in complex fuels, 
while experimental diagnostics provide only 
a limited picture of flame dynamics and igni-
tion limits. For example, advanced nonintru-
sive laser diagnostics are extreme constraints 
at high pressure because of constraints on 
optical access and inherent limitations in the 
spectroscopy. Numerical simulation, working 

Figure 2A.1  Panel (a) Experimental measurement of the hydroxyl radical OH using 
planar laser-induced fluoresence and showing local extinction of a premixed hydro-
gen flame at ultralean conditions.  Recent advances in simulation have made it pos-
sible to capture this phenomenon in idealized simulations. Panel (b) Slice through a 
three-dimensional simulation that captures the local extinction phenomena. 
Panel (c) View of the flame surface in the simulation.
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in concert with theory and experiment, has the 
potential to address the interplay of fluid me-
chanics, chemistry, and heat transfer needed 
to address key combustion design issues.  

Recent developments in numerical method-
ology for combustion simulations in combi-
nation with new high-performance parallel 
computing architectures have enabled dra-
matic improvements in our ability to simulate 
reacting flow phenomena. We are now able to 
simulate realistic laboratory-scale gas-phase 
turbulent flames with high-fidelity models for 
chemistry and transport. This type of simula-
tion, performed without incorporating explicit 
turbulence modeling assumptions, is referred 
to as direct numerical simulation (DNS); see 
Figures 2A.2–2A.3. DNS tools are currently 
being extended to treat multiphase flows and 
radiative heat transfer. 

Scientists are also developing a new genera-
tion of engineering combustion design codes 
based on the concept of large eddy simula-
tion (LES); see Figure 2A.4. This approach 
provides a more accurate model for turbulent 
flow than previous approaches and makes it 
possible to include detailed chemical kinetics 
models in engineering simulations. 

2. Advances in the Next 
Decade
High-fidelity simulations of combustion phe-
nomena based on DNS and LES approaches 
require high-resolution simulation of turbu-
lent, reacting flows in three dimensions. Such 
simulations have benefited enormously from 
sustained growth in high-performance com-
puting.  DNS simulations are one of the key 
tools needed to study fundamental observa-
tions of the fine-scale turbulence-chemistry 
interactions in combustion; however, they 
are currently limited by computer power to 
moderate turbulence intensities and to rela-
tively simple laboratory configurations. LES 
approaches provide a direct treatment of the 
large-scale flow dynamics, but physical mod-
eling of the unresolved subgrid scales is re-
quired. LES can be applied to both laboratory 
and practical configurations and has the po-
tential to include high-fidelity representations 

of the underlying physical processes in engi-
neering design calculations.

Both types of simulations must be time- 
dependent and include accurate representa-
tions of underlying physical processes such 
as chemical kinetics and transport. Our cur-
rent ability to perform these types of simula-
tions relies on both high-performance parallel 
machines and new algorithmic technologies. 
New approaches based on high-resolution 
discretization approaches, adaptive mesh re-
finement, and multiscale formulations have 
led to significant improvements in the types 
of problems that can be simulated. Over the 
next decade, we anticipate that continued 
improvements in algorithm technology will 
enable scientists to model new classes of 
problems with increased physical and geo-
metric complexity.

Figure 2A.2 Instantaneous image of the hydroperoxy radical (HO2), a good marker 
for ignition, in a lifted turbulent H2/O2 jet flame at Re = 11,000 from a DNS simula-
tion.  The simulation had 1 billion grids and transported 14 variables requiring 2.5 
million CPU hours on the Cray XT3 at ORNL. The stabilization mechanism of this 
lifted flame is due to autoignition upstream of the high-temperature flame base.
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The other key factor that will influence com-
bustion over the next decade is the continued 
development of new experimental diagnostic 
procedures. New laser diagnostic procedures 
are making it possible to probe turbulent 
flames experimentally in ways that elucidate 
the turbulent flame structure in much greater 
detail than has previously been possible. For 
example, scientists can now measure time-
resolved velocity fields and flame locations 
to capture the interaction of the flame with 
turbulence. However, new quantitative diag-
nostic methods are needed at all scales, from 
individual reactive encounters, to controlled 
molecular ensembles, to in situ combustion 
chambers.  Especially important will be the 
development of diagnostics applicable at high 
pressure, where spectral broadening interferes 
with current optical diagnostic techniques. 
In situ techniques are particularly challeng-
ing. At high pressures, spatial gradients are 
very steep, and new diagnostics need to be 
developed to resolve the spatial structure of 
the reaction fronts. Diffraction limitations 
may require new methods to capture these 
gradients. Propagating optical beams through 
high-pressure turbulent media and boundary 
layers is also extremely challenging. As these 
measurement techniques are improved, we 
will have much better characterization of de-
tailed flame and ignition behavior, which will 
provide the data needed for accurate valida-
tion of new simulation capabilities, particu-
larly when operating at pressure.

3. Major Challenges
The next generation of combustion devices 
will need to operate at high efficiencies and 
low emissions with fuels such as hydrogen, 
syngas, or biofuels.  These devices will need 
to operate in new combustion regimes that 
are fundamentally different from current en-
gineering practice. Successful development 
of these new combustors will require new 
predictive simulation capabilities that can 
accurately model combustion in these new 
regimes. Advances in combustion simulation 
face a number of technological barriers. 

One important scientific challenge is to de-
velop robust and reliable ignition and com-
bustion models adapted to the wide range of 
combustion regimes observed in next-gen-
eration engines and power plants, including 
propagation-controlled combustion, mixing- 
controlled combustion, kinetically controlled 
combustion, and combined mixed modes of 
combustion. Progress here depends on hav-
ing kinetics and thermodynamic models for 
realistic fuel compositions at high pressures 
and low temperatures. Also needed are new 
strategies for chemical mechanism develop-
ment and reduction that are both accurate and 
computationally tractable in multiscale simu-
lations of combustion.

Although simulation methodologies are avail-
able for many of the computational problems 
identified, additional development is required 
to harness the power of new computer archi-
tectures for these problems. For example, 
multiscale formulations that can exploit the 
specialized structure of typical combustion 
applications are needed. Another critical area 
of research is scalable algorithms for mult-
iphysics reacting-flow problems. Particular 
issues in this area include the development 
of scalable solver techniques for variable 
coefficient and nonlinear implicit systems 
and the development of improved load-bal-
ancing strategies for heterogeneous physics. 
Substantial increases in capability are also 
needed, requiring development of improved 
discretization procedures that not only pro-
vide better representations of the basic physi-
cal processes but also improve the coupling 
between these processes.  

Figure 2A.3 New simulation approaches have made it possible to simulate labo-
ratory-scale premixed flames with detailed chemistry and transport. Two examples 
are (a) a V-flame and (b) a slot Bunsen flame. The flame surfaces are colored by 
curvature to emphasize the wrinkling of the flame surface by turbulence.
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Another issue facing combustion science is 
management of software complexity. The 
simplest simulations are multiphysics al-
gorithms that incorporate fluid mechanics, 
chemical kinetics, and transport. More com-
plex problems will also require algorithms 
that treat particles, radiation, and multiphase 
processes and interfaces. Adaptive mesh and 
multiscale methodologies are often required 
to solve problems with the necessary fidelity. 
Additional issues are raised by the geometric 
requirements of realistic combustion devices 
that typically involve complex and, in the 
case of engines, moving geometries.

A major issue underlying the development of 
new combustion simulation methodologies is 
data management. The core simulation meth-
odology discussed here will generate data at 
enormous rates. This volume of data poses two 
challenges. First, the data must be archived 
and software facilities created that allow simu-
lation datasets to be accessed by the larger 
combustion community. This situation raises 
issues involving raw storage, software for data 
extraction, and data security. Second, for the 
simulations to have impact on design issues, 
we need to develop tools for extracting knowl-
edge from simulation data and for encapsulat-
ing that data in engineering models that can be 
directly used for design optimization.

Combustion science and the supporting 
simulations rely on a diverse set of chemi-
cal inputs and models, and also produce new 
data and models. New data informatics ap-
proaches are needed to provide for the rapid 
collaborative development and exchange of 
chemical mechanisms, thermodynamics data, 
validated model descriptions, and annotated 
experimental data that will support the com-
putational studies.

4. Accelerating Development 

Developing predictive simulations tools for 
designing new combustion systems involves 
the integration of activities across a range of 
disciplines. Effectively harnessing the com-
pute power of exascale computers to solve 
key combustion design issues will require a 
collaboration of computer scientists, applied 
mathematicians, and combustion scientists 

with expertise in different aspects of the com-
bustion problem.

Software development for combustion must 
provide not only the support needed to fa-
cilitate implementation of the numerical al-
gorithms, but also the flexibility to integrate 
different physics modules without loss of per-
formance. Users must be able to incorporate 
different chemistry and transport packages 
as required for different applications. At the 
same time, the overall implementation frame-
work must support the programming models 
needed to exploit large numbers of processors 
while insulating the application scientist from 
the details of a particular architecture.

Applied mathematicians will need to develop 
new discretization procedures and associated 
solvers. There will be a pacing need to extend 

Figure 2A.4 New approaches to LES are enabling high-fidelity simulations of real-
istic combustion devices such as the high-swirl laboratory-scale annular combustor 
shown in the left frame. The middle image shows the instantaneous velocity field. 
The image on the right  shows the time-averaged velocity.
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methodologies to more complex physical sys-
tems while at the same time developing the 
new algorithmic approaches needed to ef-
fectively solve the resulting systems on com-
puters with large numbers of processors.  A 
particularly challenging issue is to develop 
high-fidelity discretization approaches for 
moving geometries that do not sacrifice com-
putational efficiency.

Successful application of the software tools 
to the design of new combustion systems will 
also require expertise from the combustion 
community in a range of topics. In addition 
to traditional roles in design and analysis of 
computational experiments, software devel-
opment will require expertise in experiment, 
theory, and basic chemistry and transport. As 
the simulation tools are developed and vali-
dated, they will provide drivers for improve-
ments in the fundamental chemistry and 
transport that determine the flame properties 
and the formation of pollutants. Establishing 
these types of linkages will require improved 
approaches for uncertainty quantification that 
can be integrated into the validation process. 
As we begin to explore new combustion re-
gimes, experimentalists will need to work 
with computational scientists to define appro-
priate benchmarks for validating the software. 
Similarly, theorists will need to be involved 
in fundamental studies to provide the exper-
tise needed to develop predictive engineering 
models from more fundamental computation-
al flame studies.

5.  Expected Outcomes

The development of predictive exascale com-
bustion simulation methodology and the as-
sociated supporting software infrastructure 
will have enormous impact on the develop-
ment of next-generation combustion sys-
tems. With these tools it will be possible to 
optimize the design of lean, premixed turbine 
combustors for stationary power generation. 
We will be able to simulate advanced engine 
concepts across a range of operating condi-
tions and predict engine efficiency and emis-
sions. Moreover, we will be able to evaluate 
new biofuels from the perspective of both 
combustion efficiency and pollutants. The 
requirement that new systems work in com-

bustion regimes that are not understood at a 
fundamental level implies that exascale com-
puting will play a deciding role in whether we 
are able to design these types of systems.

6.   Required Investment

Developing the computational tools needed to 
design next-generation combustion devices is 
not simply a question of building an exascale 
simulation capability. Meeting the require-
ments for designing new systems will neces-
sitate a family of new simulation codes with 
capabilities ranging from fundamental DNS 
studies to high-fidelity engineering design 
codes. In addition, capitalizing on the simu-
lations will require a significant investment 
in software for managing and analyzing the 
simulation data.

7.  Major Risks

Several components are key to the develop-
ment of exascale simulation tools for de-
signing the next generation of combustion 
systems. One is the management and analy-
sis of simulation data. Combustion simula-
tions at the exascale will generate data at an 
enormous rate. This data must be archived, 
and tools need to be developed to manipulate 
the data and extract fundamental knowledge 
about flame structure that can be used in the 
engineering design process.

Achieving this goal will also require that sev-
eral facets of combustion science be brought 
together. Experimentalists, computational 
scientists, and chemists will need to work 
together synergistically to design validation 
experiments, assess simulation studies and 
relate uncertainty in chemical behavior to the 
overall fidelity of simulations. Theorists will 
need to work closely with experimentalist and 
computational scientists to develop new mod-
eling paradigms that can be incorporated into 
new engineering design tools. This new level 
of collaboration between traditionally dispa-
rate activities within the combustion commu-
nity will be a key component to successfully 
harnessing the power of exascale computing 
to solve major problems in combustion.

A family of new simulation 
codes is needed, with 
capabilities ranging from 
DNS studies to high-fidelity 
engineering design codes.
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Nuclear fusion, the power source of the sun 
and other stars, occurs when certain isotopes 
of the lightest element, hydrogen, combine to 
make helium. At the very high temperatures 
(100 million degrees Centigrade) needed for 
fusion reactions to occur,  the electrons of at-
oms become separated from the nuclei. The 
resulting ionized gas is known as a plasma.
Often referred to as “the fourth state of matter” 
plasmas comprise over 99% of the visible mat-
ter in the universe. They are rich in complex, 
collective phenomena and are the subject of 
major areas of research including plasma as-
trophysics and fusion energy science. 

The development of fusion as a secure and reli-
able energy system that is environmentally and 
economically sustainable is a formidable sci-
entific and technological challenge facing the 
world in the 21st century. In addition to being 
an attractive, long-term source of energy, fu-
sion can have a major impact on climate change 
challenges, since it does not release CO2. 

Progress achieved in fusion energy to date—10 
million watts (MW) of power sustained for 
1 second with a gain (the ratio of the fusion 
power to the external heating power) of order 
unity—has led to the ITER project, an inter-
national burning plasma experiment support-
ed by seven partners (including the United 
States) that represent over half of the world’s 
population. ITER is designed to use magnetic 
fields to contain a plasma that will produce 
500 MW of heat from fusion reactions for 
over 400 seconds with gain exceeding 10, 
thereby demonstrating the scientific and tech-
nical feasibility of magnetic fusion energy at 
a cost of about $10 billion. It is a dramatic 
step forward in that the fusion fuel will be 
sustained at high temperature by the fusion 
reactions themselves. Data from experiments 

worldwide, supported by advanced computa-
tion, indicate that ITER is likely to achieve its 
design performance. Indeed, temperatures in 
existing experiments have already exceeded 
what is needed for ITER.

While many of the technologies used in ITER 
will be the same as those required in an ac-
tual demonstration power plant, further sci-
ence and technology advances are needed to 
achieve the demonstration power plant goal 
of 2500 MW of continuous power with a gain 
of 25 in a device of similar size and magnetic 
field. Accordingly, strong R&D programs are 
needed to harvest the scientific knowledge 
from ITER and leverage its results. Advanced 
computations in tandem with experiment and 
theory are essential. In particular, acceler-
ated development of computational tools and 
techniques is needed in order to develop pre-
dictive models that can prove superior to ex-
trapolations of experimental results. Essential 
to such development is access to leadership-
class computing resources—both petascale 
and the projected exascale systems—that al-
low simulations of increasingly complex phe-
nomena with greater physics fidelity.

1. State of the Art

Significant recent progress in particle and 
fluid simulations of fine-scale turbulence and 
in large-scale dynamics of magnetically con-
fined plasmas has been enabled by access to 
terascale supercomputers and by innovative 
analytic and computational methods for de-
veloping reduced descriptions of physics phe-
nomena spanning a huge range in time and 
space scales. In particular, the plasma science 
community has developed advanced codes 
for which computer runtime and problem size 
scale well with the number of processors on 

Strong R&D programs will be 
needed to harvest the scientfic 
knowledge from ITER.
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massively parallel machines (MPPs). A good 
example is the effective use of the full power 
of multi-teraflops MPPs to produce 3D, gen-
eral geometry, nonlinear particle simulations 
that have enhanced scientific understanding 
of the nature of plasma turbulence in fusion-
grade high-temperature plasmas confined in 
a doughnut-shaped (toroidal) configuration. 
These calculations, which typically involve 
billions of particles for thousands of timesteps, 
would not have been possible without access 
to powerful present-generation MPP platforms 
together with modern diagnostic and visualiza-
tion capabilities to help interpret the results. 

Realistic modeling of  turbulence-driven heat, 
particles, and momentum losses is of interest 
for burning plasma laboratory experiments as 
well as for astrophysics and space and solar 
physics in natural environments [Tang and 
Chan, 2005]. Accelerated progress on this 
critical issue is especially important for ITER 
because the size and cost of a fusion reactor 
are determined by the balance between such 
loss processes and the self-heating rates of 
the actual fusion reactions [Batchelor et al. 
2007]. Computational modeling and simula-
tion are essential in dealing with such chal-
lenges because of the huge range of temporal 
and spatial scales involved. Existing parti-
cle-in-cell (PIC) techniques have demon-
strated excellent scaling on current terascale 

leadership-class computers. For example, as 
illustrated in Figure 2B.1, the Gyrokinetic 
Toroidal Code (GTC) [Lin et al. 1998; Lin 
et al. 2000] scales well on virtually all of the 
current leadership-class facilities worldwide, 
using Message Passing Interface (MPI) and 
Open MPI [Ethier 2007; Oliker et al., 2007; 
Ethier et al. 2005, Oliker et al. 2005, Oliker 
et al. 2004]. As indicated, GTC scales to over 
32,000 processors on Blue Gene (BG) Wat-
son with better than 95% efficiency on the 
second core and achieves 96% efficiency on 
over 10,000 dual-core Opteron processors on 
the Cray XT3.

In common with general PIC approaches, the 
gyrokinetic (GK) PIC method [Lee 1983; Lee 
1987] consists of moving particles along the 
characteristics of the governing equation—
here the 5D GK equation. The equation in-
creases in complexity because the particles 
are subjected to forces from an externally 
imposed (equilibrium) magnetic field and 
from internal electromagnetic fields gener-
ated by the charged particles. A grid is used 
to map the charge density at each point due 
to the particles in the vicinity. This is called 
the “scatter” phase of the PIC simulation. The 
Maxwell equations governing the fields (e.g., 
the Poisson equation in electrostatic simula-
tions) are then solved for the forces, which are 
then gathered back to the particles’ positions 
during the “gather” phase of the simulation. 
This information is then used for advancing 
the particles by solving the equations of mo-
tion, or “push” phase of the simulation. 

The original parallel scheme implemented in 
GTC consists of a 1D domain decomposition 
in the toroidal direction and a particle distribu-
tion within these domains [Ethier et al. 2005]. 
Each process is in charge of a domain and a 
fraction of the number of particles in that do-
main. Interprocess communications are han-
dled with MPI calls. Particles move from one 
domain to another while they travel around 
the torus. Only nearest-neighbor communica-
tion in a circular fashion is used to move the 
particles between domains or processors. 

This method scales extremely well to a 
large number of processors but eventually is 
dominated by communications as more par-

Figure 2B.1 Scaling of fusion turbulence codes on various supercomputers 
(courtesy of S. Ethier).
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ticles move in and out of the shrinking do-
mains at each timestep. This limit is never 
reached, however, because the number of 
domains is actually determined by the long-
wavelength physics that we are studying. A 
toroidal grid with more than 64 or 128 planes, 
or grid points, introduces waves of shorter 
wavelengths in the system. These waves are 
damped by a physical collisionless damping 
process known as Landau damping. Using a 
higher toroidal resolution leaves the results 
unchanged; hence, GTC generally uses 64 
planes for production simulations. This ap-
proach has limitations, however, because the 
local grid is replicated on each MPI process 
within a domain, leading to high memory re-
quirements for simulating large devices. 

Initial tests on the dual-core BG/L system 
were conducted in coprocessor mode, with 
one BG/L core used for computation and the 
second dedicated to communication [Ethier 
et al. 2007]. Additional tests were then con-
ducted in virtual mode node, with both cores 
participating in both computation and com-
munication. Results showed a per-core ef-
ficiency of over 96%. These results indicate 
that indirect addressing of the gather-scatter 
PIC algorithm is limited more by memory 
latency than by memory bandwidth, as the 
dynamic random access memory (DRAM) 
bandwidth is shared between the two cores. 

Motivated by the strong shift to multicore 
environments extending well beyond the 
quad-core level, researchers are focusing on 
improving current programming frameworks 
for GTC, such as systematically testing a two-
level hybrid programming method. In mak-
ing full use of the multiple cores on a node, 
scientists are currently constrained to an MPI 
process on each core. Since some arrays get 
replicated on all these processes, the memory 
limit will be reached for the larger problem 
sizes of interest. If the hybrid programming 
method proves successful in initial benchmark-
ing studies on modest multicore machines in 
Princeton, the plan is to test it on the quad-core 
leadership-class systems, such as Blue Gene/P 
at ANL and the Cray XT4 at ORNL. 

The excellent scaling of fusion turbulence 
codes such as GTC on the most advanced 

leadership-class platforms provides great en-
couragement for being able to use petascale 
(and eventually exascale) resources to incor-
porate the highest physics fidelity. In general, 
new insights gained from advanced simula-
tions provide great encouragement for being 
able to include increasingly realistic dynam-
ics to enable deeper physics understanding 
of plasmas in both natural and laboratory 
environments.

2. Advances in the Next 
Decade
A computational initiative called the Fusion 
Simulation Project, led by DOE’s Office of 
Fusion Energy Sciences with collaborative 
support from OASCR, is being developed 
with the primary objective of producing a 
world-leading predictive integrated plas-
ma simulation capability that is important 
to ITER and relevant to major current and 
planned toroidal fusion devices. This initia-
tive will involve the development over the 
next decade of advanced software designed 
to use leadership-class computers (at the 
petascale and beyond) for carrying out un-
precedented multiscale physics simulations 
to provide information vital to delivering a 
realistic integrated fusion simulation model-
ing tool. Modules with much improved phys-
ics fidelity will enable integrated modeling 
of fusion plasmas in which the simultaneous 
interactions of multiple physical processes 
are treated in a self-consistent manner. The 
associated comprehensive modeling capabil-
ity will be developed in close consultation 
with experimental researchers and validated 
against experimental data from tokamaks 
around the world. Since each long-pulse shot 
in ITER is expected to cost over $1 million, 
this new capability promises to be a most 
valuable tool for discharge scenario modeling 
and for the design of control techniques under 
burning plasma conditions.

The following are examples of expected ad-
vances needed to enable a comprehensive in-
tegrated modeling capability.

Coupling of state-of-the-art codes for the • 
plasma core and the plasma edge region 

Delivery of a realistic, integrated 
modeling tool for multiscale 
physics simulations will require 
advanced software capable of 
running on DOE’s leadership-
class computers.
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Coupling of state-of-the-art codes for • 
magnetohydrodynamics (MHD) and aux-
iliary heating of the plasma via radio fre-
quency (RF) waves

Development of more realistic reduced • 
models based on results obtained from 
DNS-type major codes that use petascale 
capabilities

Development of advanced workflow • 
management needed for code coupling

3. Major Challenges
In order to achieve accelerated scientific dis-
covery in fusion energy science (as well as 
many other applications domains), new meth-
ods must be develoed to effectively utilize the 
dramatically increased parallel computing 
power that is expected within the next decade 
as the number of cores per chip continues to 
increase.

Examples of outstanding challenges in the fu-
sion energy science application area include 
the following.

Efficient scaling of MHD codes beyond • 
terascale levels to enable higher-resolu-
tion simulations with associated greater 
physics fidelity 

Efficient extension of global PIC codes • 
into fully electromagnetic regimes to cap-
ture the fine-scale dynamics that not only 
is relevant to transport but also helps to 
verify the physics fidelity of MHD codes 
in the long-mean-free-path regimes ap-
propriate for fusion reactors  

Data management techniques to help de-• 
velop (and debug) advanced integrated 
codes

Innovative data analysis and visualization • 
methods to deal with increasingly huge 
amounts of data generated in simulations 
at the petascale and beyond

4. Accelerating Development
As the future multicore processor chips are 
likely to support coherent shared memory 
and parallel computers are likely to support 
only message passing among nodes, it may 

be necessary to consider algorithms and 
programming techniques to construct paral-
lel programs where the code that runs on an 
individual CPU chip uses the multithreaded, 
shared-memory programming model and 
uses the message-passing programming 
model (such as MPI or UPC) to communicate 
among the CPU chips in a parallel computer. 
The associated transition is to multicore pro-
gramming characterized by very low latency 
but limited bandwidth to main memory. 

In order to achieve the desired accelerated prog-
ress, several developments must be made:

Compilers to decompose the code run-• 
ning on a single node into fine-grained 
computation tasks to utilize the collection 
of cores on a single chip

Highly efficient runtime systems to • 
schedule fine-grained tasks to optimize 
for available parallelisms and to maxi-
mize on-chip cache locality to overcome 
off-chip memory latency and bandwidth 
constrains 

Hybrid programming frameworks for • 
MPI and UPC by incorporating the 
compilation and runtime systems with 
existing MPI and UPC programming 
environments.

5. Expected Outcomes
If proper investments in research efforts are 
made, specific state-of-the-art codes for fu-
sion energy science (such as GTC) can be 
transformed to versions using a hybrid pro-
gramming framework and then systemati-
cally exercised to demonstrate and to test the 
effectiveness of this proposed paradigm. If 
such methods for optimally utilizing multi-
core systems prove effective, then such codes 
can realize their high potential for achieving 
new scientific discoveries with exascale com-
puting power.

Other expected outcomes if dedicated efforts 
are properly supported include the following.

Clear demonstration of the ability to ef-• 
fectively integrate (or at least couple) 
advanced codes to deliver new physics 
insights 

Future multicore processors 
will require new programming 
techniques, such as a hybrid 
framework incorporating both 
MPI and UPC.
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Significant progress in the ability to reli-• 
ably predict the important edge-localized 
mode (ELM) behavior at the plasma 
periphery

Significant improvement in the phys-• 
ics fidelity of “full-device modeling” of 
ITER, along with significant progress in 
achieving reliable predictive capability 
for ITER

6. Required Investment

The new Fusion Simulation Project will re-
quire on the order of $25 million/year over the 
course of the next 15 years and more. In addi-
tion, research progress enabled by ultrascale 
compute power will demand much greater 
computer time. For example, a single GTC 
simulation carried out at present to investigate 
the long-time evolution of turbulent transport 
requires around 100,000 cores for 240 hours, 
or 24 million CPU hours. Since the current 
version of the leading plasma edge code XGC 
requires roughly the same amount of time, ac-
tual coupled simulations of the core and edge 
regions could demand approximately 50 mil-
lion CPU hours. If additional dynamics (such 
as the modeling of RF auxiliary heating) are 
included, then computational resources at the 
exascale will be essential.  

7. Major Risks

Without the dedicated investments described 
in the preceding sections, the leading fusion 
codes (especially the MHD codes, with their 
scaling challenges) run the risk of not being 
able to effectively utilize the large number of 
processors at the exascale. The development 
of effective mathematical algorithms for inte-
gration and coupling is very difficult and may 
be hard to achieve within the next decade. 
Moreover, if the fusion energy science appli-
cations are able to effectively utilize only a 
small fraction of the cores on a CPU, major 
efforts will be needed to develop innovative 
methods for per-processor performance.

8. Benefits

Reliable full-device modeling capabilities in 
fusion energy sciences will demand comput-

ing resources at the petascale range and be-
yond to address ITER burning-plasma issues. 
Even more powerful exascale platforms will 
be needed to meet the future challenges of de-
signing a demonstration fusion reactor. With 
ITER and leadership-class computing being 
two of the most prominent missions of the 
DOE Office of Science, full-device integrated 
modeling, which can achieve the highest pos-
sible physics fidelity, is a worthy exascale-rel-
evant project for producing a world-leading, 
realistic predictive capability for fusion. This 
should prove to be of major benefit to U.S. 
strategic considerations for energy, ecologi-
cal sustainability, and global security.
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Solar energy, either in the form of photovol-
taic or solar chemical fuel generation, can be 
the ultimate renewable energy solution for 
our energy/global warming crisis. Key scien-
tific challenges and research directions that 
will enable efficient and economical use of 
the abundant solar resource have been identi-
fied (DOE Office of Basic Energy Sciences 
2005); the need for new computational and 
modeling tools to meet the challenges of solar 
energy research is widely recognized. 

1.  State of the Art
More than 30 years were needed for the rela-
tively simple thin-film crystal/multicrystal 
Si solar cell to reach its current efficiency of 
24%. In order to develop next-generation so-
lar cells based on new materials and nanosci-
ence fast enough to reduce the global warming 
crisis, a different paradigm of research is es-
sential. Exascale computation can change the 
way the research is done—either through a 
direct numerical material-by-design search or 
by enabling a better understanding of the fun-
damental processes in nanosystems that are 
critical for solar energy applications.  

Investigations include finding the right ma-
terials for hydrogen storage; identifying the 
most reliable and efficient catalysts for water 
dissociation in hydrogen production; deter-
mining an inexpensive, environmentally be-
nign, and stable material for efficient solar cell 
application; understanding the photo-electron 
process in a nanosystem; and hence helping 
to design an efficient nanostructure solar cell. 
In all of these areas, the possible exploratory 
parameter spaces are huge. This situation on 
the one hand provides ample opportunity and 
potential for device improvement, but on the 
other hand presents a tremendous challenge 
to find the best material and design. 

2.  Major Challenges
In computational materials science and nano-
science, three major challenges exist.

Developing appropriate numerical ap-• 
proximations and models for accurately 
calculating the corresponding physics 
properties 

Integrating the diverse models and com-• 
putational approaches and programs used 
to calculate different parts and aspects 
of a complex system, hence enabling 
the simulation of the whole system and 
process 

Calculating the large-scale systems (nano-• 
systems containing tens of thousands of 
atoms) dynamically for a long period of 
time (nanoseconds or microseconds) 

The computational physics and chemis-
try communities have been addressing the 
first challenge since the invention of quan-
tum mechanics. Although the many-body 
Schrödinger’s equation is well known and 
exactly describes almost all phenomena in 
materials science, the direct accurate solu-
tion of that equation is almost impossible. 
The reason is that a system with N electrons 
must be described by a many-body wave-
function in N-dimensional space. That makes 
the needed numerical coefficients scale as NN. 
A direct solution of such a problem might 
be possible only with a quantum computer. 
The most common approximation is to de-
scribe the many-body wavefunction and the 
Schrödinger’s equation with an N single-
particle wavefunction. This is exemplified by 
the currently popular density functional theory 
(DFT), where a direction calculation scales as 
N3, instead of NN. 

Developing next-generation 
solar cells based on new 
materials and nanoscience 
requires a new paradigm 
exploiting exascale computing.
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The second challenge focuses on software de-
velopment and integration. It also presents a 
computational hardware requirement more on 
the capacity side than on the capability side. 
At the least, an integrated but heterogeneous 
computing platform with different emphases 
on speed, memory size, input/output (I/O), 
and communication may be needed, rather 
than a single homogeneous system. Most ex-
perimentally measured physical properties 
(e.g., solar cell efficiency and a nanosystem 
synthesis) are results of the combination of 
different physical processes. At present, we 
have different methods and codes to calculate 
each individual property and process. But we 
lack a flexible tool to integrate these proper-
ties and processes or to easily replace one 
model or algorithm in one part of a calcula-
tion by another model. Clearly needed is the 
development of a common framework and a 
common community code. 

The third challenge calls for both algorithm 
development and exascale computers. Many 
of the critical processes in solar energy appli-
cations are poorly understood. For example, 
it is not clear how a nanocontact between 
metal and semiconductor works. Also un-
known is the mode of hole carrier transport 
in a solar cell using organic materials. How 
a photon-generated exciton dissociates itself 
into an electron and hole in a nanosystem is 
another critical issue that needs to be better 
understood. Moreover, researchers have little 

insight into the pathways in water splitting. 
Understanding these critical phenomena will 
help scientists tremendously in rationally de-
signing new solar cells and solar chemical 
cells (see Figure 2c. 1).

3.  Advances in the Next 
Decade
DFT can describe many properties accu-
rately, including atomic structures and bind-
ing energies. Thus, it is useful in the search 
for hydrogen storage materials and catalysts. 
Although it gives the wrong band gap, with 
some corrections it still can be used to study 
optical properties and electron-phonon inter-
actions and hence also for solar cell simula-
tions. Other methods, such as the coupled 
cluster method in quantum chemistry and the 
GW method in materials science, can provide 
more accurate calculations for chemical bind-
ing and band structures, respectively. 

New codes will also be needed, and these and 
existing codes must be integrated for maxi-
mum usefulness. Specifically envisioned in 
the next decade is a new community code that 
is both highly flexible and modular, enabling 
different research groups to contribute differ-
ent modules. This community code must be 
more than a collection of codes as in NW-
Chem, and it should go beyond the modula-
tion, exemplified in the ABINIT project. 

Another key factor in advances in the next 
decade is the availability of exascale com-
puters. Computation can potentially provide 
a direct way to reveal the secrets of diverse 
processes involved in nanoscale interactions. 
Indeed, computation is key because probing 
some of these processes experimentally is ex-
tremely difficult. Because of the O(N3) scal-
ing for DFT, even with petascale computers 
one can probably calculate only the electronic 
structures of a system with 50,000 atoms for a 
given atomic configuration. If many timesteps 
are needed to simulate a dynamic process, this 
direct approach will become unfeasible. Thus, 
linear-scaling (to the size of the system) ap-
proaches become necessary. Fortunately, as a 
result of the near-sighted feature of quantum 
mechanical effects, such linear-scaling algo-
rithms based on domain decomposition are 

Figure 2c. 1 A core/shell coaxial cable structure can be useful for future solar cell 
applications by separating the photon-generated electrons from the holes. Here the 
electron (green) and hole (cyan) states are shown in nano-coaxial wires, with (a) 
GaN(core)-GaP(shell) and (b) GaP(core)-GaN(shell). Fast and accurate calcula-
tions including the electron-hole correlation effects, the carry transports, the carrier 
cooling, and other dynamical effects are critical for solar cell simulations.  
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possible and effective for the large systems 
discussed here. 

4.  Accelerating Development

With linear-scaling algorithms and exascale 
computing, we should be able to simulate a 
whole nanostructure device—from photon 
absorption and exciton generation, to exciton 
dissociation and carrier collection in a nano-
size solar cell. This simulation can be done 
by following a time-dependent Schrödinger’s 
equation (e.g., time-dependent DFT, TD-
DFT) and at the same time doing Newtonian 
dynamics for the atoms. Although some un-
certainties remain about how to do this ex-
actly (for quantum state collapsing), such a 
simultaneous dynamical simulation for the 
electrons and atoms will help to reveal the 
electron-phonon interaction, the nonradiative 
carrier decay, and cooling, thereby helping  
scientists to understand carrier transport and 
collection. Such simulations can also help us 
to understand the electrocatalysis of water 
splitting and to figure out the dynamic path-
way of the water splitting process. 

5.  Expected Outcomes

Carrying out simulations for experimental-
sized nanosystems is a tremendous computa-
tional challenge. In addition to the problem of 
size scale is the long time scale. The typical 
carrier dynamics takes tens of nanoseconds, 
while the typical time step needed for a TD-
DFT is usually in the order of 10-3 femtosec-
onds (Fs), which is a thousand times shorter 
than a time step for atomic molecular dynam-
ics due to the small mass of an electron. Thus, 
the number of the timesteps is on the order 
of 1010. Currently, one can do tens of fem-
tosecond simulations for small systems con-
taining about a hundred atoms (e.g., on the 

Earth Simulator) based on the direct TDDFT 
formalism. Thus, there remains a gap of about 
105 in time scale and 102 in size scale. Both 
algorithm development (both in linear scal-
ing and in accelerating the dynamics) and 
exascale computers are needed to close this 
gap. But the benefit will be tremendous for 
understanding the photon-electron process 
in solar-cell-related applications. The lack of 
such understanding is the current bottleneck 
in developing more efficient nanostructure 
solar cells. 

6.  Required Investment

Traditionally, code developments have not 
been supported by either OASCR or DOE’s 
Office of Basic Energy Sciences (BES). Rath-
er, they are often supported within an individ-
ual investigator’s projects as a side product 
for studying a specific physical phenomenon. 
Hence, community code development and 
integration have been severely limited. Argu-
ably, more recent federal efforts such as the 
Scientific Discovery through Advanced Com-
puting (SciDAC) projects have attempted to 
address this limitation, but currently these ef-
forts are either too general on the computer 
science side or too narrow in specific phys-
ics-oriented projects. Further investment is 
needed to ensure that nanoscience and mate-
rials science research are supported at a level 
needed to solve key problems in solar energy 
simulation.

Reference 

DOE office of Basic Energy Sciences 2005. Basic 
Research Needs for Solar Energy utilization: 
Report of the Basic Energy Sciences Workshop 
on Solar Energy Utilization, April 18-21, 2005. 
(http://www.sc.doe.gov/bes/reports/files/SEU_
rpt.pdf).

With linear-scaling algorithms 
and exascale computing, 
scientists will be able to 
simulate a whole nanostructure 
device.
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Energy:
Nuclear Fission2D

Commercial nuclear power plants (NPPs) 
generate approximately 22% of the electricity 
produced in the United States. There is grow-
ing interest in operating the existing fleet of 
NPPs beyond their original design lifetimes, 
in constructing new NPPs, and in developing 
and deploying advanced nuclear energy sys-
tems to meet the rising demand for carbon-
free energy; this situation presents significant 
opportunities for the application of petascale 
and exascale computing. The new GNEP 
(Global Nuclear Energy Partnership) Program 
[DOE Office of Nuclear Energy, Science, and 
Technology, 2006] seeks to bring about wide-
scale use of nuclear energy while at the same 
time decreasing the risk of nuclear weapons 
proliferation and effectively addressing the 
challenge of nuclear waste disposal. GNEP 
aims to advance the nonproliferation and na-
tional security interests of the United States 
by reinforcing its nonproliferation policies 
and reducing the spread of enrichment and 
reprocessing technologies, and eventually 
eliminating excess civilian plutonium stocks 
that have accumulated. The stated goals of 
GNEP are:

• Expand nuclear power to help meet grow-
ing energy demand in an environmentally 
sustainable manner;

• Develop, demonstrate, and deploy ad-
vanced technologies for recycling spent 
nuclear fuel that do not separate pluto-
nium, with the goal over time of ceasing 
separation of plutonium and eventually 
eliminating excess stocks of civilian plu-
tonium and drawing down existing stocks 
of civilian spent fuel;

• Develop, demonstrate, and deploy ad-
vanced reactors that consume transuranic 
elements from recycled spent fuel;

• Establish supply arrangements among 
nations to provide reliable fuel services 
worldwide for generating nuclear energy, 
by providing nuclear fuel and taking back 
spent fuel for recycling, without spread-
ing enrichment and reprocessing technol-
ogies;

• Develop, demonstrate, and deploy ad-
vanced, proliferation resistant nuclear 
power reactors appropriate for the power 
grids of developing countries and re-
gions;

• In cooperation with the IAEA (Interna-
tional Atomic Energy Agency), develop 
enhanced nuclear safeguards to effective-
ly and efficiently monitor nuclear mate-
rials and facilities, to ensure commercial 
nuclear energy systems are used only for 
peaceful purposes;

A recent BES report [DOE Office of Basic 
Energy Sciences 2006] reviewed the status 
and basic science challenges, opportunities, 
and research needs for advanced nuclear en-
ergy systems, with specific attention to the 
role of predictive modeling and simulation 
(M&S) in addressing the difficulties posed 
by the radioactive materials and harsh envi-
ronments found in these systems. The con-
clusions drawn in this report were similar to 
those of the town hall meetings: 

• Computational M&S offers the opportu-
nity to accelerate nuclear energy develop-
ment by simulating complex systems to 
evaluate options and predict performance, 
thus narrowing the technology path and 
optimizing testing requirements. 

• Today’s high-performance computational 
systems are capable of modeling complete 

Nuclear power plants are 
becoming increasingly attractive 
because of the possibility of 
offering carbon-free energy. 
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reactor systems and related technologies; 
the availability of exascale systems will 
enable high-fidelity M&S that can further 
improve the performance of existing reac-
tors and have a significant positive impact 
on both the design and the operation of fu-
ture reactors.

Simulation has the potential for addressing 
the critical needs of advanced nuclear energy 
systems by providing the tools necessary for 
safety assessments, design activities, cost, 
and risk reduction. One can, for example, 
imagine virtual prototyping of reactor cores 
yielding data that leads to more accurate 
identification of design margins, allows early 
experimentation with novel design concepts, 
and ultimately significantly reduces plant cer-
tification timelines. In other areas, such as ad-
vanced fuel fabrication, atomistic fuel simu-
lations could ultimately make it possible to 
target a small subset of promising candidate 
fuel types for further experimentation, great-
ly reducing the number of experiments to be 
performed. A simulation-based methodology 
is within reach with exascale computers.

1. State of the Art
Modeling and simulation (M&S) has always 
been an integral part of nuclear engineering 
analysis, safety, and design. Computational 
analyses have been used to predict detailed 
quantities that could not be readily measured 
in situ, for example, the aging of structures, 
power distributions in cores, transient safety 
behavior, etc. Existing (legacy) tools for mate-
rial property determination, spent fuel repro-
cessing, fuel performance, reactor safety and 
design, and waste forms and storage based on 
a large experimental database will be insuffi-
cient. Experimental testing will be extremely 
expensive, protracted, and in some cases un-
feasible. Furthermore, the existing experi-
mental database is insufficiently documented 
and often has inadequate precision to support 
a modern validation process. Complementing 
or replacing testing with high-fidelity comput-
er simulation will make it possible to collect 
simulated data that can, in conjunction with 
a sound experimental validation program, be 
used to understand fundamental processes 
that affect facility efficiency, safety, and cost.  

Material Property Determination: Basic 
material properties is the area with the most 
potential for progress with the greatest 
return on investment. Properties including 
nuclear (neutron and gamma reactions), 
thermophysical (e.g. thermal conductivity, 
phase diagrams), mechanical (e.g. tensile 
properties, fracture toughness) and chemical 
(e. g. corrosion rates) have to be determined 
under static and dynamic conditions. The 
fuel process selection is an example that 
illustrates the possible gain. In the design 
of a reactor, fuel definition along with the 
choice of coolant, is always the first step that 
then determines the subsequent components 
of the system. The traditional approach 
requires fabrication of samples or pins of 
the new fuel, measurements of physical and 
mechanical properties, and finally neutron 
exposure to high fluence under relevant 
operating conditions (e.g. temperature, stress 
constraints, interaction with coolant, etc.) with 
subsequent characterization. This approach 
requires a great expense of money and time 
(several years). In some cases, the fuel form 
may have become obsolete or irrelevant 
as a result of programmatic considerations 
by the time the experimental evaluation is 
complete. A similarly long process is required 
for the structural materials involved in the 
fuel pin cladding and other critical in-core 
components.

Spent Fuel Reprocessing: Reprocessing was 
abandoned in the 1970s as an option within 
the current nuclear fuel cycle, so there is great 
opportunity for development of advanced pro-
cesses. Current reprocessing models provide 
only qualitative descriptions of process behav-
ior. Empirical models of chemical behavior for 
major components are used to provide overall 
descriptions of various reprocessing strategies. 
These empirical models are based on bench-
top experiments, and usually assume chemical 
equilibrium conditions are met instantly. Even 
then, current models are unable to answer 
many questions involving phase equilibria, 
such as precipitation from solution or deter-
mining oxidation states, where multiple pos-
sibilities exist. Very few reaction rate constants 
are known, and wherever transient conditions 
are simulated, they are usually just assumed 
or selected heuristically.  
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Fuel development and performance evalu-
ation is currently an empirical process that 
takes decades. For acceptance, new fuels 
must be fabricated, placed in a test reactor 
over multiple cycles, tested under multiple 
accident scenarios, undergo post-irradiation 
examinations, and finally be placed in an 
operational reactor for several cycles. Fuel 
performance simulation tools can help to ac-
celerate current fast and thermal reactor fuel 
qualification practices by helping decrease the 
time required to qualify new fuels, with the 
goal being a reduction by a factor of three in 
the current 10- to 15-year qualification time. 
The tools must accommodate all relevant fuel 
types in both normal operating (quasi steady 
state) and transient conditions.

Current state-of-the-art models of nuclear 
fuel performance empirically capture vari-
ous phenomena that occur in a fuel rod dur-
ing nuclear reactor operation. Currently, these 
models are mostly limited to axi-symmetric 
geometries. In this simple axi-symmetric 
setting, the empirical models capture power 
generation, dynamic fuel/cladding gap, ther-
mal analysis solution, simplified neutronics, 
fission product generation and propagation in 
a fuel rod, localized chemical state, fuel/clad 
swelling/creep, fuel cracking, fuel contact and 
mechanical interaction with the clad, and clad 
interaction with adjacent structures like grid 
spacers. A simple thermal hydraulics model 
is generally assumed for flow channel heat 
transfer. Because current models are based on 
empirical curve fits to fuel behavior in com-
mon nuclear reactor environments, they can-
not be trusted to predict the behavior of fuels 
under conditions outside their narrow range of 
calibration. Transient fuel performance simu-
lators are employed to predict the rod thermal/
mechanical behavior under design basis ac-
cidents (DBAs), which for the light water re-
actor (LWR) fuel rod is a reactivity insertion 
accident (RIA). Survival of the cladding and 
maintenance of the core coolability are the 
primary issues for these scenarios. The time 
frame for these codes is on the order of mil-
liseconds to seconds rather than the days to 
months for the quasi-steady-state simulators.

Reactor safety and design simulation tools 
require models for thermal hydraulics, 
neutronics, and structural mechanics. Such 

“reactor core codes” have been in existence 
for decades, but need improved physical, 
numerical, and geometric fidelity. Codes 
developed at the time used lumped parameter 
models for predictions of neutronics, 
thermal hydraulics, and structural mechanics 
quantities. These simple codes were calibrated 
against a very large experimental database, 
developed over the years for specific projects 
by calibrated against principally integral data. 
Existing reactor core codes, for example, 
employ the traditional single-channel or 
sub-channel approach to model reactor core 
heat transfer. Traditionally, separate thermal 
hydraulic code systems are used to execute 
design and safety calculations.

Neutronics modeling has traditionally relied 
on both stochastic (Monte Carlo) simulations 
and deterministic transport and diffusion 
theory approaches. Monte Carlo techniques 
incorporate the basic physics at the level of 
stochastic particle tracking with the general 
system geometry and material cross sections 
governing the particle track histories. Monte 
Carlo offers the strong conceptual advantage 
of keeping a close (essentially exact) 
correspondence between computational 
and physical geometric and cross section 
energy dependence models. Nevertheless, 
Monte Carlo can become computationally 
impractical for several different classes of 
problems. These include calculations of 
small reactivity coefficients, some types of 
sensitivity/uncertainty propagation studies, 
time-dependent solutions, and some types of 
burn up calculations.

Structural mechanics software development 
has been driven by a breadth of applications 
over the last 30 years which include automo-
tive, aerospace, national defense, civil infra-
structure, and, in the 1970’s and 80’s, nuclear 
reactor technology. These developments have 
led to a number of finite element-based com-
puter programs that have relatively mature el-
ement technologies and solution algorithms. 
Existing software that has application rel-
evance in the nuclear fuel cycle area can gen-
erally be divided into three categories: linear 
finite element programs, implicit time integra-
tion nonlinear finite element programs, and 
explicit time integration nonlinear programs.

Fuel performance simulation 
tools could reduce by a factor 
of 3 the time needed to qualify 
new fuels. 
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2. Major Challenges
Significant exascale simulation challenges 
are present in each component of the fuel 
cycle. Opportunities exist in the areas of 
material property determination, spent fuel 
reprocessing, fuel performance, thermal and 
fast reactors, and waste forms and storage, 
to name a few. These are briefly discussed in 
the following. 

Material Property Determination. With mod-
ern methods and powerful computing tools, 
one can foresee the opportunity to employ 
computational simulations to advance the 
evaluation and selection of advanced fuels 
and structural materials. For example, first 
principles methods can now realistically be 
used to determine fundamental material prop-
erties and support the development of new in-
teratomic potentials that can be used in Mo-
lecular Dynamics (MD) simulations involv-
ing millions of atoms. These MD simulations 
can be used to study defect properties and 
to determine parameters such as the atomis-
tic reaction rates that are required in coarser 
scale simulations of degradation mechanisms 
that take place over long times. These param-
eters can be employed in reaction rate theory 
or Kinetic Monte Carlo (KMC) models of 
microstructural evolution. MD-based dislo-
cation dynamics simulations can also provide 
the fundamental dislocation-defect interac-
tion parameters required for continuum 3D 
Dislocation Dynamics (DD) simulations. 
The 3D DD simulations can be used to ob-
tain needed information on the constitutive 
behavior of the materials which is required 
for use in macroscopic methods such as finite 
element models. Taken together, this family 
of multiscale simulations can provide pre-
dictions from the atomistic and microscopic 
through to the mesoscopic and macroscopic 
level. An initial goal should be to establish 
the required degree of accuracy and practical 
limitations at each level of simulation (e.g. 
ab initio, atomistic, mesoscale, continuum). 
This will provide a basis for predicting the 
expected impact of an advanced simulation 
program to reduce both the absolute develop-
ment time and the related uncertainties as part 
of the overall fuel and materials development 
effort. The initial technical objectives should 
include a strategy for determining the best ap-

proach for integrating the various multiscale 
components, i.e. when to use parameter pass-
ing and when models should be more tightly 
coupled.

Spent Fuel Reprocessing. Modeling of a re-
processing plant involves many complicated 
steps, each of which requires knowledge of 
several areas of physics, chemistry, or engi-
neering. Fuel disassembly involves mechanical 
processes (chopping, filtering) and/or chemi-
cal dissolution in strong acid. The fuel solution 
is then passed through many stages of solvent 
extraction in order to separate several fission 
product and actinide streams. Several sepa-
rate solvent extraction processes are required 
to accomplish this separation, each using dif-
ferent additives and components in the organ-
ic phase, as well as different acid concentra-
tions in the aqueous phase. Safety consider-
ations require: monitoring of volatile fission 
product and organic gaseous releases, careful 
evaluation of component inventories in each 
stage and even in piping, to avoid costly shut-
downs, or repairs which must be performed 
remotely, strict attention to nuclear criticality 
safety in actinide solutions with widely vary-
ing component inventories, control systems 
which are based on realistic models of pro-
cesses, not generalizations or even intelligent 
assumptions. The hazards of plant operation 
involve radioactive materials, toxic materi-
als, strong acids, highly flammable materials, 
and highly volatile materials. Thus, detailed 
accounting of all components through all pro-
cess stages is of utmost importance.

To support both detailed design and safe op-
eration, the improvement of reprocessing 
models requires improved chemistry model-
ing, including both equilibria and kinetics. 
New fuel materials and requirements arising 
from nonproliferation concerns demand the 
use of modern sophisticated modeling tools 
for the design and optimization of a process 
consisting of several major steps, each of 
which presents its own chemical and physi-
cal complexity. These steps include fuel dis-
solution in acid, dissolved fuel treatment in 
a series of solvent extraction processes, and 
fabrication into fuel or waste forms. None of 
these steps is adequately simulated in a pro-
duction sense, and some require experimenta-
tion to understand or confirm their chemical 
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behavior. Advanced simulation can be used to 
help understand and optimize these process-
es, as well as integrate their behavior into the 
overall model in areas such as:

• Unit operations of chemical separations 
and materials processes based on first 
principles: extraction, evaporation, dis-
solution, etc.

• Three-dimensional, transient behavior of 
multiphase, multi-species reactive pro-
cesses

• Turbulent, multiphase fluid flow and in-
terfacial phenomena

• Predicting physical/chemical properties

• Development of separating agents/pro-
cesses with functionalities specified by: 
affinity for target species; viability of 
synthesis; interaction with other materi-
als; chemical and radiolytic stability; etc.

• Basic knowledge for process develop-
ment, including: equilibrium partition-
ing in complex mixtures, transport and 
kinetics in non-equilibrium, multiphase 
systems, and improved process model 
solution algorithms.

Added value can come from the optimization 
of the fuel cycle as a whole, the possibility of 
detecting diversions, criticality problems, or 
possible effluent composition deviations out-
side specifications.

In addition to improved chemistry, additional 
elements of reprocessing systems must be 
modeled which are currently not even consid-
ered.  Fluid dynamics must be considered in 
piping as well as in process equipment. Effects 
of control systems on component inventories, 
and vice versa, are necessary to adequately 
understand inventories throughout the plant.  
Interfaces with nuclear criticality calculations 
are important for both design and safe op-
eration. Balance-of-plant modeling (such as 
volatile releases to the environment) must be 
included. As reprocessing gains in popular-
ity, new and improved processes will almost 
certainly develop. Therefore, it is essential 
that computer codes be flexible, adaptable, 
and modular. They must not only be compat-
ible with other codes which perform related 

or concurrent calculations, but they must be 
designed to function within larger systems of 
codes.

The simulation challenge is to couple these 
specific computational models into a co-
herent package that is considered a unified 
simulation with a distributed, modular mod-
eling structure that allows interactive selec-
tion of specific models at levels of detail and 
breadths of scope required for analysis. The 
model structure must support three levels of 
coupled engineering detail:

• A discrete event model that provides 
throughput analysis, scheduling impacts, 
output compositions, and serves as the 
backbone to call supporting simulations 
at other levels of detail not captured in 
discrete event simulations.

• Chemical process models to represent 
modular, exchangeable simulations of 
specific unit operations or groups of op-
erations.  This allows a balance between 
simulation speed and required levels of 
rigor.

• Specialized models to address specific 
behavior accurately, including phase 
equilibrium calculations, computational 
fluid dynamics, specialized data retrieval, 
detailed adsorption models, and even de-
tail as fine as computational chemistry if 
necessary.

Fuel Performance. Nuclear fuel assemblies 
must perform in aggressive environments 
characterized by stress, heat, corrosion, and 
irradiation, all of which lead to progressive 
degradation of the mechanical and physical 
properties of fuel cladding materials and other 
structural components. 

The process by which nuclear fuel undergoes 
change in a nuclear reactor core is inherently 
multiscale. Materials issues to be considered 
include thermal and mechanical properties, 
swelling, microstructural phase changes and 
crack formation, as well as the effects of 
point defects and fission products. Reliable 
predictions of fuel behavior are essential to 
preventing fuel failures and to improving the 
economics of reactor operations. 
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Fuel performance modeling places an 
emphasis on the detailed understanding of the 
thermal, mechanical, physical and chemical 
processes governing fuel rod behavior during 
normal reactor operation and under accident 
conditions. Fuel rod performance codes are used 
extensively in research, by fuel vendors, and by 
licensing authorities for the prediction of fuel 
and cladding performance. The simulation tool 
should consist of a clearly defined mechanical-
mathematical framework into which physical 
models can be easily incorporated. Besides its 
flexibility for fuel rod design, the code will be 
utilized for a wide range of different situations, 
as given in experiments, under normal, off-
normal and reactor accident conditions. The 
time scale of the problems may range from 
milliseconds to years. All important physical 
models are included in the fuel performance 
code: i.e. models for thermal and irradiation-
induced densification of fuel, fuel swelling due 
to solid and gaseous fission products, fuel creep 
and plasticity, pellet cracking and relocation, 
fission gas release, oxygen and plutonium 
redistribution within the fuel, volume changes 
during phase transitions, formation and closure 
of center void and treatment of axial forces 
(between the fuel and cladding), cladding 
creep and cladding/coolant interactions (such 
as oxidation), etc. Additionally, the code must 
have access to a comprehensive material 
database for oxide, mixed oxide, carbide, 
nitride, and inert matrix fuels, Zircaloy (and 
advanced zirconium alloys) and steel claddings 
(with the capability to add new fuel forms 
and advanced claddings). Also, interfaces (or 
subcoding) must be available for thermal/
hydraulic and neutronics feedback to the fuel 
performance models.

Fuel rod simulators must be able to predict 
the thermal-mechanical-chemical response 
of the fuel rod throughout its irradiation life-
time, including fuel rod failure mechanisms. 
Requirements for fuel performance simulation 
tools include

• Must be coupled with the nuclide inventory, 
which is required for the determination of 
the chemical/phase state of the fuel;

• Able to predict chemical species evolution 
and transport (in addition to FP);

• Able to predict the spatial distribution and 
chemical composition of separate metal 
and oxide phases;

• Able to predict fission product 
concentrations at the fuel-to-cladding gap 
and chemical interactions with the clad;

• Able to predict (via the transport models) 
the accumulation of volatile species (noble 
gases, Am, Cs, iodine) in the fuel pin free 
volume (especially the plenum);

• Can allow for chemical composition 
feedback into the fuel physical properties;

• Can allow for independent updating with 
most recent models and experimental 
results; and

• Can be directly validated using simple 
experiments and PIE results.

To meet these requirements, a high-resolution 
3D spatial representation of the fuel and 
cladding that allows for non-symmetrical 
power generation and clad/fluid boundary 
conditions will be needed. In particular, 
resolving the thermo-mechanical response 
of the fuel and cladding on a sub-pellet level 
will be paramount. Coupling with other 
neutronics packages will also be necessitated, 
as will reaction-diffusion chemistry for fuels, 
cladding, coolant, and plenum gases. Direct 
coupling with databases of thermo-mechanical 
and chemical properties and models of 
irradiation effects on the properties will also 
be desirable.

The drivers for exascale platform requirements 
in fuel performance can be quantified. For 
example, a high-resolution simulation of 
a bundle of 40 fuel rods (~300 million 
elements with a 10-μ scale size), with only 
thermomechanics and no coupling to other 
multiphysics models, is estimated to require 
about a half day on a 20 PF platform. A more 
rigorous simulation of a single fuel pellet  (~1 
billion elements with a 1 μ scale size), again 
with only thermomechanics, would require 
approximately one day on a 1 PF platform. 
Incorporating all relevant additional physics, 
such as neutronics, fluid flow, and fundamental 
materials science, will easily multiply these 
requirements by a factor of 1000, bringing 
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high-fidelity fuel performance simulation 
requirements to the exascale.

Reactor Safety and Design. Thermal hydraulic 
computational tools will be required to perform 
both design and safety analysis, allowing 
reactor and subsystem designs to incorporate a 
“safe from birth” philosophy. Long term focus 
is on the development of a next generation 
thermal hydraulic computational code that 
provides a completely integrated design and 
safety analysis architecture, that operates 
on leadership computing platforms, that 
seamlessly interfaces with the multiple physics 
necessary to perform high fidelity reactor and 
process analyses (neutronics, structural, fuels, 
chemistry, etc.), and that is experimentally 
validated to perform licensing analysis.  
Design and safety engineers will form the user 
base for these codes, and will greatly benefit 
from faster, more integrated, and higher 
resolution thermal hydraulic analysis systems. 
Expected code capabilities required to support 
the design and licensing of the experimental 
test facilities include: transient single and 
two phase fluid flow analysis, the capability 
to quantify the effect of both code and input 
uncertainty levels on design and safety limits, 
the capability to interface with neutronics and 
structural (and/or other as necessary) analysis 
codes, the ability to perform multidimensional 
thermal hydraulic analysis for selected 
components or component regions, and the 
verification, validation, and documentation 
packages required for licensing. Longer term 
requirements include the ability to analyze 
multiple coolants ranging from gases to liquid 
metals, the ability to use unstructured grids for 
three-dimensional thermal hydraulic analysis 
of any component, additional multi-physics 
interfaces including fuel analysis, coolant 
chemistry, etc, the capability of executing 
these codes on exascale platforms, and a code 
structure that allows the methodology to be 
physically validated.

Detailed neutronics analyses required to sup-
port the design, licensing, and operation of 
many of the components of the fuel cycle range 
from the physics analysis of reactors, critical-
ity safety of the separations and fuel fabrica-
tion facilities, and radiation shielding and dose 
assessment.  Accurate neutronics methods will 
be used by facility designers and regulators to 

assess the efficiency and safety of all nuclear 
systems and to identify areas where existing 
experimental data are insufficient. In addition, 
improvements in modeling capabilities can 
reduce unnecessarily conservative margins 
to ensure economical operation. A complete 
neutronics capability requires a tight coupling 
of several independent components that have 
traditionally been developed in a layered ap-
proach.  The standard components of a com-
plete neutronics suite of simulation codes in-
clude several computational tools and drivers, 
along with the ability to propagate uncertain-
ties in the basic nuclear data and biases of each 
computational tool through the analysis.

The key components of a complete neutron-
ics capability include: processing of data from 
evaluated nuclear data files to provide accu-
rate, problem-dependent cross sections that ac-
count for material temperature and resonance 
shielding; radiation transport methods (Monte 
Carlo and deterministic) for steady-state and 
quasi-static time-dependent simulation of 
neutrons and photons within a system and the 
determination of the criticality condition; com-
plete tracking of isotopic inventory changes 
due to fuel depletion, actinide transmutation, 
fission product buildup and decay, and asso-
ciated radiation source terms; and integration 
of neutronics components with other physics 
packages, such as thermal-fluid dynamics, 
fuel performance, chemistry, and structural 
mechanics. This comprehensive suite of sim-
ulation tools is required to provide analysis 
for the design, construction, and operation of 
near-term facilities (short- and intermediate-
term objectives) and must consist of the cur-
rent best-in-class, qualified simulation tools.  
However, advanced optimization techniques, 
improved solution fidelity, and multi-physics 
coupling will provide substantial impact on the 
viability of commercial-scale facilities.

For structural mechanics, there is a compelling 
need for development and implementation of 
advanced material constitutive models that 
can accurately represent the time dependent 
behavior of materials in extreme environments. 
These should address the effects of high 
radiation levels, extreme temperatures, and 
chemical interactions on material behavior. 
Advanced materials models should account 
for the fully 3D, multi-axial states of stress 

Difficult analyses such as 
the structural performance 
of the system under seismic 
loads are now possible with 
advanced simulations. 
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both at low strain rates (normal operations), 
and at high strain rates (accident scenarios). 
The development of macroscopic, continuum-
based phenomenological models must 
progress in parallel to fundamental materials 
science research aimed at understanding 
microscopic material behavior in extreme 
environments. Recent developments in solid/
structural mechanics have moved towards a 
merging of capabilities from traditional solids 
hydro-type codes, which have pushed the 
computational technologies for representing 
extreme deformations and flow of materials, 
with traditional structural type elements. Such 
codes have been developed in frameworks 
that prevent mesh tangling at extreme ranges 
of response. This has begun to open up 
substantially the types of problems that can 
be modeled for extremely nonlinear accident 
scenarios. It would be very desirable to move 
towards a single program that can solve 
multiple problems associated with slow (static 
and quasi-dynamic) phenomena associated 
with operations, slow accidental events like 
earthquakes, and also accurately simulate 
extreme accidents associated with very rapid 
transients such as pipe breaks. 

Waste Forms and Storage. Different incoming 
waste streams will likely be sent to a geologic 
repository relative to the waste streams (mostly 
commercial LWR spent fuel) currently planned. 
This new waste steam, consisting mainly 
of fission-product wastes from recycling, 
will ultimately require that the repository 
be analyzed for the purposes of regulatory 
compliance, and perhaps have its design 
updated to take advantage of the significantly 
reduced loadings (heat loading, mass loading, 
and much shorter overall half lives) that the 
new waste stream will represent. If spent fuel in 
the current incoming waste stream is replaced 
by reprocessed fission-product waste in glass 
(or another solid waste form), the opportunity 
arises for a redesign of the repository, where 
multi-faceted simulations can more effectively 
capture the major processes for a suite of new 
design concepts. This will allow optimization 
of the safety (represented by dose to a human 
receptor on the surface in the distant future), 
the cost, and the repository volume within 
Yucca Mountain. For a new design, the 
opportunities for improvement are many. They 

include the configuration of tunnels within the 
mountain, the configuration of waste packages 
within each tunnel, and the waste loading 
per package. Difficult analyses such as the 
structural performance of the system under 
seismic loads, the interactions of incoming 
water with the drift walls including capillary 
forces, and fracture flow and transport, are all 
amenable to advanced simulation that analysts 
would not have considered even a decade 
ago, because the computer power required to 
execute such analyses was far beyond what 
was available.

3. Advances in the Next 
Decade
The stated long-term simulation goal for 
nuclear energy via a GNEP-based Program 
[DOE Office of Nuclear Energy, Science, and 
Technology, 2006] is the development of an 
architectural model that will facilitate the pre-
dictive modeling of the entire fuel cycle from 
mining through final disposition of waste ma-
terial, taking into account interacting factors 
such as market forces, socio-political effects, 
and technology risk. This architecture must 
incorporate a comprehensive suite of simu-
lation tools for the design, analysis and en-
gineering of next-generation nuclear energy 
systems with enhanced safety, reduced en-
vironmental impact, optimal deployment of 
facilities, and reduced construction cost. The 
scope of these tools is daunting:

• Integrated 3D reactor core simulations 
with rigorous propagation of uncertainty

• Coupled thermal hydraulic and primary 
loop simulation

• Advanced fuel design and performance

• Fuel behavior engineering

• Advanced secondary loop and balance of 
plant engineering and analysis

• Advanced fuel cycle design

• Separations facility engineering optimi-
zation

• Repository design including seismic, 
geological, chemical, and thermal model-
ing and simulation
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• Overall nuclear energy systems model 
development suitable for alternative eco-
nomic analysis.

More broadly, exascale M&S objectives have 
the potential for a significant impact on nu-
clear facility design and operations: 

• to study fuel cycle and resource issues 
(once-through, plutonium recycle, actinide 
burning, waste disposal, etc.); 

• to develop and optimize nuclear plant and 
facility designs (systems design, physical 
layout, materials requirements, cost, 
economics); 

• to demonstrate fundamental safety issues 
(defensive systems, passive safety, 
establishing the licensing basis); 

• to avoid (reduce) costly prototype 
construction and operations (critical 
assemblies, prototypes, intermediate-scale 
plants); 

• to accelerate optimum fuel selection (fuel 
irradiation is almost certainly required); 
and 

• to characterize SNF-related requirements 
(on-site storage and criticality, shipping cask 
designs, and repository requirements);. 

• optimization of performance in mixed 
utility electrical grids (cycle length, 
fuel resource requirements, economics, 
outages; analysis of hundreds of thousands 
of core loading options); 

• demonstration of cycle-specific safety 
requirements (static and transient 
calculations: tens of thousands of coupled 
neutronics/thermal-hydraulic/systems 
computations); 

• support for reactor operators (optimize 
startup and power maneuvers: thousands 
of calculations per cycle); 

• on-line monitoring functions (real-time 
surveillance of safety margins: thousands 
of calculations per cycle); and 

• operator training (real-time simulation on 
full-scope simulators).

4. Accelerating Development
Modeling and simulation of advanced nuclear 
fuel cycles will require a hierarchy of mod-
els of vastly different physical systems across 
a wide range of space-time scales, from de-
tailed molecular dynamics of new materials 
to systems level simulation of the entire cy-
cle. The final goal will be optimization in the 
presence of modeling and input uncertainty in 
order to design safe, reliable, economical, and 
socially acceptable end-to-end solutions for 
nuclear energy production. While there have 
been many advances in fundamental enabling 
technologies in mathematics and computer 
science in the past, additional research and 
development will undoubtedly be required to 
tackle a problem of this scale. At each level, 
new enabling technologies will be required to 
enhance predictive capability, understand and 
propagate uncertainties, model unresolved 
physics, and couple multiple physical models 
at a wide range of space-time scales. Like-
wise, new research and development is re-
quired to analyze, visualize, and optimize the 
results of such large simulations, and to do so 
in a way that is useful to designers and deci-
sion makers, who must be fully aware of the 
limitations of the computational predictions 
and the uncertainties inherent in the simulat-
ed results, due to the inevitable uncertainties 
of input parameters and modeling assump-
tions. Associated with this is the stringent 
need to establish careful protocols for simu-
lation code verification and validation. These 
tools must be uniformly accessible within an 
integrated computational environment that 
reduces time-to-simulation, provides com-
patible geometry representations, and allows 
for a hierarchy of model fidelity running on 
workstations to state-of-the-art parallel com-
puter architectures.

Multiphysics Coupling. Predictive simulation 
of each process within the fuel cycle requires 
accurate solutions to multiple, simultane-
ous nonlinear physical processes. Traditional 
simulation approaches to this problem involve 
segmented solution techniques whereby the 
simultaneous physics are assumed to proceed 
in a sequential, loosely-coupled manner. Such 
a solution approach is not nonlinearly consis-
tent, is prone to numerical errors (particularly 
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sensitive to time step size), and in some cases 
does not even converge (exhibits zeroth order 
errors). Such an approach is in general not pre-
dictive. Fully-coupled, nonlinearly-consistent 
multi-physics time integration algorithms 
solve  this problem. Multi-physics coupling ef-
forts will also provide common computational 
tools and interface structures, through execut-
ables and/or modules, to unite the varied tem-
poral and spatial discretizations of each phys-
ics package to provide a consistent basis for 
analysis and information propagation. These 
products and interfaces will be used by facil-
ity designers to integrate multiple state-of-the-
art physics simulation packages to provide a 
generalized coupling. This work will not only 
pay off in more accurate, predictive simulation 
results, but in many cases result in increased 
efficiency (time to solution), by virtue of being 
able to take a larger integration time step per 
given level of desired temporal accuracy.

The algorithmic and software coupling of mul-
tiple physics modules and codes will provide 
analysis capabilities for the design, construc-
tion, and operation of near-term facilities and 
must integrate the current best-in-class, quali-
fied simulation tools. However, utilizing high-
performance computational systems, high-
fidelity simulation packages may be tightly-
coupled to provide a fully-integrated facility 
simulation that will provide substantial impact 
on the viability of commercial-scale facilities. 
Associated strategies:

• Utilizing and developing advanced com-
putational algorithms for fully-coupled, 
nonlinearly-consistent multi-physics time 
integration techniques;

• Providing the improved algorithms via 
standardized software interfaces for the 
communication of information from each 
physics package;

• Developing generalized interpolation, 
integration, extrapolation routines to en-
sure compatibility of solution with differ-
ent geometric representations and time-
scales;

• Integrating tightly-coupled physics pack-
ages into a unified module to provide an 
efficient solution on high-performance 
computing architectures;

Optimization and Confidence Analysis. 
Sensitivity analysis is used to determine the 
change in a computed result due to a change in 
some input parameter used in the calculation. 
Sensitivity and uncertainty (S/U) analysis is 
important not only for performing methods/
data V&V studies, but also for certifying 
that a proposed system design satisfies all 
performance and safety specifications. This is 
especially significant because the new reactor 
and fuel processing/reprocessing systems 
have not been previously characterized by 
measurements. Specifically, S/U methods can 
provide the following types of information: 

• Improved physical insight into the under-
lying phenomena governing the system 
of interest, by indicating relationships 
between variables. This is often useful for 
guiding design modifications and inter-
preting hypothetical accident scenarios.

• Realistic, best-estimate design margins 
that can reduce the tolerances obtained 
from bounding-analysis.

• Quantitative ranking of important model-
ing/data parameters that impact the cal-
culated results. This analysis can identify 
major sources of uncertainties and can 
determine the required measurement ac-
curacy in the input data necessary to 
achieve a desired accuracy in the com-
puted results.

• Rapid (but approximate) evaluation of 
how design perturbations affect computed 
output parameters. This can be coupled to 
a system optimization algorithm.

Although developed most extensively 
for criticality safety and reactor physics 
analysis, sensitivity techniques can also 
be applied to other types of calculations, 
including shielding evaluations for reactors, 
reprocessing, and transportation systems, 
fuel depletion studies of actinide burning, 
core lifetime, and proliferation indicators, 
ex-core fuel cycle parameters such as source 
term activities/decay heat, and safety analysis 
involving reactor kinetics with thermal 
hydraulics feedback.
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5. Risks
Nuclear energy does not have the same drivers, 
from an M&S perspective, as nuclear weap-
ons, climate change, or the aircraft industry (to 
name a few). Unless M&S activities are driven 
by requirements set by industry and regulatory 
agencies, approaches in which “better” can be-
come the enemy of “good enough” may pre-
vail and defocus efforts. The oft-quoted state-
ment that “all models are wrong, some models 
are useful; the only way to tell the difference is 
to get some data” applies to the role of M&S 
in the nuclear fuel cycle. V&V activities will 
be crucial. 

6. Expected Outcomes
Enhanced use of M&S for nuclear energy 
will lead to improvements in knowledge and 
reduction of uncertainties that will produce 
cost savings in current reactor operations and 
substantially reduce the cost of future reactors. 
Such improvements could also provide a basis 
for innovative designs that will reduce the 
need for excessively conservative (and costly) 
system specifications, improve efficiency and 
performance, enhance safety and reliability, 
and extend operating lifetimes. 

For the existing fleet of NPPs, simulation 
can reduce margins, thereby increasing 
performance. For example, for 100 reactors 
with an operating cost of $1 million/day, a 5% 
power increase results in an annual return of 
$2 billion, for 20+ years. For advanced new 
reactors, optimized designs can be developed 
without any “learning curve” (thus increasing 
years in operation). For the current fleet, for 
example, the difference between 30 years at 
60% capacity and 10 years at 90% capacity can 
be viewed as unrealized potential equating to 
$328 billion (in 2007 dollars), over 30 years. 

As an example, for the three areas of reactor 
and fuel cycle technology, the principal 
benefits are as follows. 

• Exascale M&S could have a substantial 
impact on spent fuel reprocessing in ar-
eas such as the simulation of separations; 
the development of new separation agents, 
addressing whether these agents can be 
“engineered” to provide the desired re-
sults; the performance of full-scale plant 

simulations using first principles (some 
codes are adequate, while others need 
work); and the integration of multiple 
codes. Exascale computing is expected 
to reduce R&D cost and time, improve 
and accelerate the design process, support 
process scaleup, lower facility costs, and 
provide opportunities for major change. 
The biggest payoff for M&S in reprocess-
ing, however, is expected to result from 
advances in the modeling of waste forms, 
which should make it possible to delay or 
avoid the construction of additional re-
positories for SNF.

• The application of exascale computing to 
fuel performance should reduce the time 
needed for fuel development and quali-
fication and lead to reliable assessments 
of life cycle performance, predictions of 
fuel rod behavior in a design basis ac-
cident (DBA), and predictions of tran-
suranic (TRU) fuel behavior.

• Benefits of exascale M&S for reactor 
analysis and design include eliminating 
unrealistic assumptions that drive to more 
conservative designs and thus higher cost, 
helping to achieve higher power efficien-
cies, reducing learning curves to efficient 
operation, improving safety posture, 
optimizing the design of the power grid 
and the fuel cycle, and supporting better 
(more efficient) operations, including in-
line monitoring and operator training.
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Biology3
Microbial life is responsible for all major pro-
cesses on Earth, from growth of corn in a field 
to deposition of carbon under the oceans. Un-
derstanding the role of microbes in these pro-
cesses is the first step in manipulating them, 
enhancing the positive aspects of microbial bi-
ology to enhance all life on earth. Our current 
understanding of microbial life comes almost 
entirely from experimental observations. Bi-
ology must capitalize on emerging technolo-
gies to combine computational analyses and 
modeling into a greater understanding of mi-
crobial systems and their interactions within 
a community. Such understanding will pave 
the way for the new scientific frontiers of syn-
thetic biology and will be central to ecologi-
cal sustainability in the future.

Biological experimentation has revealed the 
intricate interplay between proteins and their 
ligands: crystal structures and genetic tests 
have demonstrated atomic and molecular-
level interactions driving reactions that raise 
or raze complex macromolecules essential for 
life. Within cells, biopolymers and molecular 
complexes are constructed through regulated 
pathways. As we enhance our rudimentary 
understanding of the connections between 
the systems that form a cell, and their tem-
poral and spatial separation, we move toward 
modeling whole microbial cells. Modeling 
steady-state cellular growth will expand and 
adapt into real-time continuous culture mod-
eling. In nature, cells do not live in isolation. 
Combinations of microbial cells form com-
munities, and coordinated microbial actions 
affect local and global environments.

The genomics period started in the mid-1990s 
with the first complete microbial genome se-
quences, and progress towards more rapid and 
cheaper sequencing has continued unabated. 

As microbial sequencing continues to expo-
nentially produce the blueprint of cultivated 
microbial life, comparative computational 
genomics tools are enhancing our ability to 
model individual proteins, groups of proteins, 
and microbial cells. These analyses are help-
ing to unravel novel metabolic and regulatory 
pathways that have not been characterized 
previously. Moreover, the recent advent of 
environmental sequencing—understanding 
the molecular makeup of all organisms in 
an environment simultaneously—has revo-
lutionized our comprehension of microbial 
diversity on Earth. To this wealth of infor-
mation, high-throughput experimental capa-
bilities, such as mass spectroscopy and chip 
technologies, are providing information that 
adds meaning to the sequence.

HPC in biology is accelerating the transition 
from hypothesis-driven to design-driven re-
search at all scales. Computational simulation 
of biological systems is beginning to drive the 
direction of biological experimentation and 
the generation of insights. Computational bi-
ologists thus are proving to be at the vanguard 
of the revolution in biological sciences. 

1. State of the Art 
Microbial life affects every known physical 
and geochemical process on the planet. If we 
are to manipulate and control the pathways 
and mechanisms, we must understand the 
roles of microbes in these critical processes. 

Determining how a protein is folded in vivo 
and then how that protein binds its ligand 
or substrate is central to understanding the 
function of that protein. For the majority of 
proteins that are identified, the ligands are 
unknown or assigned based on sequence or 

Understanding microbial 
systems will pave the way
for new scientific frontiers of 
synthetic biology and will be 
central to ensuring ecological 
sustainability in the future.
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structural similarity to other proteins. There-
fore, the modeling process may begin with 
docking or protein:ligand interaction studies 
to identify suitable substrates from the entire 
complex chemical universe. A subset of these 
searches is critical to drug discovery—finding 
enzyme inhibitors that block specific func-
tions. Searching through portions of chemi-
cal space and comparing those 3D chemical 
structures with 3D protein structures requires 
massively parallel computations. However, 
once a protein:ligand interaction has been 
demonstrated computationally, genetical-
ly, and structurally, modeling the temporal 
variations in specific atom-level interactions 
remains beyond the realm of current compu-
tational capacity.

New techniques are providing high-through-
put structure prediction and characterization 
[Goens et al. 2004,] but exascale computing 
is required to predict structures for all identi-
fied proteins. The complexity of this problem 
is reduced through identification of “protein 
families” —groups of similar (but not iden-
tical) proteins that are common to different 
microorganisms. Clustering, similarity, align-
ment, and maximum likelihood trees and phy-
logenetic methods will be leveraged to reduce 

the complexity biological experimentation, to 
predict functions, and to design experiments 
that can confirm or refute those predictions. 
With the advent of technology and price 
points that enable complete sequencing of all 
cultivated microbial life, these computations 
will become ever more complex. These three 
intertwined problems—alignment, phyloge-
netic trees, and structure predictions—are at 
the heart of protein function prediction and 
currently operate at the terascale. For exam-
ple, there are approximately 10,000 proteins 
in families. To generate 100 trees per family, 
at approximately 1 day per tree, requires 106 
CPU-days with current computational plat-
forms. These phylogenetic trees will improve 
the design of structure prediction and test-
ing models that will in turn lead to enhance-
ments in the phylogenetic methods. Advances 
in algorithms for string matching, similarity 
searching, and identification of similar pro-
teins that are required to reduce the com-
putational load for these approaches all 
depend on high-performance, integer-based 
computations.

Systems biology aims to develop validated 
capabilities for simulating cells as spatially 
extended mechanical and chemical systems 
in a way that accurately represents processes 
such as cell growth, metabolism, locomo-
tion, and sensing. Initially this work will be 
developed in the much simpler, and better 
understood, bacterial realm rather than at the 
level of complex multicellular systems. Cur-
rently, the state-of-the-art methods for mod-
eling bacteria are flux-balance analysis and 
regulatory and signal transduction network 
analysis. Metabolic pathways can be extract-
ed automatically from an annotated genome, 
and derivation of stoichiometric metabolic 
networks suitable for flux balance methods is 
becoming automated. More realistic models 
of bacterial growth in defined conditions will 
soon replace these simplistic models of cells 
in a single state. Two developments render 
such an effort feasible with exascale com-
puting: (1) first principles–based algorithmic 
approaches to fully represent the complex 
spatially heterogeneous, multiscale, and mul-
timodel processes characteristic of microbial 
modeling; and (2) the wealth of new experi-
mental techniques that can provide the basis 

Figure 3.1 Central metabolism in all organisms consists of a set of interconnected 
pathways. Although the components of most of the pathways are known, model-
ing microbial metabolism, signal transduction, and regulation currently can  handle 
steady-state processes. Exascale modeling will allow real-time fluxes to be simu-
lated, leading to design driven experimentation. (Image from: http://en.wikipedia.
org/wiki/Metabolic_pathway)

With exascale computing, 
scientists can run
models that fully represent 
the complex, spatially 
heterogeneous,
multiscale, multimodel 
processes of microbial 
systems.

With exascale computing, 
scientists can run
models that fully represent 
the complex, spatially 
heterogeneous,
multiscale, multimodel 
processes of microbial 
systems.
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for validating the models generated, including 
high-throughput methods for acquiring ge-
nomics and proteomics data, and high-resolu-
tion imaging techniques that can, for example, 
track the locations of individual molecules in 
a cell. The development of simulation models 
will provide a theoretical framework that will 
transform these massive data streams into 
design-driven research priorities. 

Unlike other modeling efforts, microbial-
sized multiscale models may enable design-
driven research that can be rapidly tested by 
experimental biologists. This combination of 
modeling, prediction, and testing will gener-
ate a positive feedback loop, continually en-
hancing the models that are generated. This 
new paradigm, with simulation driving the 
hypotheses to be tested by the biologists, will 
place computational biology firmly at the 
helm of biological discoveries.

As combinations of microbial models are 
combined into communities, it will be pos-
sible, initially at an entirely different scale, 
to model whole communities not only of mi-
crobes but of their associated Eukarya: plants 
and animals. To understand and manipulate 
carbon fluxes in terrestrial or aquatic envi-
ronments, to enhance energy production or 
carbon sequestration, will require not only 
understanding individual isolated organisms 
but also modeling the entire balance and flow 
of carbon, nitrogen, phosphorus, and oxygen 
through the life cycle of the ecosystem. New 
models will be needed that extend to micro-
bial eukaryotes such as the fungi most critical 
for nitrogen fixation in the rhizosphere. In ad-
dition, microbial ecology will need to learn 
from traditional macro ecology and models of 
different ecosystems. Studies in environmen-
tal microbiology are just beginning to unearth 
the fundamental links between micro- and 
macroecology that will be critical to under-
standing microbes’ roles in the world.

2. Advances in the Next 
Decade
Microbial life is so pervasive, and so essen-
tial for human life and sustainability, that 
we need to understand the connections from 
individual proteins through whole cells and 

into ecosystems and environments. Develop-
ment of tools for simulation and modeling 
of microbial life using exascale computing 
will impact virtually every aspect of human 
interaction with nature. Tools developed for 
exascale computing models of microbial life 
at each scale will be used to simulate the ef-
fects of perturbations. These models will 
provide unparalleled ability to produce hy-
potheses and to design experiments from the 
computational framework, to test the models 
through interactions with biologists, and to 
refine the models based on the results of the 
experiments.

Models and simulations will be generated 
at the molecular dynamics, systems biology, 
and ecosystem levels. A challenge will be to 
integrate these models from different scales 
into unified systems that will stimulate quan-
titative biology. The exascale computational 
framework will accelerate the transition of 
computing in biology to design-driven re-
search. Enhancing our understanding and 
modeling of microbial life will benefit a broad 
range of application areas:

Energy. • Microbial modeling at the exas-
cale will identify new proteins, pathways, 
subsystems, and manipulations that will 
be used as biocatalysts and to derive bio-
fuels, and to accelerate the development 
of biofuel cells and direct solar energy 
cells.

Environmental remediation.•  Microbial 
modeling at the exascale will provide the 
ability to engineer individual organisms 
to more effectively transform unwanted 
compounds to harmless metabolites, as 
well as the ability to engineer multispe-
cies communities for efficient functional 
purposes through design-driven research.

Industrial-scale microbiology.•  Microbial 
modeling at the exascale will produce 
recipes of mutations that transform wild 
microbial strains to production strains 
(for production of fine chemicals, phar-
maceuticals, and next–generation green 
feedstocks). Complete metabolic and 
functional models, design-driven predic-
tions, and experimental confirmation pro-

Development of tools for 
modeling microbial life at the 
exascale will
provide unparalleled ability 
to simulate the effects of 
perturbations
on microbial systems.
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viding positive feedback are all required 
to ensure high-quality products.

Carbon sequestration.•  Microbial model-
ing at the exascale will provide the abil-
ity to manipulate microbes to sequester 
carbon from the environment via miner-
alization. Without understanding the very 
nature and forces driving the fixation of 
CO2, we will not be able to reduce the 
concentrations of atmospheric green-
house gases.

Sustainability. • Microbial modeling at the 
exascale will yield models of complex, 
productive, and sustainable environments, 
like the prairie grass that does not require 
exogenous fertilization. These ecological 
models provide the key to sustainability 
and security into the future.

Enhancements in our understanding of bi-
ology at each scale—from atomic, through 
genomic and cellular, to ecosystems—are 
driving the need for high-performance bio-
logical computing. These approaches and 
algorithms bring their own challenges and 
problems, in particular the need for multi-
scale modeling. However, computing at the 
exascale level will provide unique opportuni-
ties to reveal intimate knowledge about the 
smallest, and yet the most important, mem-
bers of the biosphere.

3. Major Challenges
The technological challenges for microbial 
multiscale modeling are vast, but not insur-
mountable. The central technological chal-
lenge is to advance modeling to the point 
where it can produce a steady flow of predic-
tions that are fed into wet-lab operations for 
functional characterization. These character-
izations will feed back to the modeling to pro-
vide near real-time assessment of the quality 
of the model. In essence, this approach will 
construct a growing body of models that are 
continuously calibrated against the parallel 
growth in phenotypic data.

Not all the challenges of moving into the ex-
ascale computational era are technological, 
however. Significant biological hurdles must 
be overcome before exascale computing can 
be efficiently applied to multiscale microbial 

systems. For example, determination of the 
structures of diverse proteins, including tra-
ditionally intractable structures such as mem-
brane proteins, is critical for understanding 
the flow of compounds within and between 
cells, and essential for protein-scale model-
ing components. Increased genome sequenc-
ing capacity—initially sufficient to handle 
sequencing all known microbial genomes—
is essential to capture the diversity of life on 
earth. However, at projected sequencing rates 
of hundreds to thousands of genomes per year, 
DNA availability, logistics, and manual cura-
tion of sequenced genomes are likely to pose 
more of a hurdle than sequencing capacity it-
self. As we move toward exascale computing, 
technological advances will likely be capable 
of delivering a whole genome as a routine mi-
crobial assay, a fundamental requirement for 
understanding ecosystems-level biology. 

The biotechnological advances will demand 
similar computational advances. Current 
biomolecular modeling and simulation 
capabilities used for self-assembly in molecular 
biology rely heavily on coarse-grained 
techniques and empirical approximations for 
particle-particle interactions. The simulation 
is also necessarily limited in length, and 
current scales do not capture the long 
time periods of the self-assembly process. 
For example, the IBM Blue Gene project 
estimates that to simulate 100 microseconds 
of a protein folding will require about 3 years 
of computation on petaflops architecture. 
With exascale computing, the entire self-
assembly process will be simulated over 
micro- or millisecond time scales, leading 
to new scientific insights and design-driven 
research. Combining higher-fidelity and 
longer-time simulations will enable research 
into the parameter space that affects individual 
protein:protein and protein:ligand interactions 
(temperature, pressure, different connection 
and surface capping molecules, etc.) or even 
the use of optimization procedures to design 
new structures with desired properties. The 
challenges for other types of computational 
biology (such as homology searching) are 
even more overwhelming as a result of high 
I/O and memory requirements and traditional 
dependence on shared-memory resources.

Simulating 100 ms of a 
protein folding is expected to 
require 3 years on a petaflops 
architecture; with exascale 
computing, scientists will be 
able to simulate the entire 
self-assembly process in 
microseconds.



53

Modeling and Simulation at the Exascale for Energy and the Environment

Improving the consistency and accuracy of 
protein functional annotations through the 
elucidation of metabolic pathways or process-
es as subsystems that cover almost all of the 
machinery embodied in the newly sequenced 
genomes will be central to unraveling the me-
tabolism within each microbe and the roles of 
these microbes in their environments. These 
improved annotations will also feed into sys-
tems biology approaches to understanding the 
holistic nature of the cell. However, model-
ing and simulation provide only a glimpse of 
a narrow local view of each process without 
interaction between modalities and scales. 
The approach to addressing all of these chal-
lenges is development of exascale algorith-
mic and software tools for representing the 
various macroscopic subsystems, combined 
with the application of these tools in various 
combinations to simulate specific problems in 
systems biology. The design of the tools and 
their application requires both biologists and 
mathematicians, with theory and experiments 
informing the design of models for specific 
problems and the factorization of the algo-
rithmic tools required into reusable software 
components. The feedback between biologi-
cal experimentation and mathematical tool 
development is an ongoing process that will 
yield robust representations of systems biol-
ogy across multiple specific problems. For 
example, we have neither the understanding 
of how to attack the hybridization of stochas-
tic and deterministic algorithms in a single 
simulation, nor any ideal what the biological 

design-driven outcomes of such a synthesis 
might be.

4. Accelerating Development

Parallel advances in biological and compu-
tational sciences will be required to realize 
multiscale microbial modeling at the exas-
cale. Advances will be required at each in-
dividual layer from atomic protein models 
through whole cell modeling to ecosystem-
scale models. 

Biomolecular dynamical models need to 
adapt to varying parameter space, local varia-
tions of constituents, and effects of nearby 
proteins. Entirely new models that can lever-
age exascale computing to realize micro- or 
millisecond-scale protein simulations are es-
sential for this modeling to succeed beyond 
the nanosecond scale.

Technologists are driving the sequencing and 
annotation of thousands of single-celled or-
ganisms (including Archaea, Bacteria, and 
Eukarya). By the time exascale computing 
arrives, the majority of diverse microbial 
organisms will be completely sequenced. 
Improvements to terascale and petascale 
integer-based computations will be essen-
tial to ensure that computational efficiency 
scales with technological efficiency. The fed-
eration of molecular databases will result in 
kernel databases that are well annotated and 
maintained and support massive amounts of 

Figure 3.2 Microbes are the original carbon se-
questerers. Microbial cells (Emiliana huxleyi; A) 
are approximately  5 µ across, yet when they 
bloom in the ocean the vast numbers of cells 
are visible from space (B; an E. huxleyi bloom 
off the southwest coast of England). Over millen-
nia, these microbial blooms are deposited on the 
ocean floor, storing carbon as calcite, and hence 
removing CO2 from the atmosphere (C: The 
white cliffs of Dover were created by microbes, 
especially cocolithophors). Design-driven biol-
ogy based on exascale computing could identify 
how to enhance the growth of cocolithophores, 
increasing deposition of carbon on the ocean 
floor. (Images A and B from http://en.wikipedia.
org/wiki/Emiliana_huxleyi. Image C from http://
en.wikipedia.org/wiki/White_cliffs_of_dover.)

A.

B.C.

Exascale algorithms and 
software tools will be critical 
for representing macroscopic 
subsystems, a key step to 
understanding the holistic 
nature of the cell.
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sequence data. These databases will have to 
address data centralization versus distribution 
issues common to other data-intensive scientific 
endeavors. However, these databases, together 
with an enhanced computational framework 
that accelerates the modeling and characteriza-
tion of heretofore-unknown biochemistry, will 
arise simultaneously with our genome-level 
understanding of microbial cells. 

The new computational framework for sim-
ulating complete cells will need to incorpo-
rate protein functions from these federated 
databases, regulation and cellular states (ex-
perimentally tested by microarrays), and 
compound concentrations and stoichiometries 
required to model flows through individual 
cells, groups of cells, and complex ecosys-
tems. In addition to these separate develop-
ments, each of which will occur in parallel, a 
complex integration layer that transcends the 
separate domains will also be needed. This 
multiscale modeling will be essential for un-
derstanding how proteins interact with other 
proteins and/or their ligands in one cell and 
how these interactions might affect the me-
tabolism of a cell elsewhere in the ecosystem. 
This new approach to computing in biology 
will be the driving force behind the deter-
mination of the role of proteins, pathways, 
microbes, and communities in complex bio-
logical processes.

5. Expected Outcomes 
The generation of predictive capabilities is at 
the heart of exascale microbial modeling and 
will drive the transition to design-driven bio-
logical sciences. However, existing research 
infrastructure is not able to support the tran-
sition to exascale computing. Therefore, ad-
ditional investments are needed in key target 
areas to ensure that computing in biology is 
appropriately situated to take advantage of 
the exascale computing opportunities. 

Novel molecular dynamics algorithms • 
for microsecond simulations of proteins 
and ligand interactions. Enhancing the 
algorithms used for molecular dynamics 
approaches will include extending them 
out to microsecond or millisecond times-
cales for all proteins encoded by all mi-
crobes (bacteria and viruses) sequenced:

– Protein structure prediction and 
classification

– Prediction of interacting protein 
partners

– Prediction of protein-protein 
complexes

– Refinement of function prediction 
(e.g., specifics of substrates the 
protein may bind)

– Prediction of structure-function 
changes caused by single amino 
acid (aa) changes or indels [e.g., 
nonsynonymous single nucleotide 
polymorphisms (SNPs)]

Predictive capabilities of metabolic • 
models. Automatic generation, testing, 
and verification of models for keystone 
species for given environments and  for 
the 50 species with the most wet-lab 
data will lead to the framework for high-
throughput generation of accurate flux-
based models for all sequenced microbes. 
These models will predict the state of the 
cells and the transitions between states, 
while allowing comparison of those pre-
dictions to measured variables to assess 
the efficacy of the model.

Modeling and simulation of less com-• 
plex microbial communities. Several 
low-complexity microbial systems have 
been well studied at the molecular and se-
quence level. These include the acid mine 
drainage system, the enhanced biological 
phosphate removal system, the Soudan 
mine, and the solar saltern crystallizer 
ponds. Modeling these environments will 
move us towards understanding complex 
environments at the exascale. 

Algorithms, architectures, and methods • 
for integrating networks. The integration 
of transcriptome, metabolome, genome, 
and other data requires new algorithms 
that will enable the adoption of exascale 
technology by computational biologists. 
Some of these algorithms may require 
novel computer architectures that go be-
yond the limits of floating-point-centric, 

New biomolecular models must 
be able to leverage exascale 
computing to realize microscale 
or millisecond scale protein 
simulations.
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memory-limited cluster computing that 
are suitable for the physical sciences.

6. Required Investment

In order to enable exascale systems biology, 
funding must be available for generation of 
experimental data (both large-scale data and 
painstaking measurements of critical param-
eters), development of experimental meth-
ods to measure biochemical parameters in a 
high-throughput fashion, data standardization 
[Klipp et al. 2007], and database integration, 
as well as experimental validation and verifi-
cation of model predictions.

7. Major Risks

A major risk is that biologists are not suffi-
ciently trained to leverage high-performance 
computational methods and resources. A 
critical component of facilitating exascale 
microbial modeling is to cross-train microbi-
ologists with state-of-the-art modeling tools 
and applications.

A related risk is the failure to lower the barrier 
for access to exascale computers. Accessibil-
ity of simulation software for microbiologists 
is a constant problem. Failure to address this 
problem will impede the adoption of exascale 
computing.
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Socioeconomic 
Modeling

4
Decades of research have deepened scientific 
understanding of the impact of greenhouse 
gases on climate, as documented, for example, 
in the assessment reports of the Intergovern-
mental Panel on Climate Change (IPCC). Cen-
tral to this research are Earth system models 
(ESMs) incorporating detailed representations 
of the atmosphere, ocean, cryosphere, and bio-
sphere and their interactions, largely through 
chemical systems. Model predictions are now 
considered to be reasonably reliable on global 
and continental scales, and  research is now 
being directed towards improving predictive 
capability at regional and subregional scales.

As the scientific community’s confidence in 
these model results grows, discussion of im-
pacts and of potential adaptation and mitiga-
tion strategies also grows. Modeling tools can 
play a vital role in developing the scientific 
knowledge base required to understand these 
issues. In developing such tools, we must 
recognize that the impact of climate change 
on society and the ultimate effectiveness of 
specific responses depend critically on human 
actors, who will determine, for example, how 
energy supply and demand evolve over time 
and how and when different “solutions” are 
deployed and applied. Hence, we must model 
human responses if we are to understand the 
likely effectiveness and impacts of different 
responses and thus help to sustain a prosper-
ous and secure society.

Integrated modeling of the social, economic, 
and environmental system with an extensive 
treatment of couplings among these differ-
ent elements and consequent nonlinearities 
and uncertainties is a scientific and compu-
tational grand challenge. Existing integrated 
models incorporate treatments of economic 
impacts and impacts on human well-being, 

while bottom-up economic and energy mod-
els describe, for example, the greenhouse gas 
emissions of different industry sectors and 
mitigation costs. However, computational 
limitations have prevented any existing model 
from including substantial regional and sec-
toral disaggregation, a dynamic treatment of 
world economic development and industrial-
ization, and detailed accounting for processes 
such as technological innovation, industrial 
competition, population changes, and migra-
tion. Other than emission scenario drivers 
for climate models, feedbacks from human 
activities to climate change are generally not 
addressed, and it has not been feasible to ex-
plore the uncertainty range within climate and 
economic model domains with Monte Carlo 
or more general Bayesian methods. The lack 
of computational power has also limited the 
ability to apply the best statistical techniques 
to existing data.

The emergence of petascale and (within the 
next ten years) exascale computers makes it 
possible, in principle, to attempt a detailed 
and fully integrated treatment of these diverse 
factors. By allowing for far more detailed 
treatments of the various components and 
feedbacks among these different components, 
and issues of uncertainty and risk, exascale 
computers have the potential to transform un-
derstanding of socioeconomic-environmental 
interactions.

Such detailed and integrated models can al-
low for the quantitative study of key ques-
tions, including the following: 

How will climate change impact energy • 
demand and prices?

Integrated modeling of 
the social, economic, and 
environmental system with an 
extensive treatment of coupling 
of these different elements and 
consequent nonlinearities and 
uncertainties is a scientific and 
computational grand challenge.



58

Section 4: Socioeconomic Modeling

How will nonlinearities, thresholds, and • 
feedbacks in the coupled climate-eco-
nomic-energy system impact both cli-
mate and energy supply? 

How will different adaptation and miti-• 
gation strategies affect energy supply and 
demand, the overall economy, the envi-
ronment, individual products and servic-
es, public health, and the vulnerability of 
the U.S. economy and infrastructure?

How can computational approaches help • 
us to identify and visualize good strate-
gies for R&D, policy formulation, and 
technology adoption under conditions of 
future uncertainty, but with future infor-
mation feedback opportunity?

How are answers to these questions in-• 
fluenced by other processes, such as 
population growth and demographic 
change; economic growth and develop-
ment, particularly in Asia; immigration; 
and technological change (such as tele-
conferencing technology)—all of which 
will affect transportation and land use 
patterns, human behavior, and business 
conditions?

How will the success of potential solu-• 
tions be affected by technical issues vs 
other social, political, regulatory, and 
market factors, such as barriers to entry 
for new technology providers? 

DOE’s leadership role in high-end computing 
and its strong interest and expertise in climate 
change make it natural for DOE to take a 
leadership role in an R&D program aimed at 
building detailed, integrated socioeconomic-
environmental models designed for exascale 
computers. Building on DOE expertise in cli-
mate and energy system modeling, and bring-
ing to bear the latest methods in economics, 
quantitative techniques in behavior and deci-
sion theory, and HPC tools, such a program 
can develop tools to deepen the understand-
ing of technical, economic, and social issues 
that underpin the climate change challenge.

Such a program should aim to create a high-
performance, high-fidelity modeling frame-

work that incorporates detailed treatments 
of the various components listed above and 
that allows for computational investigations 
of both individual elements of the socioeco-
nomic-environmental system and the entire 
coupled system. The program must address 
a wide range of methodological and compu-
tational problems, including data manage-
ment and acquisition, parameter estimation, 
technology characterization and forecasting, 
socioeconomic model specifications, regional 
and subregional disaggregations appropriate 
for ESMs, and the need to quantify the de-
gree of uncertainty in forecasts. This system 
will capture feedbacks between socioeco-
nomic systems and climate and will allow for 
quantitative evaluation of potential strategies 
designed to reduce greenhouse gas emissions 
with minimal societal costs. 

In a series of staged R&D steps, the program 
can:

Enhance existing socioeconomic models • 
to provide far greater geographical and 
temporal resolution of important process-
es, interactions, and feedbacks.

Incorporate important socioeconomic el-• 
ements previously treated as exogeneous, 
such as economic development, exchange 
rates, and foreign industrialization.

Invest in multidisciplinary tool develop-• 
ment including algorithms, validation, 
data analysis techniques, and uncertainty 
analysis.

Extend large-scale socioeconomic mod-• 
eling to new domains, such as analysis of 
market barriers to new technologies and 
health impacts of climate change.

Integrate existing and new data sources to • 
allow for rigorous model validation.

Integrate global ESMs with global socio-• 
economic models that highlight human 
and geophysical interactions.

In the following, we describe this need and 
our approach in more detail. We also mention 
other potentially important applications of the 

With expertise in high-end 
computing and climate change, 
DOE is in an excellent position 
to lead the development 
of detailed, integrated, 
socioeconomic-environmental 
models for exascale computers.
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proposed socioeconomic model, which can be 
both coupled with ESMs and used in complex 
computational settings such as game theory 
and stochastic dynamic programming

1. Importance of Global 
Socioeconomic Modeling
Earth system modeling has progressed to a 
point where there is considerable confidence 
in predictions of continental- and global-
scale climate changes over the next 100 years 
[IPCC 2007]. We are thus understandably in-
terested in determining likely impacts of cli-
mate change on ecosystems, human society, 
human health [McMichael et al. 2003] and 
well-being, the economy, and national secu-
rity and in understanding the effectiveness of 
potential adaptation and mitigation strategies.

One set of questions that we must answer to 
address these issues concerns the geographi-
cal and temporal distribution of climate 
change. For example, will climate change in-
crease or decrease the level, variability, and 
timing of rainfall and temperature in agricul-
tural regions? Will it increase or decrease the 
frequency of hurricanes over low-lying coast-
al regions or extend the scope of vulnerable 
regions? To answer these and other related 
questions, DOE has defined as a primary goal 
over the next five to seven years the improve-
ment of the performance of ESMs on regional 
and subregional scales.

A second set of questions, equally central to 
understanding climate change impacts and 
responses, concerns climate system-human 
system interactions (see Figure 4.1). Such 
interactions can be both important and com-
plex, as the following examples demonstrate.

Biofuels have the potential to reduce • 
both overall greenhouse gas emissions 
and dependence on foreign oil. On the 
other hand, the production of biofuels 
can increase both water consumption and 
food prices, with implications for human 
societies—and, if grown on previously 
unfarmed land, greenhouse gas emissions 
[Sustainable Bioenergy 2007]. The ulti-
mate cost-effectiveness of biofuels may 
also be influenced by changes in the pro-

ductivity of land used to grow biofuels, as 
a result of climate change, or by changes 
in energy demand due to changes in tem-
perature patterns.

Reductions in greenhouse gases may de-• 
pend on the emergence and adoption of 
new energy production, distribution, and 
consumption technologies. Thus, we may 
ask what factors affect the emergence 
of new technologies and, for potential 
climate change solutions, how their suc-
cess will be affected by technical or other 
factors, such as availability of capital for 
these ventures and obstacles to entry for 
new providers. 

The nature and pace of climate change • 
response may depend on international 
agreements. In such agreements, there 
may be winners and losers. We may want 
to quantify the benefits or costs of alter-
native responses to different countries, 
states, and industries and study the inter-
actions that may occur between different 
parties. Such studies can contribute to the 
design of negotiation strategies and inter-
national emission treaties, including pen-
alties for violators.

Figure 4.1 Earth system–human system interactions, as captured in the MIT 
modeling system [Sokolov et al. 2005].
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Answers to such questions may be sensitive 
to changes in population distribution, em-
ployment patterns, income growth and prices, 
demand for resources, and human prefer-
ences. Thus, we need to understand trends 
in population growth, demographic change, 
economic growth and development (particu-
larly in Asia), technological innovation, and 
behavioral shifts such as increasing consumer 
preferences for particular energy-intensive 
services and pressure on companies to reduce 
their environmental footprint.

Socioeconomic modeling seeks to construct 
quantitative descriptions of these aspects of 
human systems. Climate models are based on 
our understanding of the physics, chemistry, 
ecology, and biology of the Earth system and 
are often based on well-established laws of 
nature. Human motivations and behaviors 
are complex, and thus socioeconomic 
models are frequently more approximate. 
In contrast to physical systems, diverse 
humans, corporate organizations, and other 
institutions are active, inventive, adaptive, 
and forward-looking in making decisions. 
In many areas of economics and the social 
sciences, however, there exist well-developed 
theory, substantial amounts of data, and 
substantial experience with computational 
methods. Interdisciplinary work is also 
moving forward, although it has far to go. In 
particular, socioeconomic models are not yet 
well integrated with biophysical models.

Proposed responses to climate change range 
from controlling greenhouse gas emissions to 
mitigation and adaptation. In order to curb the 
increase in greenhouse gases, strategies such 
as carbon taxes, cap and trade, alternative 
fuels, voluntary agreements to reduce emis-
sions, regulations including building codes 
and mandatory energy performance standards 
for equipment, and stricter emission standards 
for industry and transportation are under con-
sideration. On a larger scale, we may ask how 
different responses affect energy supply and 
demand, the overall economy, the environ-
ment, demand for individual products and 
services, public health, and the vulnerability 
of the U.S. economy and infrastructure. In 
answering these questions, we must consider 
feedbacks from human responses to the cli-
mate system through, for example, changes 
in greenhouse gas emissions and surface al-
bedos due to land use changes, which may in 
turn be affected by the adoption (or not) of 
low-carbon energy systems—developed, per-
haps, as a result of investment in R&D pro-
grams designed to position us with options 
for the future.

Detailed global-scale socioeconomic models 
capable of capturing some or all of these pro-
cesses will provide invaluable input to scien-
tific understanding and decision making. In 
some cases, these models may serve simply 
to show that a particular response may not 
work as expected. In other cases, they may 
provide data that can guide the design of ef-
fective responses.

Because the models required to study socio-
economic aspects of climate change must 
necessarily encompass many aspects of hu-
man behavior, they can be expected to have 
important applications to numerous prob-
lems besides climate change, such as the 
following:

Managing natural resources: water, for-• 
ests, biodiversity, ecological systems, 
land use

Addressing issues of energy security • 
and exhaustible resources: oil, gas, coal, 
uranium

Figure 4.2 Aggregated world regions used in the World Energy Outlook (WEO) 
2006 study [IEA 2007].

Because human motivations 
and behavior are complex, 
socioeconomic models 
of climate change effects 
necessarily will involve 
approximations.
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Optimizing the supply and delivery of • 
energy services

Promoting economic development, in-• 
come growth, poverty reduction

Improving industrial productivity and • 
competitiveness

Investing in human capital: education, • 
health care, job opportunities, social 
security

Making tax policy more efficient and • 
equitable

Promoting common human values such • 
as protecting the earth’s environment

2. State of the Art
The use of computation-intensive model-
ing to study climate system-human system 
interactions is far from new. For several de-
cades, researchers have developed integrated 
models for this purpose, on a variety of time 
scales and geographical scales [Edmonds et 
al. 1997; IMAGE team 2001; Sokolov et al. 
2005]. Such integrated models couple dif-
ferent types of (sub)model, such as climate 
(atmosphere, ocean, cryosphere, biosphere, 
etc.); land use, vegetation and ecology (ur-
ban, agriculture, forests, biomass, wildlife 
habitat); environmental and resource chang-
es; and socioeconomic (greenhouse gas emis-
sions, health, political stability, feedbacks on 
economic activities and production costs).

Concurrently, researchers in economics and 
the social sciences have been applying com-
putation to issues such as energy system op-
timization, investment analysis, improving 
human institutions such as our tax system and 
conditions for economic and social develop-
ment, game theory strategies, and hedging 
uncertainties [Amman, Kendrick, and Rust 
1996; Judd 1998]. The time scales involved 
are typically in the range of  5–40 years, de-
pending on the decision problem, and the unit 
of analysis may be country, major region, in-
dustry sector, or income group.

In principle, integrated models can (and argu-
ably should) incorporate detailed descriptions 
of all aspects of the social and economic sub-
systems. However, many of these problems 

are computationally extremely challenging 
even in isolation (e.g., when using game theo-
ry solution concepts, market equilibrium con-
cepts that require the finding of fixed points, 
or stochastic dynamic programming formu-
lations) and are not necessarily well under-
stood. This situation, as well as a general lack 
of access to high-end computers within the 
socioeconomic modeling community, has led 
to integrated models being limited in various 
regards. They may sacrifice sectoral detail 
(e.g., see Figure 4.2), avoid consideration of 
certain subsystems, assume myopic behavior, 
ignore certain feedback effects and the notion 
of an overall dynamic equilibrium, or fail to 
adequately address issues of uncertainty. In 
short, they may be theoretical models focused 
on understanding a single dimension.

To go from simpler, single-dimensional mod-
els to elaborate multidimensional models 
will require both adding detail and consis-
tently specifying coupling among different 
systems. 

Linking climate models to socioeconomic 
models is similar to what was done in the 
1980s for the Acid Precipitation Assessment, 
in which a socioeconomic model set was 
assembled and linked to large-scale atmo-
spheric models and used to address key ques-
tions of interest [NAPAP 1990]. The climate 
assessment would presumably be on a much 
grander scale.

For socioeconomic systems, the various parts 
of the economy operate within a global, mac-
ro environment. At the same time, the macro 
economy is made up of the sum of its parts. 
In order to help understand the behavior of 
the integrated socioeconomy and to estimate 
impacts due to changing conditions, large-
scale computational modeling frameworks 
can be used. Over the past 25 years, econo-
mists, systems analysts, and quantitative so-
cial scientists have developed and expanded 
their models and computational techniques to 
solve specifications with many diverse ele-
ments, including;

various household consumer groups;• 

industrial sectors and business services;• 

Many socioeconomic models 
currently are single dimensional, 
sacrificing detail or ignoring 
certain feedback effects; linking 
such models with climate 
models will involve major 
computational challenges.
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conventional and low-carbon or high-• 
efficiency technologies and production 
activities;

electricity, petroleum, gas, biofuels, solar, • 
nuclear, and hydrogen energy forms;

implications of carbon constraints on • 
transportation and goods distribution;

environmental emissions and impacts;• 

developing supply and demand optimiza-• 
tions for sectoral resources;

land, water, other resources, and climate • 
feedback;

regional and country divisions, including • 
policy variations;

taxation systems and financial markets; • 
and

public policy instruments to protect pri-• 
vate property, mitigate environmental 

damages, and promote technology and 
investment.

Computational models are typically structured 
as hierarchies to be able to aggregate consis-
tently from the micro to the macro and then 
to disaggregate income formation and macro 
environmental conditions to households and 
firms. Computational methods systemati-
cally calculate prices of goods and services 
up the levels of a hierarchy to final demands 
and allocate various quantities down the hier-
archy, taking into account price, income, and 
other elasticities. The levels of the hierarchy 
include opportunities to improve economic 
efficiency through trade and substitution and 
penetration of advanced technologies. These 
production hierarchies are created for each 
sector in each region.

The structure of these socioeconomic mod-
els provides “hooks,” or connection points, 
for the uptake of low-carbon resources and 
technologies such as biofuels and biorefining 
or energy efficiency. The comprehensiveness 
of the model allows estimation of the relative 
market roles that different technologies may 
play (which may depend on uncertain fac-
tors), and their end-to-end evaluation (life cy-
cle analysis). Constraints may be added to the 
model to represent security considerations.

Applications for such a model include R&D 
investments under uncertainty (a current 
DOE-identified need); economy-to-climate-
to-economy feedbacks; making strategic in-
vestments to position ourselves to maintain 
future options [Dixit and Pindyck 1992]; 
analysis of the interconnected issues of world 
oil security; optimizing energy demand, sup-
ply, and infrastructure choices; analyzing the 
impacts of carbon caps and taxes within the 
existing tax system structure; and more in-
tegration with issues related to climate, such 
as economic development, international in-
terests, security, transportation, logistics net-
works, health, and vegetation/ecology.

Figure 4.1 illustrates one model of the climate 
system/ecological system/socioeconomic sys-
tem designed for integrated assessments and 
policy evaluation. Another model, IMAGE, is 
shown in Figure 4.3 to illustrate the range of 

Figure 4.3 Models included in the IMAGE 2.2 integrated modeling system [IMAGE 
2007].
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issues that may be included in such models. 
IMAGE, which was developed in the Neth-
erlands,  provides its detailed global land 
use database and its calculation of land use 
changes over a spatial grid. However, many 
of its other modules lack detailed represen-
tations and supporting data. IMAGE is one 
of 19 models that participated in Stanford 
University’s Energy Modeling Forum study 
in climate change policy and assessment 
(EMF-21) [EMF Study-21 2006]. The AIM 
model from Japan, which also participated in 
the EMF-21 study, also has strong integrated 
assessment capabilities.

Much detailed work is under way, particularly 
in the United States, on land use and agricul-
ture, including biocrops. The Polysis [English 
et al. 2006] and FASOM models [Murray et 
al. 2005] are leading examples, but a num-
ber of midwestern universities have major 
research and modeling efforts, financed by 
the U.S. Department of Agriculture. Polysis 
models the production of about 20 commer-
cial crops by county in each state and groups 
land resources into 6 productivity categories. 
Its results are being used by the Energy In-
formation Administration (EIA) in preparing 
Annual Energy Outlooks for biomass produc-
tion. These results are also used by national 
laboratories, including Oak Ridge, Argonne, 
and the National Energy Technology Labo-
ratory. The Climate Change Division at the 
U.S. Environmental Protection Agency uses 
the FASOM model for biofuels studies and 
soil carbon sequestration assessments. 

Most climate-socioeconomic models have 
certain common ingredients. Goods and ser-
vices are produced to meet human needs. The 
value of these goods and services sums to 
gross domestic product. The output of each 
production sector is based on a production 
technology employing labor, capital, en-
ergy, and, for agriculture sectors, land. Sec-
tors trade materials and semi-finished goods 
among themselves. For example, car manu-
facturers purchase tires from the rubber sec-
tor. Some of this trade crosses international 
boundaries. Industrial capital stock is disag-
gregated in some models, such as the Argonne 
All Modular Industry Growth Assessment 
(AMIGA) model [Hanson and Laitner 2006], 

to better represent the substitution of capital 
for energy in end-use energy-intensive appli-
cations. Labor can also be disaggregated into 
skill levels and occupation groups. Electricity 
can be disaggregated into peak, shoulder, and 
intermediate demands. Other forms of pur-
chased energy include natural gas, petroleum 
products, and hydrogen. 

Cultural values and income, taking into ac-
count income distribution over population 
groups in the countries of the world, affect 
residential household expenditure patterns. 
For example, in both developed and devel-
oping countries, major energy-intensive pur-
chases include light-duty cars and trucks. 
Thus, a socioeconomic model must track the 
stock, new sales, fuel demands, and carbon 
emissions of different types and sizes of light-
duty vehicles. Fortunately, computer code ex-
ists to represent these aspects of society and 
the economy, and this code is easily scalable. 
Similarly, greenhouse gas emissions and pe-
troleum fuel use by aircraft and heavy trucks 
and other forms of freight transportation are 
large and increasing, both absolutely and as 
a share of the total. Hence, the modeling of 
transportation and fuel technologies is of high 
importance [Wang 2001].

This integration of physical forms of energy, 
resources, emissions, and specific technolo-
gies into socioeconomic models has become 
known as “hybrid modeling” because of its 

Figure 4.4 Typical configuration of a hybrid energy-economic model.

A popular trend in model 
integration is called “hybrid 
modeling,” in which physical 
energy forms, resources, 
emissions, and technologies are 
integrated into socioeconomic 
models.
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combination of physical and observation-
based statistical models. Figure 4.4, which 
illustrates a typical configuration for a hybrid 
energy-economic model, shows anthropogen-
ic greenhouse gas emissions as an input to a 
climate model and feedback from climate to 
certain economic sectors.

Climate and climate-related changes then be-
come inputs to analyzing these problems. As 
these decisions unfold over many years, there 
will also be feedback to the climate system, 
such as economic decisions that influence 
greenhouse gas emissions. Two examples 
of problems in this category are planning 
for a low-carbon energy system (including 
vehicles), taking into account technological 
synergies (e.g., biomass and petroleum-based 
fuels), and planning an R&D program that 
positions us with options for the future.

A hybrid energy-economic model, with simi-
lar features to those shown in Figure 4.4, 
has been used by the International Energy 
Agency (IEA) to prepare the World Energy 
Outlook (WEO) for 2006 [IEA 2007]. Run-
ning this model shows a difference between  
a business-as-usual growth scenario and an 
alternative scenario that included policies to 
promote renewable energy, energy efficiency, 
and nuclear power. The WEO also highlights 
the human dimension: about a billion people 
in the world still lack access to electricity. 
This kind of energy poverty illustrates the in-
terplay between economic development, so-
cial goals, and environmental goals. 

For WEO 2006, the world was divided into 
22 country regions (Figure 4.2). Interfacing 
with climate models will require much greater 
geographical and spatial disaggregation. Part 
of this disaggregation can be accomplished by 
using modern spatial statistics [Stein 1999].

Socioeconomic models have been used ex-
tensively to generate sets of greenhouse gas 
emission scenarios to drive climate models 
[IPCC 2007]. A new round of global scenario 
simulations is starting in preparation for fu-
ture IPCC Assessment Reports. 

Outputs of most interest from the 
socioeconomic model include prices of energy 

and fuels, energy consumption and related 
greenhouse gas emissions, technologies 
adopted, sector outputs and final demands 
for goods and services, distribution of 
income, macroeconomic variables, resource 
management, and other measures of welfare 
or quality of life in societies.

3. Need for Exascale 
Computing
For many decades, researchers investigating 
climate change impacts have been forced by 
profound limitations in both computational 
capacities and data to grossly simplify their 
models and analyses. As a result, they have 
mostly ignored issues such as the following:

integration of diverse complex systems • 
and their relationships; 

incorporation of (often only partially un-• 
derstood) nonlinearities and thresholds;

full representation of feedback effects; • 
and

meaningful analysis, reduction, and treat-• 
ment of uncertainties

Exascale computing allows us to think differ-
ently about what is possible. While any useful 
model must incorporate simplifications, the 
anticipated availability of exascale comput-
ing encourages us to be far more ambitious 
in conceiving issue-oriented Earth system–
human system models that shed insights on 
the complex realities that policymakers must 
deal with.

First, significant progress can be achieved 
in sectoral detail. Many dynamic economic 
models developed for climate studies are 
based on the computable general equilibrium 
(CGE) approach, the dynamic optimization 
approach, or the overlapping generations 
(OLG) approach, and most aim to model the 
dynamic paths of economic growth—but sac-
rifice sectoral detail. Some existing models 
describe energy-related sectors at regional 
and national scales (e.g., the U.S. National 
Energy Modeling System, NEMS [National 
Energy Modeling System 2003]) or global 

Exascale computing allows 
us to be far more ambitious in 
conceiving issue-oriented Earth 
system-human system models 
that can provide insights for 
policy makers.
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scale (e.g., the AMIGA model [Hanson and 
Laitner 2006; Laitner and Hanson 2006]). 
However, such models typically do not model 
economic dynamics in a consistent, modern 
manner. Most climate change issues require 
both sectoral detail and careful dynamic 
modeling. 

Each of the three approaches used in modern 
economics has distinct advantages. Climate 
change issues challenge us to synthesize a 
new set of model frameworks suitable for ad-
vanced computational architectures. For ex-
ample, when using the OLG framework, an 
addition will be needed to address the inter-
generational time scales involved in issues re-
lated to climate change, and greater sectoral 
detail will be necessary to produce reliable 
results. Consistently coupling sophisticated 
sector models such as NEMS with new-gen-
eration dynamic CGE models will greatly im-
prove the quality of climate change research.

Increased sectoral detail is required for cou-
pling with climate models. Existing socioeco-
nomic models are driven with simple climate 
models with limited geographic and temporal 
resolution. But understanding of both climate 
change impacts and feedbacks between so-
cioeconomic systems and the Earth system 
requires the treatment of finer-grained in-
teractions. In one early example involving a 
one-way coupling of a global climate model 
and NEMS, energy demands for increased 
cooling were found to outweigh savings due 
to reduced heating in the United States (Fig-
ure 4.5) [Hadley et al. 2006]. 

Increased detail is also required for the global 
water cycle. As climate changes, so do the 
distribution, intensity, and usability of pre-
cipitation and groundwater [Held and Soden 
2006]. Such changes have significant socio-
economic impacts and feedbacks, not only 
on agriculture but also migration, wages, 
industrialization, and prices. Simulation of 
the global and regional hydrologic cycle and 
associated economic/management decision–
making processes over the next 25–100 years 
represents a major challenge for socioeco-
nomic modeling. 

Larger computers will also advance socio-
economic models that describe, for example, 
consumer preferences, technology, and the 

rate of adoption of new technologies. The de-
termination of the many parameters in these 
models presents us with many challenging 
computational tasks. We must develop suit-
able estimation methods with new types of 
more comprehensive data collection and cali-
bration. Because of uncertainty in parameter 
values, we must also develop efficient meth-
ods, such as the use of low discrepancy sets or 
sparse grids, to explore the variables used to 
generate these parameters. This uncertainty 
will be even greater when we couple a so-
cioeconomic model with an ESM that has its 
own uncertainties. Current methods for ad-
dressing large parametric system uncertain-
ties, such as Monte Carlo and more general 
Bayesian methods, may need to be revisited 
and adapted for this potentially large-scale 
problem. This work must be performed at the 
component, subsystem, set of subsystems, 
and full system levels.

Progress is also possible in the treatment of 
social and political inputs. These inputs are 
modeled as offline forcings in the current 
generation of integrated models. Although 
some demographic and population-based 
studies have generated numerical model-
ing techniques for predicting future popula-
tion growth and human migration patterns, 
much of this work is still ad hoc and in need 
of greater rigor. It will be in our interest to 
work toward developing more quantitative 
approaches, as in economics, and to collabo-
rate with and strengthen institutes such as the 
International Institute for Applied Systems 
Analysis. It may also be useful to collabo-

Figure 4.5 Changes in heating and cooling end use and primary energy under cli-
mate change [Hadley et al. 2006].

Exascale computing challenges 
scientists to synthesize a new 
set of climate change models 
with greater sectoral detail and 
intergenerational time scales.
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rate on setting up a similar institute dedicated 
to quantitative sociological modeling in the 
United States.

A fourth area of opportunity concerns uncer-
tainty and risk. Some climate change data is 
known with relatively high confidence (e.g., 
average global warming), while other data is 
far less certain (e.g., regional climate change, 
frequency of extreme events). We need to 
study how uncertainty in the climate system 
propagates through economic models, both 
to enable quantification of uncertainty when 
reporting on outcomes and to enable evalua-
tion of risk. Economic cycles are also subject 
to shocks. It is important to design mitigation 
strategies and policies that are robust under 
economic shocks and avoid costly policy 
changes. Researchers at the University of 
Chicago are undertaking computationally 
intensive research attempting to quantify the 
long-run risks associated with coupled cli-
mate-socioeconomic models. In their model, 
the researchers let household investors and 
firms base their expectations about climate-
related risks, and who can most efficiently 
bear these risks, on actual risks calculated by 
the climate system model.

A fifth area is the integrated computation of 
energy-economy hybrid models, in which 
detailed technology models are embedded in 
key areas such as power generation, petro-
leum refining, combined heat and power, and 
vehicle stocks. 

A sixth area concerns solution techniques. 
For example, NEMS is solved by using a 
Gauss-Seidel process that is not guaranteed to 
converge. Mathematical issues such as con-
vergence become more important as model 
complexity increases [Judd 1998]. Alterna-
tive solution techniques with better numerical 
properties are frequently more computation-
ally demanding.

A seventh area in which increased computa-
tional power can enable new approaches is 
in the calculation of large ensembles of in-
tegrated climate-socioeconomic model runs, 
for sensitivity studies and to calculate prob-
abilities of extreme events.

Given the availability of detailed global so-
cioeconomic models, a range of other com-

plex computational problems can be tackled  
that call for exascale computing. The follow-
ing are examples:

Possible strategic behavior of countries, • 
or coalitions of countries, to improve 
their positions relative to other countries

Calculation of payoff matrices for dif-• 
ferent countries under different policy 
approaches, taking into account specific 
climate-related risk exposure of different 
countries

Design of incentive systems to encourage • 
cooperative behavior

Computation of general equilibrium • 
conditions

Solution of stochastic dynamic program-• 
ming problems that recognize that soci-
eties can wait for feedback information 
in order to make better decisions in the 
future about greenhouse gas abatement 
measures and other mitigation and adap-
tation decisions

Representation of noncompetitive mar-• 
ket situations such as Middle East oil 
production

Optimal technology deployment with • 
learning rates and stochastic outcomes 
(these are typically two point bound-
ary value problems and may use opti-
mal control methods with deterministic 
conditions)

Other problem formulations involving • 
complex human behavior

4. Major Challenges
Tackling the problems outlined in the preced-
ing section will require significant advances, 
not only in economics, the social sciences, 
natural sciences, and computational sciences, 
but also in cross-discipline interaction meth-
odologies and institutional arrangements. 
These advances will be essential if we are to 
make required progress at the interface be-
tween technological advances, cultural shifts 
because of such advances, and the response 
of these changes to macro-economic sensi-
tivities and climate feedbacks in general.

Mathematical issues such as 
convergence become important 
as model complexity increases.

The increased power of 
exascale computing can enable 
new approaches for calculating 
the probability of extreme 
climate events.



67

Modeling and Simulation at the Exascale for Energy and the Environment

Many climate change impacts and adaptive 
responses will apply at the regional or sub-
regional scale. Thus, reductions in climate 
model uncertainty, as targeted by DOE’s 
Earth system modeling program for the next 
five to seven years, will be crucial for efforts 
aimed at studying climate system–human 
system interactions. 

Socioeconomic models such as those dis-
cussed earlier become large-scale, nonlinear 
systems when accounting for resource supply 
functions or constraints, production-possibil-
ity frontiers involving joint production, non-
convexities in the development and adoption 
of new generations of energy demand and 
supply technologies, and social behavior pat-
tern responses. Progress is required in nonlin-
ear optimization techniques, as suggested by 
this class of problems.

We have referred already to the need to ob-
tain new types of quantitative and qualitative 
data as well as to assemble and use the data 
that currently exists effectively. New meth-
ods will be required for acquiring, accessing, 
evaluating, and integrating these data. We 
need efficient search and summary technolo-
gies;  the ability to draw on data for estima-
tion, including data coded and compatible 
with geographic information system (GIS) 
technology; and the ability to compare actual 
and simulated data rapidly. Again, a problem 
facing modelers of socioeconomic processes 
is the computational burden of applying the 
best statistical methods to existing data. This 
problem has led econometricians to search for 
“computationally light” methods. The best 
statistical methods applied to large data sets 
will require exascale computing power and 
present novel challenges in the utilization of 
large–scale computer architectures—but will 
produce far superior empirical results.

One approach to dealing with uncertainty is 
to perform multiple ensemble runs (param-
eter sweeps) with various combinations of 
the uncertain parameters. Since the space of 
parameters will be of high dimension, we will 
have to address the challenges of designing 
efficient parameter sweep methods for high-
dimensional spaces. Recent advances in ap-
proximation theory and data mining methods, 
such as sparse grids, offer new approaches to 

this problem. Furthermore, recent results in 
approximation theory can be used to guide us 
in using exascale computing power to search 
for efficient methods.

Systems are so complex that mathematical 
analysis of convergence properties is impos-
sible—we will be coupling Navier-Stokes 
in ocean and atmosphere with ice, physics, 
and economics. We need to develop methods 
for quantifying uncertainty in both data and 
models.

Progress is also required in various areas of 
socioeconomic modeling. One major chal-
lenge, which has been the focus of intense ef-
fort over the past decade, partly in response to 
climate change concerns, is capturing induced 
technical change in economic growth models. 
This is referred to as the endogenous techni-
cal change problem. We know that technology 
advance is not entirely accidental. Instead the 
need, or demand, for some technological so-
lution increases the likelihood of it occurring. 
Economists, historians, and others are study-
ing how successful technologies have gone 
through stages of discovery, innovation, early 
adoption by particular groups, and ultimately 
to market transformation. Empirical evidence 
continues to be collected on these stages of 
innovation. Innovation results in more avail-
able technology options and ultimately shifts 
sectors’ production possibility frontiers in 
economic models.

Once we have an economic model specifica-
tion of induced technical change, which may 
push the boundaries of performance potential, 
we may need to verify that physical laws of 
nature are not violated (e.g., mass and energy 
balance, the second law of thermodynamics). 
In other words, do engineering configurations 
exist consistent with the economists’ models 
of technology advance? 

Modern finance can also assist with economic 
models to represent the willingness of own-
ers of buildings and production facilities to 
retrofit/replace processes with new ultraclean 
investments. Modern finance has developed 
an understanding how investment decisions 
tend to be made.

On the human dimension, there will be a real 
challenge to understand, model, and manage 

Exascale computing power 
will enable modelers of 
socioeconomic processes to 
replace “computationally light” 
methods of data analysis, 
producing far superior empirical 
results.
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rapid change that leads not only to major win-
ners but also to extreme losses. Under histori-
cally normal rates of growth, markets have 
managed change reasonably well. Over time, 
“all ships tend to rise”—though not without 
increased inequality and persistent poverty 
on a relative, if not absolute, basis. These 
adjustments occur in the context of the usual 
economic forces: comparative advantage, 
specialization of production, gains-from-
trade, and the resulting distribution of income 
over nations, population groups, sectors, and 
owners of capital/investors. However, it may 
be possible (or even likely) in a world expe-
riencing significant climate change to have a 
shift in the ordering of fundamental econom-
ic forces, such as comparative advantages in 
certain production activities, resulting in rap-
id and notable losers (e.g., coal mining, island 
states, hurricane–prone regions, agricultural 
areas that turn arid, and emergence of certain 
groups less able to adapt).

5. Accelerating Development
A focused DOE R&D program can achieve 
significant advances in the state of the art in 
modeling the human elements of the climate 
system. Building on DOE expertise in climate 
and energy system modeling, and bringing to 
bear the latest methods in economics, quan-
titative techniques in behavior and decision 
theory, and modeling and HPC tools, such a 
program can develop a deepened understand-
ing of the technical, economic, political, and 
social issues that underpin the climate change 
challenge.

Achieving this goal will require a sustained, 
large-scale program aimed at applying com-
putational science methods, with the objec-
tive of creating, within a decade, the tools 
and methodologies needed for the quantita-
tive study of questions introduced earlier. 
This program should aim to create a highly 
integrated, time-dependent modeling system 
that encompasses detailed micro socioeco-
nomic data and models in a comprehensive, 
integrated global framework. This system 
will allow for treatment of socio-demograph-
ic groups and the marketplace, including 
producers, consumers, and intermediaries, in  
unprecedented detail.

We envision the following specific tasks:

Construct a comprehensive suite of • 
models of unprecedented geospatial and 
temporal detail, with comprehensive er-
ror analysis on the representation, some 
based on existing models, some entirely 
new.

Leverage state-of-the-art climate model-• 
ing activities (e.g., SciDAC) to include 
economic prediction models under alter-
native climate regimes.

Perform basic research into such founda-• 
tional issues as spatial statistics, modeling 
of social processes, relevant micro-activ-
ity and biosphere coupling issues, and 
relevant mathematical challenges, such 
as multiscale modeling.

Assemble and perform quality control of • 
extensive data collections—much from 
existing sources, but also much from new 
and unconventional sources.

Perform comprehensive and detailed • 
validation of both individual models and 
large model systems.

Develop novel, robust numerical tech-• 
niques and high-performance comput-
ing approaches to deal with the expected 
orders-of-magnitude increase in model 
complexity.

Conduct a wide range of application • 
studies aimed at both validation and 
application.

Develop education programs aimed at • 
training the next generation of computa-
tional economists and other social scien-
tists, including not only formal training 
programs but also web-based modeling 
and simulation tools that allow wide-
spread access to the new models and their 
results.

Partnerships with international scientists and 
organizations will be important to develop 
the global-scale models and obtain the data 
needed for realistic assessment.

A focused R&D program in 
socioeconomic modeling must 
include basic research in 
foundational issues such as 
spatial statistics, multiscale 
modeling, and coupling 
of micro-activity and the 
biosphere.
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Figure 4.6 illustrates some of the advances 
that we expect as we move to future petas-
cale and exascale computers.

Further study is required to determine the 
best organizational structure for such a pro-
gram. We outline here one approach that we 
feel holds promise. In this approach, we de-
fine, as one dimension of the organizational 
matrix, five teams, each focusing on solving 
problems and issues in a specific area (and 
also interacting and sharing information and 
progress):

Modern economic computation ap-1. 
proaches, involving greatly expanded 
micro databases to capture diversity 
in decision-making agents and strategic 
incentives that different country players 
may exercise.

Consistent socioeconomic modeling with 2. 
many regions/sectors and with technol-
ogy rich specifications that capture tech-
nology-system efficiencies, synergies, 
and diversities and represent least-cost 
dynamic transition pathways to a low-
carbon, adaptive global economy

Social science modeling to capture the 3. 
human dimension of climate-induced 
changes in greenhouse gas emissions, 
mitigation, and adaptation

Integrated assessment, bringing in cli-4. 
mate and natural resource models (wa-
ter, agriculture, land use, forest changes, 
biodiversity, health and disease) and their 
coupling to socioeconomic models

Advanced optimization and computa-5. 
tion methods needed for integrated as-
sessment, solving large-scale nonlinear 
systems, and addressing approaches for 
accounting for uncertainty

As progress is made in all five of these areas, 
and as the various modeling teams better un-
derstand how to consistently couple their mod-
eling areas together, we will move to a common 
large-scale integrated model system.

6. Expected Outcomes
A focused DOE program in this area is ex-
pected to achieve a significant improvement 
in understanding important questions relating 
to socioeconomic aspects of climate change. 
This improved understanding can improve 
the effectiveness of U.S. and international 
policy responses to climate change, the ability 
of U.S. industry to engage effectively in de-
veloping and “productizing” climate change 
solutions in the areas of low-carbon energy 
supply and demand, and the  ability of the 
United States to minimize the vulnerability of 
its economy and energy infrastructure.

DOE efforts in this area will also have a 
significant impact on the development of 
computational tools, expertise, and under-
standing in economics and social sciences as 
a whole. Other anticipated results include the 
following:

Socioeconomic models will become ma-• 
jor users of DOE supercomputers, both 
individually and within integrated mod-
els linking socioeconomic models and 
ESMs. 

DOE efforts in the simulation of energy • 
production, distribution, and use will be 
accomplished via exascale computational 
platforms.

Figure 4.6 Anticipated model improvements resulting from a major DOE program in 
detailed global socioeconomic modeling.
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Various DOE-centric economic climate-• 
energy scenarios will be provided to 
policy makers.

DOE will become a place to which other • 
parts of the government go to increase 
understanding of these issues and rel-
evant policy information.

7. Required Investment
The creation of an integrated global socio-
economic model, the validation of model 
components, and applications to the under-
standing of human actors and their coupling 
to the climate system involve a massive grand 
challenge, requiring an interdisciplinary team 
of arguably unprecedented scale and scope. 
A rough estimate of the required resources 
would be $100M/year over 10 years for hu-
man resources—in addition to the hardware 
resources needed for storage and simulation.

This work would be organized and divided 
among several institutions, representing the 
multiple disciplines and expertise involved. 
Regular communication, coordination, and 
publication of interim results would be 
required.

Fortunately, there already exist years of accu-
mulated research experience and preliminary 
model development activities upon which to 
draw.

8. Major Risks
The proposed activity represents a signifi-
cant departure from current practice in the 
climate change and socioeconomic modeling 
communities. 

Perhaps the biggest challenge is that of 
uncertainty. The ESMs used to quantify 
climate change benefit from large quantities 
of data and (mostly) well understood physical 
laws. Yet despite enormous complexity and 
large amounts of computing power, their 
results exhibit considerable uncertainty, 
particularly when it comes to regional effects. 
Human factors are in many regards less well 
understood and are heavily parameterized 
with empirical relationships. In both cases, 
the only responsible approach is to examine 

a range of plausible alternative scenarios 
and search for policies that are robustly 
successful. Furthermore, any analysis must 
consider how human institutions and agents 
will react to those uncertainties.

As with any cutting-edge simulation, there is 
a need to clearly portray the uncertainties and 
associated levels of credibility. A pilot phase 
would help to demonstrate the viability of 
merging socioeconomic theory within ESM 
frameworks, simulating testable hindcast 
economic responses to climate variations, 
and applying testable hypotheses on the ex-
pected outcomes from a new human/climate 
Earth system approach.

The most compelling reason to create and nur-
ture a program such as that described here is 
the risk of not acting. The challenge of merging 
the diverse economic and geophysical models 
is significant but must be addressed if we are to 
understand and predict future socioeconomic 
systems in a warming world.
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Astrophysics5
To understand our universe and our place in it 
will require that we understand the universe on 
all scales, from the evolution of the universe 
as a whole and the formation of its largest-
scale structures to the formation and evolution 
of compact objects, only one one-hundredth 
the size of Earth but with mass greater than 
our own sun. The largest scale structures in 
the universe and compact objects differ in 
size by 22 orders of magnitude. Understand-
ing the universe on each scale presents exas-
cale computing challenges; while exascale 
computing will allow increased connections 
to be made between scales (e.g., connections 
between large-scale structure formation and 
galaxy formation), beyond exascale comput-
ing lies the challenge of tying these scales 
together more broadly in order to develop a 
seamless description that can take us through 
the history of the universe, from the Big Bang 
to the development of conscious life peering 
back on this unfolding history.

1. State of the Art 
Our discussion of the state of the art in simu-
lation of the universe covers all scales: from 
large-scale structure to galaxies to stars and 
finally to compact objects.

1.1 Large-Scale Structure

We begin with the challenge to simulate and 
understand the formation of the largest struc-
tures in the universe, the lacelike structures 
that thread the universe and are composed of 
clusters and “superclusters” (clusters of clus-
ters) of galaxies (see Figures 5.1 nd 5.2). The 
formation of these structures in the early uni-
verse is inexorably tied to the evolution of the 
universe as a whole, which in turn depends on 
the nature of the mysterious dark energy that 
permeates it [Hu and Dodelson, 2002]. Dark 

energy is the vacuum energy field responsible 
for the accelerating rate of cosmic expansion. 
Understanding the nature of dark energy has 
been declared the most important and funda-
mental problem in the physical sciences. 

Funding agencies are currently considering 
several major ventures—the NASA/DOE/
NSF Joint Dark Energy Mission (JDEM), the 
Large Synoptic Survey Telescope (LSST), 
and the Square Kilometer Array (SKA), each 
in the range of $0.3 billion to $1 billion—as 
well as a variety of lower-cost pathfinder mis-
sions. The generation of mock catalogs from 
petascale cosmological simulations will be 
used to demonstrate the feasibility of these 
missions. If one or more of the missions are 
funded, exascale simulations will be needed 
in the next decade to help pull out the dark 
energy parameters from the observations.

1.2 Galaxies

From collections of galaxies we move to the 
scales of individual galaxies and their interac-
tions. One of the most fundamental questions 
about the universe—What is the nature of its 
major constituents?—remains shrouded in 
mystery. Visible matter is only 4% of the con-
tent of the universe. This situation poses great 
challenges for the computations required to 
constrain dark matter and dark energy prop-
erties from the observed distribution of gal-
axies. Simulations to follow the formation 
of our galaxy in sufficient detail to compare 
with observational data from the James Webb 
Space Telescope (JWST) and LSST will re-
quire dynamic ranges of order 10,000 in space 
and time. A simulation with enough resolu-
tion to accurately model the visible properties 
of individual galaxies and yet contain a fair 
sample of the universe suitable for compari-

Understanding the universe 
— from the smallest objects to 
those 22 orders of magnitude 
larger — requires exascale 
computing, and more.
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Figure 5.1 Structure formation in the Santa Fe Light Cone [Hallman et al. 2007]; 
100 square degrees of sky incorporating 700 megaparsecs were simulated with the 
ENZO code.

son with large surveys will require exaflop-

weeks of computing.

An understanding of individual galaxies can-
not be obtained, of course, without an under-
standing of their cores. About 1% of galaxies 
in the local universe host powerful central ra-
diation sources known as active galactic nu-
clei (AGNs). These sources produce emission 
across a wide range of photon energies (from 
radio to X-rays) and are usually quite vari-
able in their output. They are often associated 
with bidirectional outflows of material mov-
ing at relativistic velocities. AGNs appear to 
have been much more common several bil-
lion years ago, when galaxy formation was at 
its peak.

The most widely accepted model for AGNs 
proposes that they are powered by accreting 
supermassive (more than 100 million solar 
masses) black holes surrounded by obscur-
ing tori of dust and gas [Lynden-Bell 1969]. 
Since spiral galaxy rotation curves suggest 
that most galaxies harbor such black holes 
at their centers, whether or not they host an 

AGN, the fact that AGNs are rare today is in-
terpreted to mean that most black holes are 
no longer accreting material. This interpreta-
tion further suggests that AGN activity may 
be closely tied to the assembly of galaxies. 
AGNs within clusters of galaxies provide a 
particularly revealing look at how AGNs 
interact with their host environments. Such 
AGNs create enormous cavities ~30,000 light 
years in size. 

Computational study of the AGN-environ-
ment interaction is at present limited to simu-
lations that cover only a small portion of the 
dynamical range and crudely model the ef-
fects that arise outside that range. Questions 
that we would like to answer include the fol-
lowing: What turns AGNs on and off? How 
do AGNs affect the physical state of the in-
tracluster medium? What role do AGNs play 
in galaxy and cluster assembly? How do the 
central black holes form in the first place?

The convergence of these observational data-
sets at the same time that exascale computing 
makes it possible to elaborate our theoretical 
predictions for this problem promises to sig-
nificantly advance our understanding of the 
astrophysical questions posed above.

1.3 Stars

We owe our existence to stars for a number of 
reasons, not the least of which is that our own 
sun is a star. The elements necessary for life 
are made in stars during their lifetimes and 
during their deaths as supernova explosions. 
It is through violent phenomena such as dra-
matic stellar outflows during a star’s life or 
supernovae that these elements are dispersed 
into the interstellar medium, peppering the 
soup from which our solar system formed bil-
lions of years ago. 

In particular, half of the elements heavier than 
iron are made in stars through what is called 
the s-process (slow neutron capture process). 
These elements are then injected into the in-
terstellar medium through the expulsion of 
the outer layers of the star, forming planetary 
nebulae. Both the production and transport of 
these heavy elements are sensitive to 3D ef-
fects, including the turbulent mixing of stably 
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Figure 5.2 Simulated X-ray observation of a simulated merger between clusters 
having a mass ratio of 1:3. Contours indicate X-ray surface brightness, while the 
colors indicate X-ray temperature, with blue indicating cooler gas and red indicating 
hotter gas. (P. Ricker)

stratified material into the convection zone, 
the dredge-up of processed material into the 
envelope, and the global convection in the 
outer envelope of the star and the expulsion 
of this envelope.

The cause of the repeated envelope expulsion 
in stars is thought to be the periodically oc-
curring flashes of the helium-burning shell 
within the central, Earth-sized core of the 
star. These can be likened to a global storm, 
and the full sequence of helium shell flashes 
can be likened to stellar climate. With petas-
cale computing, high-quality simulations of 
portions of the space-time domain for one 
such helium shell flash could be performed. 
With exascale computing, we may be able to 
simulate the entire helium shell flash, with 
its 2-year duration, using validated statistical 
models of phenomena operating on smaller 
length and time scales. Exascale computing 
will allow full-scale simulation with valida-
tion quality for the entire helium shell con-
vection zone for time scales of hours.

Aside from understanding the complete phe-
nomenology of thermonuclear supernovae as 
a goal in itself, the importance of a complete 
picture of the explosion mechanism extends 
to a fundamental question in cosmology as 
well: What are the nature and effect of dark 
energy? Only when we fully understand 
the explosion mechanism can we validate 
the use of Type Ia supernovae as “standard 
candles” for use in measuring the size and 
expansion history of the universe. Current 
Type Ia surveys rely on purely empirical cor-
rections to determine the intrinsic brightness 
of observed supernovae. As observations ex-
tend to higher and higher redshifts, we must 
understand how evolutionary effects (e.g., 
metallicity) might contribute to the intrinsic 
brightness of the events. This level of cali-
bration is required to make use of data to be 
obtained by JDEM, which is  designed to 
detect thousands of Type Ia supernovae and 
thereby put real constraints on the equation 
of state of the mysterious dark energy that 
appears to make up 70% of our universe.  

Massive stars more than ten times the mass 
of our sun evolve for millions of years and 
then die in a matter of hours in spectacular 

stellar explosions known as core-collapse 
supernovae [Mezzacappa 2005; Janka et al. 
2006]. Such supernovae are an important 
link in our chain of origin from the Big Bang 
to the present day. Understanding how they 
occur is key to understanding how we came 
to be in the universe. They are the dominant 
source of elements in the periodic table be-
tween oxygen and iron, and there is growing 
evidence  that they are indeed responsible for 
producing half of the elements heavier than 
iron (the other half coming from the s-process 
in stars, discussed above). Moreover, they are 
the most energetic explosions in the universe, 
and there is now an indisputable connection 
between “peculiar” hyper-energetic core-
collapse supernovae, also known as “hyper-
novae,” and one of two classes of gamma 
ray bursts (GRBs) in the universe [Woosley 
and Bloom 2006]. Both phenomena occur 
under a common umbrella of massive stellar 
core-collapse. And core-collapse supernovae 
are among the events expected to produce 
gravitational waves—ripples in the fabric of 
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space—in the galaxy, the detection of which 
will mark a historic event.

The temperatures to which the core-collapse 
supernova shock wave (see Figure 5.3) heats 
the ejecta from such supernovae make ul-
traviolet observations a very useful way of 
studying the enriched composition of recent 
ejecta.  Examples include observations per-
formed in the past with the International Ul-
traviolet Explorer (IUE), more recently with 
the Hubble Space Telescope (HST), or cur-
rently with the Far Ultraviolet Spectroscopic 
Explorer (FUSE). Indeed one objective of the 
FUSE mission is “studies of nova and super-
nova explosions and their remnants, to test 
theories of heavy element nucleosynthesis 
and study how supernova shock waves heat 
the interstellar gas.” With missions such as 
NASA’s SWIFT GRB Mission, these obser-
vations can be extended to include the X-ray 
region. Furthermore, observations of super-
nova remnants, such as the Chandra X-Ray 
Observatory observations of Cassiopeia A 
and SN1987A, also provide detailed data on 
the composition and distribution of heavy el-

ements in supernova ejecta, data which must 
be explained by explosion models. 

Observations of gamma-ray lines are an 
excellent way to determine not just the el-
emental but also the isotopic production of 
supernovae. They are therefore of particular 
interest, both to supernova theory in general 
and to supernova nucleosynthesis. Observa-
tions such as the Compton Gamma-Ray Ob-
servatory (CGRO) measurement of the ratio 
of 57Ni to 56Ni in SN1987A or the detection of 
44Ti in the Vela and Cassiopeia A SN remnants 
probe the deepest layers of the supernova 
ejecta, just above the mass cut. Only the neu-
trino and gravitational wave signals, which 
follow the evolution of the proto-neutron star, 
provide information from deeper within the 
explosion. Therefore, gamma-ray line obser-
vations, past (CGRO) and future (Integral, 
the International Gamma-Ray Astrophysics 
Laboratory), coupled with supernova models 
that include realistic nucleosynthesis studies, 
will greatly constrain explosion models.

Figure 5.3 Development of the computationally 
discovered (SciDAC Terascale Supernova Initia-
tive) instability of the core-collapse supernova 
shock wave, shown in a snapshot from a 3D simu-
lation by John Blondin (NCSU) and Anthony Mez-
zacappa (ORNL). The visualization was performed 
by Kwan-Liu Ma (UCD). The instability leads to 
growing deformations (away from spherical) of 
the shock wave, which is represented by the sur-
face in this image. The deformations in turn lead 
to circulating flow below it. Two strong, counter-
rotating flows are formed. Streamlines in this im-
age highlight one flow moving clockwise just be-
neath the shock surface and a second, deeper 
flow moving counter clockwise just above the pro-
to-neutron star surface. Moreover, the inner flow 
is capable of spinning up the proto-neutron star, 
perhaps explaining the origin of pulsars [Blondin 
and Mezzacappa 2007]. The spins generated in 
these simulations are consistent with observa-
tions of young pulsars.
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1.4 Compact Objects

Neutron stars and stellar mass black holes are 
the remnants of the death throes of massive 
stars, discussed above. They are among the 
smallest objects in the universe but are ex-
amples of nature at its most extreme. They 
are important in their own right, as key com-
ponents of some astrophysical systems, such 
as binary systems comprising a star and neu-
tron star or two neutron stars, and as labora-
tories for fundamental physics. Neutron stars 
are approximately 10–15 km in radius, with 
a mass approximately one to two times the 
mass of our sun. 

We stand at the threshold of the birth of a new 
type of astronomy: gravitational wave astron-
omy. Observatories such as the NSF-funded 
Laser Interferometric Gravitational Wave 
Observatory (LIGO) are poring through the 
sky in search of gravitational waves from as-
trophysical sources. Three key sources have 
been identified: the merger of two neutron 
stars in orbit around one another, the merger 
of two black holes in orbit around one anoth-
er, and core-collapse supernova explosions. 
All three are expected to be seen by LIGO for 
galactic events. 

In the past few years, the community has 
produced the first stable and accurate simula-
tions of binary black holes (BBHs) [Baker et 
al. 2006; Campanelli et al. 2006]. However, 
the complexity of these simulations increases 
with the addition of matter (i.e., nonvacuum 
scenarios). Binaries composed of a black hole 
and a neutron star (BHNS) or two neutron 
stars (BNS) are also of great interest and the 
subject of active study (see Figure 5.4). Cur-

rent matter simulations in numerical relativ-
ity are beginning to add microphysics such as 
realistic equations of state, magnetic fields, 
photon and neutrino radiation transport, and 
nuclear networks. Exascale computers will be 
needed to describe with accuracy systems as 
physics-rich as BHNS and BNS. These simu-
lations are essential for the understanding of 
matter at extreme densities. 

2. Major Challenges

Given the need to resolve all relevant scales 
in the astrophysical environments described 
in section 1 and the ability to do so with the 
promise of exascale computing, given the in-
creasing use of adaptive mesh refinement in 
these simulations, and given the generally 
long run times anticipated to cover the evolu-
tion of the above systems in both space and 
time, two issues emerge: 

An increased need for dynamic load bal-• 
ancing and smart algorithms to provide 
this capability 

An increased need for fault tolerance, • 
that is, for both efficient parallel algo-
rithms that minimize the time to solution 
and thereby mitigate this issue and fault-
tolerant solution algorithms.

The data anticipated from both observational 
facilities and computational simulations will 
be enormous. For example, 100 PB of data 
are expected from the LSST, and simulations 
of core-collapse supernovae at the exascale 
are expected to produce ~100 PB of data per 
simulation over a period of a few months. 
The analysis and visualization of these data, 

Figure 5.4 Snapshots of the space-time evolution of a neutron star orbiting a massive black hole [Sopuerta, Sperhake, and Laguna 2006].
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with an eye toward scientific discovery, will 
present great challenges. Data analysis algo-
rithms will need to share the same efficiency 
and scalability of the algorithms used in the 
original numerical simulations that produced 
the simulation data, and given the size of the 
data sets, the analyses themselves will like-
ly require exascale computing resources, or 
at least dedicated computing resources with 
significant computational capabilities. The 
infrastructure surrounding the exascale plat-
forms must provide sufficient capabilities for 
data archiving, data access, networking, and 
visualization for both local and wide area net-
works. This will further accentuate the need 
for fault-tolerant approaches to data storage 
and access (e.g., multisource, multistream 
approaches), latency-tolerant approaches to 
remote visualization, and the like.

As the data volume from observational facili-
ties expands, the possibilities of integrating 
“sky truth” into simulations become more and 
more appealing. Nevertheless, the consensus 
suggests that the more likely mode of inclu-
sion will be more widespread construction 
of artificial observations—that is, simulation 
data convolved with instrument character-
istics to produce a representative notion of 
what the simulated object would “look like” 
to an observer. This construction has two im-
mediate consequences. First, the data volume 
from the simulations actually tends to expand 
markedly when subjected to this type of a 
posteriori analysis, in contrast to more tra-
ditional forms of data analysis (often termed 
“reduction”) that produce a more compact set 
of data. Second, this wedding of data and ex-
perimental uncertainty is the nexus in which 
validation is ultimately performed for astro-
physical simulation. As it is the observations 
that will tell us whether our simulations solve 
the proper set of equations (i.e., the equations 
that describe nature in the settings we investi-
gate), having a complete view of the interplay 
of observer and observed phenomena is cru-
cial to actually realizing the goal of validated 
astrophysical simulation.  

3. Advances in the Next 
Decade

The computational astrophysics community 
has a significant tradition in computing at 
scale and in using existing architectures to do 
so. Given this history, the overriding sense 
of the community is that existing approaches 
will scale to the exascale and that exciting 
advances in science will be feasible within 
the next decade in each of the four areas dis-
cussed in Section 1: large-scale structure, gal-
axies, stars, and compact objects.

3.1 Large-Scale Structure 

At present, the only means we have to inves-
tigate dark energy is to use the new observa-
tional surveys of the universe on a vast scale. 
The interagency (DOE/NSF/NASA) Dark 
Energy Task Force (DETF) has identified 
four promising observational techniques for 
measuring the so-called dark energy equation 
of state (the relationship between important 
quantities that characterize the dark energy, 
such as pressure and energy density) [Albrecht 
et al. 2006]. Three of the four will require the 
guidance and interpretation of cosmological 
simulations of the large-scale distribution of 
galaxies and galaxy clusters of high precision 
(1%), high physics fidelity, and performed on 
an unprecedented scale (a good fraction of the 
observable universe). In essence, if we are to 
understand our accelerating universe, we will 
first have to faithfully simulate a good frac-
tion of it on a computer. While this sounds 
preposterous, it is in fact what is needed to 
complement and to derive the benefit from 
the observational surveys that will likely be 
moving forward. 

3.2 Galaxies 

JWST is the designated successor to the HST 
as a “great observatory.” It was the astronom-
ical community’s top priority in the last dec-
adal survey and has an estimated cost of $4.5 
billion. It is specifically designed for under-
standing the formation of the first stars and 
galaxies, measuring the geometry of the uni-
verse and the distribution of dark matter, and 
investigating the evolution of galaxies. Com-
parison with theoretical models will require 

If we are to understand our 
accelerating universe, we must 
first faithfully simulate a good 
fraction of it computationally.
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simulations with enough fidelity to match the 
JWST observations of the earliest galaxies as 
they form to the objects they become today. 

The LSST is another national priority, with 
an estimated cost of $300 million. It will con-
strain the nature of dark energy by following 
the evolution of structure, and the nature of 
dark matter by mapping strong gravitational 
lensing in clusters of galaxies. 

Both of these observational programs require 
theoretical predictions about the clustering of 
dark matter and the distribution of galaxies in 
order to fully constrain the dark energy/dark 
matter models.

For the timescale on which exascale computing 
is expected to become a reality (2015–2020), 
several exciting observational developments 
promise to dramatically enhance our knowl-
edge of the structure of AGNs and the proper-
ties of their environments. In the X-ray, the 
Constellation-X telescopes will provide spec-
tra and images of AGNs and cluster cores 
that will allow us to study the dynamics of 
the innermost accretion disks of AGNs and 
the structure of the intracluster medium. In 
the radio, SKA and the Enhanced Very Large 
Array (EVLA) will produce sensitive maps 
of radio emission from the enormous cavi-
ties produced in clusters with AGNs, provid-
ing detailed information about the relativistic 
plasmas and magnetic fields that fill them. 
In the optical, LSST will produce numerous 
(more than 10 million objects) samples of 
AGNs, stretching through most of the epoch 
of galaxy formation and telling us how the 
AGN-environment interaction has shaped the 
luminosity and variability of AGNs during 
this critical period. The coming generations 
of very large optical telescopes, such as the 
Giant Magellan Telescope (GMT), will also 
make it possible to image the central regions 
of nearby AGNs with a resolution hitherto in-
conceivable.

3.3 Stars 

Stars like our own sun end their lives as white 
dwarfs: compact remnants held up against 
their own self-gravity by electron degeneracy 
pressure. If the white dwarf is in a binary, the 
companion star can shed mass onto its more 

evolved neighbor. This increase in mass can 
lead to an uncontrolled thermonuclear explo-
sion, completely disrupting the white dwarf in 
a cataclysm visible across most of the observ-
able universe. The details of the explosion 
mechanism of these thermonuclear superno-
vae (identified with the spectroscopic Type 
Ia label) are still an unsolved problem. The 
interplay of rapid nuclear burning and strong 
gravity in the interior of the white dwarf re-
sults in a combustion problem that requires 
the resolution of flamelets roughly the width 
of a finger while simulating [Gamezo et al. 
2005; Calder et al. 2007] an object the size of 
the Earth. Ultimately, such simulations must 
also include a detailed understanding of the 
nuclear species formed in the event and their 
spectroscopic signatures. Exascale computing 
will enable simulations with resolutions down 
to the Gibson scale (the length scale where 
turbulent motion is effectively smoothed by 
the propagation of the nuclear flame) with 
definitive prescriptions for nuclear energy re-
lease and the associated nucleosynthesis.  

Core-collapse supernovae are driven in part, 
or perhaps largely, by an intense flux of radia-
tion in the form of nearly massless particles 
known as neutrinos that emerges from the 
proto-neutron star at the center of the explo-
sion. The enormous energy contained in the 
neutrino radiation field must be modeled ac-
curately in order to model the much less ener-
getic phenomenon of the supernova explosion 
itself. This modeling in turn will require the 
solution of the six-dimensional (6D) neutrino 
transport equations, the solution of which 
will give the distribution of neutrinos in angle 
of propagation (two dimensions) and energy 
(one dimension) at each 3D spatial location. 
Petascale platforms are already required for 
3D simulations with multiangle, multienergy 
neutrino transport at moderate resolution. 
Simulations with the spatial resolution re-
quired to properly model other critical aspects 
of the explosion dynamics—for example, the 
evolution of the stellar core magnetic fields 
and their role in generating the supernova—
will require much higher resolution, which 
in turn will require exascale computing, par-
ticularly if a number of simulations are to be 
performed across the range of stellar progeni-
tors and input physics. One such simulation 

Three-dimensional simulations 
of neutrino transport equations 
already require petascale 
computing; six-dimensional 
simulations, needed to 
accurately model supernova 
explosions, will require exascale 
computing.
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is expected to take ~8 weeks, assuming 20% 
efficiency on an exaflops machine.

In the future, the enhanced spectral resolu-
tion and throughput of missions like Constel-
lation-X will provide data from more distant 
(and therefore more numerous) supernovae. 
Infrared observations of heavy element abun-
dances, like those performed in the past with 
the Infrared Space Observatory (ISO) and in 
the present with the Spitzer Observatory, and 
those possible with future spectroscopic mis-
sions like JWST, can report the temporal his-
tory of element production from supernovae. 
These observations, coupled with theoretical 
study of the ways the earliest supernovae differ 
from those of the present epoch, are important 
to understanding how the first stars formed and 
how they changed over time into the objects 
recognized in the present universe.

The coincidence of several GRBs with core-
collapse supernovae has opened a new chap-
ter in the study of supernovae. Time-sensitive 
detections, such as the HETE-II observations 
of GRB030329 (which led to the discovery 
of Supernova 2003dh), and Swift’s detection 
of GRB060218, as well as those that may be 
provided in the future by missions like the 
Energetic X-ray Imaging Survey Telescope 
(EXIST), will enhance the opportunity for si-
multaneous detailed multiband observations 
from missions such as Integral, Chandra, and 
HST. These will shed light on the GRB/su-
pernova connection by greatly improving the 
quality and quantity of data available on these 
events.

3.4 Compact Objects

While simulations of BBHs are progressively 
becoming more accurate and efficient, some 
aspects of these calculations are outside the 
realm of current computational resources. 
The advent of exascale computing resources 
will allow a wider coverage of BBH param-
eter space, determined by the masses, spins, 
and orbit eccentricities. It will also allow for 
the simulation of BBHs with extreme mass 
ratios (smaller than 1/20). 

The addition of matter will also improve the 
realism of simulations involving supermassive 

holes found at the center of galaxies, where 
the inspiral dynamics are bound to be affected 
by the presence of accretion disks and galactic 
environments. These simulations will (one 
hopes) shed light on the origin and dynamics 
of galactic jets and quasar evolution.

Among the driving forces behind simulations 
of compact object binaries are the new gen-
eration of laser-interferometric gravitational 
wave observatories such as LIGO, VIRGO, 
and LISA and future missions such as NASA’s 
Black Hole Finder Probe and Imager, and the 
associated large investment that has been 
made. One expected outcome of a simulation 
is the computation of the gravitational waves 
produced during the binary merger. Without 
the gravitational wave “templates” from nu-
merical relativity, detection and characteriza-
tion of gravitational radiation sources will be 
extremely difficult. 

In addition, binaries with at least one neu-
tron star are the most likely engine of 
 short-duration GRBs (the other class of GRBs 
in the universe;  long-duration GRBs are asso-
ciated with core-collapse supernovae as dis-
cussed above). Their modeling is crucial for 
the interpretation of data from current mis-
sions such as Swift and future probes such as 
NASA’s Gamma-ray Large Area Space Tele-
scope (GLAST).

4. Accelerating Development

Exascale simulation of the universe on all 
scales will require a variety of simulations 
that will be performed using a variety of codes 
founded on different numerical methods. The 
community has produced codes that solve 
the equations of N-body dynamics, hydrody-
namics, MHD, radiation transport, radiation 
hydrodynamics, radiation MHD, and both 
Newtonian and general relativistic gravity. 
The underlying methods have thus far proven 
robust in scaling to present-day architectures. 
The underlying assumption, and hope, of the 
computational astrophysics community is that 
these methods can be extended to the exascale 
without significant modification. Of course, 
the community is aware that, in some cases, 
new algorithms for the underlying PDEs will 
be needed. Moreover, modifications will 

Modeling of long-duration 
gamma-ray bursts is crucial for 
interpreting data from NASA 
missions.
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have to be made to accommodate the increas-
ing numbers of cores on each socket and the 
changes in the demand for memory bandwidth 
associated with this new feature, but there are 
no obvious bottlenecks at present that suggest 
that an entirely new set of codes will have to 
be deployed. The community also recognizes 
that this hope is predicated upon the hope that 
the architectures at the exascale will not be 
dramatically different either from those used 
now or from those that will be used in the 
near term at the petascale. Thus, of primary 
importance to the computational astrophys-
ics community will be collaboration with the 
applied mathematics community with an eye 
toward porting existing methods and codes to 
exascale platforms. 

The ability to perform simulations at much 
higher resolution will be of great benefit to 
the computational astrophysics community.  
Nonetheless, given the multiscale nature of 
the astrophysical systems studied by this com-
munity, adaptive mesh refinement (AMR), 
which is becoming more prevalent now, will 
no doubt see increased use in the future. AMR 
can be performed in different ways (e.g., 
grid-based or cell-by-cell refinement), each 
having its pros and cons. Thus, we will have 
to consider both the scaling of our numerical 
solution methods, as discussed above, and the 
scaling of our approach to AMR. The primary 
issue with regard to AMR and parallel com-
puting is, of course, load balancing. Thus, the 
development of methods for dynamic load 
balancing across large numbers of processors 
will be an increasingly important need of the 
computational astrophysics community, re-
gardless of the approach to AMR.

Exascale computing will also provide the 
ability to simulate astrophysical systems for 
significantly longer physical evolution time 
scales. In short, we can expect significantly 
longer run times at the exascale. The devel-
opment of fault-tolerant solution algorithms 
and efficient parallel solution algorithms that 
minimize the time to solution will be required 
to mitigate the need for fault tolerance.

Longer run times will also present a very 
different challenge. In many instances, ex-
plicit (in time) methods are used in the codes 

mentioned above to follow the evolution of 
astrophysical systems. The confluence of 
higher grid resolution, or a larger number 
of particles, and longer physical simulation 
times will push explicit methods to their lim-
its. In some instances, explicit methods will 
no longer be viable. Thus, the development 
of implicit (in time) methods for the solution 
of some of the underlying PDEs listed above 
will be required.

The computational astrophysics community 
is already using implicit (in time) methods 
to solve the systems of equations governing 
radiation transport in astrophysical systems. 
Such methods lead to a set of underlying 
large, sparse linear systems of equations, 

Area Science

Large-Scale 
Structure Formation

Simulations of the large-scale distribution of galaxies and 
galaxy clusters over a large fraction of the observable 
universe with 1% precision, required of the observational 
program proposed by the DOE/NASA/NSF-sponsored 
Dark Energy Task Force.

Galaxy Formation Simulations of galaxy formation with sufficient resolution 
to predict the observed properties of individual galaxies 
in a volume containing a sufficient fraction of the ob-
servable universe to compare with large-scale surveys. 
Simulations of the formation of the Milky Way galaxy with 
sufficient precision to compare with data from JWST and 
LSST.

Stellar Evolution Simulations of the entire stellar envelope in AGB stars, 
responsible for the supply of half of the heavy elements 
(elements above iron) in nature.

Supernovae Definitive 3D multiphysics simulations of core-collapse 
supernovae, the dominant source of elements between 
oxygen and iron and the half of the heavy elements not 
produced in AGB stars.

Compact Objects Definitive simulations of binaries involving two neutron 
stars, or one black hole and one neutron star, which are 
among the leading candidates for the production of gravi-
tational waves in our galaxy.

Table 5.1 Examples of exascale-computing-enabled science
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which at present are solved with both matrix-
based and matrix-free implementations of 
Newton-Krylov (NK) methods. These linear 
systems can be ill conditioned, which has mo-
tivated a need for higher-precision arithmetic 
and for the development of the associated so-
lution algorithms.

Throughout the scales of the universe, gravity 
is (of course) prevalent in astrophysical sys-
tems. The gravitational field, in conjunction 
with the energy (mass) content that defines 
it, is among the major components of most 
astrophysical systems/models. In the New-
tonian case, the gravitational field is deter-
mined by solving the Poisson equation. In the 
general relativistic case, the complete system 
of Einstein’s equations (or a good approxi-
mation thereof) needs to be solved. In both 
instances, scalable methods for the solution 
of elliptic systems of equations on exascale 
platforms will be needed.

5. Expected Outcomes
Table 5.1 lists examples of astrophysical sci-
ence that will be enabled by the advent of ex-
ascale computing.

Computational astrophysics has a long and 
storied tradition of driving advances both in 
computing, per se, and in algorithmic devel-
opment. For these reasons and others, com-
putational astrophysics has also proven to be 
a fertile training ground for computational 
scientists who ultimately spend most of their 
professional lives in other disciplines. The 
need for broadly trained computational scien-
tists will only increase as the ambitious aims 
outlined here are undertaken.

What will exascale computing mean to the 
computational astrophysics community in 

the context of the science delineated above? 
First and foremost, exascale computing will 
enable 3D modeling across the phenomena 
we have discussed. At present, the ability to 
perform complete simulations in three spatial 
dimensions is not a given. For example, 
no 3D multiphysics simulations of core-
collapse supernovae have been performed 
to date. The current state of the art remains 
at two spatial dimensions. Second, exascale 
computing will mean higher grid resolution 
or an increased number of particles. Third, 
exascale computing will enable the study of 
larger physical volumes — for example, the 
entire sky rather than a slice of the sky in 
simulations of large-scale structure formation 
or the entire convective stellar layer in AGB 
stars vs only a portion of it. Finally, exascale 
computing will enable complete multiphysics 
simulations. Almost without exception, 
simulations performed to date across the 
suite of areas discussed above have left out a 
significant physical component.

Our ultimate goal is to understand the formation 
and evolution of the major constituents of our 
universe, from the largest to the smallest of 
scales, from the universe as a whole to the 
clusters of galaxies making up its large-scale 
structure to individual galaxies and stars to 
compact objects such as neutron stars and 
black holes, and, when possible, to understand 
the connection between phenomena at different 
scales. 

6. Required Investment
As shown by a few representative examples 
in Table 5.2, over the next decade significant 
investments will be made to develop and 
deploy the next-generation ground- and space-
based observatories that will provide more 
complete and more precise observations of the 
universe across the electromagnetic spectrum, 
and in other forms of radiation such as 
gravitational waves and neutrinos, in regions 
currently observed. Equally important, theses 
instruments will allow us to peer farther into 
space and farther back in time to regions of the 
universe and its history heretofore unexplored. 
The success of these new observatories, and 
the benefit of the significant investments that 
will be made to make these observatories a 
reality, will depend on the development of 

Proposed Observatory Estimated Cost “Launch” Date

JWST $4.6B 2013

LISA $1.7B 2015

Constellation-X $1.7B 2017

LSST $300M 2017 (ground-based)

JDEM >$0.6B 2015

Table 5.2 Scheduled investments in observatories during the next decade

Exascale computing will enable 
study of the entire sky, rather 
than merely a slice of the sky at 
a time.
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more complete and more precise simulations 
of phenomena in the cosmos. Without a 
significant investment in computational 
astrophysics and the development of the 
computational platforms, applied mathematics, 
and computer science on which simulations by 
the computational astrophysics community 
will depend, the benefit of investments in new 
observatories will not be harvested. 

7. Major Risks
The computational astrophysical community 
has identified the following key risks in em-
bracing exascale computing:

The simulations proposed above will put • 
severe constraints on the memory per 
processor, memory bandwidth, and total 
memory of the new exascale machines. 
This situation is largely due to the mul-
tidimensional (even beyond three spatial 
dimensions, in order to include radiation 
angles and energies) and multiphysics na-
ture of the phenomena being simulated. 

An astrophysical system often has an in-• 
herent physical parallelism. Ideally, ar-
chitectures would be designed to exploit 
such parallelism by performing the asso-
ciated work on a single socket rather than 
across sockets, but this would require 
sufficient socket memory. 

The increased number of cores per socket • 
envisioned for the exascale will likely 
overwhelm the memory bandwidth to the 
shared socket memory available to these 
cores. 

Some proposed simulations will be mem-• 
ory bound. For example, core-collapse 
supernova simulations at the exascale will 
require approximately 1 exabyte per flop. 
A more complete response to the issue of 
risk will evolve as detailed knowledge of 
exascale architectures comes to light.
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Math and 
Algorithms6

Advanced and improved simulations for cli-
mate, renewable energy, nuclear energy, as-
trophysics, biotechnology, and nanoscience 
(to name a few areas in the DOE portfolio) 
demand significant advances in mathematical 
methods, scalable algorithms, and their imple-
mentations. The required advances are driven 
by the increased complexity of the problems, 
involving multiple and coupled physics mod-
els, high dimensionality described by large 
numbers of equations, and huge time and spa-
tial scales—from nano to global and even to 
astronomical scales. 

These advances will represent a fundamental, 
exciting, and powerful shift in the compu-
tational science modus operandi, enabling a 
move beyond simply solving larger problems 
at higher resolutions to providing new capa-
bilities for optimizing and quantifying uncer-
tain systems and unknowns and for assessing 
risk.

The results of these simulations and their in-
terpretation will help guide high-impact poli-
cy and scientific decisions with broad social, 
engineering, and ecological consequences. 

1. Advances in the Next 
Decade 
As depicted in Figure 6.1, the needs of ex-
ascale applications will be addressed by ad-
vances in four major and interlinked areas: 
coupled models, uncertainty, optimization, 
and data.

Coupled Models:•  Most exascale applica-
tions will involve multiple models (PDE 
or data-based) for different phenomena 
or at different scales of the same phe-
nomenon. In some cases, new models 
and corresponding scalable implementa-

tions will be developed for the coupled 
systems.  In many cases, existing models 
and codes will be extended in terms of 
scalability, and new mathematical ap-
proaches (general and domain-specific) 
to model coupling will be developed. 
New implicit approaches for dealing with 
long time-scale coupled simulations will 
also be pursued.

Uncertainty:•  To add rigor to exascale 
simulation results, we must develop a 
systematic approach for quantifying, es-
timating and controlling the uncertainty 
caused, for example, by reduced models, 
uncertain parameters, or discretization 

Figure 6.1 E3 applications characteristics and math and algorithms needs.
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error. Complex, fully coupled multiphys-
ics and multiscale applications require in-
trusive tools that automatically construct 
representations of uncertainty, handle the 
uncertainty propagation and coupling ef-
fects, and provide sharp estimates of the 
uncertainty of key merit criteria. 

Optimization:•  Large-scale design prob-
lems demand scalable algorithms for 
continuous nonlinear optimization. Also 
needed are parallel branch-and-cut meth-
ods for linear and nonlinear optimization 
problems with discrete variables, as well 
as more sophisticated parallel methods for 
solving stochastic optimization problems. 

Large, Messy, and Noisy Datasets:•  Ad-
vances in technology have enabled the 
production of massive volumes of data 
through observations and simulations 
in many applications such as biology, 
high-energy physics, and astrophysics. 
To effectively utilize this flood, we will 
develop new data representations, data-
handling algorithms, efficient implemen-
tations of data analysis algorithms on 
high-performance computing platforms, 
and representations of analysis results. 

Exascale computing presents an opportunity 
not just for quantitative but also for qualita-
tive changes in the role of computation in 
scientific discovery and in high-consequence 
decision support. Applications for exascale 
systems will demand rigorous V&V method-
ologies with quantified uncertainties that are 
presented in a manner that enables simulation-
based critical decisions and optimization. Ex-
ascale computing opens many opportunities 
that will help drive mathematical and algo-
rithmic research, making possible the design 
of safe, reliable, economical, and socially ac-
ceptable solutions for energy, climate, and the 
environment. The E3 initiative must ensure 
that critical applied mathematics, algorithms, 
and software challenges are addressed. 

For computational biology, sustainability, 
and global security applications, HPC sys-
tems must place greater emphasis on scalable 
shared-memory performance, memory la-
tency and bandwidth, and integer operations, 
in contrast to the current focus that rests al-
most exclusively on floating-point perfor-
mance. Bioinformatics and computational 
biology, genomics, and medical applications 
may differ significantly from the current HPC 
workloads in that the data structures are often 
irregular (based on strings, trees, graphs, and 
networks), without the high degree of spatial 
and temporal locality seen in physics-based 
simulations using regular matrices. We also 
see a growing need for database research in 
areas of probabilistic queries and queries by 
structure, such as DNA sequence data, pro-
tein structure, and phylogenetic graphs or 
networks. We envision that new exascale 
algorithms will require tight integration of 
computation with database operations and 

Figure 6.2 A cross section of a small portion of an Escherichia coli cell, an example 
of a complex system that might one day be the subject of an ab initio simulation. The 
cell wall, with two concentric membranes studded with transmembrane proteins, is 
shown in green. A large flagellar motor crosses the entire wall, turning the flagellum 
that extends upwards from the surface. The cytoplasmic area is colored blue and 
purple. The large purple molecules are ribosomes; the small, L-shaped maroon 
molecules are tRNA; and the white strands are mRNA. Enzymes are shown in blue. 
The nucleoid region is shown in yellow and orange, with the long DNA circle shown 
in yellow, wrapped around HU protein (bacterial nucleosomes). In the center of the 
nucleoid region shown here, one might find a replication fork, with DNA polymerase 
(in red-orange) replicating new DNA. Image courtesy of David S. Goodsell.



87

Modeling and Simulation at the Exascale for Energy and the Environment

queries, as well as the ability to handle new 
types of queries such as combined structural, 
ethno-botanical, socio-geographic, phylo-
geographical queries. 

2. Major Challenges

Exascale computing has the transformational 
power to allow scientists to move beyond 
simulation of complex systems and to con-
sider a paradigm shift that will enable them to 
address more challenging questions such as 
design and the quantification of uncertainty. 
This paradigm shift, together with the mas-
sive increase in computing power offered by 
exascale computing, will create a set of com-
putational and mathematical hurdles that must 
be overcome. Four broad areas have been 
identified that encapsulate the application 
needs: uncertainty quantification, optimiza-
tion, PDEs, and the management of massive 
sets of data.

Uncertainty Quantification. The quantifica-
tion of uncertainty answers such fundamental 
questions as simulation code V&V against 
reality. It is important to establish mathemati-
cally firm foundations for these fundamental 
questions and to develop computational tools 
within an integrated computational environ-
ment that reduces time to simulation, provides 
compatible geometry representations, allows 
for a hierarchy of model fidelities running on 
a range of architectures from workstations 
to state-of-the-art parallel computers, and 
includes a rich suite of postprocessing capa-
bilities. Typically, scientists have assumed in-
dependence between various sources of input 
uncertainty. While this assumption simplifies 
the analysis, it does not represent reality, and 
there exists a need to support higher-dimen-
sional input densities to model true model 
uncertainty. New methodology is needed to 
systematically explore the input uncertainty 
space for an optimal characterization of the 
output uncertainty space. Typically, research-
ers have developed techniques principally for 
optimizing physical experiments; these tech-
niques must be adapted for computational 
experiments, leading to uncertainty quantifi-
cation for thousands or millions of parame-
ters. The development of these mathematical 
foundations and tools is critical to the under-

standing of the “teleconnections” in model 
output that depend on the dynamical system 
under study; such dependence information is 
critical to studying extremes and extremes of 
uncertainty. 

Optimization. The design of complex systems 
and physical processes that maximize some 
performance measure can be expressed as op-
timization problems [Nocedal 2006]. Optimi-
zation holds the promise of better designs and 
a more efficient use of natural resources. The 
key challenge is the development of robust 
optimization techniques that are reliable and 
exploit the evolving new computer architec-
tures. These techniques must be easy to use, 
in order to ensure their widespread acceptance 
within the scientific community. An additional 
challenge is the determination of appropriate 
algorithms for novel optimization paradigms 
that could not have been approached on a 
system scale before the advent of exascale 
architectures. Such novel paradigms include 
hierarchical optimization problems over mul-
tiple time stages and problems with chance 
constraints that better reflect licensing and 
operational requirements. A third challenge 
that will arise with the use of exascale ar-
chitectures is the handling of problems with 
hundreds of thousands of discrete parameters. 
Moreover, as scientists move increasingly 
from simulation to design, they will need to 
address the solution of complex, nonlinear 
optimization problems—possibly involving 
trade-offs between multiple objectives and 
discrete choices. A portfolio of techniques 
will be needed, ranging from more sophisti-
cated PDE-constrained optimization methods 
to new, rigorous techniques that exploit a hi-
erarchy of physical models.

PDEs. Solving linear and nonlinear systems 
of PDEs is at the heart of many DOE appli-
cations, such as accelerator modeling, astro-
physics, nanoscience, and combustion. As the 
focus of scientists extends from simulation to 
optimization and uncertainty quantification, 
the solution of linear and nonlinear systems 
increases in importance. The efficient solu-
tion of PDEs requires AMR to provide mesh-
quality-preserving automatic adaptation for 
different types of complex geometries, while 
allowing the addition of domain-specific in-

In enabling scientists to move 
from simulation to design, 
exascale computing will also 
demand novel paradigms, such 
as hierarchical optimization 
over multiple time stages 
and problems with chance 
constraints that better reflect 
licensing and operational 
requirements.
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terpolation strategies. Dynamic load balanc-
ing is especially challenging at the exascale 
level, leading to hard combinatorial problems 
[Streensland 2002]. Many complex physical 
systems, such as astrophysics and climate 
modeling, face bottlenecks in time step re-
strictions because of higher spatial resolu-
tions, which must be overcome to ensure 
convergence for reasonable time steps.

Massive Datasets. The handling and manage-
ment of increasingly large and heterogeneous 
sets of data will create new challenges for 
scientists and computer architectures. Data 
can be the result of an exascale simulation 
that must be postprocessed for human inter-
pretation, or it can form the input to complex 
problems via data assimilation. Browsing or 
looking at data is no longer possible as we 
near a petabyte. To visualize 1% of 1 petabyte 
at 10 MB/s takes 35 workdays. There is an 
enormous need for methods to dynamically 
analyze, organize, and present data by vari-
ability of interest. For example, how do we 
organize ocean eddies in a climate simulation 
so that by viewing a very small set of them 
we have a good idea about all the types of 
eddies present in the entire petabyte dataset? 
What about particles in a fusion simulation? 
Solutions to these problems will likely come 
from dynamically considering high-dimen-
sional probability distributions of quantities 
of interest. This approach requires new con-
tributions from mathematics, probability, and 
statistics. Besides being large, data is often 
noisy, or inaccurate, thus creating additional 
challenges. For example, we may be interest-
ed in estimating the response of a nonlinear 
dynamical system that is polluted by noise. 
How can we detect the real signal? Answers 
to such questions require new mathematical 
theory and computational tools to classify 
shapes in terms of stochastic models and to 
deal with both local and long-range correla-
tions between features.

3. State of the Art 
In this section, we examine the current state 
of the art in six areas that will require signifi-
cant mathematical and algorithmic advances 
in order to meet the emerging needs of exas-
cale applications.

3.1 Solvers

The dominant computational solution strat-
egy over the past 30 years has been the use 
of first-order-accurate operator-splitting, 
semi-implicit and explicit time integration 
methods, and decoupled nonlinear solution 
strategies. Such methods have not provided 
the stability properties needed to perform ac-
curate simulations over the dynamical time 
scales of interest. In most cases, numerical 
errors and means for controlling such errors 
are understood heuristically at best. In addi-
tion, the impact of these choices is difficult to 
assess and control. For this reason, solutions 
for these complex systems can be fragile and 
exhibit nonintuitive instabilities, or they may 
simply be stable in a crude sense but contain 
significant long-time integration error. 

Direct methods for solving sparse linear equa-
tions are used in many applications, such as 
the inversion operator for the shift-and-invert 
algorithms for high-accuracy eigencompu-
tations, solution of coarse-grid problems as 
part of a multigrid solver, and subdomain so-
lutions in domain decomposition methods, as 
well as in cases where the linear systems are 
extremely ill-conditioned [Li 2006]. Iterative 
methods are required for most 3D and cou-
pled physics problems, however, since direct 
methods become computationally infeasible 
because of memory and time requirements 
[Eijkhout 1998].

The numerical optimization community has 
focused principally on the development of se-
rial algorithms for solving linear, quadratic, 
and nonlinear optimization problems with 
continuous variables or a mixture of continu-
ous and discrete variables. Techniques for 
solving linear and quadratic programs can be 
split into active-set and interior-point meth-
ods, while algorithms for solving nonlinear 
programming problems are generally based 
on solving a sequence of linear or quadratic 
approximations or interior-point methods 
[Nocedal 2006]. Parallel implementations 
have been written for some problem classes 
by parallelizing the linear algebra [Gondzio 
2003] or exploiting the problem structure by 
using a decomposition method, for example. 
Preconditioned Krylov methods and approxi-
mate solutions to the systems of equations 

Dynamic load balancing is 
especially challenging at the 
exascale level, leading to hard 
combinatorial problems.
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are not well understood from a theoretical 
perspective, especially for problems with 
inequality constraints, but they have been 
used successfully in some contexts. Algo-
rithms for optimization problems with dis-
crete variables solve a sequence of linear 
and nonlinear relaxations in a branch-and-cut 
framework [Nemhauser 1988]. These meth-
ods are augmented by a number of heuristics 
for finding an initial feasible point, selecting 
the branching variables, and determining the 
cuts to add. Parallelization of these methods 
is achieved by solving multiple relaxations in 
parallel. Optimization problems with stochas-
tic variables have also been studied, in which 
one typically samples the random variables 
and solves the resulting deterministic prob-
lem. The problems for the realizations can be 
solved in parallel. For large parameter spaces, 
the sampling method employed becomes very 
important for obtaining reasonable results. 

3.2 Uncertainty Quantification

A complete answer to the uncertainty ques-
tion in computational experiments involves 
three distinct steps: (1) representation of in-
put uncertainty [Klir 1994], (2) propagation 
of uncertainty through a simulation model 
[Christianson 2005], and (3) representation 
and calculation of output uncertainty. The 
overall approach is guided by the initial rep-
resentation of the uncertainty. For pure sto-
chastic representations, the state of the art 
for step 1 includes Gaussian randomness of 
inputs and parameters, used in conjunction 
with perturbative techniques for step 2 and 
with Monte Carlo for step 3. Such representa-
tions have been carried to dimensions of the 
random vector as high as millions. Nonethe-
less, further progress in this direction is hin-
dered by the severe nonlinearities exhibited 
by most models of interest or by the failure 
of the data to support efficient Gaussian ap-
proximation. A relatively recent development 
is the use of stochastic finite elements to rep-
resent uncertainty in inputs and parameters as 
an element in a linear space at step 1. This 
has the promise of very compact and efficient 
representations of the uncertainty. Moreover, 
the approach has been able to accommodate 
quite severe nonlinearities. Nonetheless, to 
date we have no efficient way of achieving 

step 2 when several models with such un-
certainty representation are coupled. This is 
a major bottleneck in expanding the reach of 
such methods and is responsible for the fact 
that parametric uncertainty quantification for 
PDE applications has been limited to tens of 
parameters for problems whose state space is 
on the order of millions in magnitude. 

3.3. Adaptive Mesh Refinement

AMR is not widespread in scientific simula-
tion today but is slowly gaining acceptance. 
It is used within both structured and unstruc-
tured mesh contexts. Block-structured AMR 
combines the efficiency of having resolution 
only where needed with the simple array-
based storage and mathematical operations 
of structured meshes. Most AMR computa-
tions are performed using packages such as 
Chombo, GrACE, or Paramesh, since such 
computations require sophisticated numeri-
cal, algorithmic, and software constructs to 
run efficiently on parallel machines. Most 
discretization techniques (finite differences 
and finite volumes) on block-structured AMR 
are second-order accurate, although there 
have been recent extensions to fourth-order 
numerical schemes. The use of AMR within 
unstructured meshes, and especially finite-
element calculations, is far more advanced. 
Simulations with both automatic resolution 
and discretization order refinement (hp-re-
finement) are conducted today.

AMR necessitates load balancing on parallel 
computers. Several models for partitioners 
and load balancers have been applied success-
fully to unstructured problems [Hendrickson 
1995; Pilkington 1994; Simon 1991]. The 
best-known model is graph partitioning, 
where data/work is represented by graph ver-

Figure 6.3 Error of a multiscale model reduction approach for electronic structure
density functional theory (DFT) energy minimization for a string of hydrogen atoms.

Stochastic finite-element 
methods can accommodate 
severe nonlinearities, but 
propagating uncertainties 
through coupled models 
presents a major bottleneck 
to expanding the range of 
such methods to exascale 
architectures.
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tices. Hypergraph partitioning approaches 
improve on the graph model by representing 
data dependences within sets of vertices, thus 
allowing nonsymmetric and nonsquare data 
dependences to be modeled. In general, hy-
pergraph algorithms produce decompositions 
with lower communication volume (vis-à-vis 
graph partitioners) while supporting a larger 
range of applications. 

Scientific simulations that use block-struc-
tured adaptive meshes use mainly geomet-
ric models [Patra 1995], which implicitly 
assume that objects that are physically near 
each other depend on each other. Geometric 
methods are very fast and scalable compared 
to graph and hypergraph algorithms. Current 
techniques perform domain decomposition in 
such a way that the subdomain per processor 
can be represented as a collection of nonover-
lapping rectangular boxes. Two extreme ob-
jectives can be adopted in partitioning such 
meshes: (1) reduce load imbalance, even at 
higher communication costs (patch-based 
partitioning), and (2) reduce communication 
costs, at the price of increased load imbal-
ance and synchronization costs. Successful 

algorithms (e.g., bi-level, knapsack) take a 
middle-ground approach. Furthermore, many 
algorithms have tunable parameters to trade 
off load balance with communication costs, 
given the character of a particular machine. 
Determining optimal values for these pa-
rameters is difficult, however, and doubly so 
for time-evolving simulations on adaptive 
meshes.

3.4 High-Dimensional Spaces

In genomics applications involving mutation 
analysis, parameter spaces may exceed 5,000 
dimensions and may take only discrete values. 
Yet state-of-the-art algorithms, such as entro-
py-based methods, have not been successful 
for problems exceeding 100 dimensions. 

In the simulation of a fission reactor, the situ-
ation is even more challenging. Some param-
eters are outside the user’s control, such as 
scattering, absorption, and fission cross sec-
tions; these parameters suffer from a larger 
degree of uncertainty than do others. For a 
moderately high number of energy groups, 
the number of such parameters can easily sur-
pass 10,000. Yet the state of the art currently 
is limited to parameter spaces of perhaps 20 
to 30 dimensions. 

A complicating factor in the topic of high-
dimensional parameter spaces is the fact that 
such problems can also have a huge state 
space. In a fission reactor, for example, the 
state space is composed of an ensemble of the 
neutron flux, temperature, and coolant veloc-
ity distributions in a 3D configuration with 
sizes on the order of meters in any direction 
and physics that must be represented at scales 
far below the millimeter range. 

3.5 Data Analysis

The current state of data analysis lags far be-
hind our ability to produce simulation data or 
record observational data. A particular gap 
exists in the mathematics needed to bring 
analysis and estimation methodology into 
a data-parallel environment. Parallel linear 
algebra methods go a long way toward en-
abling data-parallel analysis, but they do not 
solve it, just as they would not solve a cli-

Figure 6.4 Left: Temperature (color map) and heat release contours for a partially 
premixed unsteady methane jet flame. Right: The corresponding AMR mesh.
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mate simulation problem. For example, the 
standard principal component analysis com-
putation does not become data-parallel with a 
parallel singular value decomposition (SVD) 
solver, even though the SVD is the core com-
putation in that analysis. Data-parallel solu-
tions for applications on exascale resources 
will require new mathematics that considers 
an entire estimation problem for develop-
ing scalable data-parallel algorithms in data 
analysis. 

3.6 High-Precision Arithmetic

No HPC vendor currently offers hardware sup-
port for 128-bit floating-point arithmetic, and 
there is little prospect that this situation will 
change within the next few years. Some For-
tran compilers support the REAL*16 datatype 
in software. Unfortunately, such facilities are 
not provided in all compilers—not in the GNU 
compilers, for instance—and even when pres-
ent, they are usually very slow, often 50 to 100 
times slower than conventional 64-bit floating-
point arithmetic. Few scientists are willing to 
experiment with such a facility when the per-
formance penalty is so great. 

The alternative is to use independently written 
software libraries, such as those mentioned 
by Bailey [2005]. With such software, one 
specifies which variables and arrays are to 
be treated as high precision by means of spe-
cial type statements. Then when one of these 
variables or arrays appears in an arithmetic 
statement or argument, the proper library 
routines are automatically called via opera-
tor overloading. Such facilities have several 
drawbacks: (1) at present they are available 
only for Fortran and C++; (2) it is necessary 
to make alterations (mostly minor) to one’s 
source code; (3) certain subexpressions may 
be performed only to conventional precision; 
and (4) slowdown is typically a factor of 5 for 
double-double arithmetic, 25 for quad-dou-
ble, and even higher if transcendental func-
tion references are involved. 

4. Accelerating Development 
The movement to multiscale, multiphysics 
simulations necessitates advances in several 
fundamental classes of numerical algorithms, 
including linear solvers, nonlinear solvers, 

preconditioners, eigensolvers, algorithms for 
mesh generation and adaptation, and ordinary 
differential equation (ODE) / differential al-
gebraic equation (DAE) integrators. 

4.1 Solvers

In order to achieve accurate, stable, efficient 
and scalable predictive simulations for multi-
ple-time-scale systems with implicit methods, 
many advances in numerical methods and 
computational science are required. 

Development, demonstration, and com-• 
prehensive evaluation of stable, accu-
rate, efficient, and scalable fully implicit 
methods coupled with uncertainty quan-
tification techniques (deterministic and 
probabilistic) and with estimation and 
control of long-time integration error for 
large-scale, complex multiple-time-scale 
applications. Verification and well-char-
acterized prototype problems for multi-
ple-time-scale multiphysics systems must 
be developed. 

Deterministic uncertainty quantification • 
tools based on sensitivity and adjoint-
based techniques for data, integration, and 
model error estimation and control must 
be further developed and demonstrated. 
Adjoint methods have shown promise for 
estimating and controlling data, model, 
and long-time integration error. In adjoint-
based methods, advances are required 
to limit solution storage requirements, 
memory usage, parallel communication, 
and cost of the adjoint solve. There is a 
significant need for the development of 
public-domain software to enable adjoint 
methods for time-dependent problems. In 
addition, adjoint techniques for hyperbolic 
systems are critically required. 

Probabilistic approaches based on sam-• 
pling methods (e.g., Monte Carlo) and 
direct methods (e.g., polynomial chaos) 
require advances in algorithms and com-
putationally efficient implementations 
for transient simulations. Hybrid deter-
ministic/probabilistic approaches must 
be developed and studied in the context 
of complex systems. 

Few compilers or software 
libraries can handle high-
precision arithmetic, and those 
that do so are often extremely 
slow.

The current state of data 
analysis lags far behind our 
ability to produce simulation 
data or to record observational 
data.
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NK and Jacobian free NK (JFNK) tech-• 
niques in complex large-scale applica-
tions must be significantly extended. 
Needed extensions include automated 
generation of adjoint models and auto-
matic differentiation technologies to sup-
port NK and JFNK methods in complex 
applications. 

NK methods require algorithmic and soft-• 
ware developments in physics-based and 
approximate block factorization precon-
ditioners for coupled elliptic, parabolic, 
and hyperbolic systems. Critical subcom-
ponent physics include incompressible 
and compressible flow, transport-reaction 
systems, coupled porous media flow, 
nonlinear elasticity, fluid-structure inter-
action, electromagnetics, and ideal and 
resistive MDH. 

Efficient and scalable physics-based pre-• 
conditioners require subblock solvers 
based on multilevel (multigrid and alge-
braic multigrid) methods for scalar and 
vector systems with strong anisotropic 
effects and large-scale variations in coef-
ficients. Advances in algebraic multigrid 
methods for compatible physics-based 
discretizations are also required. 

The System of Systems (SOS) approach • 
offers promise in building alternative 
physical models based on the integration 
of a smaller, well-understood set of known 
physical models into a larger model. This 
approach may prove useful, for instance, 
in exploring change in global tempera-
ture based on smaller local models (e.g., 
climate models for small regions or series 
of physics-based PDE models). 

Research in linear and nonlinear solvers re-
mains a critical focus area because the solvers 
provide the foundation for more advanced so-
lution methods. In fact, as modeling becomes 
more sophisticated and increasingly includes 
optimization, uncertainty quantification, per-
turbation analysis, and more, the speed and 
robustness of the linear and nonlinear solvers 
will directly determine the scope of feasible 
problems to be solved.

The performance of direct methods re-• 
lies heavily on the ordering of rows and 
columns of the matrix, and research in 
effective orderings is still important. Fur-
thermore, for extremely large systems, 
out-of-core implementations will be 
needed to overcome the memory bottle-
neck. The efficiency of such out-of-core 

Figure 6.5 A sequence of solutions and their deviation from the optimal solution for a bound constrained minimization problem. The 
objective is the surface with minimal area that satisfies Dirichlet boundary conditions and is constrained to lie above a solid plate.
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solvers will need to be revisited. Efficient 
and scalable algorithms for sparse indefi-
nite systems, particularly those from opti-
mization, must be investigated. Moreover, 
further work is needed for fully distrib-
uted direct sparse solvers, where all data 
objects are distributed across the parallel 
machine and efficient parallel algorithms 
are used for all phases of the solver. 

Block iterative methods, which can effec-• 
tively solve multiple simultaneous right-
hand sides, represent an area of growing 
importance in order to exploit the growing 
number of such problems.  Furthermore, 
block iterative methods have attractive 
machine performance characteristics that 
will become even more important on fu-
ture architectures. 

Convergence of iterative methods is • 
strongly affected by the quality of pre-
conditioners.  Advanced efforts in pre-
conditioning are focused on exploiting 
problem characteristics via segregation of 
variables for coupled systems, multilevel 
methods for keeping complexity costs 
low, and nesting of iterative methods via 
inner-outer techniques.  However, even 
these techniques still rely on basic pre-
conditioners (incomplete factorizations, 
Jacobi, Gauss-Seidel, etc.) and iterative 
methods as building blocks.  Therefore, 
any improvements in basic precondition-
ers, such as better reorderings, reduced 
error in incomplete factors, or emerging 
approaches such as support graph tech-
niques, can have a broad impact. 

Progress in nonlinear solvers continues to • 
be important, especially for tightly cou-
pled and highly nonlinear systems where 
continuation methods can be essential to 
getting a converged solution.  Work in 
graph coloring is an important related 
problem for efficient Hessian and Jaco-
bian computations, as is automatic differ-
entiation as a means of obtaining accurate 
and flexible operator formulations. 

Optimization research should focus on the 
following four areas; a complementary effort 
should involve educating scientists to select 

the best modeling and solution techniques for 
optimization problems.

Modeling systems that allow applica-• 
tion scientists to express their models 
in a natural, domain-specific format and 
that couple applications to solvers. This 
effort will involve the development of 
new tools that support PDE constraints, 
chance constraints, and simulation-based 
applications. 

Scalable parallel solvers for optimization • 
problems with PDE constraints. One ap-
proach is to extend current nonlinear op-
timization techniques to allow for inexact 
subsystem solves. 

New methods for hierarchical and simu-• 
lation-based design problems that exploit 
exascale architectures. Such methods 
should include constraints, allow for in-
exact simulations, and provide support 
for multiscale optimization.

Efficient parallel branch-and-cut solv-• 
ers for nonlinear discrete optimization 
problems that enable the solution of ap-
plications with hundred of thousands of 
discrete parameters. 

4.2 Uncertainty Quantification, 
Validation, and Verification

Effective, scalable algorithms for uncertainty 
quantification and optimization will likely be 
intrusive, requiring extensive changes to ex-
isting application codes, the underlying algo-
rithms, and the solvers required for efficient 
solution that will drive the need for improved 
iterative solvers and preconditioners. While 
the advantages of intrusive methods have 
been well documented, their use has been 
limited by the substantial changes and related 
solver advances required. E3 should promote 
next-generation applications that support 
fully intrusive uncertainty quantification and 
optimization algorithms. To achieve this ob-
jective, advances in numerical methods and 
computational science are required: 

Verification• . Address the mathemati-
cal challenges of error estimation for 

Advances in preconditioners,  
such as better reorderings, 
can have a broad  impact on the 
performance of iterative solvers.

Block iterative methods have 
attractive machine performance 
characteristics that will 
become important on exascale 
architectures.
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complex, coupled, multiscale, and mult-
iphysics calculations with possibly noisy 
and discontinuous data and engage the 
community to improve the overall qual-
ity of computational testing, including 
the design, documentation, and reposi-
tory of useful and influential benchmark 
problems. 

Validation• . Focusing on the selection 
and design of appropriate experimental 
benchmarks as well as the mathematical 
and computational challenges of validat-
ing systems of coupled simulations that 
may be used well outside their validation 
regime. 

Uncertainty quantification.•  Formulate 
mathematical foundations, scalable algo-
rithms, and high-quality software imple-
mentations for stochastic PDEs, sampling 
methods, polynomial chaos expansions, 
uncertainty propagation, adjoint-based 
sensitivity methods, Bayesian inference 
strategies, and possibilistic and fuzzy 
inference strategies. Also needed are ef-
fective models to deal with information 
presented with imprecise probability, 
nonmodel uncertainty mitigation, and 
experimental characterization of input 
uncertainties. 

Decision making• . Explore the role of 
uncertainty quantification for effective 
communication of computational results 
in complex decision environments, in-
cluding within optimization. A major 
remaining mathematical challenge is 
how to properly formalize confidence in 
computational simulations to best sup-
port decision-making under uncertainty 
and imprecise information. Uncertainty 
quantification must be tightly coupled 
with development and execution of so-
phisticated mathematical methods for 
V&V, advanced analysis, and visualiza-
tion methods for uncertain data. 

Community awareness• . Develop a re-
search training regime for computational 
science V&V and uncertainty quantifica-
tion. Such a regime will certainly be highly 
interdisciplinary, involving mathematics, 

computation, scientific application do-
main experts, probability and statistics, 
and decision theory. 

4.3 Adaptive Mesh Refinement 

AMR at the exascale requires significant ad-
vances in the following areas, some of which 
overlap with the combinatorial algorithms re-
search discussed in Section 4.5.

Exascale simulations will exhibit large • 
length-scale heterogeneities within com-
plex geometries [Chandra 2007]. Main-
taining resolution and mesh quality will 
require new algorithms as well as hp-re-
finement techniques [Patra 1995]. 

AMR meshes change with time and must • 
be rebalanced. The availability of a port-
folio of partitioning strategies will enable 
the selection of the optimal rebalancing 
strategy for a given problem or computa-
tion stage [Streensland 2002]. 

High-order methods can reduce the de-• 
gree of refinement required, leading to 
smaller meshes and more efficient solu-
tions. While AMR finite-element calcu-
lations have successfully incorporated 
high-order elements, block-structured 
methods are limited to second order. The 
primary challenge is creation of tractable 
stencils at coarse-fine interfaces for im-
plementing conservation laws.

The development of efficient and rigorous • 
error metrics for refinement is an impor-
tant challenge. Indirect techniques that 
estimate the spectral content of the solu-
tion locally (and thus recommend a level 
of resolution) provide a trade-off between 
efficiency and mathematical rigor.

Block-structured AMR meshes are usu-• 
ally restricted to simple geometries. Map-
ping such meshes to smooth geometries 
automatically is an important challenge 
that will enable new applications to ben-
efit from AMR [Schwartz 2006].

Efficient algorithms must be developed to • 
unravel grid hierarchy into a sparse ma-

Adaptive mesh refinement 
at the exascale requires 
development of efficient and 
rigorous error metrics.
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trix form (and vice versa) to allow new 
solvers such as Krylov solvers to be used 
instead of traditional geometric multigrid 
methods.

AMR will need adaptive partitioning to • 
scale to exascale levels. Rather than con-
figuring a partitioner at the beginning of 
the run, a “control system” approach to 
partitioning may have to be adopted. 

AMR in turn will benefit from advances • 
made on discrete algorithms to address 
new multicore architectures, data layout, 
and processor interconnectivity, leading 
to multiple competing objectives.

4.4 High-Dimensional Spaces 

Calculations have been done for resolutions 
that are far coarser than what will be required 
by exascale applications, but current and ex-
pected advances in scalable algorithms for 
PDE software make it likely that the com-
putation of state variables will be achievable 
on exascale computers. This is not the case 
for  increasing the parameter space, where the 
curse of dimensionality applies to most ob-
vious algorithms, including possibly random 
sampling (since the variance itself may be un-
bounded with the increase in the size of the 
parameter space, even if the error decrease 
is dependent on the number of samples and 
not on the dimension of the space). There-
fore, significant research must be undertaken 
to develop new algorithms that make use of 
problem structure for breaking the curse of 
dimensionality. 

Random sampling tends to be the most com-
monly used technique to approach this prob-
lem; however, the points need not be chosen 
by a stochastic algorithm. Indeed, recent 
approaches that seem promising choose de-
terministic points. Progress may come from 
the refinement of ideas currently at the fore-
front of this research, such as higher-order 
sampling methods (e.g., randomized Monte 
Carlo sampling), structured stochastic finite-
element approaches, sparse grids, and hierar-
chical models for importance sampling and 
preconditioning; from the identification of 
new assessment and design paradigms that 

may be better suited for large-scale applica-
tions, such as robust optimization and the use 
of chance constraints; or from radically new 
ideas brought about by increased focus in this 
crucial direction. 

4.5 Combinatorial and Discrete 
Algorithms 

Combinatorial and discrete algorithms have 
long played an important role in many appli-
cations of scientific computing, such as sparse 
matrix computations and parallel computing, 
to enhance the performance of numerical 
algorithms. Emerging applications such as 
computational biology, scientific data min-
ing, and complex systems bring combinato-
rial algorithms to the fore as an integral part 
of computational sciences. We must develop 
highly scalable kernels for discrete math-
ematics to support such applications. These 
kernels should be developed independently 
from the application use and should be lev-
eraged by a wide array of code bases on the 
petascale, exascale, and beyond. Systems that 

Figure 6.6 Temperature map and mesh refinement from a H2-air mixture ignited 
by random high-temperature kernels, after ~90 µs of simulation time.
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will benefit from improved combinatorial al-
gorithms include the following: 

The unit commitment problem for power • 
systems. Optimal power flow is a chal-
lenging combinatorial problem, and 
power system analysis for dynamic secu-
rity assessment is vital. The solution of 
realistic-sized models involves discrete 
parameters on an unprecedented scale.

Bioinformatics models of DNA, RNA, • 
and proteins as sequences over small al-
phabets. Searches for specific structures, 
gene regulatory networks, protein inter-
action networks, and metabolic networks 
all give rise to combinatorial problems.

Efficient utilization of underlying com-• 
putational infrastructure and intercon-
nection networks. The increasing gap 
between CPU and memory performance 
argues for the design of new algorithms 
and data structures and for data reorga-
nization to improve locality at memory, 
cache, and register levels. 

Utilization of observational devices such • 
as telescopes. Projects now share tele-
scope time with interleaved schedules. 
Yet experiments are designed for longer 
terms (a complete supernova observa-
tion, for example, requires observations 
over a 60-day period), making scheduling 
a crucial challenge. 

4.6 High-Precision Arithmetic

Some, and possibly many, exascale applica-
tions will require high-precision arithmetic 
facility, yet there is little prospect for vendor 
support. While some software packages are 
available, they have shortcomings. What is 
needed is a simple-to-use facility that infal-
libly converts large application programs for 
high precision, yet results in only a modest 
inflation in run time. Such a facility is pos-
sible but not yet available.

Beyond the immediate needs of usable high-
precision software, better understanding is 
needed of situations that can lead to numerical 
difficulties in large computations. Also needed 
are tools that can quickly detect whether and 
where an application program is experiencing 
difficulties in this area. Along this line, cur-
rent research in numerical analysis, particu-
larly in the area of interval arithmetic, may be 
of use in the HPC world, in that it may pro-
vide a means to determine whether and where 
a code is experiencing numerical difficulties, 
and to certify that the final results are within 
a certain specified tolerance of their correct 
values [Hayes 2003]. 

4.7 Data Analysis 

Solutions for estimation problems based on 
a mixture of integer (categorical) and real 
values are needed for biological data in par-
ticular. Many solutions exist (most based on 
the likelihood principle), but they are com-
plex, and their implementations are serial, so 
they typically do not scale to even terabyte 

Figure 6.7 A graph layout generated by LGL [Adai et al. 2004] showing a portion of the minimum spanning protein homology tree with 
over 300,000 proteins. An edge is colored blue if it connects 2 proteins from the same species, and red if it connects 2 proteins from 2 
different species.  If that information is not available, the edges are colored based on layout hierarchy. They remain white if there is no 
species information available. Image courtesy of Alex Adai and Edward Marcotte.

Interval arithmetic may help 
researchers determine where 
a code is having numerical 
difficulty and to certify final 
results.
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datasets. The mathematics of many estima-
tion problems must be reorganized so that the 
estimation can be performed in a data-parallel 
environment of the future petascale and exas-
cale environments. 

4.8 Agent-Based Modeling 

Agent-based modeling [Woolridge 2002; 
North and Macal 2007] must be advanced 
along several directions before it can present 
a viable approach for addressing exascale ap-
plication needs:

Distributed query resolution to allow • 
agents to flexibly and repeatedly find other 
agents and recognize affordances for in-
teraction in a dynamic environment with 
a continually and endogenously evolving 
structure (e.g., nonreified networks) 

Situational activation of agents based on • 
contextual factors and associated real-
location to workings sets of processors 
with appropriate interprocessor locality

Efficient implementation of periodic • 
fine-grained interactions between agents 
where the payoffs from the interplay are 
endogenously defined as a function of the 
ongoing interactions themselves, such 
that players are free to enter and leave the 
interactions at idiosyncratic times 

Distributed time scheduling at a lev-• 
el of parallelism beyond the current 
approaches 

Extremely high volume data warehous-• 
ing to allow efficient exploration of huge 
numbers of large model runs 

Efficient directed sweeps across huge • 
model parameter spaces with appropriate 
adaptation as results are discovered 

Domain decomposition techniques for • 
parallel agent-based simulations where 
the computational load per agent is vari-
able, in time for the same agent, as well 
as from agent to agent, and where the 
geographical locality has no relation to 

the nature and volume of communication 
between agents 

5. Expected Outcomes 

A focused program to address the qualita-
tively and quantitatively different challenges 
of next-generation scientific applications, 
tailored to encourage and support close col-
laborations between applied mathematicians, 
computer scientists, application scientists, and 
hardware vendors, will result in the ability to 
tackle emerging complex, coupled problems 
in climate, biology, energy, the environment, 
and other global problems. 

6. Required Investment 

Sufficient and timely investment in new 
mathematical approaches and algorithms is 
crucial for transforming computation into 
a powerful tool for scientific discovery and 
high-consequence decision support. The ef-
fort will require multidisciplinary teams to 
advance the state of the art in each of the key 
areas laid out in Section 4. Significant energy 
must be expended on designing, developing, 
testing, and deploying the integrated frame-
works and tools required to ensure effective 
use of the software in the major algorithm 
classes. Some effort must also be dedicated 
to maintaining collaborations that will sup-
port cross-cutting aspects of the development 
in mathematics and algorithms with the de-
velopment in the application areas and in the 
software, hardware, and cyberinfrastructure 
development teams. We anticipate that this 
will require between $100M and $200M over 
the next decade. More finely tuned projec-
tions will become possible as the envisioned 
efforts advance through planning and ramp-
up stages.

7. Major Risks 

The principal risks and downside conse-
quences linked to R&D in mathematics and 
algorithms are as follows:

If advances in theoretical performance • 
of new hardware architectures are not 
matched with significant R&D in math-
ematics and algorithms, then real perfor-

Domain decomposition 
techniques for parallel agent-
based models must be 
formulated to address exascale 
application needs.



mance gains are unlikely to be realized. 
The investment in hardware advances 
will be rendered ineffective for lack of 
scalable algorithms. 

If significant advances in methods for • 
managing complexity in models and 
computational simulations fail to materi-
alize, then the opportunity to expand our 
simulation capability into a number of 
critical application areas will be lost. We 
will be left with a dwindling cadre of ap-
plications that can benefit from advances 
on the hardware front. 

If we fail to develop new mathematical • 
methods, data structures, and algorithms 
for integrating the growing volume of 
data coming from our experiments into 
our simulations, we will not be able 
to extract sufficient benefit from such 
development. 

If we inadequately connect the develop-• 
ment described in this report to the ap-
plication developers’ needs, we will 
generate tools and methods that are not 
widely accepted and therefore miss the 
mark on broad benefits. 

If R&D is not supported with long-term • 
investment, short-term gains will fail 
to mature and evolve with the chang-
ing needs of the applications and with 
the changing details of the hardware ar-
chitectures. The benefit of initial invest-
ments will be lost. 

If we fail to build robust abstraction lay-• 
ers insulating the application developer 
from the details of the hardware archi-
tecture and  the algorithm, the anticipated 
complexities of expressing and managing 
computations at the exascale will stifle 
development of applications. 

If we do not develop invasive implemen-• 
tations for some of the more complex and 
onerous aspects described above, partic-
ularly optimization and uncertainty, they 
will generally go unused, thereby limit-
ing the kinds of applications that will be 
developed, as well as casting doubt on the 

utility of results from large and complex 
simulations.

If we do not design our algorithms and • 
interface layers in collaboration with the 
hardware and software developers, it will 
be extremely difficult to realize the goal 
of developing scalable implementations. 
This situation will be increasingly rel-
evant as raw performance results from 
combinations of parallelism through core 
count and inclusion of special-purpose 
acceleration hardware.

If we do not increase the use of good • 
software engineering practices, the com-
plexities of developing and maintaining 
our software will overtake the energies 
expended in mathematics and algorithms 
R&D. 

If we fail to monitor and maintain an ap-• 
propriate balance between precision cal-
culation and robust solutions as guiding 
metrics of our algorithm design, we run 
the risk of becoming needlessly and over-
whelmingly burdened with the demand for 
precision, which will result in delayed de-
ployment, incomplete risk assessment, or 
outright failure. 

Aggressive R&D in mathematical methods 
and scalable algorithms is key to successful 
development and deployment of future appli-
cations relying on computational simulation, 
data assimilation, and analytics. It will be a 
critical component of an effort that will result 
in quantitatively and qualitatively new and 
powerful scientific methods.
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Solutions to the major software, algorithm, 
and data challenges in newly emerging pro-
gramming environments are needed to make 
it possible for applications to scale up to the 
required levels of parallelism and integrate 
technologies into complex coupled systems 
for real-world multidisciplinary modeling and 
simulation. Developing these solutions will 
likely involve a shift from current static ap-
proaches for application development and exe-
cution to a combination of new software tools, 
algorithms, and dynamically adaptive meth-
ods. Additionally, we must bring together new 
developments in system software, data man-
agement, analysis, and visualization to allow 
disparate data sources (both simulation and 
real-world) to be managed in order to guide 
research and to directly advance science.

Computer vendors have little incentive to 
tackle these challenges because the commer-
cial market at this scale is relatively small. 
For this reason, government support for the 
necessary R&D in exascale software is es-
sential.

In particular, significant new efforts are 
needed to

fundamentally change how applications • 
are built and maintained;

improve scientists’ and administrators’ • 
productivity when working with exascale 
systems;

improve the robustness and reliability of • 
systems and applications through fault 
tolerance, validation, and verification of 
software components;

integrate knowledge discovery into the • 
entire software life-cycle, from discov-
ering bugs to monitoring and steering 
simulations to discovering new scientific 
results hidden in huge volumes of data; 
and

develop new approaches to handling the • 
entire data life-cycle of exascale simula-
tions, from inputs that may be dynamic, 
live feeds, to distributed data analysis, 
and long-term archival. 

1. Advances in the Next 
Decade
The infrastructure must be designed in a way 
that allows it to adapt to future trends and re-
main relevant, correct, and high performance 
as systems evolve to exascale and beyond. 
The characteristics of these exascale systems 
with millions of CPUs require the develop-
ment of new ideas and approaches.

It is both feasible and necessary to build on 
newly emerging programming environment 
(interpreted broadly) technologies to develop 
the infrastructure that will allow applications 
to scale up to the required levels of parallelism 
and integrate into complex coupled systems 
for real-world multidisciplinary modeling and 
simulation. Considerable investment has been 
made in the past few years in new languages 
designed to improve productivity for program-
mers. Examples are the Partitioned Global 
Address Space Languages and the High-Pro-
ductivity Computing System (HPCS) lan-
guages. In 5–10 years, these efforts should 
have a chance to coalesce into one or two 
standard, widely supported languages.

Software7

Exascale systems with 
millions of CPUs demand new 
approaches to address the 
challenges of the data tsunami, 
system reliability, and memory 
hierarchies.
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It is plausible to bring together new develop-
ments in system software, data management, 
analysis, and visualization to allow disparate 
and voluminous data sources (both simula-
tion and real-world) to be managed in order 
to guide research and to directly advance sci-
ence.

For these developments to be useful at full 
scale, however, a more flexible and dynamic 
resource management capability is needed 
throughout the computing environment to al-
low simultaneous integration of computing, 
analysis, visualization, and live data during a 
simulation. 

The vision for the next decade is to have a 
totally integrated approach to how applica-
tions are built, modified, updated, and used 
in other applications. In this development 
environment, the tools will interoperate and 
assist the scientists in writing, debugging, 
tuning, and maintaining their codes. Such an 
environment will support fundamentally new 
approaches: 

New ways of specifying computations. • 
Scientists must be freed from the de-
tails of managing data movement among 
memory systems and synchronizing ac-
cess to shared memory among threads of 
control. They will need languages and li-

braries, in some cases discipline- or even 
application-specific, which specify results 
to be obtained with less attention to the 
details of the computation than is cur-
rently necessary. Implementation of such 
libraries and languages will require low-
er-level programming models and tools 
that permit execution on a wide range of 
hardware and exploit the capabilities of 
exascale architectures.

Rapid, modular construction of new ap-• 
plications from existing suites of interop-
erable components. Scientific software 
components with well-defined inter-
faces, recently being prototyped but not 
yet widely adopted, have the potential to 
greatly increase code reuse, thus short-
ening development times and increasing 
software reliability.

Coupling of multiple applications into ev-• 
er-larger applications through automated 
workflows. Single large runs remain an 
important class of large-scale computa-
tions, but many applications need param-
eter studies consisting of large numbers 
of coordinated sets of runs, each perhaps 
consisting of a pipeline of computation 
and analyses. High-level, standard lan-
guages for coordinating such families of 
executions will enable scientists to focus 
on science rather than “run management.”  
(See Figure 7.1.)

Dynamic data storage and management. • In 
order to support exascale data generation, 
data storage will fundamentally change. 
Much of the data will be archived. For ar-
chival storage to be energy efficient, yet 
available on demand, tools will be needed 
to manage the movement of data auto-
matically across a storage hierarchy. Fre-
quently used data will be moved to highly 
parallel dynamic storage, while archived 
data will reside in powered-down storage 
or passive storage devices. Furthermore, 
algorithms for automatically tracking and 
removing unused data from dynamic stor-
age will be essential to minimize storage 
costs. Collections of datasets will be or-
ganized as directories. Such abstraction 
will fundamentally change the way the 

Figure 7.1 Scientific workflow diagram

Software components, 
recently prototyped but not yet 
widely adopted, will shorten 
development time and increase 
software reliability.
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I/O is expressed by applications and will 
involve a storage management layer that 
maps datasets into physical devices with-
out affecting the applications.

Achieving this vision will require fostering 
long-term, sustained, community-wide ac-
tivity in evolving code suites. Large-scale 
applications, like large-scale computers them-
selves, require the support of multiple special-
ists within a single community. Indeed, the 
community of computer vendors, application 
scientists, and computer scientists, together 
with the hardware and software that they both 
develop and use, forms an integrated, interde-
pendent ecosystem.

2. Major Challenges

Five major challenges must be addressed in 
order to realize efficient and effective exas-
cale computing.

2.1 Improving Programmability

Exascale computer architectures will require 
radical changes to the software used to op-
erate them and the applications that run on 
them. The shift from faster processors to mul-
ticore processors is as disruptive to software 
as the shift from vector to distributed memory 
supercomputers 15 years ago. That change 
required complete restructuring of scientific 
application codes, which took years of effort. 
The shift to multicore exascale systems will 
require applications to exploit million-way 
parallelism and significant reductions in the 
bandwidth and amount of memory available 
to millions of CPUs. This “scalability chal-
lenge” affects all aspects of the use of HPC. 
It is critical that work begin today if the soft-
ware ecosystem is to be ready for the arrival 
of exascale systems in the coming decade.

2.2 Building New Applications

The transition from frequency-based scal-
ing to core-based scaling also means that the 
community will face a memory crisis. This is 
not just a bandwidth and latency issue that has 
been faced as memory gets farther away from 
CPU operations (at least in terms of clocks), 
but also an overall memory capacity problem. 

Memory will increase in relative cost, and it 
will be harder and harder to maintain the de-
sired byte-to-flop ratio—in absolute capacity 
(flops/s per byte) and bandwidth terms (flops 
per byte).

Hence, applications will have to be redesigned 
to make better user of limited memory. This 
may mean more out-of-core solutions (pushing 
on the I/O bottleneck) or algorithms with 
better storage characteristics. Additionally, 
applications will have to deal with increasing 
hierarchies of memory (and indeed storage). 
There are now often five levels of direct-
access memory common (register sets, three 
levels of cache, and main memory). In the 
future there may be more levels or more (or 
less) sharing of these levels within an SMP.

2.3 Increasing Parallelism

In today’s environment, code development 
usually takes place assuming a homogenous 
run-time environment, with parallelization 
done manually by each code developer. At 
the scale where applications need to make use 
of millions of heterogeneous processes, dis-
covering the opportunities for parallelization 
becomes much more difficult and requires a 
set of tools that can automate the paralleliza-
tion of the trivially parallelizable segments 
of code, and aid the application developer 
in finding less obvious opportunities. This 
task is even more daunting when consider-
ing future multicore architectures, since the 
parallelization algorithms have to take into 
account in-core parallelism vs between-cores 
parallelism. These tools are also needed for 
developing simulation code that will run well 
on heterogeneous hardware, with the com-
piler automating as much of this as possible 
and providing code-restructuring assistance 
where automation is not possible.

2.4 Handling the Data Tsunami

The data tsunami includes dealing with the 
volume, different formats, transfer rates, 
analysis, and visualization of massive (poten-
tially distributed) data sets. 

Exascale applications running on as many 
as a million processors are likely to generate 

The shift to multicore exascale 
systems will require applications 
to exploit million-way 
parallelism.
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data at a rate of several terabytes per second 
(even assuming only a few megabytes per 
processor). Because it is not practical to store 
raw data generated at such a rate, dynamic re-
duction of the data by summarization, subset 
selection, and more sophisticated dynamic 
pattern identification methods will be neces-
sary. The reduced data volume must be stored 
at the same rate that data are generated, in or-
der for the exascale computation to progress 
without interruption. 

This requirement presents new challenges in 
orchestrating data movement from the com-
putation machines to local and remote storage 
systems. It will no longer be possible to store 
all the data locally and then distribute them 
as secondary tasks. Data distribution will 
have to be integrated into the data generation 
phase. Here again, managing the dataflow us-
ing well-coordinated workflow engines will 
be required as part of the software infrastruc-
ture that runs the simulations.

The issue of large-scale data movement will 
become more acute as very large datasets or 
subsets are shared by large scientific com-
munities. This will require the replication or 
movement of large volumes of data between 
production and analysis machines, often 
across the wide area. While networking tech-
nology is greatly improving with the introduc-
tion of optical connectivity, the transmission 
of large volumes of data will inevitably en-
counter transient failures, and automatic re-
covery tools will be necessary. 

Another fundamental requirement is the au-
tomatic allocation, use, and release of storage 
space. Replicated data cannot be left in stor-
age devices unchecked, or storage systems 
will fill and become clogged. A new paradigm 
of attaching a lifetime to replicated datasets, 
and automatic management of data whose 
lifetime expires, will be essential.

2.5 Accelerating Knowledge 
Discovery

One of the principal bottlenecks in contem-
porary science is the process of discovering 
knowledge and testing hypotheses in the pres-
ence of a growing deluge of data. A recurring 

theme in this report—that existing methods 
will not scale to meet the challenges of exas-
cale systems and data—holds true in the area 
of knowledge discovery. Existing approaches 
for knowledge discovery will not evolve to 
the exascale. Failure to address the issues of 
knowledge discovery in the exascale ecosys-
tem will have a profound adverse impact on 
all science programs. 

Knowledge discovery applications tend to be 
more complex than simulation codes in many 
respects: they often have graphical user in-
terfaces; they interact with distributed com-
puting and data storage resources; they rely 
on a comparatively deep “software stack”; 
they are used interactively and on parallel 
resources; they place great demands on sys-
tem resources—consuming vast amounts of 
memory, I/O bandwidth and processor cy-
cles; and they generate many different forms 
of output (movies, images, derived quantities, 
new datasets, etc.). The same arguments for 
software engineering, performance analysis, 
and optimization tools that apply to simula-
tion codes also apply to knowledge discovery 
applications.

As with other technology areas in this report, 
algorithms and approaches for knowledge dis-
covery in use today are not expected to scale 
into the exascale regime. Existing approaches 
will fail because of the sheer volume of data, 
the complexity of data to be processed, and 
the growing impedance mismatch between 
size/complexity and human ability to under-
stand and interact with knowledge discov-
ery infrastructure. A number of different, yet 
complementary, approaches to address these 
problems will require exploration: (1) the abil-
ity to visualize and analyze results at coarse 
and fine resolutions to support the natural in-
vestigatory process that relies on context/fo-
cus interaction; (2) better visual data analysis 
algorithms for characterizing and presenting 
uncertainty; (3) integration of visual data pre-
sentation and data analysis techniques (e.g., 
clustering, classification, statistical analysis, 
and representation) to aid in accelerating 
knowledge discovery; (4) greater emphasis 
on the human-computer interface to increase 
the efficacy of visual presentation motifs and 
interactive knowledge discovery interaction 

Exascale applications will 
generate several terabytes of 
data per second, presenting 
enormous challenges in storage 
and management.
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models; (5) context-centric interfaces to sim-
plify use of complex software infrastructure; 
and (6) rethinking the design and implemen-
tation of fundamental knowledge discovery 
algorithms and software infrastructure to ef-
fectively leverage exascale platforms.

3. State of the Art

Devising ways to address the challenges 
identified in Section 2 requires a thorough 
understanding of the state of the art. In this 
section we review the state of the art in sev-
eral key areas.

Knowledge Discovery. Algorithms exist for 
analyzing terabytes of static data stored in a 
single location, but very few analysis algo-
rithms can handle a dynamic dataset distrib-
uted across sites or streamed in live. Feature 
detection is primitive or nonexistent in many 
science domains. Human interaction through 
visualization is today’s norm. In addition, dif-
ferences in the rate of increase of performance 
in computer technology (such as memory and 
processors) and in storage technology (such 
as magnetic disk and tape) will result in the 
need to achieve unprecedented levels of par-
allelism to enable the storage systems to keep 
up with the computers. 

Application Building. As computational ca-
pabilities have grown, so have the resolution 
and complexity of the simulation models. 
Today’s large simulation codes incorporate 
multidiscipline, multiphysics, multiple time 
scales, and multiple solution methods. They 
represent  years of development by teams of 
programmers and scientists and can include 
millions of lines of code. As we make the leap 
to exascale computation, the cost to update, 
recode, and incorporate more advanced mod-
els into the simulations is an order of magni-
tude higher than the cost of the supercomputer 
hardware. In order to contain these costs, the 
exascale software ecosystem must support 
more efficient program development. 

Programming Models. Current large-scale 
applications have made the transition from 
shared-memory vector architectures to 100-TF 
distributed-memory machines by using the 
message-passing programming model (MPI) 

together with traditional sequential languages 
(C, Fortran, C++). New architectures with 
many cores per chip are expected to prevent 
this approach from exploiting exascale hard-
ware. Thus new approaches are needed. For 
example, today’s software is largely MPI-
based, with some global view techniques 
such as Unified Parallel C (UPC) and Co-
Array Fortran (CAF). In order to facilitate the 
use of extreme-scale resources, new “hybrid” 
programming models, or more radical ap-
proaches as represented by the project initi-
ated by the DARPA HPCS program, must be 
explored.

Data Management. Keeping track of data is 
already a daunting task. The meaning of the 
data, referred to as metadata, requires precise 
capture of how the data was generated and 
the scientific interpretation of each data item. 
Furthermore, many scientific datasets are 
generated from other datasets, or perhaps a 
combination of datasets. This requires the ca-
pability of tracking the history, or provenance, 
of the data. Today, such tools are provided in 
ad hoc manner; some metadata is collected 
in various forms of notebooks, some in da-
tabases, and some embedded as headers of 
files. In the exascale regime, the automation 
of this task is essential because of the sheer 
volume of the data and the accelerated rate of 
their production. Standard metadata models 
and tools will have to be developed, as well as 
tools to automatically capture the metadata as 
the datasets are generated. Furthermore, the 
data models need to support standard ontol-
ogy for each scientific domain and allow for 
dynamic evolution of such standards.

Data Organization. Datasets are organized 
and stored today as collections of files. The 
sizes of files are often dictated by the storage 
systems. For example, current mass storage 
systems that use tape storage prefer certain 
fairly large size files, a fact that forces sci-
entists to either aggregate smaller files into 
larger files or partition very large datasets into 
multiple files. This approach does not scale 
and is irrelevant to the scientists. Dealing 
with the volume of data generated by exas-
cale machines will require support for data-
sets regardless of their size. 

Visualization methods will be 
critical for handling the growing 
impedance mismatch between 
the size/complexity of data and 
a person’s ability to understand 
and interact with that data.
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Debugging Tools. An integral part of applica-
tion development includes verifying that code 
runs as expected. Current tools, limited most-
ly to debuggers, have not yet caught up with 
the needs of terascale computing, with many 
application developers for today’s large sys-
tems falling back to a very inefficient method 
of debugging—dumping user-inserted debug 
code to output files. With the vast increase 
of process count going to exascale systems, 
searching manually for a single anomalous 
process among the millions of running pro-
cesses and threads is not tenable. Moreover, 
today’s debuggers are not scalable to a thou-
sand processors. Scientists will need to have 
their applications run on millions of proces-
sors and require the tools to meet the overall 
simulation requirements.

Fault Recovery. Modern PCs may run for 
weeks without needing rebooting. Today’s 
supercomputers often run for only a few days 
before rebooting, because of their complex-
ity and their thousands of processors. Exas-
cale systems will be even more complex and 
have millions of processors. The scale of the 
systems means that component failure is the 
norm, not the exception. This requires a ma-
jor shift from today’s software infrastructure. 
Every part of the exascale software ecosys-
tem must be able to cope with frequent faults; 
otherwise applications will not be able to run 
to completion. The system software must be 
designed to detect and adapt to frequent fail-
ure of hardware and software components. On 
today’s supercomputers every failure, even 
those that are reconfigured around, kills the 
application running on the affected resources. 
These applications have to be restarted from 
the beginning or from their last checkpoint. 
The checkpoint/restart technique will not be 
an effective way to utilize exascale systems, 
because checkpointing stresses the I/O system 
and restarting kills 999,999 running tasks be-
cause one fails in a million-task application. 
With the potential for exascale systems to 
undergo constant failures somewhere across 
the system, application software will not be 
able to rely on checkpoint/restart to cope with 
faults since a new fault is likely to occur be-
fore the application can be restarted. For ex-
ascale systems, new fault tolerance paradigms 

will need to be developed and integrated into 
both existing and new applications.

4. Accelerating Development

Focused investments in the major software, 
algorithm, and data challenges are needed to 
scale and tune applications to the exascale. 
Several flagship projects of a truly interdis-
ciplinary nature that address key national 
problems should be selected and supported 
to motivate, guide, and validate the computer 
science research results. Possible examples 
are modeling the social impact of climate 
change, modeling the global nuclear mate-
rials cycle, or modeling regional social and 
economic futures at a new level of detail and 
reliability.

Software development requires a different us-
age model from the “production” running of 
applications and is often delayed by lack of 
access to scalable resources dedicated to the 
development process.

Creating an exascale software ecosystem 
entails more than just coming up with novel 
solutions. It includes educating scientists on 
how to use the solutions, both new tools and 
new approaches, and demonstrating why us-
ing these solutions is to their advantage. It 
includes making sure that the solutions are 
hardened to production quality so that they 
can be integrated into the software suites of 
the nation’s supercomputer centers. It in-
cludes making pieces available as they are 
completed, rather than waiting until every-
thing is done. And it includes helping users 
integrate these pieces into existing codes so 
that science teams can benefit in the near term 
and build up trust in the solutions being pro-
vided for the exascale software ecosystem.

To help applications make effective use of 
exascale systems, we need to go well beyond 
the current state of affairs in the performance 
analysis process. Today’s tools are limited 
in scope, capability, and scalability, and 
feedback to the application is manual. The 
overhead associated with current measure-
ment techniques is too intrusive at this size 
and may skew analysis so much as to render 
any analysis ineffective. Therefore, we need 

Searching manually for a single 
anomalous process among 
the millions of running process 
threads on exascale computers 
in simply not tenable: new tools 
are essential.
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to develop scalable and less intrusive meth-
ods of collecting performance data, develop 
knowledge discovery methods for extracting 
key performance features, and provide assis-
tance in feeding the results of these analyses 
back to the code transformation.

For simulation codes to be able to run cor-
rectly as well as effectively, in a reasonable 
time frame, an investment in developing for-
mal verification methods is essential. The 
scale and complexity of the science problems 
enabled by exascale systems require new 
techniques for making sure that the calcula-
tions are done correctly. Cosmic rays have 
been shown to change the memory values in 
a supercomputer, causing wrong answers to 
be calculated. In another supercomputer it 
was discovered that in one in a billion data 
transfers, correct values sent to another pro-
cessor would emerge from the wire as wrong 
values. Probability says that exascale systems 
with memories bigger than any computer on 
the planet and the ability to calculate and send 
trillions of bits of data per second will sponta-
neously change answers to the wrong values 
occasionally. One approach is to incorporate 
algorithms into the system software and have 
the application software catch and correct any 
spontaneous mistakes caused by phenomena 
such as cosmic rays. 

Investment in the reliability and robustness 
of exascale systems for running large simula-
tions is critical to the effective use of these 
systems. New paradigms must be developed 
for handling faults within both the system 
software and user applications. Equally im-
portant are new approaches for integrating 
detection algorithms in both the hardware and 
software and new techniques to help simula-
tions adapt to faults.

Knowledge discovery R&D programs are 
crucial to scientific discovery at the exascale 
Many potential approaches merit exploration. 
One is to include some knowledge discovery 
software in the simulation itself. This ap-
proach could have the benefit of reducing the 
I/O load for the simulation. Another approach 
entails a closer coupling between knowledge 
discovery and related technologies, such as 
data management (I/O, movement, index/

search) and analysis. No “one size fits all” 
formula will meet the needs of all of science. 
Because of the diversity and complexity of 
knowledge discovery technologies, a broad 
technical portfolio of projects will help to 
maximize the likelihood of success. 

5. Expected Outcomes 

Successful development of the flagship ap-
plications identified earlier would be of real 
benefit to the government and society. Simu-
lation could inform policy development in a 
number of diverse areas, including emergen-
cy planning, health system improvement, and 
management of climate change.

The development of predictive power in 
validated models connected to real-time data 
would also provide economic value to busi-
nesses that must respond to rapid changes in 
the operating environment, such as airlines, 
power companies, and emergency manage-
ment operations.

But without doubt the major impact of this 
initiative is a software infrastructure that en-
ables new applications beyond the initial flag-
ship applications. This software infrastructure 
will enable a phase transition in large-scale 
scientific simulation and modeling.

6. Required Investment 

As noted in Section 4, focused investments in 
the major software, algorithm, and date chal-
lenges are needed. An investment of $100M 
over five years would make a real impact on 
these challenges. The exact details of its dis-
tribution would need to be worked out to re-
spond to realistic proposals.

7. Major Risks

One major risk is a disruptive shift in hard-
ware technology in the next 5–10 years that 
facilitates a complete change in the approach 
to data analysis, programmability, and inter-
active computing. Another risk is the sheer 
complexity of the software systems eliciting 
unexpected problems at the scale of the com-
puters and volume of data produced by simu-
lations and experiment in this time frame.

Probability says that exascale 
systems will spontaneously 
change answers to wrong 
values occasionally. Formal 
verification methods are needed 
to ensure that calculations are 
done correctly.
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The risk in allowing current trends to contin-
ue slowly is that while scientists will envision 
breakthrough computations and the requisite 
hardware will be available, the software in-
frastructure for programming, executing, and 
understanding the results of these exascale 
computations will be inadequate to the task.
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Hardware8
Exascale computing requires innovation at 
the frontiers of computer architecture and in-
formation technology. Major challenges exist 
in providing sufficient compute performance 
per watt, memory performance, interconnect 
performance, and I/O and persistent storage 
performance and reliability. In addition, evi-
dence suggests that both software and algo-
rithms will need to be developed in concert 
with hardware to ensure that both legacy and 
new exascale applications will be able to 
make effective use of the advanced systems. 
In addition, since such systems are likely to 
have 10 million to 100 million separate pro-
cessing elements and 10 to 100 petabytes (PB) 
of memory, fault detection and handling by 
hardware, software, and algorithms will be 
essential. With sufficient investment, par-
ticularly in ongoing point-design studies and 
hardware-assisted simulation, exascale sys-
tems can become an effective resource for 
attacking complex science and engineering 
problems.

1. Advances in the Next 
Decade
To understand that challenges of constructing 
an exascale system, one must first understand 
where current technology trends are leading 
the community. While there is always risk in 
extrapolation, the 14-year history of the Top 
500 data (Figure 8.1) suggests that without 
further technology acceleration the first sys-
tem exceeding 1 exaflop LINPACK perfor-
mance can be expected by 2019. Based on 
past programs, it is therefore believable that a 
concerted, sufficiently funded, multiyear re-
search program should be able to accelerate 
the availability of exaflop technology by four 
years, to the 2015 timeframe. Concurrency 
in existing systems continues to be a primary 

factor in these systems’ increasing capabili-
ties. This trend is sure to continue in the near 
future. The current rate of growth points to-
ward a concurrency level for the high end of 
107 cores by 2015 and 108 cores by 2020. An 
additional switch from multicore to many-
core technology during this time frame could 
easily increase these levels by an order of 
magnitude, from 108 to 109 cores.

Many of these system trends (and their conse-
quences) can be explored further by examin-
ing the growth trends for critical performance 
factors for the commodity component tech-
nologies. Based on historical trends, in 2015, 
one potential exascale system could require 
1.3M PEs, where each PE generates 768 gi-
gaflops, derived from 64 cores, where each 
core produces 4 flops per cycle and operates 
at 3 GHz. Assuming that the PEs would re-
quire 100 W each, the resulting exascale sys-
tem alone would require 130 MW of power. 
Assuming 1 GB per core, the resulting exas-
cale system would have 83 PB of memory, 
composed of about 5 million memory parts. 
The bisection bandwidth and scale of the in-
terconnect network will depend on the topol-
ogy and the switch/router configurations, but 
they will also be limited by the signaling and 
bandwidth rates. Also, the scale of the entire 
system will be limited by the physical length 
of cables in the entire system. Storage sys-
tems will continue dramatic increases in ca-
pacity (approximately 50% compound annual 
growth rate), while disk bandwidth and seek 
latencies will improve only slightly, because 
of their mechanical characteristics. An exas-
cale system capable of checkpointing 50% of 
its physical memory in 10 minutes would re-
quire approximately 250,000 disks.

Exascale systems are likely 
to have up to 100 petabytes 
of memory, enabling new 
applications but also requiring 
major innovations in software 
and algorithms.
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The slowing pace of commodity micropro-
cessor performance improvements, combined 
with ever-increasing chip power demands, has 
become of utmost concern to computational 
scientists. As a result, the HPC community 
is examining other approaches that address 
the limitations of conventional large-scale 
computing systems in the coming decade. 
Already, commodity processors for graph-
ics and computer games achieve far higher 
computational peaks per socket and per watt 
than conventional processors (this includes 
both GPGPUs and the Sony/Toshiba/IBM 
Cell processor). These processors have many 
drawbacks for use in scientific computing, 
including single-precision arithmetic, but 
could easily evolve over the next decade to 
provide suitable computing platforms. Em-
bedded processors also provide very high ef-
ficiencies in terms of operations per watt; in 
fact, the processor in IBM’s Blue Gene ma-
chines (the world’s fastest computer in 2007) 
is a System on Chip (SOC) design employing 
conventional PPC440 embedded processor 
cores. Similarly, the SiCortex system em-
ploys SOCs with MIPS/embedded processor 
cores to achieve much lower power utiliza-
tion for sustained performance [Reilly et al. 
2006]. Like BG/L, however, this approach 
accelerates the march toward massive con-
currency and motivates fundamental advanc-
es in applied mathematics to develop scalable 
algorithms. Other recent examples of special-
ized systems include the MD-Grape system 
in Japan, developed for less than $10M. A 
semi-customized architecture for molecu-
lar dynamics under development at D.E. 
Shaw (Shaw et al. 2007) promises to speed 
high-fidelity protein-folding simulations by 

several years. A different semi-customized 
architecture for climate computing [Wehner 
et al. 2007] shows promise of enabling kilo-
meter-scale climate modeling decades before 
it would be possible through the conventional 
Moore’s law technology improvements.

Three designs, summarized in Table 8.1, il-
lustrate some of the challenges for exascale 
computing. New processor and system archi-
tectures that are optimized for better power 
efficiency will be necessary if total system 
power is to be kept under 30 MW. Since much 
of the performance will come from orders of 
magnitude more processor cores than in the 
current systems, innovations in hardware, 
software, and algorithms will be needed to 
make effective use of these systems.

While most of the above discussion has fo-
cused on the processing elements, a capabil-
ity platform must also provide access to a 
sufficiently large memory hierarchy, an effec-
tive interconnect between the processors, rea-
sonable I/O capabilities, and networking to 
the outside. For example, in order to achieve 
sustained performance in the 10–20% range 
on applications such as computational fluid 
dynamics (direct numerical simulation), 
high-energy physics (quantum chromody-
namics) and computational biology (molecu-
lar dynamics), our in-depth understanding of 
today’s algorithmic and subsequent commu-
nication requirements drive a system balance 
requiring injection bandwidth on the order of 
150 GB/s, order 1.5 PB/s global bandwidth, 
and order 500 nanoseconds latency. These 
drive the technology requirements in the ar-
eas of processor, interconnect, I/O, and stor-
age design. The applications will also require 
0.5–2 bytes/flop of memory bandwidth, and 
we should assume at least 2–4 GB of memory 
per CPU core.

2. Major Challenges
Architecture developers face a number of 
challenges. These involve two broad ques-
tions: How should one engineer the major 
system components, and what are the impli-
cations of these designs on software and ap-
plication development? Several issues must 
be addressed:

Figure 8.1 Actual and projected Top 500 performance.
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Example 
system

Ops/
cycle

Freq 
[GHz]

Cores/
socket

Peak/
socket
[TF/s]

Sockets Total
cores

Peak/
system
[EF/s]

Power 
[MW]

A 4 3.0 64 0.768 1300k 85M 1.0 130

B 8 16.0 128 16.0 120k 15M 2.0 60 - 80

C 8 1.5 512 6.1 200k 100M 1.8 20 - 40

Sufficient effective interconnect perfor-• 
mance, particularly latency, bandwidth, 
and cross-section bandwidth

I/O (persistent store and file systems), • 
particularly data density, transfer band-
width, and fault management

Memory (main system memory), particu-• 
larly cost and size, power efficiency, ac-
cess latency, bandwidth, and number of 
hierarchy levels

Power consumption everywhere• 

Processor architecture and implementa-• 
tion, particularly latency and bandwidth 
management, concurrency levels, hetero-
geneous designs, and fault frequencies

Software and algorithms, particularly • 
as they provide workarounds and alter-
native approaches to deal with latency, 
bandwidth, memory hierarchy, faults, 
heterogeneity, and highly increased con-
currency levels

In addition, a number of crosscutting issues 
need to be addressed.

Better characterization of algorithm re-• 
quirements with respect to system ratios  

New algorithms to match system ratios, • 
particularly between disk and main mem-
ory and the bandwidth of the interconnect 
to the flops rate of the processor

New algorithms and software to detect • 
and handle faults

New approaches to algorithms and soft-• 
ware for specialized/disruptive processor 
architectures; that is, better methods for 
moving applications to GPGPUs, PIMs, 
FPGAs, heterogeneous systems, or other 

less-conventional architectures (these 
would help open up the space of hard-
ware approaches)

Acceleration of applications and algo-• 
rithms (especially new ones) to petaflops 
now to prepare for exaflops

Programming languages and enviro-• 
nments

– PGAS, domain-specific, auto-tuner, 
hierarchical programming models 
(built on current models)

– Interaction with hardware (e.g., us-
er-managed caches, remote atomic 
updates)

– Performance modeling and debugging 
Productivity 

– System software, operating system 
(e.g., memory management)

Because of cost and power limitation, an ex-
ascale system by the year 2015 will likely 
not be a general-purpose system in the cur-
rent sense. The design of such a system will 
require some compromises with respect to 
size of system resources such as memory or 
disk space and with respect to system ratios 
such as cross-section bandwidth to link band-
width to memory bandwidth. A sufficient un-
derstanding of the requirements of exascale 
applications is needed to guide the choices 
necessary for these compromises, so that the 
final design supports a reasonably large frac-
tion of all potential applications.

Future storage architectures will have to be 
designed to be an integral part of the over-
all system. Currently I/O is an afterthought, 
which is then “bolted” onto a system. The 
bandwidth requirements for systems of this 
size will prohibit this behavior in the future 

Table 8.1 Some key parameters of exascale systems based on rough projections from current technologies.
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for balanced systems. Also needed are the 
development of new storage semantics that 
enable high performance and scalability, the 
integration of database concepts (relational 
and object models) into the notions of file 
systems and storage models, and the creation 
of effective associative access methods for 
integrated memory/data systems. 

3. State of the Art

Today’s state of the art is reflected in several 
approaches for petascale systems:

Strongly increased concurrency levels•  to-
gether with reduced clock-rate to manage 
power consumption; several specialized 
system networks (including collective 
networks); commodity processing-core 
architectures, but integrated in custom 
chips (IBM BG/C, L, P, Q; SiCortex 
(www.sicortex.com); DoD-funded pro-
cessors). These changes in system design 
require a heavy investment in adapting 
the software infrastructure. The ability of 
rapid integration of commodity cores in 
custom processor chips is opening up a 
large potential for semi-specialized sci-
entific computing systems with high per-
formance and power efficiency.

Modified instruction sets and memory • 
architectures that attempt to better match 
current memory hierarchies and in some 
cases to increase power efficiency (IBM/
Sony/Toshiba Cell; stream processors; 
PIM; Cray Black Widow and Cray El-
dorado/SUN Niagara; GPGPU). These 
approaches require even heavier invest-
ment in the entire software development 
chain.

Commodity processors plus special-• 
ized networks [Cray XT/Cascade, IBM 
PERCS [Elnozahy 2006] (HPCS)] follow 
established engineering models but cur-
rently face increasing power efficiency 
problems.

Reconfigurable processors and FPGAs•  
are still plagued with a very limited soft-
ware development environment. They do 
show potential for rapid large-scale sys-

tem simulation and as platforms for early 
application development and performance 
evaluation (e.g., Berkeley RAMP [Kras-
nov et al. 2007] and emulators for com-
mercial FPGA-ASIC design flows from 
companies such as Altera [Blyler 2005]).

Quantum computing technology•  solves a 
set of problems that are orthogonal to the 
approach taken by existing computational 
technology. Therefore, quantum comput-
ing offers an opportunity to expand the 
scope of problems that can be addressed 
with computing as a complementary ap-
proach to computing rather than supplant-
ing current computational methods. There 
has been quite a bit of progress in the ba-
sic and underlying technologies, but to 
date nothing has been realized beyond the 
basic hardware layer and very small (<16 
qbit) systems. Maintaining quantum en-
tanglement for larger-scale hardware has 
proven difficult, but start-up companies 
such as D-Wave [Maxcer 2007] have tak-
en the first steps toward commercializa-
tion of quantum computing technology. 
A breakthrough in quantum computing 
would imply an enormous software in-
vestment for anything but critical hand-
written or hand-tuned applications.

Today’s software for high-end machines is 
largely based on message passing, sometimes 
using a thread model for each MPI process on 
a shared-memory node. As machines grow in 
scale and complexity, techniques to make the 
most effective use of network, memory, and 
processor resources will also become increas-
ingly important. Programming models that 
rely on one-sided communication or global 
address space support have demonstrated ad-
vantages for productivity and performance, 
but they are most effective when used with 
proper hardware and operating system sup-
port. Global view languages, such as UPC 
and CAF, are seeing some use and are likely 
to be important in the next 5–10 years (see, 
for example, Coarfa et al. 2006).  

Many feel that new programming models and 
languages are needed for machines at this 
scale. The same view was held for petascale 
machines, yet clever use of hierarchical ap-

Balanced exascale systems 
will require a new approach to 
I/O — which currently is simply 
“bolted” onto a system.
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proaches and good algorithms have allowed 
the simple message-passing approach to 
succeed with the current near-petascale sys-
tems. The DARPA HPCS program [Johnson 
2007] has fostered the development of three 
new languages: Chapel, Fortress, and X10. 
Exploration of these languages is important, 
particularly as they promise enhanced pro-
ductivity and could help increase the number 
of application areas that made effective use of 
high-end computing. We note, however, that 
it typically takes 10 years for a language to 
reach the level of maturity required by most 
applications.

Many promising technical developments can 
address these issues. A sampling is shown in 
Table 8.2. 

4. Accelerating Development

Accelerating the availability of exascale com-
puting requires concerted efforts in several 
areas. Early evaluations of different potential 
technologies are key for technology accelera-
tion. These include evaluations of current and 
new hardware, software, and application de-
signs. The results of such evaluations must be 
presented and shared openly. Only by itera-
tively improving on one another’s research 
can the high-performance computing com-
munity as a whole make the most rapid prog-
ress toward a common goal. In particular, the 
following steps can be taken to accelerate 
development. 

Develop technology assessments (5 years • 
out) and “point design studies” (10 years 
out) that investigate in more detail the 
specific challenges in different design 
approaches, including all-commodity 
and partial custom designs. These design 
studies should represent a continuous ef-
fort to understand future technologies and 
their impact and should follow a common 
evaluation methodology, which needs to 
be established. They should evaluate the 
impact of specific hardware components 
on operating systems, algorithm designs, 
and application performance as well as 
their impact on the application develop-
ment process in general. These design 
studies are essential to provide more 

detailed analysis and guidance about 
program directions at all stages of this 
process.

Establish ongoing research for early sim-• 
ulation and modeling of future hardware 
and the impact of promising or disruptive 
technologies. This will require modeling 
the elements of a system as well as mod-
eling entire systems. Existing simulation 
efforts need further support to extend 
their capabilities for the required scale 
and to be available in the future whenever 
new technologies are proposed. Promis-
ing approaches for different levels of 
simulation include FPGA-based systems 
(e.g., Berkeley RAMP) and highly paral-
lel simulation software on conventional 
systems.

Develop new algorithms and supporting • 
software. The rapidly increasing concur-
rency levels and the increasing complexi-
ty of system hierarchies pose tremendous 
challenges to application and basic soft-
ware developers. These challenges need 
to be addressed as soon as possible to 
give these communities time to have their 
software ready as soon as exascale hard-
ware becomes available. 

Conduct point design studies and early • 
application development. These ar-
eas each require advanced system and 

Technology Issue Addressed

Optimizing the use of die 
space for CPU

Power efficiency, sustained performance

Optical network Interconnect performance, system scalability

Optical in/out of processor Interconnect performance, power efficiency

3D chips; integrated memory/
processor

Memory performance, packaging density, scal-
able system hierarchy

Faster development of cus-
tomized processors

Technology acceleration, memory performance, 
system scalability

Hardware accelerated system 
verification (e.g., RAMP)

Software and algorithm development, perfor-
mance modeling and predictions, accelerated 
system design

NAND Flash, MRAM, other 
non-volatile memory

Scalable system hierarchy, power efficiency, I/O 
performance

Myriad approaches to power 
efficiency

Power efficiency

Table 8.2 Promising technologies for exascale computing.
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performance modeling and evaluation 
methodologies. Only new evaluation 
methodologies based on application re-
quirement can provide accurate feed-
back about utility of new technologies. 
Advanced performance modeling and 
prediction methodologies are necessary 
to aid evaluation of future systems and 
to guide application development. These 
evaluation and modeling methodologies 
have to be combined with simulators, 
both cycle accurate and system accurate, 
for hardware, software, and application 
development and assessments. 

Invest in truly innovative hardware (with • 
a 5- to 10-year development horizon). 
Such research can be facilitated through 
research partnerships between laborato-
ries, universities, and end users, along 
with the vendors who would be the pri-
mary developers of full systems. Re-
search finding should be committed to a 
broad set of paths with checkpoints and 
incentives for acceleration of technology 
into production systems. Currently such 
efforts remain unfunded from the govern-
ment perspective in various technologies. 
Without funding, necessary technologies 
will not be available in time.

Invest in hardware emulation technolo-• 
gies that make research into innovative 
hardware design more cost-effective for 
academic researchers  Such environments 
also accelerate the feedback loop between 
hardware and software development.

Commit to building and experimenting • 
with small-scale systems for node ar-
chitecture changes and massively paral-
lel (but lower-performance) systems for 
scaling studies. Such early prototypes 
should complement modeling and simu-
lation efforts. They allow more precise 
technology assessments and will be es-
sential for facilitating early software and 
application developments.

Provide significant incentives for the ear-• 
ly participation of applications in design 
and evaluation efforts. Commit to a de-
ployment timetable and roadmap that en-

able vendors to shift some development 
risk to early systems revenue. 

Find the optimal point between fully gen-• 
eral (one solution that does nothing well) 
and fully specialized (solves one prob-
lem but does not help with any others) 
in hardware, software, and algorithms. 
This technique has proven itself already 
in many cases. Additional funding to en-
hance an already planned product line 
allows the government to optimize its 
funding strategy and fits well with the 
proposed solution technologies. In some 
sense, algorithms are already here, and 
the hardware is moving in this direction 
(e.g., Eldorado); software, particularly 
languages, needs to take this approach 
with domain-specific approaches.	

Efforts should embrace open source for all 
aspects (not just software) to allow the maxi-
mum leverage from each advance. Multiple 
prototypes should be built and evaluated; costs 
can be managed by building slices of poten-
tial systems. A framework that follows efforts 
from the development of a point design to a 
full system without multiple points of evalu-
ation will be essential in guiding the develop-
ment of an exascale system.

5. Expected Outcomes 
Increased investment could have a positive 
impact—substantial investments would steer 
innovation in hardware, software, systems de-
sign, and the necessary infrastructures, while 
smaller investments will not achieve the critical 
mass needed to effect the necessary changes. 

Accelerating the development of the building 
blocks for exascale systems would have dra-
matic commercial spin-offs outside the scope 
of the initiative, into areas such as medical im-
age processing, intelligent sensors, and more 
capable robotics, including the prospect of 
fully automated, fully capable vehicles and air-
craft. The improvement in the ability to broad-
ly develop applications for parallel systems 
will have an overall boosting effect on the U.S. 
software development enterprise, which is cur-
rently the most productive by far. It would also 
help to provide a high-value trajectory for U.S. 
software development, as the lower-value ele-

Multiple prototypes should be 
built and evaluated to guide 
development of exascale 
systems.
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ments are more easily migrated offshore. This 
would reaffirm the lead once held by the Unit-
ed States in many technological areas where 
we are no longer considered a competitor.

6. Required Investment 
At a minimum the program of R&D on the 
hardware-related and associated systems-
related technologies would need to ramp 
to approximately $100M–$150M per year. 
Early progress could be made for less than 
that in launching the innovation efforts. The 
deployment of large-scale systems from each 
generation of development would require ap-
proximately another $150M per year (assum-
ing three rotating deployments of $50M per 
year each). 

7. Major Risks
We have identified four major areas of poten-
tial risk in establishing an exascale hardware 
initiative.

Failing to establish vendor buy-in. Industry is 
likely to be a major participant in development; 
in addition, industry will need to develop and 
bring these systems to market. Industry must 
believe there is a long-term federal commitment 
to deployment to be able to provide substantial 
cost-match during the development. The 
hardware development program should include 
both large and small  companies and also a 
range of technologies from somewhat risky to 
bleeding edge. Some of these are already being 
discussed, have vendor acknowledgment, and 
are looking for funding agents. They could be 
brought on line in less than 12 months.

Not aiming high enough. Research must be 
aimed at the long term to achieve transforma-
tional impact, and it needs to be stably support-
ed to achieve the innovative breakthroughs we 
are looking for. Focus on near-term advances 
will stifle innovation. We also must not under-
estimate the scale of the potential impact of 
the combined exponentials of improvements 
in processor performance, storage capacity, 
networking, and user interfaces. The rate of 
improvement of these four factors will mean 
that things will be dramatically different 
10–15 years from now. We must also have 
a component of the program looking at dra-

matically alternative technologies (quantum, 
biological, nano, combination, etc.)

Failing to couple hardware, software, and 
applications. It is critical that the coupling of 
the critical elements for success happen early 
and often in this program. The hardware archi-
tects, the operating and tool developers, and 
the scientific users must all be engaged from 
the beginning to provide the critical feedback 
loops that are needed for true innovation.
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Cyberinfrastructure9
Today’s cyberinfrastructure is a loose cou-
pling of libraries, tools, and policies that sup-
ports researchers by enabling the application 
of multiple, distributed resources to a scien-
tific problem. Even for the most basic work-
flow, such as collecting data, performing a 
high-performance computation, and analyzing 
the result, it is rare that all of the necessary peo-
ple, computing, storage, and analysis systems 
are within the same location.  Beyond the rela-
tively simple problem of moving data across 
networks is the much more challenging issue 
of managing secure access across multiple or-
ganizational boundaries. Today’s cyberinfra-
structure is already showing signs of weakness 
from the standpoint of technical capabilities 
(data movement and analysis, for example) in 
the transition from terascale to petascale sci-
ence, suggesting that either our approach must 
be radically adjusted or we must accelerate the 
development of solutions to these challenges, 
or both. Beyond technical challenges associ-
ated with speed and size of resources, we see 
distributed science teams growing larger. This 
situation, combined with the distributed nature 
of the resources, presents a fundamental dif-
ficulty with respect to authorization and ac-
cess. Traditional HPC has been a client-server 
game, with a set of one-to-one trust relation-
ships between independent computing centers 
and individual users. As we move toward ex-
ascale science, these one-to-one relationships 
transform into many-to-many matrices, with 
distributed multidisciplinary teams working 
together to harness resources from multiple 
service providers.

Cyberinfrastructure provides the foundation 
for a wide class of users, from scientists to 
system administrators to end users. This 
foundation must be well defined, secure, per-
sistent, robust, and increasingly transparent to 

the researchers building on top of it. Ensuring 
such a cyberinfrastructure, and addressing 
the related cyber security issues, will require 
considerable investment to support future 
research. Areas to be investigated include 
workflow management; collaboration frame-
works and techniques; data management and 
movement of exascale datasets and data col-
lections; authorization and authentication 
for flexible interdisciplinary computational 
science teams (“virtual organizations”); and 
cyberinfrastructure management tools, tech-
niques, and methodologies to understand the 
performance of the infrastructure and to pro-
tect it from attack, disruption, and data loss.

1. Advances in the Next 
Decade 

The challenges associated with cyberinfra-
structure are driven by the increased size and 
complexity of applications and datasets; the 
need to combine computational, experimen-
tal, information, and analysis resources to 
support the scientific workflow; and the in-
creasingly distributed and multidisciplinary 
nature of the teams that will be tackling 
these problems. 

Five critical cyberinfrastructure areas have 
been identified as necessary and feasible to 
support exascale science: workflow manage-
ment, collaboration frameworks and tech-
niques, data management and movement, 
cyberinfrastructure management tools, and 
cyber security. Success of these teams in 
working together and harnessing an inherent-
ly distributed set of resources will have major 
impact on the world we live in and America’s 
role in such a world. 

Unlike traditional high-
performance computing, 
exascale science will 
involve many-to-many trust 
relationships, with distributed 
multidisciplinary teams 
harnessing resources from 
multiple service providers.
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Workflow management. Exascale applica-
tions will generate vast amounts of data. The 
process of analyzing that data will require 
correspondingly vast computational power. 
Equally important, the systems, toolkits, and 
user interfaces through which scientists will 
explore and analyze the data must be engi-
neered for automated end-to-end data trans-
port, resource management, and security and 
integrity. Workflows comprise the computa-
tions and data analysis tasks that are composed 
of a (potentially vast and complex) sequence 
of related but distinct jobs, including one or 
more data preprocessing steps (e.g., data as-
similation and cleaning), followed by a series 
of computational steps related by complex 
dependences, followed by postanalysis. Be-
cause the engineering of such workflow sys-
tems at the exascale is a daunting problem in 
both architecture and software development 
and quality assurance, it will be vital for work-
flow components such as job management, 
dataset or data collection management, and 
account and access control management to be 
shared and used across many diverse science 
communities (for recent work on community 
accounts, see [Welch et al. 2006]).

Collaboration frameworks and techniques. 
Scientific pursuits have become increasingly 
compute-intensive, collaborative, and 
geographically dispersed; exascale science 
will continue this trend with unprecedented 
distributed collaborations involving scientists, 
their data, and the compute resources. Tools 
currently available for collaborative science 
center largely on interactive presentations 
using video- and web-conferencing for 
synchronous collaboration and email, wikis, 
and blogs for asynchronous collaboration. 
The need for collaborative technologies is 
evident in the recent explosion of tools for web 
collaboration, integration of collaboration 
into standard business tools, and the success 
of commercial web-conferencing offerings. 
Scientists should have a current image of the 
state of their collaboration available to them 
in their personal working environment (e.g., 
laptop, desktop) at all times.  To the extent 
possible, they should be able to interact with 
their local state when they are offline, and 
synchronize this state with the appropriate 
group state when they return online (e.g., as 

Google Gears does for web applications). 
Such a process should happen in as natural 
an environment as possible, so that scientists 
perceive practically no change in their 
personal working environment, yet interact 
with and benefit from the current shared 
state of the collaboration (see, e.g., [Stevens, 
Papka, and Disz 2003]).

Data management and movement. Exascale 
science will generate data at rapidly increas-
ing rates, causing both short- and long-term 
challenges that data management and move-
ment will need to address. Researchers today 
are already creating terascale and petascale 
datasets and discovering that they are spend-
ing a significant portion of their time man-
aging data rather than performing scientific 
investigation. Data management and move-
ment tools for exascale datasets and data col-
lections must provide capabilities for data 
virtualization [Nefedova et al. 2006], man-
agement of properties and attributes indepen-
dent of the underlying storage system, access 
control, provenance metadata, data integrity, 
and data security. 

Cyberinfrastructure management tools. The 
computational systems that will enable exas-
cale science will be orders of magnitude more 
complex than today’s resources. Performance 
tuning, troubleshooting, and systems man-
agement capabilities on today’s terascale sys-
tems are barely keeping up with adequately 
monitoring, reporting usage, and providing 
troubleshooting capabilities for high-perfor-
mance networks, storage area networks, HPC 
systems made up of hundreds or thousands of 
nodes, and archival systems made up of mul-
tiple petabytes of storage resources. Tools 
that support local and remote job monitoring, 
system monitoring, configuration manage-
ment, and troubleshooting are necessary for 
the well-being of these expensive resources. 
Many of the systems at DOE supercomputer 
centers and data centers are unique resources 
that expand far beyond the development en-
vironments provided by the vendors for their 
system management and performance tool 
developers. Often, system owners develop 
the tools for these specialized systems either 
on their own or in cooperation with grid proj-
ects. These tools, whether developed by the 

Workflow management at 
the exascale is a daunting 
problem in both architecture 
and software development.
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system owners or the vendors, are not capable 
of scaling to exascale resources.  R&D is re-
quired to develop new methodologies, tech-
niques, and tools capable of managing these 
complex systems. In addition, coupling this 
effort with the data management and move-
ment tools developed for exascale datasets 
and data collections will prove useful for 
dealing with the huge quantities of environ-
mental, systems events, and job management 
data that will be generated by these systems.

Cyber security. Currently every site performs 
some level of security monitoring using a 
combination of network and host intrusion 
detection systems (IDSs), intrusion preven-
tion systems (IPSs), network flow monitor-
ing, vulnerability scanning, and so on. It is 
essential that the network and host monitoring 
mechanisms, such as IDS, IPS, and firewalls, 
scale to support the dynamic and high-speed 
networking environment that will be required 
for exascale computing. For large facilities, 
100 Gbps networks will be common in 5 to 
10 years. Today’s commercial security offer-
ings show no signs of being able to keep up.  

2. Major Challenges

The scientific and technological efforts pro-
posed as part of this initiative will pose major 
challenges for cyberinfrastructure and cyber 
security. R&D timelines will require 5 to 10 
years in order to ensure effective scaling and 
efficient use of systems at the exascale.

Workflow management. Significant improve-
ment in workflow management at the exascale 
will require research into the identification of 
common workflow requirements and prob-
lems in the different science disciplines and 
communities of users. Research will be re-
quired in order to understand fundamental 
workflow issues across science disciplines 
and to identify effective solutions (for recent 
efforts, see von Laszewski et al. 2007; Zhao, 
Wilde, and Foster 2007]. The development 
of tools and methods that follow recognized 
standards and find widespread adoption will 
be a challenge, if we are to prevent waste 
of scarce resources and avoid reinvention of 
solutions to common problems that may al-
ready be solved.  

Collaboration frameworks and techniques. 
Scientific collaborations increasingly involve 
more people, more computers, and larger data-
sets collected across greater distances than 
ever before. The challenge with the greatest 
user visibility is representing this information 
and resource overload in a natural, usable, col-
laborative manner so that it is understandable 
and accessible to the researchers involved. 

Collaboration-based authentication and au-
thorization. The cross-site and international 
nature of DOE Office of Science collabora-
tions demands a well-managed, scalable, 
flexible, and federated approach to authenti-
cation and authorization and to the creation 
and management of the virtual organizations 
that manage collaboration resources. Current 
approaches are disparate and impose a high 
overhead on scientists and security profes-
sionals, without producing a high assurance 
that proper authentication of user identity has 
been achieved. There is inadequate support for 
the specialized needs of distributed collabora-
tions, such as dynamic assignment and man-
agement of attributes such as roles and group 
membership to individuals and resources in a 
virtual organization. Interorganizational trust 

Figure 9.1 Large distributed teams collaborate to run experiments at fusion 
facilities.  Remote participation and collaboration will become even more critical to 
the U.S. fusion science community, because the next-generation fusion device, the 
international  ITER project, will not be located in the United States.
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Tokamak Device

Fusion Facility 
Control Room
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is fundamental to the operation of virtual 
organizations.

Data management and movement. Manage-
ment of large datasets and data collections 
related to scientific research and related ap-
plications have presented significant chal-
lenges at the terascale and petascale [Allcock 
et al. 2001]. This situation is expected to be 
even more unwieldy at the exascale. Data 
management and movement tools and tech-
niques must be developed for data centers 
and archives, portals, and intersite and intra-
site file transfers. 

Cyberinfrastructure management. Exascale 
systems are expected to be increasingly 
complex, comprising thousands or even 
millions of components. The configuration, 
verification, troubleshooting, and management 
of such complex systems, as well as the 
development of the tools necessary to perform 
these functions on the often one-of-a-kind 
resources, will be a significant challenge.

Cyber security. IDSs, firewalls, vulnerability 
scanners, and other components that make up 
the cyber security infrastructure of the expect-
ed state-of-the-art exascale resources will not 
have commercial products available that scale 
to line rates or capacities for months or even 
years after the exascale resources are deployed. 
The challenge will be to provide adequate se-
curity functionality at the exascale with open 
source or locally developed tools. Investment 
in cyber security tools that can be shared by 
the laboratories seems a plausible option. 

Situational awareness, anomaly detection, 
and response. A key challenge to cyber secu-
rity methodologies and tools of the future will 
be the creation of a framework and semantics 
for integrating information in the individual 
cyber security component systems for situ-
ational awareness, anomaly detection, and 
intrusion response. Current technologies are 
segregated and unaware of the related infor-
mation available in their audit trails.  Auto-
mated, intelligent tools are needed to detect 
anomalies in the behavior of users, jobs and 
processes, applications, and services that 
scale from system, department, and enterprise 
to multiple sites. We envision a cybersecurity 

situational awareness (SitAware) capability 
to provide analysts with accurate, terse sum-
maries of attack traffic, organized to highlight 
the most prominent facets. These summaries 
would include the essential elements that de-
fine the pattern of the attack traffic so they 
can be easily shared with and understood 
by other sites without disclosing private in-
formation. SitAware should also supplement 
these reports with drill-down analysis to fa-
cilitate countermeasure deployment and fo-
rensic study. A critical feature of a SitAware 
capability would be an overall view across 
multiple sites of a collaboration or virtual 
organization. What is needed is a distributed 
cooperative security monitoring framework 
that can combine security-related data from 
many sites. This will allow independent sites 
to extend their sense of the Internet’s activ-
ity beyond their local viewpoints. Even more 
important, advanced capabilities in this area 
will facilitate collaborative threat response, 
including cross-site notification of and re-
sponse to security events anywhere in the col-
laboration environment.

Since exascale compute resources are ex-
tremely valuable and a tempting target of 
attacks, we must develop advanced security 
data analysis capabilities to facilitate collab-
orative threat response. These capabilities are 
essential for such crucial tasks as cross-site 
notification of security events and subsequent 
response to these events. Related research 
topics include audit frameworks, data-mining 
algorithms for security logs, data visualization 
techniques for exploration of log data, anoma-
ly detection techniques to help identify suspi-
cious activity, data anonymization techniques 
to allow cross-site sharing of log data, inci-
dent profiling techniques, and ontology-based 
forensic analysis of security data and logs.

“Sandbox” Technologies: Many DOE Office 
of Science HPC systems have changed from 
“low” security categorization to “moderate” 
security categorization as the resource has be-
come unique and desirable by industry. This 
trend is expected to continue.  The current 
DOE policy is to certify systems to the highest 
level of risk for the system and implement the 
corresponding security control level, forcing 
all who desire to use the resource to conform, 

We envision a cybersecurity 
situational awareness capability, 
“SitAware,” that provides 
accurate summaries of attack 
traffic and analyses that help in 
deploying countermeasures.
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regardless of the risk level of their individual 
work. These types of tight controls present 
real barriers to the science community inter-
ested in participation in open science. The 
concept of a “sandbox” is introduced to pro-
vide a potential solution. Sandboxes are de-
fined, bounded virtual environments in which 
virtual organizations (VOs) collaborate and 
share information.  Each VO, regardless of 
the heterogeneity and physical locations of its 
members, has its own sandbox and is protect-
ed based on its unique information sensitivity 
and specific constraints (e.g., confidentiality, 
integrity, availability, risk).  Application of a 
“sandbox” model allows independent certi-
fication, such that a “moderate” system can 
provide both “moderate” and “low” sand-
boxes.  Policy issues related to sandbox tech-
nology must be included in any investigation 
to address the potential DOE policy change 
from certification of systems to the sandbox 
level. Within a “low” security sandbox, the 
level of rigor of the controls would be relaxed 
as compared to higher-security sandboxes.  
Basically, the sandbox model moves the pe-
rimeter from the outside (machine level) to 
the inside (sandbox level).  The model makes 
the security problem scalable.

Dedicated network channels. In the exascale 
environment, dataflow will grow significant-
ly, and effective use and analysis of the cy-
berinfrastructure are crucial. Cyber security 
analysis requirements do not necessarily scale 
up from the terascale environment to the ex-
ascale environment. Protection of interactive/
control sessions at exascale is similar to what 
it was at terascale. Yet, the sheer increase in 
the bulk data transfer for an exascale environ-
ment presents significant challenges for cyber 
security analysis. Currently few protocols ex-
ist for bulk data transfers. While some do use 
specific ports, these are not widely deployed. 
Tools for data transfer must be developed that 
use dedicated channels to separate data from 
control communication and facilitate the ap-
plication of graded levels of control for exas-
cale. Control sessions represent the primary 
threat. Segregation of the data flow is one 
strategy to allow application of appropriate 
controls commensurate to security risks.  Sys-
tem-to-system data channels may require less 
stringent security, allowing cyber security an-

alysts to focus on the control channels where 
risks are greatest. Conversely, point-to-point 
networking may allow bulk data transfers 
from trusted system to trusted system, regard-
less of the size of the transaction. The ease of 
information exchange is important to the open 
science community. Investment in network 
monitoring for performance and anomaly de-
tection also has the potential for significant re-
ward with regard to identification of potential 
attacks, by facilitating cyber security analysis 
in order to better characterize behaviors to de-
tect anomalies for the exascale environment.

3. State of the Art

In this section, we review the state of the art 
in each of the five areas discussed above—
workflow management, collaboration frame-
works and techniques, data management and 
movement, cyberinfrastructure management 
tools, and cyber security — to provide an un-
derstanding of where the cyberinfrastructure 
is today and what is needed to meet the chal-
lenges raised by exascale applications.

Workflow management. Workflow systems 
today are evolving at a promising rate but 
show no signs yet of coalescing around a 
compact set of solutions. Progress is being 
made in industry on workflow models and 
mechanisms for service-oriented architectures 
(such as BPEL) and architectures for specific 
environments such as the Microsoft Windows 
workflow framework. In the realm of cyber-
infrastructure, good progress is being made 
in terascale distributed environments such as 
TeraGrid [Catlett et al. 2007] and Open Sci-
ence Grid. Similar progress is evident in appli-
cation-domain (job-oriented) systems that are 
resource cognizant and are starting to make 
transparent to scientists the steps involved in 
transporting, cataloging, and replicating data 
between stages of a workflow spread across 
distributed parallel computing sites. Prog-
ress in these systems is also being made in 
the integration of support for data provenance 
tracking into the workflow system itself, so 
that scientists who use such systems to pro-
cess vast datasets can gain the added benefit 
of transparently recording details of the data 
derivation or analysis process for later audit-
ing and discovery.

The “sandbox” model — in 
which each virtual organization 
is protected based on its 
specific constraints — makes 
the security manageable at the 
exascale.
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Collaboration frameworks and techniques. 
Collaboration is already a fundamental com-
ponent of science, with teams often spread 
across the country or extending around the 
world. These collaborations require both 
synchronous and asynchronous tools and 
communication. Asynchronous collaboration 
infrastructure today includes the use of wikis, 
blogs, and other emerging social network-
ing tools, whereas synchronous collaboration 
infrastructure includes context- and loca-
tion-aware, persistent visualization and col-
laboration environments (see, e.g., Stevens 
2003]. These environments can seamlessly 
display a multitude of information from both 
local and remote sources, but often at the cost 
of lowering the experience to the lowest com-
mon denominator. This means that the col-
laboration capabilities of today do not create 
a strong sense of presence, with the remote 
participants not feeling they are full partici-
pants in the experience. In addition, tool de-
velopers have no straightforward method for 
constructing tools and applications that can 
support collaborative work.

Data management and movement. As not-
ed earlier, many researchers who are creat-
ing terascale and petascale datasets find that 
they spend a significant portion of their time 
managing data rather than scientific investi-
gation. Exascale science will generate data at 
ever-increasing rates. Data management and 

movement tools will become critical for data 
virtualization, management of properties and 
attributes independent of the underlying stor-
age system, access control, provenance meta-
data, data integrity, and security. 

Cyberinfrastructure management tools. Cur-
rently, cyberinfrastructure management tools 
for the largest HPC systems are mostly col-
lections of scripts and tools not well suited to 
managing these systems. Nagios, a common-
ly used monitoring tool, unfortunately does 
not scale well. Most sites that use Nagios 
end up running multiple instances of the tool, 
tenuously fitted together with local scripts to 
provide a monitoring system that provides 
minimal capability. Many additional scripts 
and tools are needed to fill in the missing 
elements, resulting in ad hoc local manage-
ment environments. To some extent, many 
sites cover the basics and ignore the rest, with 
performance frequently being neglected. Yet 
much could be done to provide robust sys-
tems functioning at peak performance—if the 
tools were available. The IBM Blue Gene/L 
RAS management system is currently one of 
the best tools for gathering system and job 
events. It has many shortcomings, some of 
which will be addressed with the next-gener-
ation Blue Gene system. Unfortunately, some 
of the largest issues—for example, the inabil-
ity to correlate events between the compute 
components (i.e., Blue Gene/L hardware) and 
no–compute components (i.e., external data 
storage systems and networks), and mecha-
nisms for dealing with the large volumes of 
events—remain unsolved. Work is under way 
at the Center for the Improvement of Fault 
Tolerance in Systems (CIFTS) to build a fault-
tolerant backplane to alleviate the difficulties 
of fault prediction, notification, management, 
and recovery. This project, funded by DOE, 
has the potential to move the field closer to 
what is needed for petascale architectures, but 
much will remain to be done to provide a pro-
duction solution at the exascale. Neither the 
Blue Gene RAS system nor the CIFTS work 
addresses performance tuning, reporting us-
age, or configuration management. Tools 
such as bcfg2 [Desai et al. 2003] or cfengine 
provide reasonable solutions for systems con-
sisting of as many as 10,000 nodes, and these 
tools will remain adequate for the configura-

Figure 9.2 The Access Grid enables collaborations between multiple groups of geo-
graphically distributed researchers. In addition to multiple audio and video streams 
from each location, participants can share presentations, data, visualizations, and 
other applications through persistent virtual venues.

Environments that create a 
strong sense of presence with 
remote participants will be 
critical for effective collaboration 
at the exascale.
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tion management of support systems such as 
file servers. They do not, however, address 
the configuration of machines with 100,000 
nodes or other, nontraditional environments 
such as virtual machines. The IBM Blue Gene 
and other systems have, for the most part, 
avoided the configuration management prob-
lem by running a small, lightweight operating 
system rather than a full system (such as Li-
nux), loading it over an out-of-band network 
as needed. This situation has prevented many 
applications from utilizing these systems to 
the fullest capability. As we move to provid-
ing a full operating system, the problem of 
configuration management for the petascale 
and beyond will become a serious problem. 

Cyber security. Currently no single technol-
ogy provides complete cyber security. Most 
organizations protect their information tech-
nology resources through a defense-in-depth 
approach that covers network, host, and ap-
plication security technologies; provides cyber 
security awareness, skills development,  and 
training to staff and users; and details cyber 
security policy and standards. Tools employed 
by many organizations to implement a de-
fense-in-depth approach include commercial 
firewall products and virtual private networks, 
open source network intrusion detection tools 
such as Snort or Bro, syslog and tripwire 
host intrusion detection, Nessus vulnerability 
scanning, Websense web filtering, cfengine 
or SMS configuration management, and com-
mercial anti-virus protection. Security tools 
often lag significantly in their availability on 
early high-performance network and com-
putational systems. Sites generally have to 
use open source tools, such as Bro, to be able 
to perform security functions at top perfor-
mance speeds. The network and host moni-
toring mechanisms, such as IDSs, IPSs, and 
firewalls, do not adequately scale to support 
the dynamic and high-speed networking envi-
ronments that are delivered to early adopters 
of high-performance computing sites.  

4. Accelerating Development

Few resources are currently directed to or 
planned for cyberinfrastructure for exascale 
computers. Clearly, we need to establish a 
plan designed to accelerate cyberinfrastruc-

ture R&D if we are to meet the needs of ex-
ascale science. 

Workflow management. To maximize the 
productivity of scientists and extract the max-
imum amount of knowledge and discovery 
from exascale science, a focused effort on 
workflow management and the underlying 
tools and libraries is required; such an effort 
should include the following: 

Development of transparent and highly • 
optimized data transport between exas-
cale workflow stages

Automation of the complex policy-driven • 
and congestion-sensitive scheduling de-
cisions that need to be made to keep an 
exascale complex operating at an accept-
able level of utilization

Extensions to workflow models that can • 
take advantage of dynamic exploratory 
models enabled by vast computing re-
sources (e.g., exploring parallel paths and 
branching a new, large-scale workflow 
from each viable result)

Development of common workflow lan-• 
guages and pluggable implementations 
that allow scientists to specify their pro-
cesses in a manner independent of the di-
verse architectures that may evolve, even 
within a single exascale complex

Collaboration frameworks and techniques. 
Highly productive exascale science will de-
mand seamless access to scientists, data, and 
computational resources. The goal is to en-
able scientists to ascertain at a glance the sta-
tus of the elements of collaborations that are  
relevant to their work at any moment and to 
share their work products with their collabo-
rators synchronously and asynchronously. 
Achieving this goal will involve the devel-
opment of a library of collaborative software 
components, including the following:

Components to enable remote participants • 
to hear and see each other comfortably 
and interact naturally. These components 
should be as easy and reliable to use as 
the telephone and, as much as possible, 

Current cyberinfrastructure 
tools can handle systems 
of thousands of nodes, but 
new solutions are needed for 
machines with 100,000 nodes.
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re-create the sensation of being in the 
same room with the remote participants. 
This will require advances in the human-
computer interfaces to prevent these in-
teractions from disrupting the real work 
of the scientists.

Event distribution services that enable • 
applications to share state interactively, 
so that all collaborators see the same 
representation of the application as one 
participant interacts with it. For example, 
in discussing and reviewing the DNA of 
an organism, the participants’ view of the 
DNA on their screen would follow the 
interactions of the lead speaker with the 
application. 

Development of network storage for ap-• 
plication states to support snapshots of 
collaborative applications in time, al-
lowing collaborators to return to selected 
checkpoints in their interactions with ap-
plications and data.

Application sharing by leveraging native • 
platform event models. This will allow 
scientists to utilize software specific to 
their domain (e.g., molecule viewers, ma-
terials databases) without modification to 
the software.  

Integration of exascale cyberinfrastruc-• 
ture developments with collaborative 
environments. This will allow remote 
collaborators to jointly access compute 
states, from scientists iterating on sub-
mission of science compute jobs to ad-
ministrators assessing the health of the 
compute infrastructure.

Integration of exascale data management • 
and movement tools with collaborative 
environments. Such integration will allow 
remote collaborators to easily share, store, 
and access references to their datasets 
independent of physical location. Support 
for the relevant data transfer clients will 
enable users to interact with their datasets 
direct from their desktops with single-
click and drag-and-drop access.

Interfaces to the most prominent • 
programming languages in use in exascale 
science applications. Such interfaces 
will facilitate language adoption by 
collaborations.

The availability of open tools for use as un-
derlying infrastructure is key to the success 
of efforts to innovate at the application level, 
allowing the infrastructure to be modified 
by the domain scientists themselves accord-
ing to their own needs and without regard for 
budgetary or legal constraints. Currently, the 
components described are largely not avail-
able as open source software. Cross-platform 
support is required to accommodate variation 
in the personal working environment of indi-
vidual scientists.

New strategies are needed for cooperative 
work in the security-constrained exascale 
science network environment. Firewalls 
have long posed a difficult problem for sci-
ence applications, and yet no suitable solu-
tion has been devised without significantly 
compromising security. Exascale science 
must employ strategies to securely enable 
application and data sharing and point-to-
point interactions in constrained networks, 
while maintaining security standards com-
patible with the network policies of typical 
participating institutions.

Figure 9.3 The Compact Muon Solenoid (CMS) experiment is a particle physics 
detector being built on the Large Hadron Collider (LHC) at CERN in Switzerland. 
Significant cyberinfrastructure will be required to support the thousands of physicists 
from around the world who will be analyzing the massive amounts of data produced 
by the CMS.
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Data management and movement. Deploy-
ment of exascale applications needs to be 
accelerated by support for research into data 
management and movement requirements at 
the exascale and for development of the tools 
or features that address these requirements, 
both in leading Data Grid management sys-
tems and as standalone tools.

Cyberinfrastructure management tools. In 
order to ensure that computational resources 
reach their full potential for exascale science, a 
substantial investment must be made in R&D 
on cyberinfrastructure management technol-
ogy, including the following:

Tools and methods for scalable configu-• 
ration management. Development of a 
tiered configuration management strategy 
is essential.

Methodologies for monitoring tens of • 
thousands of nodes. Tools are needed to 
effectively monitor tens of thousands of 
nodes to ensure machine health and to in-
dicate when a large portion of the machine 
fails. Monitoring should include aspects 
of the machine that are of interest to us-
ers, such as node availability and historical 
performance; aspects of interest to admin-
istrators, such as node failures; and aspects 
of interest to cyber security analysts, such 
as possible machine misuse or attack. Ef-
fectively managing data from hundreds of 
thousands of machine probes and terabyte-
sized log files is critical.

Investigation and determination of prop-• 
er methods for dealing with machine and 
component failures. With tens of thou-
sands of nodes, dealing with hardware 
failures will be a daily struggle. Strong 
relationships with hardware vendors and 
a clearly documented procedure will be 
essential.

Cyber security. Continued support is essential 
for the development of open source network 
intrusion detection tools, such as Bro. Equally 
important, the development of new approach-
es to the expected complex and distributed 
exascale cyberinfrastructure, could accelerate 
the capabilities to secure the exascale cyber-
infrastructure soon after it becomes available. 
Tools to help detect unauthorized alteration of 

data (malicious or accidental) in data archival 
systems, Data Grid management systems, and 
file systems will be increasingly necessary as 
exascale datasets start to stress component 
(network, CPU, storage) data error rates. Un-
derlying all of the cyber security capabilities is 
the need for more flexible, scalable, and veri-
fiable authorization and authentication frame-
works and tools.

5. Expected Outcomes
Sufficient and timely investment to support 
multidisciplinary teams in a focused program 
tailored to encourage and support the devel-
opment of cyberinfrastructure in the five areas 
outlined here will enable increased scientific 
output, productive collaborations between 
team members, simplified management of 
data, increased reliability of resources, and 
overall security of cyberinfrastructure for all 
exascale science areas.

6. Required Investment 
The effort will require multiple teams to ad-
vance the state of the art in each of the key 
areas identified here. Sizable investment also 
will be needed for designing, developing, 
testing, and deploying the cyberinfrastruc-
ture. In addition, some effort will have to be 
dedicated to maintaining the collaborations 
that will support crosscutting aspects of the 
development with the application areas and 
technology development teams. 

7. Major Risks 
Several risks and potential downside conse-
quences are linked to exascale cyberinfra-
structure R&D. 

Workflow Management

 If we fail to invent and develop robust • 
user-friendly workflow management en-
vironments, exascale scientists will not be 
able to process the vast amounts of data 
to get the most out their efforts and the 
investment in these large-scale systems.

If we fail to sufficiently automate the re-• 
source management layers of workflow 
systems, vast hardware resources of exas-
cale complexes will be underutilized and 

Exascale science applications 
will need new strategies that 
enable data sharing while 
ensuring that individual 
institutional security policies are 
maintained.
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result in disappointing levels of speedup 
and productivity.

Collaboration Frameworks and Techniques

If we do not invest in R&D tools and in-• 
frastructure to support the remote opera-
tion of global instruments, we will lose 
the active involvement of a large number 
of our scientists in the science done on 
these resources.

If collaborative infrastructure does not sup-• 
port teams in a natural manner, produc-
tivity of the community will suffer, and 
efforts will be fragmented and duplicative 
because of inability to share results and 
collaborate effectively in large teams.

Data Management and Movement

If we fail to address issues related to both • 
short- and long-term management of data, 
we risk the loss of productivity of scien-
tists as they deal with management and 
organization of data. Further, utilization 
of expensive resources will be reduced 
because of data movement into and out 
of these machines without high-perfor-
mance capabilities and remote access to 
storage devices.

If we do not develop strategies and infra-• 
structure to manage the vast amounts of 
data that exascale science will produce, 
we risk losing intellectual property em-
bedded in the data.

Cyberinfrastructure Management Tools

If we do not invest in R&D on cyberin-• 
frastructure management tools and tech-
niques, we risk the investment in resources 
due to downtime and system errors as these 
complex resources are debugged.

If we fail to address the usability of re-• 
quired security mechanisms, users will 
continue to be hindered, at a cost of pro-
ductivity or a reduction in security as us-
ers find workarounds.

If we inadequately connect the efforts in • 
cyberinfrastructure to development in 
technology areas, we will see a duplica-

tion of effort to build the underlying infra-
structure for each area.

Cyber Security

If mechanisms to validate the integrity of • 
datasets and data collections are not de-
veloped, the accuracy and integrity of the 
research may be at risk.

If significant log analysis tools to detect • 
and investigate anomalies are not avail-
able, the security of the exascale-class 
and support systems will be at risk.

If significant intrusion detection capabili-• 
ties at line speed are not available, the se-
curity of the exascale class and support 
systems will be at risk.

The current DOE policy is to certify sys-• 
tems to the highest level of risk for the 
system and implement the corresponding 
security control level, forcing all who de-
sire to use the resource to conform regard-
less of the risk level of their individual 
work. If the proposed sandbox technology 
is not investigated and developed, open 
research may be at risk of moving to less 
capable systems because of the perception 
that security policies get in the way.

R&D in cyberinfrastructure is essential to 
the success of the exascale effort. It is a criti-
cal component, providing the foundation on 
which tools and applications for doing sci-
ence will be built, the infrastructure by which 
scientists will collaborate, and the tools that 
ensure applications have resources on which 
to run, all in an environment that is secure.
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Executive Summary
The past two decades of national
investments in computer science and
high-performance computing have
placed the DOE at the forefront of many
areas of science and engineering. This
initiative capitalizes on the significant
gains in computational science and
boldly positions the DOE to attack
global challenges through modeling and
simulation. The planned petascale
computer systems and the potential for
exascale systems shortly provide an
unprecedented opportunity for science;
one that will make it possible to use
computation not only as an critical tool
along with theory and experiment in
understanding the behavior of the
fundamental components of nature but
also for fundamental discovery and
exploration of the behavior of complex
systems with billions of components
including those involving humans.

Through modeling and simulation, the
DOE is well-positioned to build on its
demonstrated and widely-recognized
leadership in understanding the
fundamental components of nature to be
a world-leader in understanding how to
assemble these components to address
the scientific, technical and societal
issues associated with energy, ecology
and security on a global scale.

In order to realize this leadership the
DOE recognizes that the time-honored,
or subsystems, approach in which the
forces and the physical environments of
a phenomenon are analyzed, is
approaching a state of diminishing
returns. The approach for the future
must be systems based and simulation
programs are developed in the context of
encoding all known relevant physical
laws with engineering practices,
production, utilization, distribution and
environmental factors.

This new approach will
Integrate, not reduce. The full• 

     suite of physical, chemical,
     biological, chemical and engineering
     processes in the context of existing
     infrastructures and human behavior
     will be dynamically and realistically
     linked, rather than focusing on more
     detailed understanding of smaller
     and smaller components.

Leverage the interdisciplinary• 
     approach to computational
     sciences. Current algorithms,
     approaches and levels of
     understanding may not be adequate.
     A key challenge in development of
    these models will be the creation of a

U.S. Department of Energy

Office of Science

Simulation and Modeling at the Exascale
for Energy, Ecological Sustainability and Global Security

An Initiative

The objective of this ten-year vision, which is in line with the Department of Energy’s
Strategic Goals for Scientific Discovery and Innovation, is to focus the computational
science experiences gained over the past ten years on the opportunities introduced with
exascale computing to revolutionize our approaches to energy, environmental
sustainability and security global challenges.
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     framework and semantics for model
     interaction that allow the
     interconnection of discipline models
     with observational data. At the
     outset, specialized scientific groups
     will team with engineers, business
     experts, ecologists and human
     behavior specialists comprehensive
     models, that incorporate all known
     phenomena and have the capability
     to simulate systems characteristics
     under the full range of uncertainties.

Capitalize on developments in data• 
     management and validation of
     ultra-large datasets. It will develop
     new approaches to data management,
     visualization and analysis that can
     treat the scale and complexity of the
     data and provide the insight needed
     for validation of the computations.

This new approach will enable DOE to
exploit recent developments in
commercially available computer
architectures, driven by the
implementation of first generation multi-
core processors and the introduction of
petascale computers within 18 months,
and prepare it to take advantage of
exascale computers in the next decade.
This approach will also guarantee
DOE’s leadership in applying these
computers to critical problems
confronting the nation.

The initiative has four programmatic
themes:

1.  Engage top scientists and engineers,
     computer scientists and applied
     mathematicians in the country to
     develop the science of complexity as
     well as new science driven computer
     architectures and algorithms that will

     be energy efficient, extremely
     scalable, and tied to the needs of
     scientific computing at all scales.
     Correspondingly, recruit and develop
     the next generation of computational
     and mathematical scientists.

2.  Invest in pioneering large-scale
     science, modeling and simulation
     that contribute to advancing energy,
     ecology and global security.

3.  Develop scalable analysis
     algorithms, data systems and storage
     architectures needed to accelerate
     discovery from large-scale
     experiments and enable verification
     and validation of the results of the
     pioneering applications.
     Additionally, develop visualization
     and data management systems to
     manage the output of large-scale
     computational science runs and in
     new ways to integrate data analysis
     with modeling and simulation.

4.  Accelerate the build-out and future
     development of the DOE open
     computing facilities to realize the
     large-scale systems-level science
     required to advance the energy,
     ecology and global security program.
     Develop an integrated network
     computing environment that couples
     these facilities to each other, to other
     large-scale national user facilities
     and to the emerging international
     network of high-performance
     computing systems and facilities.

The success of this fourth effort is built
on the first three themes because
exascale systems are, by themselves,
among the most complex systems ever
engineered.

U.S. Department of Energy

Office of Science
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This initiative will enable DOE to
address critical challenges in areas
such as:

Energy- Ensuring global sustainability
requires reliable and affordable
pathways to low-carbon energy
production, e.g. bio-fuels, fusion and
fission, and distribution on a massive
scale. The existing mix of energy
supplies places global security at great
risk. Acceptable solutions require rapid
and unprecedented scientific and
technologic advances. Unfortunately,
existing analytical, predictive, control,
and design capabilities will not scale.
An objective of this initiative is to
provide new models and computational
tools with the functionality needed to
discover and develop complex processes
inherent in a new energy economy.

Ecological Sustainability- The effort
toward sustainability involves
characterizing the conditions for balance
in the climate system. In particular,
sustainable futures involve
understanding and managing the balance
of chemicals in the atmosphere and
ocean. The ability to fit energy
production and industrial emissions
within balanced global climate and
chemical cycles is the major scientific
and technical challenge for this century.

Security- The internet, as well as the
instrumentation and control systems for
the energy infrastructure, is central to the
well-being of our society. There are
several potential opportunities relating to
accurately modeling these complex
systems: understand operational data,
identify anomalous behavior to isolate
the disturbance and automatically repair
any damage.

For further information on this
subject contact:

Dr. Michael Strayer, Associate Director
Office of Advance Scientific Computing
Research
Michael.Strayer@science.doe.gov

U.S. Department of Energy

Office of Science
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Simulation and Modeling at the Exascale for 
Energy, Ecological Sustainability and Global Security (E3SGS) 

Lawrence Berkeley National Laboratory
Town Hall Meeting

April 17 – 18, 2007

Tuesday, April 17, 2007

8:00 – 8:15 am Welcome and Introduction....................................................................................Horst Simon, 
Associate Laboratory Director, Computing Sciences, LBNL

8:15 – 8:45 am Opening Remarks – Kick-off announcement on town hall meeting series.....Michael Strayer, 
Associate Director, ASCR

8:45 – 9:45 am “The Computational Frontiers of Earth System Modeling”...................................Bill Collins, 
LBNL and NCAR

9:45 – 10:15 am Morning Break
10:15 – 10:45 am Panel Session...................................Panelists: Horst Simon, Rick Stevens, Thomas Zacharia
11:00 – 12 noon Start breakout group discussions 
   B1 in 54-130 (Perseverance Hall)
   B2 in 66-Auditorium
   B3 in 66-316
   B9 in 62-203
12:00 – 1:00 pm Working lunch – pick up lunch and continue discussion
1:00 – 3:30 pm Continue breakout group discussions 
3:30 – 5:30 pm Report back from breakout groups
5:30 pm Adjourn   

Wednesday, April 18, 2007

8:00 – 8:15 am Welcome Back and Agenda for Day 2................................................................Horst Simon

8:15 – 12:00 pm Breakout group discussions 
   B4 in 62-255
   B5 in 66-Auditorium
   B7 in 62-203
   B8 in 66-316
12:00 – 1:00 pm   “Solutions to the Energy Crisis” (working lunch scheduled during this time).......Steve Chu,
     Laboratory Director, LBNL

1:00 – 2:30 pm  Report back from breakout groups
2:30 pm    Adjourn
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Simulation and Modeling at the Exascale for
Energy, Ecological Sustainability and Global Security (E3SGS)

Oak Ridge National Laboratory
Town Hall Meeting

May 17-18, 2007

Wednesday, May 16, 2007
 Arrival and dinner on your own

Thursday, May 17, 2007
Town Hall parking is in top two tiers of lot across Bethel Valley Road from ORNL Visitor Center

6:45 a.m.  Buses pick up at hotels (Homewood and Springhill Suites in Turkey Creek area; Comfort Suites at Campbell 
Station Road; Comfort Inn, Double Tree, and Jameson Inn in Oak Ridge) One stop at each hotel

7:00-
7:15 a.m.  Arrive Bldg. 8600 ................................................................................................Check in/visitor badging
7:25 a.m.  Local participants to meet buses at ORNL Visitor Center for transportation to Bldg. 8600
7:30 a.m.  Morning networking session and refreshments ............................................... Bldg. 8600, 1st floor atrium

8:00 a.m.  Welcome and Introductions (Iran Thomas Auditorium) ..................................................Thomas Zacharia
8:15 a.m.  Opening remarks ...............................................................................  Michael Strayer, Assoc. Dir. ASCR

Climate Change Session..................................................................................................David Erickson, Session Chair
8:45 a.m.  Climate change: policy perspectives ....................................................................... Lincoln Pratson, Duke
9:30 a.m.  Climate change: computational science perspectives ............................................. David C. Bader, LLNL
10:15 a.m. Break

10:30 a.m. Laboratory Director’s Welcome ........................................................................................... Jeff Wadsworth

Energy Session .....................................................................................................................Doug Kothe, Session Chair
10:40 a.m. Energy: industry perspectives ........................................................................................... Jack Bailey, TVA
11:10 a.m. Energy: computational science perspectives .................................................... Tom Downar, UC-Berkeley

12:00 p.m. Working lunch ........................................................................................................ 2nd Floor Lobby, CNMS
Lunch will be picked up in the 2nd floor lobby of the CNMS –Center for Nanophase Materials Sciences-- 
just around the corner and a short walk away from the Iran Thomas Auditorium.
Sitting areas will be available on 1st, 2nd, 3rd floor lobbies, in adjacent conference rooms, on the patio, in 
room 156, the CNMS executive conference room, in small common areas, and in the SNS atrium – 
however, no food and beverages are allowed in the auditorium.

1:00 p.m. Applications breakouts ............................................................................................... Board buses at CNMS
B1. Climate ................................................................................................................. SNS Room C156 (8600)
B6. Numerical Climate-Economic-Energy............................................ Research Office Building L204 (5700)
B3. Biology .............................................................................................................................. SNS 354 (8600)
B2. Energy ...................................................................................................... Iran Thomas Auditorium (8600)
B9. Astrophysics ................................................................................................................ CNMS L183 (8610)
B10. Industrial Processes and Manufacturing ................................................................... CNMS L382 (8610)

3:00 p.m.  Break
3:30 p.m.  Continue applications breakout sessions

5:30 p.m.  Adjourn
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Board buses to return to main campus ................................................................. Flagpole lobby entrance

6:00 p.m. Dinner (Bldg. 5200, 2nd floor) ......................................................................................... Session Summaries

9:00 p.m. Board buses for return to hotel ................................................................................................ Visitor Center

* * * * * * * * * * * * * *

Friday, May 18, 2007, sessions will be held on main campus in Bldg. 5200 (Conference Center)

7:30 a.m.  Networking session and refreshments .............................................................. Bldg. 5200, 2nd floor lobby

8:00 a.m.  Welcome back and agenda for day 2 (Rooms: Tennessee A, B, C) ................................ Thomas Zacharia
8:15 a.m.  Begin infrastructure breakouts

B5. Hardware .............................................................................................................................. Room tbd
B7. Math ..................................................................................................................................... Room tbd
B8. Software ............................................................................................................................... Room tbd
B4. Cyber security ...................................................................................................................... Room tbd

9:45 a.m.  Break

10:15 a.m.  Continue breakout sessions........................................................................................................................

12:15p.m.  Working lunch (pick up lunch and continue breakouts) ...................................................... 2nd floor lobby

1:45 p.m.  Closing remarks

2:00 p.m.  Adjourn

Board buses for return to hotels. ......................................................................................... Visitor Center
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Simulation and Modeling at the Exascale for 
Energy, Ecological Sustainability and Global Security (E3SGS) 

Argonne National Laboratory
Town Hall Meeting

May 31 – June 1, 2007

Thursday, May 31, 2007
    
8:00 Welcome and Introduction..................................................................................................Rick Stevens, 

Associate Laboratory Director, Computing and Life Sciences, ANL

8:15   Opening Remarks...........................................................................................................Michael Strayer,
Associate Director, ASCR

8:45 “Energy, Environmental Sustainability and the Role of High-End Computing”.............Robert Rosner, 
Laboratory Director, ANL

10:00 Morning Break – Auditorium/Rotunda

10:30 “Potential Applications of Exascale Computing in Economics”..........Kenneth L. Judd, Paul H. Bauer 
Senior Fellow, Hoover Institution

11:15 Agenda and Instructions for Town Hall .............................................................................Rick Stevens

11:30 – 3:30  Breakout group discussions 

Noon – 1p.m. Working lunch scheduled noon-1p.m. – pick up lunches and continue discussions)
B1 Climate – Hosts: Kemner/Kotamarthi
B2 Energy  – Hosts: Frank/Nowak
B3 Biology – Hosts: Edwards/Meyer
B6 Socioeconomic Modeling – Hosts: Foster/Jacob
B9 Astrophysics – Hosts: Fischer/Lamb
B10 Industrial Processes and Manufacturing – Hosts: Hassanein/Moré

2:00 - 2:30  Afternoon Break – Auditorium/Rotunda

3:30 Report back from breakout groups (each group 20min)

5:30  Adjourn
    
Friday, June 1, 2007
   
8:00 - 8:15  Welcome Back and Agenda for Day 2.............................................................................Rick Stevens

8:15 – 12:00  Breakout group discussions
 (working lunch scheduled noon-1p.m. – pick up lunches at Auditorium/Rotunda and continue 

discussions/report writing)
B4 Cyberinfrastructure – Hosts: Catlett/Papka
B5 Hardware – Hosts: Beckman/Gropp
B7 Math – Hosts: Hereld/Norris
B8 Software – Hosts: Lusk/Ross
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10:00 - 10:30  Morning Break – Auditorium/Rotunda

12:00 Report back from breakout groups (each group 15min)

1:00 Next steps/Comments.................................................................Rick Stevens, Bill Kramer, Jeff Nichols

2:00  Adjourn
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ABBREVIATIONS AND TERMINOLOGY

3D three-dimensional 
aa amino acid 

AGN active galactic nucleus 
AMIGA All Modular Industry Growth Assessment 

AMR adaptive mesh refinement 
ANL Argonne National Laboratory 

AOGCM Atmosphere-ocean general circulation model 
ASCR Advanced Scientific Computing Research 
BBH binary black hole 
BES Basic Energy Sciences 
BG Blue Gene 

BHNS black hole and neutron star 
BNS binary neutron star 
CAF Co-Array Fortran 
CGE computable general equilibrium 

CGRO Compton Gamma-Ray Observatory 
CMS Compact Muon Solenoid 
DAE differential algebraic equation 
DBA design basis accident 
DETF Dark Energy Task Force 
DFT density functional theory 
DVM dynamic vegetation model 

E3 Simulation and Modeling at the Exascale for Energy and the Environment 
ELM edge-localized mode 
EMF Energy Modeling Forum 
EOS equation of state 
ESM earth system model 

EVLA Enhanced Very Large Array 
EXIST Energetic X-ray Imaging Survey Telescope 

FFT fast Fourier transform 
flops floating point operations per second 

FPGA field programmable gate array 
FUSE Far Ultraviolet Spectroscopic Explorer 
Gbps gigabits per second 
GIS geographic information system 
GK gyrokinetic 

GLAST Gamma-ray Large Area Space Telescope 
GMT Giant Magellan Telescope 
GNEP Global Nuclear Energy Partnership 
GRB gamma-ray burst 
GTC Gyrokinetic Toroidal Code 
HCCI homogeneous charge compression ignition 
HPC high-performance computing 
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HPCS High-Productivity Computer Systems 
HST Hubble Space Telescope 
I/O input/output 
IDS intrusion detection system 
IEA International Energy Agency 

INTEGRAL International Gamma-ray Astrophysics Laboratory 
IPCC Intergovernmental Panel on Climate Change 
IPS intrusion prevention system 
ISO Infrared Space Observatory 
IUE International Ultraviolet Explorer 

JDEM Joint Dark Energy Mission 
JFNK Jacobian-free Newton-Krylov 
JWST James Webb Space Telescope 
LBNL Lawrence Berkeley National Laboratory 
LES large eddy simulation 
LHC Large Hadron Collider 
LSST Large Synoptic Survey Telescope 
LTC low-temperature compression 
LWR light water reactor 
M&S modeling and simulation 
MHD magnetohydrodynamic 
MIT Massachusetts Institute of Technology 
MPI message-passing interface 
MPP massively parallel processing (or processors) 
MW megawatts 

NASA National Aeronautics and Space Administration 
NCSU North Carolina State University 
NEMS National Energy Modeling System 

NK Newton-Krylov 
NPP nuclear power plant 
NRC Nuclear Regulatory Commission 
NSF National Science Foundation 

OASCR Office of Advanced Scientific Computing Research 
ODE ordinary differential equation 
OLG overlapping generations 

ORNL Oak Ridge National Laboratory 
PB petabytes 

PDE partial differential equation 
PF petaflops 
PIC particle in cell 

R&D research and development 
RF radio frequency 

s-process slow neutron capture process 
SciDAC Scientific Discovery through Advanced Computing 
SitAware situational awareness 
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SKA Square Kilometer Array 
SN supernova 

SNF spent nuclear fuel 
SNP single-nucleotide polymorphism 
SOA secondary organic aerosol 
SOC system on chip 
SOS system of systems 
SVD singular value decomposition 

Tc critical temperature 
TDDFT time-dependent density functional theory 

TRU transuranic 
UCSD University of California, San Diego 
UPC Unified Parallel C 
V&V verification and validation 

VIRGO Variability of Solar Irradiance and Gravity Oscillations 
VO virtual organization 

WEO World Energy Outlook 
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