

1. . EXECUTIVE SUMMARY 3

2. WORKSHOP OVERVIEW 4

3. INTRODUCTION 5

4. STATE OF THE ART 7
4.1 MODELING STATE OF THE ART 7
4.1.1 CURRENT MODELING LANDSCAPE 7
4.1.2 IMPACT OF MODELING 11
4.1.3 GAPS IN MODELING STATE OF THE ART 12
4.2 EMULATION AND SIMULATION 13
4.2.1 CURRENT SIMULATION LANDSCAPE 13
4.2.2 FRAMEWORKS 14
4.2.3 COMPONENT SIMULATORS 15
4.2.4 PHYSICAL/TECHNOLOGY 16
4.2.5 IMPACT OF SIMULATION 16
4.2.6 GAPS IN THE SIMULATION STATE OF THE ART 17
4.3 OVERARCHING ISSUES 18
4.3.1 VALIDATION AND VERIFICATION 18
4.3.2 DATA REPOSITORY 18
4.3.3 INTEROPERABILITY 19
4.3.4 MULTI-SCALE 19
4.3.5 SOFTWARE ENGINEERING 19
4.3.6 SCALABILITY 20
4.3.7 MACHINE BENCHMARKING AND DATA CAPTURE 21
4.3.8 BEST PRACTICE VALIDATION PROCESSES 21
4.4 ASSOCIATED TECHNOLOGIES 22
4.4.1 PROXY APPLICATIONS 22
4.4.2 MEASUREMENT TOOLS 22
4.4.3 MODEL LANGUAGE TOOLS 22
4.4.4 TESTBEDS 23

5 CRITICAL TECHNOLOGIES OF MODELING AND SIMULATION 23

5.1 INTEGRATED MODSIM FOR ENERGY, PERFORMANCE, AND RELIABILITY 24
5.2 NEW INTEROPERABLE MACHINE AND APPLICATION ABSTRACTIONS FOR 24
5.3 MODEL GENERATION 24
5.4 DYNAMIC MODELING 25
5.5 MODEL AS AN ACTIONABLE TOOL 25
5.6 INTEGRATION OF METHODOLOGIES 26
5.7 LIFE CYCLE COVERAGE 27
5.8 STANDARDS, INTEGRATION, AND INTEROPERABILITY OF MODSIM METHODOLOGIES 27

6 SUMMARY OF CRITICAL TECHNOLOGIES 28

7 RECOMMENDATIONS AND PATH FORWARD 29

8 BIBLIOGRAPHY 31

APPENDIX. WORKSHOP AGENDA AND PARTICIPANT LIST 34

1. Executive Summary

In the last few years, numerous studies commissioned by the Department of Energy (DOE),
the Defense Advanced Research Projects Agency (DARPA), and others have examined the
challenges that will have to be overcome for computational science to achieve exascale, a two
order-of-magnitude increase in capability beyond what is possible today. Exponential growth in
the number of devices (Moore’s Law) is expected to continue unabated, but the end of Dennard
scaling, and hence the growth in performance of individual processors, has led to exponential
growth in concurrency. Power consumption has also grown to the point where the cost of the
electrical power for systems threatens to exceed the cost of acquiring them. Ever-shrinking
devices, and the growth in their number, are expected to increase the rate of soft, or transient,
errors such that applications will no longer be able to assume correct behavior of the underlying
machine. Adapting to such systems will require new mathematical algorithms that minimize
synchronization and data movement, and a new generation of scientific software.

Rather than addressing these issues in isolation, a new process of “Co-Design” is being
pursued in which application and computer scientists work toward the common goal of an
exascale ecosystem of systems and applications. Modeling and simulation (ModSim) is a critical
part of this process. It enables scientists and engineers to analyze future algorithms, applications,
and computing systems, long before they are realized, and make the necessary design decisions
such that exascale science is broadly achieved. Later, when exascale applications and systems
are realized, ModSim technology will enable us to understand their behavior, debugging and
optimizing them.

Given the increasing importance of modeling and simulation, a workshop was organized by
DOE/ASCR to assess the current state of the art and to identify research challenges that must be
overcome in this field. Fifty experts, representing academia, industry, and government,
participated in the workshop, and others contributed both beforehand and afterwards. This report
summarizes their findings.

Today’s ModSim research is widely dispersed in academia, national laboratories, and
industry. It builds on a foundation of tools and techniques from an equally diverse research
community. It is challenged by the emergence of new computing devices and heterogeneous
systems as well as increasingly sophisticated, multi-physics applications. To enable the
scientific community to succeed in the development and use of exascale systems, the following
research challenges must be addressed:

• Create new modeling and simulation technology to cover the entire spectrum of scale
from cycle accurate models of devices to full exascale systems and applications.

• Develop standards and interfaces allowing integration of independently developed
models and tools.

• Enable new modeling and simulation technology for the emerging challenges of energy
and resilience, as well as their impact on performance.

• Examine the new concept of ubiquitous, dynamic models that enable real-time
understanding of running exascale systems, and optimization of their throughput.

The ModSim workshop participants believe that it is possible to achieve these goals. They
recommend that DOE Advanced Scientific Computing Research program (ASCR) initiate a
research program to do so.

2. Workshop Overview

The path to exascale is punctuated by multiple significant technical challenges. Creating
billions of threads of parallelism needs to be tractable and manageable. New algorithms and
programming models may be required that can use these extreme levels of parallelism and can be
efficiently mapped to system resources.

Power efficiency is emerging as the overarching design constraint. The cost of data
movement in both power and performance is larger than the cost of the arithmetic, and may soon
be higher by orders of magnitude. High-speed interconnection networks and communication
mechanisms must cope with this size and complexity within a limited power envelope, which
may require streamlined, lower-dimensionality topologies. The increase in the depth of memory
hierarchies, including additional layers in the input/output (I/O) and storage subsystem design
via the likely addition of power-efficient, nonvolatile memories, leads to greater distances for
data to travel, as well as increased programming complexity. A further issue to overcome at
exascale will be the intrinsic limitation in reliability given the size and complexity of the
systems, which will require increased resiliency. There is no one-size-fits-all solution, and the
challenge ahead involves dealing with the combined reliability, power, and performance
requirements—and their tradeoffs—at all levels of the stack between the hardware and the
application. These tectonic shifts in computer architecture are anticipated to radically change the
programming model and software environment at all scales in future computing systems. The
designers of High-Performance Computing (HPC) hardware and software components have an
urgent need for a systematic methodology that reflects future design concerns and constraints.

At this juncture, when the HPC community, led by the U.S. Department of Energy (DOE), is
embarking on the path to exascale, hardware-software co-design was identified as a central
strategy to help address these challenges. Co-design is an iterative process, in which the goal is
to optimize both applications (algorithms and algorithmic implementations) and hardware in the
space defined by performance, power, reliability, and cost. An effective co-design process
requires the ability to accurately predict the performance and power consequence of any design
tradeoff in algorithms or hardware configuration. ModSim of the entire hardware-software (HW-
SW) stack plays an essential role in providing this predictive capability because it enables the
quantitative exploration of HPC system design tradeoffs.

The ModSim workshop was called to address the role of modeling and simulation as a set of
methodologies that can guide the optimal co-design of exascale systems and applications. The
ModSim workshop included several areas of emphasis for attendees, including:

• surveying the state of the art in ModSim technology

• identifying key areas of co-design, where ModSim can have a significant impact

• discussing the emerging architectural trends likely to materialize at exascale and ways to
capture those in models

• identifying research and development areas that require pointed and/or joint efforts

• engaging in in-depth technical discussions regarding increased accuracy, coverage, and
ModSim impacts

• exploring the technical community and its interactions with other topical or broader exascale
endeavors

• discussing the best ways of disseminating methodologies, tools, and software.

The workshop agenda also included a presentation on the exascale challenges [23],
presentations by leading experts in ModSim from DOE laboratories, academia, and industry, as
well as a focused panel discussion with industry, and several breakout discussions. Going
forward, a plan has been adopted to host annual ModSim workshops focused on identified
critical technologies.

3. Introduction

The goal of computational science research is to find ways for present or future computing
systems to address key national scientific missions in the most productive way. Productivity is a
combination of metrics that includes time-to-solution, cost (to install and operate computing
systems), accuracy of the results produced (both in terms of numerical precision and applicability
of the answer to the target scientific domain), and overall usability of the computing system.

Figure 1 shows a continuum of activities undertaken by the scientific community to connect
the nation’s overall needs to the computations that support them. Each box in the figure
notionally represents a different emphasis area and different HPC workflow scale. At the level of
scientific policy, it first is necessary to articulate key national missions, such as energy
independence or high economic productivity. These mission goals can be translated into concrete
scientific questions that need to be answered, such as understanding the details of combustion or
efficient information analysis and management for national security. The scientific questions
become computational problems that must be solved to provide an answer or enable these
activities. In turn, the computational problems need to be tackled via appropriate application,
machine, and programming model designs. Finally, the executing systems and applications must
be continuously monitored and optimized to deliver continued high performance in the face of
changing application needs.

ModSim research is a vital component of every aspect of computational science planning and
execution because it enables community leaders, individual system and application developers,
and users to predict the outcomes of complex decisions undertaken during the design,
implementation, and maintenance phases of developing an effective HPC ecosystem. In Figure 1,
ModSim’s widespread applicability is shown via red asterisks that indicate specific areas where
ModSim is applied. This capability is instrumental for enabling computational science and for
enabling HPC communities to design computing strategies, concrete systems, and applications
that provide a balance of productivity metrics and enable new breakthrough science that will
provide high value in a cost-effective manner.

Over time, the ModSim field has evolved advanced techniques and methodologies that have
greatly improved accuracy, applicability, and targeted uses for this technology. This community
is now well positioned to employ ModSim for a myriad of tasks related to system architecture,
system software, and applications. The growth in this capability is not only visible on the
technical front, but also through the existence of a significant talent pool, which is able and ready
to tackle challenging new problems. The available expertise is diverse and exists in “centers of
emphasis” at national laboratories, academia, and vendor research and development centers.

While ModSim has evolved this advanced capability, it will require significant investments
to focus the full force of the community on addressing the technology challenges of co-design
for exascale systems. Existing techniques are primarily applied to performance prediction, but
other crucial areas such as power and energy modeling are now emerging due to the anticipated
power constraints expected at exascale. Reliability modeling, confined mostly to statistical
analysis of faults, has evolved on a dimension orthogonal to performance and power. Much of
the performance and power analysis in HPC still is dominated by the use of simple heuristic
metrics, including efficiency, scalability, or “bytes/flop” that offer high-level information that
does not offer any actionable advice. This exemplifies why new investments are needed to create
more quantitative and diagnostic metrics: appropriate metrics and tools simply are not available
to segments of the community. In our empirical observation, we recognize that ModSim is used
“after the fact,” which bypasses an opportunity to impact design stages in a predictive fashion.
The limited role that ModSim currently plays relative to its potential impact on the co-design
process impresses the need for increased investment in both the methodology and modeling tools
for predictive modeling in earliest stages of HPC system and application design. With a few
notable exceptions, the small projects and groups that develop ModSim methods and tools lack
common interfaces and technical lingo due to uncoordinated and diffuse funding. There is a huge
opportunity for the ModSim Nexus to organize this community around exascale to bring the full
force of ModSim technology targeted at a common set of challenges. Section 4 of this report
presents a detailed description of the research field in ModSim.

The evolution of previous generations of HPC machines was fueled by device-scaling
behaviors that realized Moore’s Law. However, the end of Dennard’s scaling at the device level
also changed performance-scaling laws at the system level. In particular, the physics of
processing has fundamentally redefined the manner in which computation can be implemented
toward scale performance to exascale. Moore’s Law now leads to increasing power densities,
and performance scaling will be realized via scaling of energy efficiencies. The result is major
disruptions in hardware and software architectures and, consequently, a significant gap in our
current models of feasible exascale system solutions, making ModSim a critical component and
central for illuminating the path forward to exascale.

To achieve exascale, the community needs “ubiquitous modeling,” i.e., modeling at all stages
and levels. The anticipated adaptivity of exascale systems and applications will uncover new

boundaries that require tradeoffs to be negotiated, necessitating predictive ModSim methods.
New execution models may be in order, and modeling will be expected to anticipate the
advantages and disadvantages of new execution models before actual implementations are
completed. Tackling performance, power, and reliability as disjoint targets will be replaced by
simultaneous modeling and simulating. Adaptivity will require fundamental, new approaches to
modeling, or what we call “dynamic modeling.” New tools of the trade will need to be
developed, as well as ways to make these dynamic models “actionable” and embed them into
introspective runtimes or programming models. Significant new and focused investments are
necessary to accomplish these tasks and integrate these methodologies into ModSim tools with
broad use implications in all stages of the application and system life cycle, including research,
design, implementation, optimization, and maintenance. The ModSim research directions
necessary to respond to the exascale challenges are noted in Section 5.

ModSim has a multitude of potential applications for DOE, particularly within ASCR for
architecture, programming models, runtimes, application development support (Scientific
Discovery through Advanced Computing, or SciDAC), exascale application development
(Co-Design Centers), systems optimization, and applications, to name only a few. Based on our
assessment, exascale computing challenges require a focused investment strategy in ModSim,
which will provide coverage of the entire spectrum, lead to trusted methodologies and tools that
interoperate, and offer analysis and insight at various levels of accuracy and detail (as required
by its diverse user community). The outcome is a strengthened and diverse ModSim community
(government, academia, and vendors) that delivers on challenges posed to it in a cost-efficient
manner.

4. State of the Art

4.1 Modeling State of the Art

Given the complexity of supercomputing architectures, it is difficult to predict how fast an
application running on today’s petascale supercomputers will run on an exascale supercomputer
in the future. A thousand-fold increase in peak performance rarely translates to an identical
increase in application performance. Accurately extrapolating both performance and power from
one extreme-scale system to another is virtually impossible. However, the ability to predict
performance and power is important because it helps system architects determine how to address
various design tradeoffs, while computational scientists decide which supercomputer to port their
applications to. The goal of performance/power modeling is to gain understanding of an
extreme-scale system’s performance/power on various applications by measurement and
analysis, then to encapsulate these characteristics in a compact and possibly executable
formulation. The resulting model can be used to gain greater understanding of the
performance/power phenomena involved and to predict performance/power to other extreme-
scale system/application combinations. This section addresses modeling methodology, impact,
and gaps, primarily focusing on performance and power. We believe that performance/power
models support not only prediction but also insight and interpretation, and they are invaluable
tools for performance and power analysis and tradeoffs between the two.

4.1.1 Current Modeling Landscape

Most modeling methodologies focus on performance modeling, while fewer methodologies
focus on power and energy consumption modeling. This subsection describes current
performance/power modeling methodology.

Performance Modeling
Performance modeling is a methodology for accurately modeling large applications of

ultra-scale systems at different stages in their life cycle, from early design through production
use [1,2]. Models can be defined analytically, through code execution measurements (actual or
simulated), source analysis, or a combination of these techniques. Modeling ease and accuracy is
dependent on the architecture characteristics (e.g., heterogeneity, multilevel parallelism, shared
resources, or speculative execution) and the type and granularity of measurements provided by
the architecture and software stack. Table 1 depicts some of the currently available modeling
approaches and a simplified view of the tradeoffs in terms of portability, maintainability, and
other attributes.

Table 1. Modeling Approaches Summary

Metric/Model Type Analytical/
Expert Source Analysis

Regression,
Machine
Learning

SW Simulation
(DES, MP, PN)

HW
Simulation

Portability (architecture) high medium low low low

Scalability (size, complexity of
codes) low medium low low low

Scalability (model eval. time) high medium high low low

Ease of Model Creation low medium low low medium

Maintainability low high low low medium

Transferability low high high high high

The following are some of the existing modeling approaches used in high-performance
scientific computing:

Analytical or Quasi-Analytical Methods
With this method, models are constructed from capturing analytically (i.e., in a computer

program, a set of mathematical formulas, or statistically) the salient performance feature of an
application code running on a system. Examples of analytical methods and tools include the suite
developed by Performance and Architecture Lab (PAL, first at Los Alamos, currently at PNNL)
[3,4,5,6], ASPEN (Abstract Scalable Performance Engineering Notation, developed at Oak
Ridge National Laboratory) [7], PMaC (University of California San Diego/San Diego
Supercomputer Center), and APEX-MAP. As illustrated in Table 1, this variety of
methodologies allows a different degree of insight depending on the level of information
captured by the model. For example, a “model” based on curve fitting could lead to
understanding various performance trends for a system, but it offers limited insight as no

fundamental performance issue is captured with this method. In this category, model generation
is done using a variety of means, although a main thrust of current research involves
semiautomatic model generation. Analytical models are parameterized in terms of app and
architecture “knobs.” Here, the spectrum of possible model accuracy depends on the model’s
specific use, ranging from highly accurate (5% average for the PAL models) to coarse level—
basically, evaluation of global metrics, such as locality or concurrency.

Trace-based Modeling
Trace-based simulation techniques have found widespread use as a means of avoiding the

computational burden of cycle-level multicore architecture simulation. Traces of application
behaviors are generated and used to drive simulation models at various levels of fidelity. Events
that are traced may range from low-level, such as instruction execution, memory accesses, and
packet injections, to higher-level events, such as runtime activities, e.g., message send/receive,
interactions with accelerators, and disk accesses. Typically, a trace is a partial order of temporal
events that reflect one feasible sequence of events in an applications execution. However,
rigorous statistical formulations of trace-gathering methodologies can support a robust analysis
of system behaviors of interest through appropriate sampling of application behaviors. Once time
is invested in acquiring traces, the simulations themselves can be orders of magnitude faster. The
hierarchical organization of traces can further improve the speed of simulation, as well as extend
the scope of experiments that are feasible with a given set of traces. Acquiring traces also can be
a challenge, necessitating access to hardware instrumentation or detailed (and time-consuming)
validated cycle-level models.

Queuing Models
For decades, Markov chains, queuing networks, and Petri nets have been used for computer

systems performance and reliability and are representatives of state-space modeling approaches.
A Markov chain consists of both a set of states and a set of labeled transitions between states
representing the system being studied. While these approaches are popular in academia and
industry (e.g., in network modeling), these approaches have not been applied extensively to
high-performance parallel scientific codes. Because evaluation of large state-space models is
expensive, these approaches are not practical in the context of DOE exascale systems and
applications.

Roofline Models
The roofline model can be used to bound performance or time-to-solution through

examination of potential data movement bottlenecks. These bottlenecks can include dynamic
random-access memory (DRAM) and cache bandwidths, as well as floating point or integer
throughputs. Typically, empirical benchmarks are used to parameterize a processor’s
microarchitectural characteristics. Conversely, manual analysis typically is used to characterize a
kernel’s locality and parallelism. Although current roofline formalism models performance, it
potentially could be used to model energy as well. Roofline-based performance modeling is not
designed to accurately predict the performance of a particular software implementation running
on a specific architecture. Rather, it is used to provide a performance bound based on idealized
implementations of architecture and software. Thus, it may be used as a guide for assessing the
quality of either and the need for further optimization.

Power Modeling
Estimating power and energy consumption is critical for software/hardware co-design of

future systems; however, obtaining the entire system’s power consumption, or that specific to
various subsystems such as the central processing unit (CPU) or memory is nontrivial. Currently,
power modeling is approached in one of two ways: 1) circuit designers use detailed models to
predict component design power under well-defined workloads, or 2) facilities managers use
“worst-case” steady-state models to adequately scale up power delivery resources for large-scale
systems. Both approaches are inadequate for understanding and predicting workload-dependent
power consumption characteristics of dynamic scientific workloads. Some work has been
conducted using models to optimize the power consumption of applications [8] and
communication libraries [9]. However, this isolated work is not well integrated with other
performance modeling efforts.

The lack of fine-grained and high-fidelity power measurement tools also hinders
development of application-specific power models that parallel the capabilities of
well-established performance modeling capabilities. The current state of the art in power
measurement capability is a high-frequency measurement capability at small system scales
and/or a coarse-grained measurement at large scales. At the small scale, power measurements are
obtained by intrusively inserting power measurement probes at key points on the power delivery
network specific to the main board and reading the outputs of these sensors on high-fidelity data
acquisition systems. Not only does this methodology not scale to large systems, but it requires
expertise and physical access to the system under consideration. The advantage of such an
approach is that with sufficient measurement frequency, it is possible to develop an
understanding of the correlation between software features and power consumption
characteristics. With newer processor architectures, such as the Intel® Sandy Bridge processor,
power counters are beginning to be included on the processor, analogous to hardware
performance counters that have been included in the past. While these are proving useful, it
should be noted that no hardware counters are currently available for direct measurement of
power consumption for components within the node that are not also part of the processor cores
themselves.

For large system scales, different approaches are required. The current state of the art is to
obtain outlet-level power measurements using external sensors that are placed between the power
receptacles and the nodes that compose the systems. While this scenario affords large-scale
power readings across a cluster, two drawbacks limit its usefulness. First, power readings are at a
node (or multi-node) level, so gaining an understanding of how components within the nodes use
power is not directly possible. Second, such external sensors have a low sampling frequency,
limiting the ability to correlate power measurements with software characteristics.

Resilience Modeling
In designing HPC systems, there are several reasons why failures are becoming an increasing

concern. Notably, the feature sizes of electronics are growing so small that wires are being
separated by a mere few atoms. Second, the increasing popularity of power-saving techniques
based on lower device operating voltages means that the signals within processors can become
easily corrupted by a range of ambient physical phenomena. Third, as the total number of
transistors in an HPC system’s processors, memories, and networks increases exponentially, the
probability that any one of them will fail rises. This makes it imperative to understand how
various types of failures affect both hardware and software.

Systems may be affected by different types of failures. Fail-stop faults remove some
component(s) from operation without warning and do not corrupt computational results. In
contrast, silent data corruptions cause invalid results to be produced but otherwise allow
execution to proceed unimpeded. This can cause the application to produce invalid output to
computational scientists. In addition, failures may occur uniformly throughout time and space or
may be correlated; for example, a hot processor has a higher probability of corrupting data, and
the failure of a power supply causes the fail-stop failures of multiple nodes.

Multiple approaches are available to quantify the vulnerability of computing systems to
failures. Fail-stop faults are analyzed by modeling them as being completely independent and
measuring the mean time between faults (MTBF) of any given component. The MTBFs of
individual components can be combined to compute the entire system’s MTBF, which is used to
configure various resilience techniques, such as setting the time between application checkpoints
to minimize total execution time. Unfortunately, it has been shown experimentally that failures
are not independent and, in fact, follow a Weibull distribution. This causes configurations based
on the naïve independent failure assumption to be suboptimal, a fact that becomes increasingly
critical as more components fail and the costs of checkpointing and global synchronization rise.
Naïve MTBF-based models also are not useful for analyzing the behavior of various resilience
algorithms, such as checkpoint coordination and resilience network protocols, which require
much more expensive simulations that account for the system details and protocol.

Silent data corruptions present a more formidable challenge because it is difficult to even
determine whether the application state is valid or corrupt. The traditional approach to analyzing
application vulnerability to such faults is fault injection, where a large number of representative
corruptions are injected into the application, and their effects on the outputs of individual
modules or the application as a whole are observed. The primary difficulty for fault injection
methodology is that while data corruptions are caused by low-level physical phenomena (e.g.,
neutron strikes or current instability), the prohibitive expense of modeling these phenomena
directly means these events are simulated at a high level as bit-flips in gate-level (e.g., latches),
microarchitectural (e.g., reorder buffer), or architectural (e.g., registers) states. The gain in
performance comes at a high cost in accuracy. Although various individual errors introduced by
this high-level abstraction have been documented, to date there are no studies that quantify the
overall error introduced. Furthermore, the many different skill sets required to perform such an
analysis means that it will not happen without dedicated investments in this area. Finally, despite
the increase in efficiency due to high-level fault injection, a large number of faults (thousands or
more) need to be injected to get sufficient accuracy. This limits the applicability of fault injection
to a few small-scale applications on a few restricted inputs. Thus, techniques must efficiently
apply fault injection to full-scale applications, such as developing modular injection
methodologies where fault injection studies on many individual components can be combined to
predict the vulnerability of the applications that include them.

4.1.2 Impact of Modeling

Performance modeling has an impact in all phases of application and system life cycle, from
enabling a rapid a quantitative exploration of a large design space, to system procurement, to the
maintenance and upgrade of both systems and large-scale applications. Performance models
allow researchers to quickly answer “what if” types of questions, test hypotheses that would
require significant investments to prototype, and quickly quantify the impact of new technologies

and architectures at the system level. Given a validated performance model, the impact in terms
of new system design performance can be tested in advance of implementation. This is a critical
capability, especially in addressing large-scale system design in which full-scale system
implementations are not possible prior to deployment. As we move toward exascale systems, the
cost in terms of hardware and facilities will prohibit full-scale prototype implementations.
Models provide the tools to explore the performance of expensive systems while affording a
detailed quantitative analysis.

Models are equally useful in exploring the application design space. Large-scale codes are
themselves complex examples of software engineering, and implementing substantive changes
often requires significant effort and expense. Models are able to provide crucial information
regarding the value of these changes in advance of prototypes and implementation, potentially
yielding a large benefit.

4.1.3 Gaps in Modeling State of the Art

The current state of the art in modeling methodologies was developed in response to the
architectures and application structures typically found in today’s HPC landscape. For some time
now, the complexities inherent in supercomputer architectures have meant that increases in peak
performance do not translate directly into improvements in application performance. Modeling
has served as an ideal tool for quantifying the performance impact expected from changes in
application and system architectures. However, as we move toward exascale, many of the
assumptions built into these methods will no longer hold true. Models and modeling
methodologies will need to adapt to an increasingly complex landscape. Furthermore, many of
today’s modeling methods were developed to focus on traditional processor performance, not to
support new technologies like entirely novel memory systems, high-throughput processors (such
as graphics processing units or GPUs), or advanced network interfaces with support for global
address space languages.

Models are critical tools in application/system co-design. As applications and systems evolve
simultaneously, models must be able to track ongoing complex changes and predict the impact of
developments in both software and hardware design. While today’s methods tend to focus on
application performance as the metric of concern, modeling methods must evolve to consider
performance, power consumption, and reliability in concert. While this represents a significant
step forward over today’s techniques, it is a requirement for future large-scale design as power
becomes a first-class concern, and system complexity continues to increase.

As mentioned, models are ideal tools for navigating a complex design space because they
allow for rapid evaluation and exploration of detailed “what if” questions. Nonetheless, the effort
required to create a model often is substantial and requires close collaboration of both modeling
and domain experts. As the complexity of application and target systems grows, this modeling
effort may become prohibitive. A vital component of model research involves lowering the
barrier to entry and easing the burden associated with model development. It is critical to
develop tools and techniques that will allow modeling capability to spread into the larger
computational science community, where it will have the greatest possible impact.

Finally, models today are static in their representation and often are used in a predictive
manner to quantify the impact of design decisions prior to implementation. A key characteristic
of future large-scale systems is adaptivity, or dynamic execution, and in this area, today’s models
are of little benefit. Models must evaluate application behavior within a dynamic execution

environment, ideally guiding and optimizing ongoing execution. This is likely to require the
model forms to change. Models will take direct measurements of ongoing execution as inputs
and provide output not to human researchers but to underlying runtime software able to act on a
model’s recommendations. A detailed discussion of these and other gaps and challenges are
discussed as critical technologies in Section 5.

4.2 Emulation and Simulation

4.2.1 Current Landscape

Current simulation tools operate over a diverse range of levels, methods, and scales. Most
architectural simulators address a single component of a system (e.g., DRAMSim models only
implement double data-rate [DDR] DRAM; SimpleScalar models only implement a single
processor core), although some simulators will model an entire system (e.g., BigSim; Structural
Simulation Toolkit (SST)/Macro). In addition, an architectural simulator also may provide some
modeling of a system’s physical characteristics, such as temperature (Hotspot), reliability
(RAMP), or power (McPAT) [24-26]

Simulation tools also use a range of methodologies. Device- and circuit-level simulations are
the most detailed, but they are slow and seldom used for architectural exploration. It is more
common to abstract away the low-level device characteristics and focus on the higher-level
subcomponents or behaviors of a system component. These more abstract structural or
behavioral models can blur the lines between simulation and modeling by using statistical
behavior or queuing theory models. Depending on the simulation method, simulators can explore
a single transistor to a multi-node system. Simulators themselves may be realized as software
artifacts (the most common) or as hardware implementations, most commonly using
field-programmable gate array (FPGA) technology [27-29].

Often, simulators will use functional emulators as front ends to provide an execute-at-fetch
simulation model. This provides for full-system (including the operating system) simulation
capabilities, as well as execution of stock binaries. However, they are quite slow and do not scale
well. Moving forward, a major challenge is development of emulation concepts that will permit
software analysis of exascale systems in parallel with hardware development. A second
challenge is being able to use such a capability as part of a comprehensive system-level co-
design methodology.

Field-programmable Gate Array/Hardware Accelerated
FPGAs are programmable hardware devices used to implement very fast emulators and

simulators. FPGA-based emulators or prototypes are implementations of the target system model
on FPGAs. This requires a complete hardware design of the target model that is typically
realized via the implementation of a register-transfer level (RTL) design. Porting RTL intended
for custom hardware to FPGAs can be challenging. For example, implementing a heavily
multiported register file in an FPGA that consists of lookup tables, registers, and dual-ported
static random-access memory (SRAM) can result in either an inefficient implementation that is
slow and takes up a large amount of FPGA resources or a redesign of the target. In addition,
emulators require full-target RTL. However, a working emulator is an especially fast and
accurate way to estimate target performance and develop and run software.

An alternative approach to FPGA-based emulation is FPGA-accelerated simulation. Rather
than a one-to-one mapping of the target model components onto an FPGA, an FPGA simulator

uses abstractions to accurately model the target—without all the costs. For example, if the
floating point operation can be done more simply, a fully pipelined floating point unit might be
modeled as a delay rather than requiring the floating point to be faithfully implemented on the
FPGA.

Many FPGA simulators are partitioned into a functional model that implements target
functionality, such as the ISA, and a timing model that models performance, power, etc. Some
FPGA-based simulators are timing directed, where the timing model directs components of the
functional model to execute at specific times. These simulators are very accurate, but they incur
significant communication between the functional model and the timing model, which requires
that they be implemented on the same FPGA. Other simulators are functional first, meaning the
functional model executes first without timing information. However, such simulators are
inherently inaccurate. Other FPGA simulators are speculative functional first, enabling
significant decoupling between the functional and timing models but providing the capability for
the timing model to correct the functional model, resulting in a highly accurate,
easier-to-implement simulator.

4.2.2 Frameworks

Frameworks for simulation and emulation are prevalent in the broader community (wireless
networks, material science, etc.). However, this is a relatively recent trend in the HPC simulation
community. ModSim has been dominated by mature but isolated point tools specific to
subsystems, such as cores, caches, interconnection networks, and I/O. Integration of these point
tools for system-level modeling has been difficult and time consuming and has inspired the need
for frameworks that can scale to large system sizes while integrating models of all subsystem
components.

In general, frameworks seek to model a complete system with well-defined infrastructure
components and interfaces. The desire to accommodate third-party tools and new functionalities
and to couple applications and architectures are common themes in their development. However,
pragmatic considerations require the ability to make specific tradeoffs between fidelity and scale.

BigSim is a simulation and emulation framework that emphasizes fidelity and scale at the
application end of the spectrum. The execution of large application codes on hundreds of
thousands of cores can be emulated on systems with tens of thousands of cores. The software
emulation can trace specific system behaviors, such as network packet communication, that drive
the BigSim simulator. The simulator is supported by post-mortem analysis and predictive models
that enable exploration of a wider architectural design space. System behaviors, e.g., at the
packet level, are modeled rather than cycle-level behaviors. A similar approach is taken by the
SST/Macro simulation framework. High-level application descriptions are used to drive
large-scale network models. A node of a large-scale parallel application is modeled with a
skeletal representation of the application—execution delays interspersed with communication
events. The network uses flow-based models to capture the cumulative behavior of these
communication events and generate a model of internode communication traffic and interactions.
Such models have been shown to scale to simulations of up to a million nodes.

The SST and Manifold frameworks represent approaches that support
application-architecture full-system simulation at high fidelity. First, common simulation
services, such as timing, event management, and synchronization, are extracted and implemented
in a parallel simulation kernel. The target system is modeled as a set of components that

communicate across well-defined event interfaces. Components can be invoked by events from
other components or may be advanced in a time-stepped fashion by a simulation kernel. In all
other respects, the components are independent. Simulation frameworks encourage sharing and
reuse of existing components. The system model can be partitioned across multiple logical
processes, each containing a simulation kernel that controls the local components. All simulation
kernels coordinate the global advancement of simulated time. This design decouples the
component implementation from the knowledge of parallel simulation, enhancing the model’s
scalability and portability. Individual components may be simple timing models, cycle-level
timing models, or emulated full-system models coupled to cycle-level timing models of cores,
networks, memory hierarchy, or I/O components. The challenge with these frameworks is the
ability to scale the models to a large number of nodes/cores when the associated timing models
are operating at the cycle level. This leads to novel virtual time synchronization algorithms that
attempt to use model-specific information to trade simulation accuracy for simulation speed in a
controllable manner.

4.2.3 Low-Level ComponentSimulators

Low-level simulation is required for detailed implementation, testing, and debugging of an
architecture. Unlike high-level architectural simulation, low-level simulation is focused on
producing a specific design in great detail, allowing implementation as an application-specific
integrated circuit (ASIC) or FPGA. The ModelSim tool, which is commonly used for FPGA or
ASIC design and verification, is one example of a low-level simulator. ModelSim can perform
gate- or register-transfer-level simulation of components written in a hardware description
language, such as Verilog, VHDL, SystemC, or SystemVerilog. The simulation output usually is
a waveform, mimicking an oscilloscope output, which allows the user to isolate individual
signals and memory values. Tools such as ModelSim are critical for the integrated circuit design
cycle, but are often complicated and difficult to use for wide-ranging design space exploration.

Other examples of component simulators operating at the microarchitecture level include
those for memory (e.g. DRAMSIM2), interconnection network (Garnet, IRIS), processor cores
and cache hierarchy (GEM5), and disks (disksim). Typically, instances of these components are
available at multiple levels of fidelity, but they are not easily integrated because they employ
individual mechanisms for time management and event handling. They are not necessarily
designed for ease of integration into system simulators or frameworks. In the area of end-to-end
storage systems, the CodeProject (http://www.codeproject.com/) has developed a collection of
models focused on the exploration and co-design of exascale storage systems by providing a
detailed, accurate, and highly parallel simulation toolkit for exascale storage that leverages the
ROSS massively parallel simulation engine. With this new toolkit, design options and tradeoffs
are being investigated with the goal of improving the reliability and performance at scale of
potential exascale storage architectures. To date, an end-to-end, application-level storage
simulation of a massively parallel storage system augmented with burst buffers in the form of
solid-state storage has demonstrated the performance and cost savings potential of deploying
burst-buffer storage in massively parallel storage systems. In addition, packet-level,
multimillion-node network topologies (torus and dragonfly) have been simulated using Blue
Gene/L, /P, and /Q supercomputer systems with up to 65,536 cores/message-passing interface
ranks.

http://www.codeproject.com

4.2.4 Physical/Technology

System designers want to explore a wide design space with various system components,
rapidly evaluate the feasibility of emerging technologies, and achieve cross-layer optimization.
Effective exploration requires understanding not only the system’s performance
(time-to-solution), but also the physical parameters of power, energy, reliability, and area/cost.
Detailed circuit-level and physics simulations (e.g., SPICE and other electronic design
automation, or EDA, tools) can be leveraged to extract the necessary parameters for system-level
simulations. These tools are accurate, but they incur laborious design efforts and long simulation
times. Estimating the impact of future technologies is another challenge. Existing tools do not
support new technologies, but system designers still need early evaluation of emerging
technologies.

Analytical modeling tools play an important role in both research and the early design phase.
These tools are reasonably accurate (recent tools have 10–15% error compared to EDA tools),
make it easy to compare different design parameters and styles, and fast. Hence, a wide design
space can be explored within a practical time, even with not-yet-available technologies. For
example, Cacti [10] estimates power, area, and timing of memory structures for computer
architecture research. It includes transistor, various cache, and wire models, as well as
optimization features. Initially, Cacti supported SRAM and DRAM caches. Recent releases
include advances in microarchitectural techniques, as well as emerging technologies: power
gating in large caches [11], three-dimensional-stacked memory with TSV (through silicon via)
[12], off-chip I/O [13], and emerging nonvolatile memory [14,15].

McPAT [16] is an integrated power, area, and timing modeling framework for chip
multiprocessors. McPAT models a multicore processor: components in cores (e.g., an instruction
fetch unit, a load-store unit, an execution unit, an out-of-order issue/dispatch unit, etc.), on-chip
routers and wires, on-chip caches, memory controllers, clocking, etc. With McPAT, designers
can easily explore a wide design space of many-core architectures, finding an optimum
configuration for a given objective (e.g., minimum energy-delay product or energy-delay-area
product).

Other analytical tools are available for different purposes: Orion [17] for modeling power in
on-chip networks, HotSpot [18] for thermal modeling, VARIUS [19] for process variation, and
VARIUS-NTV [20] for process variation in near-threshold voltage computing. Recently, tools
have been developed for integrated modeling of multiple physical phenomena [21].

4.2.5 Impact of Simulation

Simulation and emulation tools serve several constituencies. The first is the pool of
application and algorithm developers who will rely on these tools for exploring and developing
new algorithmic solutions and subsequently tuning these solutions for specific target architecture
configurations and characteristics. This community emphasizes the ability to accurately sweep
large machine parameter spaces and explore subtle—but performance and efficiency critical—
interactions between cores, the interconnection network, memory systems, and I/O devices. The
second constituency includes system researchers from industry, academia, and government. This
community emphasizes high fidelity in key subsystems and modeling the interactions between
subsystems, and pushes the envelope in terms of scale and detail. Their primary goal is
knowledge generation to drive future development and influence research and development

investments. The third constituency is the educators who will use this infrastructure in the
classroom in both undergraduate and graduate education. This community emphasizes
visualization, clarity, ease of use, and access and display of pedagogically significant behaviors,
such as synchronization behaviors and performance consequences of architectural decisions.
Rather than pushing the technological boundaries, they are interested in illuminating the state of
the practice. Finally, a fourth constituency is the procurement professionals whose acquisition
and procurement strategies are guided by the insights provided by the simulation and emulation
tools. The primary goal is to guide appropriate investments and specification of system
characteristics by using accurate projection of technology trends. Across these constituencies,
there may be many specific-use cases, including:

• architectural design studies involving broad system parameters, such as network topology
and computational density versus power, performance, and cost

• component implementation studies, such as network routing, cache implementation,
processor-in-memory, and processor-in-network

• assessing the impact of novel technologies, such as optics, stacked memory, and nonvolatile
random-access memory, or NVRAM

• exploration of optimal scheduling, mapping, and load balancing of large parallel applications
on varying architectures

• refactoring applications to use different programming models

• exploiting malleable component models to explore software/hardware co-design alternatives

• using instrumented models that provide richer observability than hardware or software
profiling for application characterization

• estimating the impact of components used in different market segments, e.g., using mobile
processors and memory in HPC and server domains

• hardware/software co-design

• development of physical environment models and their use in the exploration of tradeoffs
between power, energy, performance, and resilience

• exploration of power management techniques, especially comanagement of power between
hardware and software (application and/or runtime).

4.2.6 Gaps in the Simulation State of the Art

Many of the anticipated gaps in emulation and simulation are byproducts of the tradeoffs
typically made between fidelity and scale, and ease of implementation. Gaps include:

• Interoperability: There are few standardized techniques for integrating point tools and models
into cohesive system models. Consequently, there is little leveraging of significant prior
investments.

• Physical Environment: Coupled models of time-thermal-energy-reliability are critical as the
interactions between various physical phenomena and microarchitecture become visible and
can no longer be masked without major sacrifices in performance.

• Scale: The execution performance of the ModSim infrastructures themselves will have to
exhibit, at a minimum, weak scaling with model complexity to model systems of exascale
complexity.

• Co-design: Modeling and simulation tools and methodologies generally do not support
system-level co-design, yet they must to support exascale systems design. Much can be
learned from the embedded systems community in this regard.

• Interface-to-Design Flows: Investments in models and simulators currently stand alone with
little support for interacting with commercial modeling and design flows. Better interfaces
would enable valuable feedback and refinement, as well as provide an opportunity for
investments in tools to flow to hardware and software designs.

4.3 Overarching Issues

4.3.1 Validation and Verification

Uncertainty in modeling, simulation, and emulation for HPC can arise from a variety of
sources. Often, to protect industry advantage, implementation of a component is completely
unknown to the research community, and model construction either abstracts its characteristics
or approximates the behavior. Also, experimental data used for validation may contain some
amount of “noise” from the operating system, environment, or other jobs running on a shared
machine. In addition, the conglomeration of component models into larger simulations
introduces uncertainty through their interfaces and interaction.

Formal uncertainty quantification (UQ) methods provide a means for dealing with uncertain
parameters and data that feed into the models used in simulation and emulation. Forward
uncertainty propagation estimates the amount of error produced from a simulation given the
uncertainty inherent in its parameters, which is useful for gauging the accuracy of a simulation’s
output, especially in predictive experiments. Bias correction and parameter calibration are
validation time methods that attempt to correct imperfect models based on experimental data,
improving the simulation’s accuracy. However, these UQ techniques seldom are used in
computer science studies.

4.3.2 Data Repository

To support modeling and simulation, a repository of measured performance data will be one
key to success. This data could be used to assist in model building and validate/verify the model
built.

The performance data will be obtained through various methods in the system, both from
hardware and software. For example, hardware counters provide information about the events
occurring in the hardware, such as the number of cache misses. Application instrumentation
provides information about application behavior, such as the communication pattern.

Two major issues arise when working with performance data: 1) collecting the performance

data and 2) organizing/storing the performance data. Various tools and methods already exist to
collect performance data from various sources. As the scale of the system increases, the size and
variety of the performance data will be overwhelming. Minimizing overhead so that only
“interesting parts” of the performance data are collected/filtered and transferred will be the
challenge.

A standardized mechanism will be needed to efficiently organize, store, and retrieve the data.

4.3.3 Interoperability

For the most part, the wealth of simulators and simulation components exist in isolation from
each other. Many simulators focus on a single component of the system (e.g., memory) and may
not connect to simulators that model the rest of the computer. Although most performance
simulators are based around a discrete-event model, there are no commonly accepted standards
to provide interoperability between simulators.

While it is technically feasible to construct common interfaces for simulation components,
simulator writers have not created such an interface due to nontechnical concerns, such as the
lack of long-term support for this type of infrastructure, fear of added complexity, and even a
“not-invented-here” syndrome. Without adequate input and a widespread base for a common
interface, it is seen as an unwanted imposition, such as the way the U.S. Department of Defense
mandate to use the Ada programming language was viewed by many programmers. However, if
an appropriate interface was agreed upon, it could have a positive transformative effect on the
simulation community, allowing greater reuse of components. There may be significant lessons
to be learned from the embedded and EDA ecosystem, where standardized file formats greatly
ease interoperability of many design tools.

4.3.4 Multi-scale

ModSim spans a range of time scales, from the sub-nanosecond for device simulation to days
or months for workload scheduling simulation, and levels of detail, from the RTL level to highly
abstract models. Simulation experiments must confront the tradeoff between detailed and precise
models that are very slow and more abstract fast models that may have lower precision.

A key research area is the ability to create mixed-resolution or multi-scale models that
combine detailed and abstracted models in the same simulation. Ideally, this would allow
experiments that use detailed models for the most critical portions of a system but rely on more
abstract models for peripheral portions.

Multi-scale modeling has some engineering challenges, but it also faces significant
methodological challenges. Large-scale computer systems have complex feedback paths. It is
unclear whether combining detailed and abstract models will ignore some of those feedback
paths and miss critical effects. For example, a detailed network model connected to a simplified
memory model may miss the contention between network traffic and processor memory requests
in the memory system. Without care and research, a multi-scale model may end up providing the
“worst of both worlds”—low precision and slow speed—rather than the “best” (high precision
and speed).

4.3.5 Software Engineering

While innovative technical approaches and methodologies often are the focus of simulation
and emulation efforts, simulation and emulation tools represent significant software engineering
efforts in their own right. To make tools and technologies accessible to the user community, a
substantial investment must be made in the development and maintenance of software that
embodies state-of-the-art techniques. Software development tools and processes, such as version
control systems, regression testing, code reviewing, and continuous integration, must be
instantiated and promulgated by dedicated staff because many community members do not have
a software development background. Furthermore, new methodologies developed as research
projects often are prototyped in one-off tools that are quickly abandoned. Additional effort is
required to incorporate new technologies into standard, stable, well-maintained community tools.
Because architectural exploration must build from previous work, it is critical that this
maintenance be a long-term, and not a one-off, integration effort.

Unlike other software tools, such as compilers or profilers, typical use cases often involve
“opening up” the source code and adding instrumentation, prototyping features such as new CPU
instructions, and extending or developing component models. Thus, users are exposed to both
internal and external interfaces and behaviors. This situation highlights the need for extensive
documentation—not only of each tool’s superficial features and options, but also its internal
structure and interfaces, organizing principles, and any assumptions underlying its models and
methods.

Open-source tools are ideal for fostering adoption and cooperation and lowering barriers to
entry. However, given the range of academic, government, and industry participants in this
sphere, licensing and intellectual property protection options should impose the fewest
mandatory restrictions while remaining flexible to encompass the widest range of usage models.
For example, core software should be released under a non-viral (e.g., BSD-like) license to
avoid constraints on industry usage, but frameworks should allow protection and controlled
sharing of proprietary models either via legal means, such as nondisclosure agreements, and/or
technical means, such as encryption.

4.3.6 Scalability

Ironically, architectural exploration for highly parallel, multicore machines usually is
performed with serial simulation tools. There are some notable exceptions (e.g., BigSim or SST).
However, even these simulators tend to parallelize at the simulated node level and leave the
internals of a node as a serial simulation. Some of the key issues in parallel architectural
simulation include:

• Component parallelization has been hampered by the tight coupling and frequent
communication between components on a node (e.g., frequent low-latency cache coherency
traffic between processor cores). Strategies to decompose the system more effectively are
needed.

• Determining the mechanics of parallel simulation presents many options. Most architectural
simulators use discrete-event simulation (DES), and there are many parallelization strategies
for DES. Using rollback, different communication strategies, and different look-ahead
strategies have been tried, but there is little consensus on which is best.

• Determining where time relaxation is possible is an open area. It is possible that some models
(e.g., thermal modeling) may not lose much accuracy if they run slightly out of sync with the
behavioral model.

• The effect of multi-resolution modeling on scaling and parallelization is unknown. However,
this problem has been addressed for a variety of multi-scale physical simulations (e.g.,
materials codes), and the architectural simulation community should be able to learn from
those experiences.

• Recasting parallel simulation as a data parallel execution model and using new accelerator
technologies, such as GPUs or vector extensions is another option. The ability to harness
these new devices will require innovative solutions to architecture modeling.

4.3.7 Machine Benchmarking and Data Capture

Because each ModSim component requires a distinct, but potentially similar, set of input
parameters to drive the modeling process, it is difficult (if not impossible) for hardware
architectures and system vendors to adequately provide all the required information. In many
cases, the data needed for these models has a degree of similarity, although not identicalness, to
other models or can be sufficiently synthesized from base metrics that can reduce the burden on
vendors or system benchmarks. Discussions with vendors and computer architecture researchers
indicate that much of this data is routinely stored as part of the ongoing assessment of machines
or hardware prototypes. By forming a more standard list of metrics and a standard approach for
their benchmarking, ModSim components can enjoy a greater degree of portability. Although not
all data can be captured to sufficiently drive every model, capturing at least a sufficient subset of
data could alleviate some of the pressure associated with benchmarking activities and make
performance data more broadly available to the research community.

Another potential research gap is the lack of a common set of micro-benchmarks that are
accepted by the research community as providing accurate information. If, as suggested herein,
an interoperable, common view of metrics is taken, an important research question arises as to
how these metrics will be taken from machines. These metrics will need to be available on a
variety of architectures and not be biased toward a single solution. Suggestions to address this
concern involve using existing established benchmark suites developed in previous programs as
a basis for further development with the possibility of adding further micro-benchmarks to obtain
metrics relevant specifically to simulators and analytic models.

4.3.8 Best Practice Validation Processes

Currently, validation processes performed during the development of performance models
are highly varied, leading to a lack of trust in reported results. In part, this is driven by a lack of
clarity in understanding how a successful validation activity may be conducted. Simply put, even
if simulators and performance models are highly successful in mapping application performance
trends toward exascale, it is vital that the community not only believes the reported results, but
also trusts the models’ abilities to track future trends. Therefore, a gap exists regarding how
performance model validation should be conducted and how it may be performed for
single-component studies and those involving multiple components, such as integrated

simulators, where each component may have a non-consistent error.

4.4 Associated Technologies

4.4.1 Proxy Applications

At the core of the Co-Design Center’s activities is a loop in which application codes,
represented by proxy applications (“apps”) that explore the breadth of algorithm space (including
programming models and other implementation choices) are co-optimized with the available
architecture designs concerning price, power, performance, and resilience within externally
imposed constraints. The proxy apps are a condensation of the “real” apps that capture the
broader workflow, but are built so that strategies such as data layout and solution algorithms can
be explored, and overlay aspects such as power management strategies.

That said, the generation of proxy apps, their maintenance, and their validation is nontrivial,
yet vital to the success of the co-design process. Specific challenges exist. First, how easily can
proxy apps be created from larger applications that represent the specific metrics of interest with
high fidelity? Second, how can proxy apps for future algorithms and apps that may not yet have a
large-scale application (from which to be derived) be generated? Ideally, a user could employ the
model to drive the design of the eventual application. Third, how can abstractions in the proxy
apps capture the language and runtime complexity of the real applications? Finally, how can
these proxy apps be created in a way that exploits specific architectural features across a diverse
set of possible architectures yet remain portable, valid, and useful?

4.4.2 Measurement Tools

Many versatile performance measurement tools currently are available, including both
open-source (PAPI, TAU, HPCToolkit, Scalasca, Pin, OpenSpeedshop) and proprietary (Cray’s
CrayPat, IBM’s HPM, Intel’s VTune) software. While this variety is beneficial for addressing
different measurement needs, such as sampling- and instrumentation-based approaches, profile
and trace generation, the differences among tool interfaces and the data formats they produce
make their use challenging. Some standards for both profile and trace data are emerging, but they
are not uniformly supported by tools. To enable the scalable and consistent collection of data
required for performance analysis, modeling, and improvement of large-scale parallel codes, the
following gaps must be addressed: 1) portable automation of the measurement process across
architectures; 2) the ability to analyze and create models in a tool-independent manner (e.g.,
either more widespread use of profile and trace data standards by tools or tools for converting
among representations); and 3) scalability of the data collection and analysis, especially for
tracing.

4.4.3 Model Language Tools

Aside from simulation, scientists often rely on analytical modeling because it provides a
flexible, fast estimate without the need for exact, low-level details of either the application
source code or architectural details. Examples of these analytical models include LogP, BSP, and
Roofline. Often, scientists are willing to accept the advantages of these models at the cost of
accuracy (compared to cycle-accurate simulation). However, the community lacks a common,
structured analytical modeling methodology that allows composable models to be created,

refined, exchanged, reused, and maintained for complex applications and architectures being
designed by large teams. In addition, the ModSim community currently does not have a
methodology that crystallizes these modeling approaches in a common, shareable toolkit for
developing and using these analytical models.

A structured, artifact-driven approach to analytical modeling would have several advantages
over traditional approaches. First, a common toolkit approach constrains models to fit a
specification, which enforces similar concepts across models and allows for automatic
correctness checks. Second, because models are written in a structure, the toolkit can provide
formal rules for modularity, so models are easily composed, reused, and extended. Third, as with
normal application development, this structured approach would promote collaboration between
application and computer scientists by allowing them to share and refine models using a common
set of concepts and tools. Some preliminary work in this area includes Python-based approaches
and the Aspen domain-specific language (DSL).

4.4.4 Testbeds

Testbeds and development access to target platforms are critically important to simulation
and modeling for many reasons, but ultimately they provide for verification and validation of
ModSim results. However, access to architectural testbeds for development and testing continues
to be a challenge. Most platforms are scattered throughout laboratory, academic, and vendor
locations. Typically, they have higher costs in terms of initial procurement and ongoing
maintenance. On another dimension, scalable testbeds are vitally important to verify and validate
ModSim results. Moreover, given the diversity of possible architectures at these early stages, the
community will need consistent and ongoing support for accessing, using, maintaining, and
exploring these devices.

On another front, certain platform characteristics may be useful in accelerating simulators or
other modeling tools. Clear examples include emulation via FPGAs. However, these specialized
platforms are not widely available, and they can require extensive access to the hardware and
system software, which is a user scenario that contrasts with traditional production computing
within DOE.

5 Critical Technologies of Modeling and Simulation

The development of many critical ModSim technologies is required to assure success of
future systems and applications that will function at exascale and beyond. As recognized by
previous activities and workshops, there will be a step change in future systems that will put
increased emphasis on software throughout the software stack that is needed to tackle issues of
data locality, concurrency increases, power constraints, overcoming faults, and systems and
applications adaptivity. In moving to exascale, this emphasis must address the change in the
principal determinants of performance scaling. If successful investments are made in ModSim
technologies now, they can be applied to explore systems and applications designs in advance of
implementation and follow through to assisting in dynamic optimizations during system and
application execution, providing a powerful environment that is designed and
performance-engineered to achieve the highest level of science from the expected hardware and
software available within the next decade.

The ModSim workshop identified several critical technologies to be addressed, including

methodology development, use, and value added to potential system and application outcomes.

5.1 Integrated ModSim for Energy, Performance, and Reliability

Both integrated modeling of multiple physical phenomena and the ability to capture the
impact on the architecture and applications are significant challenges. There is a critical need to
be able to: 1) model and understand the relationships between physical phenomena, such as
temperature, energy, power, and reliability, and their impact on devices; 2) derive the consequent
impact at the microarchitecture and system levels; and 3) determine how these can be controlled
to maximize system-level performance and power attributes. The ability to model performance,
power/energy, and reliability simultaneously is an important prerequisite to design and optimize
adaptive systems and applications for optimal performance under power and reliability
constraints. As the main target of the multi-objective optimization problem changes at exascale,
an integrated approach is needed to answer that challenge.

5.2 Develop New Interoperable Machine and Application Abstractions for Co-Design

There is general consensus that the methodology and tools for capturing, exchanging,
refining, and evaluating models of applications and architectures are insufficient for the co-
design process. Application developers need new abstract machine models that expose expected
hardware features (e.g., SIMD, lightweight cores, or specialized functional units) and
performance targets in terms of hierarchical parallelism, scale, data movement, computational
intensity, bandwidths, latencies, and storage capacities of possible exascale configurations.
Meanwhile, system architects require architecture-independent models of important applications
to identify, understand, and evaluate the resource requirements and sensitivities against their
proposed architectures. These abstractions can exist across the modeling, simulation, and
measurement infrastructures and serve as the common parlance for driving the co-design process
forward and facilitating collaboration, sharing, and refinement. In applications, for example,
these models may describe loop- and data-level parallelism for computation on subdomains,
including relatively simple approaches for specifying fine-grained parallelism that can be
translated into lightweight parallel implementations. These abstractions may have multiple
resolutions, depending on their target use, and range from specific implementations to general
descriptions (independent of programming models, languages, etc.).

5.3 Model Generation

The construction of performance models (e.g., manually, through machine learning
approaches) is a labor-intensive process, typically requiring “expert” involvement. This situation
precludes the widespread use of models, which must be easy to create and maintain without
incurring significant development overhead or requiring scarce expertise. Once created, models
are not exploited sufficiently because they tend to not evolve with changing implementations.
The performance research community has decades of experience and approaches for manual and
automated model creation, but, so far, no usable and scalable solution sufficiently addresses the
community’s needs. While much expertise exists in specific application cases, models still
typically are one-off exercises with limited long-term impact on the performance of the code
being modeled.

5.4 Dynamic Modeling

ModSim techniques need to become dynamic in that their predictive and optimization
capabilities must be available at runtime. This will require development of rapid evaluation
techniques as developing interfaces for incorporating models into the software stack. Thus far,
today’s methods have been limited to exemplars and proof of concept. For example, there are
many uses for dynamic modeling [22] facilitated by both the high accuracy and rapid execution
potential of models. Another example is the use of the predicted time to decide when to
checkpoint. That is, if the next cycle will exceed a predefined limit of accumulated time plus the
optimal checkpoint interval, then a checkpoint should be done before the next cycle.
Alternatively, the predicted time could be used to dynamically determine the number of cycles
for a particular execution. Different methods for the generation of dynamic models need to be
considered: for example, either being generated offline and incorporated into software that can
be rapidly executed or being generated online using observations from prior executions.
Dynamic models also can be used to verify the system’s health (i.e., are we getting the best,
expected performance at the highest energy efficiency?).

5.5 Model as an Actionable Tool

Intelligent decision making regarding the use of available resources within a large-scale
system can be facilitated by using dynamic models. There is a need for models to be
actionable—that is, to have the capability of reacting to the instantaneous state of the system,
(both hardware and software), and provide the necessary information to guide and optimize
system operation. Mechanisms for translating the knowledge and insights contained within a
dynamic model are needed that will achieve high performance and energy efficiency, as well as
the mitigation of faults during system execution via tools, policies, and application software
optimization.

Multi-objective
Actionable models will need to encompass performance, power, and reliability model

concerns and be able to advise runtime environments to optimize application operation. These
activities must be both scalable and low in overhead. An accurate picture of system state must be
created with minimal perturbation to both application performance and system power
consumption. The fundamental tradeoff is accuracy against overhead. Such a tradeoff must be
continually reevaluated during the execution of application tasks by comparing measured reality
against modeled predictions.

Resiliency
Models that can assist in mitigating faults during system execution also must be developed.

Such resiliency will be incorporated into the system hardware and execution environment and
even affect the way applications are expressed. However, this will come at a cost, impacting both
performance and power usage. Models can be used to explore the impact of resiliency techniques
in an application-specific way and assist dynamically in mitigating the effects of faults when
they occur.

Introspective Runtime Systems
Actionable models need to be developed that will assist in intelligent and informed decision

making within the runtime system, enabling dynamic optimization of power consumption,
performance, and reliability concerns regarding the available resources. Runtime software
employed to manage execution at exascale can benefit from using quantitative and predictive
models that capture behavioral knowledge to make intelligent decisions, e.g., when considering
data movement, data replication, and computation migration, and will employ tools provided by
the hardware to route power to where it can be most effectively used.

5.6 Integration of Methodologies

There is no one single ModSim approach capable of undertaking all in-demand predictive
analyses. Rather, a set of tools is required where each component has specific and defined roles
and usages. At the coarsest level, techniques can be separated into modeling, simulation, and
emulation categories, and synergies between the combinations of approaches can be achieved.
There is a critical need for development of an interface sufficient to enable simulation
components or analytic models to be easily reused and integrated. In an ideal scenario, models of
machine components or applications would be effortlessly reusable through a specified interface,
allowing input parameters and output predictions to be shared. The benefit of such an approach is
that components can be developed in isolation, aggressively tested, and validated, then reused by
the community, reducing model development time while providing increased accuracy through
method integration.

Multiple Methodologies
Multiple levels of abstractions can be applied within ModSim. These result in different

granularities, representations, and evaluation methods and requirements (time-to-evaluation). For
example, in dynamic modeling, rapid evaluation is required to inform and guide runtime
optimization, requiring almost instantaneous evaluation, whereas DES may require large
computational resources to simulate a limited time window of the execution of an exascale
application on an exascale system. There is a need to establish suitable abstractions that can be
used by and optimized with ModSim.

Common Interfaces
A set of interfaces must be developed that allows ModSim components to share a common

infrastructure, including aspects such as time progression mechanisms (e.g., in discrete-event
generation), parameter sharing, component querying for internal data, and interfaces to dynamic
models. Through standardization and gradual refinements, a robust set of interfaces have allowed
parallel applications considerable portability across successive generations of architectures. A
similar approach to interfaces between simulation components has the potential to enable
genuinely portable components between models, as well as component longevity, because the
components can be updated and refined independently.

Component Integration
Development of a set of interfaces allowing for multiple methods to work in unison, share

input parameters, and perform cross-model analysis and comparison is another necessity.
Potentially, hybrid models will permit higher-fidelity models to be evaluated in shorter time

frames, where accurate analytic models can be queried in place of expensive simulation.
Similarly, analytic models will benefit from the ability to query simulation components for
predictions of complex behaviors, such as network congestion.

5.7 Life Cycle Coverage

There is a critical need for ModSim technologies to cover and be coherent across all life
cycle phases, from design space exploration and analysis of early implementation to deployment
and run-time optimizations, as well as to cover both hardware and software.

Design Space
Potentially, there is a large payoff if systems and applications are co-designed. Multiple

boundaries exist with associated tradeoffs that can be captured via ModSim. The co-design space
for exascale applications and systems includes boundaries such as system-to-application
execution models, programming models for applications, architecture and runtime system, etc.
They also need to consider performance, power, and reliability in unison. In addition, the tools
must capture increased architectural complexity, which may include configurable caches;
reduced cache coherence and relaxed memory consistency; a higher number of non-uniform
memory architecture, or NUMA, domains; potentially novel threading models; and, above all,
drastically increased heterogeneity through accelerators use. In addition, new interconnect
technologies are expected. On the application side, ModSim can explore algorithmic designs and
optimize them in the architectural space context. This process is most beneficial if undertaken in
advance of implementations and used to guide future implementations.

Procurement
Modeling can be actively employed throughout the procurement process for exascale

systems. This activity includes quantifying the impact of various technologies on application
performance and culminates in ranking various potential designs and bids. From a performance
standpoint, this type of process has been successfully followed in the procurement of many
current petascale systems.

System Deployment
Modeling can be used as a diagnostic tool to examine the performance delivered by exascale

systems, as well as for DOE applications of interest to see whether they are within acceptable
bounds of the expected performance and, if not, to explain the reasons why.

Runtime Optimization
Dynamic models that are actionable at runtime can form the core of future intelligent

introspective runtime systems that will monitor, mitigate and manage the system behavior for
performance optimization within power and reliability envelopes. Modeling is an ideal vehicle
for these activities given their rapid execution and accurate predictive qualities.

5.8 Standards, Integration, and Interoperability of ModSim Methodologies and Tools

One of the most pressing problems with state-of-the-art application performance ModSim is
the interoperability of components and performance models. Along with component or model

interoperability, both forms of performance prediction are unable to integrate. In addition, there
is a lack of an adequate, commonly accepted process for validating the predictive nature of
models that port naturally to multiple simulation techniques or modeling approaches. This
situation is driven, in part, by the specialist nature of specific simulators or approaches to model
development that demand highly tailored processes. However, the effects of limited
interoperability and opportunities on integration are nontrivial and include: significant increases
in simulator development times as each component must have infrastructure developed
independently; longer model development times because benchmarking and performance data
cannot easily be reused between multiple model activities; and skepticism or lack of trust in
many modeling activities because they cannot be easily compared, contrasted, or reproduced by
other members of the computing community.

The issues outlined herein must be addressed if ModSim activities are to beneficially impact
exascale computing. Early adoption of portable simulation infrastructure and analytic models
will provide the greatest return value as many projects related to modeling for exascale machines
are in the earliest stages of development and are ideal to engage with this research effort and
benefit from its output. Interactions with vendors also indicate these issues are a concern within
the industry, particularly in the context of co-design activities where data sharing between
domain experts and computer architectures is vital. Without interoperable, best-practice-based,
validated models, ModSim risks becoming an expensive process whose actual development may
exceed a useful timeframe to beneficially impact exascale computing.

6 Summary of Critical Technologies

The workshop committee noted significant global progress in ModSim development, both in
appropriate methodologies and in its use for a variety of design, analysis, optimization, and other
activities. While this progress is real and significant, many important and substantial gaps were
identified in the current state of the art, as well as in the areas where ModSim will be central
toward blazing the path to exascale.

In summary, these observations focused on the following:

• development of ModSim capabilities that cover the entire spectrum of scales, from cycle
accurate to global metrics

o There is no one single modeling and simulation approach capable of undertaking
all predictive analyses demanded of it. Rather, a set of tools is required where
each component has specific and defined roles and usages. The benefit of this
approach is that components can be developed in isolation, aggressively tested,
validated, and then reused by the community, reducing model development time
and affording increased accuracy through integration.

• need for standards interoperability of ModSim methodologies and tools

o One of the most pressing problems with state-of-the-art application performance
ModSim is the interoperability of components and performance models. Without
interoperable, best-practice-based, validated models, ModSim risks becoming an
expensive, time-prohibitive process with little or no impact on exascale
computing.

• extension of ModSim to integrate power, reliability, and performance

o The challenge involves both integrated modeling of multiple physical phenomena
and the models’ abilities to capture the impact on architecture and applications.
As the primary target of the multi-objective optimization problem changes at
exascale, an integrated approach is needed to answer that challenge.

• methodology development for the emerging dynamic modeling area

o ModSim techniques need to become dynamic, i.e., their predictive and
optimization capabilities must be available at runtime. This requires development
of rapid evaluation techniques as developing interfaces for incorporating models
into the layers within the software stack.

• development of modeling methods that allow the model to be actionable, for example, in
guiding introspective runtimes

o Intelligent decision making regarding the use of available resources within a
large-scale system can be facilitated by dynamic models. There is a need for
models to be actionable—to have the capability of reacting to the instantaneous
state of the system and provide the necessary information to guide and optimize
system operation.

• ModSim tools that can be used throughout the life cycle of systems and applications

o There is a critical need for ModSim technologies to cover and be coherent across
all phases of the life cycle and to address hardware and software.

• improved methods for model generation to accelerate use and dissemination of ModSim

o No matter what methodology is employed, performance model construction is an
effort-intensive process, typically requiring expert involvement. This situation
precludes the widespread use of models, which must be easy to create and
maintain without incurring significant development overhead or requiring scarce
expertise.

• closer interaction with the exascale architecture, programming models, Co-Design Centers,
and runtime communities

o Closer interaction with these varied communities could strengthen the central role
ModSim plays.

7 Recommendations and Path Forward

At the community level we decided to make every effort to unite as a like-minded group, and
ensure steady, high-bandwidth, open dialogue on a continuous basis. The workshop’s success set
the course toward that goal. As part of our path forward, we recommend holding annual ModSim
events. At Bill Harrod’s (ASCR) suggestion, the intent is to focus each future workshop along
the lines of the critical technologies for ModSim identified and described herein. The goals of

each event would be to foster in-depth discussions of the various critical technologies that could
accelerate ModSim’s progress; chart the path forward for the technical community for the
upcoming year; synchronize activities across a myriad of projects; make sure that progress is on
track; enable ASCR, as well as other funding agencies cosponsoring the event, an opportunity to
assess progress and identify synergies within their own portfolios; and showcase important
breakthroughs (as appropriate).

Given ModSim’s criticality at this time, its increased role in exascale activities, and the
interest from the multiple communities it serves, focused, new funding for the critical
technologies identified is a significant recommendation resulting from this workshop. This can
be best achieved through a specialized Request for Proposals, allowing ASCR to coordinate and
motivate these future activities. The concern is that the status quo in the current funding model
would lead to further fragmentation, inhibit efforts to solve the conspicuous gaps, and otherwise
inadequately address the community’s future needs in the ModSim arena.

8 Bibliography

[1] D. J. Kerbyson, A. Vishnu, K. J. Barker, A. Hoisie, “Co-design Challenges for Exascale
Systems: Performance, Power, and Reliability”, IEEE Computer 44(11):37-43, Nov. 2011.

[2] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, J. C. Sancho, “Using
Performance Modeling to Design Large-Scale Systems”, IEEE Computer 42(11): 42-49, Nov.
2009.

[3] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, J. C. Sancho, “Entering
the Petaflop Era: The Architecture and Performance of Roadrunner”, In Proc. IEEE/ACM
SC’08, Austin, TX, Nov. 2008.

[4] D. J. Kerbyson, A. Hoisie, “Analysis of Wavefront Algorithms on Large-Scale Two-Level
Heterogeneous Processing Systms”, In Proc. Workshop on Unique Chips and Systems (UCAS2),
IEEE Symposium on Performance Analysis of Systems and Software (ISPASS), Austin, TX,
March 2006.

[5] D. J. Kerbyson, K. J. Barker, “Modeling the Performance of Direct Numerical Simulation on
Parallel Systems”, Parallel Processing Letters 21(3): 275-277, 2011.

[6] D. J. Kerbyson, P. W. Jones, “A Performance Model of the Parallel Ocean Program”,
International Journal of High Performance Parallel Computing Applications (IJHPCA) 19(3):
261-276, 2005.

[7] K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance
Modeling,” in SC12: ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis, 2012

[8] D. J. Kerbyson, A. Vishnu, K. J. Barker, “Energy Templates: Exploiting Application
Information to Save Energy”, IEEE Cluster, Sept. 2011.

[9] A. Vishnu, S. Song, A. Marquez, K. J. Barker, D. J. Kerbyson, P. Balaji, “Designing Energy
Efficient Communication Runtime Systems: A View from PGAS Models”, Special Issue on
Green Computing and Communications, Journal of Supercomputing, 2011.

[10] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0. Technical report,
HP Labs., Apr. 2009.

[11] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P: Architecture-level
modeling for SRAM-based structures with advanced leakage reduction techniques. In Proc. the
IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD), Nov. 2011.

[12] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-
3DD: Architecture-level modeling for 3D die-stacked DRAM main memory. In Proc. the Design

Automation and Test in Europe (DATE), Mar. 2012.

[13] N. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas. CACTI-IO: CACTI with off-
chip power-area-timing models. In T. B. D.

[14] X. Dong, N. Jouppi, and Y. Xie. PCRAMSim: System-level performance, energy, and area
modeling for phase-change RAM. In Proc. the Intl Conf. Computer-Aided Design (ICCAD),
Nov. 2009.

[15] C. Xu, X. Dong, N. Jouppi, and Y. Xie. Design implications of memristor-based RRAM
cross-point structures. In Proc. the Design, Automation, and Test in Europe (DATE), Mar. 2011.

[16] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT:
An integrated power, area, and timing modeling framework for multicore and manycore archi-
tectures. In Proc. the 42nd Ann. IEEE/ACM Int’l Symp Microarchitecture (MICRO), Dec. 2009.

[17] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A fast and accurate NoC power
and area model for early-stage design space exploration. In Proc. the Design, Automation, and
Test in Europe (DATE), Apr. 2009.

[18] W. Huang, M. Stan, K. Skadron, K. Sankaranarayana, and S. Ghosh. HotSpot: A compact
thermal modeling method for CMOS VLSI systems. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(5):501–513, May 2006.

[19] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. VARIUS:
A model of process variation and resulting timing errors for microarchitects. IEEE Transactions
on Semiconductor Manufacturing, 21(1):3–13, Feb. 2008.

[20] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torellas. VARIUS-NTV: A
microarchitectural model to capture the increased sensitivity of many cores to process variation
at near-threshold voltages. In Proc. the Intl Conf. Dependable Systems and Networks (DSN),
Jun. 2012.

[21] W. J. Song, M. Cho, S. Yalamanchili, S. Mukhopadhyay, and A. F. Rodrigues “Energy
Introspector: Simulation Infrastructure for Power, Temperature, and Reliability Modeling in
Manycore Processors,” SRC TECHCON, Sept. 2011.

[22] M. M. Mathis, D. J. Kerbyson, “Dynamic Performance Modeling of an Adaptive Mesh
Application”, In Proc. Workshop on System Management Tools for Large-Scale Parallel
Systems (SMTPS) International Parallel and Distributed Processing Symposium (IPDPS), 2006.

[23] W. Harrod and S. R. Sachs. Introduction to the ASCR Exascale programming challenges
work- shop. Presentation given at DOE 2011 Workshop on Exascale Programming Challenges,
July 2011.

[24] W. J. Song, S. Mukhopadhyay, A. Rodrigues and S. Yalamanchili, “Instruction-Based
Energy Estimation Methodology for Asymmetric Manycore Processor Simulations,” IEEE/ICST
International Conference on Simulation Tools and Techniques, March 2012.

[25] M. Cho, W. Song, S. Yalamanchili, and S. Mukhopadhyay, “Modeling of the Thermal Field
of Many-Core System using Frequency Domain System Identification,” SRC TECHCON, Sept.
2011.

[26] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Reliability Implications of Power and
Thermal Constrained Operation of Asymmetric Multicore Processors,” Dark Silicon Workshop,
June 2012.

[27] M. Cho, W. Song, S. Yalamanchili, and S. Mukhopadhyay, “Thermal System Identification
(TSI): A Methodology for Post-silicon Characterization and Prediction of the Transient Thermal
Field in Multicore Chips,” IEEE Symposium on Thermal Measurement, Modeling, and
Management, March 2012.

[28] M. Cho, N. Sathe, M. Gupta, S. Kumar, S. Yalamanchili, and S. Mukhopadhyay, “Proactive
Power Migration to Reduce Maximum Value and Spatiotemporal Non-uniformity of On-chip
Temperature Distribution in Homogeneous Many-Core Processors,” Proceedings of the 26th
IEEE Annual Thermal Measurement, Modeling and Management Symposium, 2010.

[29] C. Kersey, A. Rodrigues, and S. Yalamanchili, “A Universal Parallel Front-End for
Execution-Driven Microarchitecture Simulation,” HIPEAC Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, January 2012.

Appendix. Workshop Agenda and Participant List

Workshop Agenda

Thursday, August 9th, 2012

07:00-08:00 a.m. Registration, Welcome

Introduction to the Modeling and Simulation08:00-08:05 a.m. Workshop

08:05-08:20 a.m. Extreme Scale Architectural Issues

08:20-08:30 a.m. Extreme Scale Software Issues

08:30-09:00 a.m. Application Modeling and Simulation

Drivers for Modeling and Simulation Session

09:00-09:30 a.m. Architecture / Systems

09:30-10:00 a.m. Applications / Algorithms

10:00-10:30 a.m. Breakout Session

State-of-the-Art Session

10:30-11:00 a.m. Modeling

11:00-11:30 a.m. Simulation

Emulation, Testbeds, V&V, Proxy, Apps,11:30-12:00 p.m. System Access

12:00-01:00 p.m. Working Lunch: Industry Panel

Gaps, New Directions, Priorities and Investment Discussions

Discussions of gaps in the ModSimS R&D01:00-03:00 p.m. Agenda

ASCR, Committee

Adolfy Hoisie

William Harrod

Sonia Sachs

Adolfy Hoisie

Sudhakar Yalamanchili

Jim Belak

Adolfy Hoisie

Arun Rodrigues

Jeff Vetter

All

All

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Main Room

Parallel Sessions, Preliminary Topics:

• Modeling and Simulation for Exascale Application Development and Optimization. Moderator: Bob Lucas
• Modeling and Simulation for Architecture Exploration. Moderator: Darren Kerbyson
• Modeling for Intelligent Runtime Systems, System Software. Moderator: John Shalf

03:00-03:30 p.m. Breakout Session

03:30-04:30 p.m. Plenary: Discussions of Priorities, New
Directions All Main Room

04:30-05:00 p.m. Plenary: Recap / Goals / Homework for next
day All Main Room

Friday, August 10th, 2012

Recap of goals, brief summary of first day 07:00-08:30 a.m. and homework

Gaps, New Directions, Priorities and Investment, Continued

08:30-10:00 a.m. Refinement of priorities, new directions, etc.

10:00-10:30 a.m. Breakout Session

Prepare research plan (scale, roadmap,10:30-11:30 a.m. timeline)

11:30-12:00 p.m. Action Items, Wrap up

All Main Room

All Main Room

All Main Room

All Main Room

Participant List

NAME Affiliation
Sanjay Kale University of Illinois at Urbana Champaign
Keren Bergman Columbia University
Andrew Lumsdaine University of Indiana
Derek Chiou University of Texas Austin
Chris Carothers Rensselaer Polytechnic Institute
Sudhakar Yalamanchili Georgia Technology Institute
Krste Asanovic University of California at Berkeley
Luiz Ceze University of Washington
David Mountain Federal
Steve Reinhardt AMD
Shekhar Borkar Intel
Brad Beckmann AMD
Jim Khale IBM
Mike Parker NVIDIA
Jackie Chen Sandia National Laboratories
Kevin Barker Pacific Northwest National Laboratory
Lenny Oliker Lawrence Berkeley National Laboratory
Jim Belak Lawrence Livermore National Laboratory
Greg Bronevetsky Lawrence Livermore National Laboratory
Joseph Manzano Pacific Northwest National Laboratory
Nathan Tallent Pacific Northwest National Laboratory
Nick Wright Lawrence Berkeley National Laboratory
Xingfu Wu Texas A&M University
Lizy John The University of Texas at Austin
Benjamin Lee Duke University
Gilbert Hendry Sandia National Laboratories
Doe-Hyun Yoon HP Laboratories
Erich Strohmaier Lawrence Berkeley National Laboratory
Simon Hammond Sandia National Laboratories
Thomas Sterling Indiana University
Boyana Norris Argonne National Laboratory
Christian Engelman Oak Ridge National Laboratory
Wilf Pinfold Intel
Dean Klein Micron
Kevin Lin Micron
Jim Sexton IBM
Jon Hiller DARPA
Ananta Tiwari San Diego Super Computer Center
Kalyan Kumaran Argonne National Laboratory
Alfred Park Oak Ridge National Laboratory

Abhinav Vishnu Pacific Northwest National Laboratory
Daniel Chavarria Pacific Northwest National Laboratory

Committee

Adolfy Hoisie Pacific Northwest National Laboratory
Darren Kerbyson Pacific Northwest National Laboratory
Robert Lucas University of Southern California
Arun Rodriques Sandia National Laboratories
John Shalf Lawrence Berkeley National Laboratory
Jeff Vetter Oak Ridge National Laboratory
William Harrod U.S. Department of Energy
Sonia R. Sachs U.S. Department of Energy

	Structure Bookmarks
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure

