
ASCR Machine Learning for Extreme Scale Computing Workshop Report

Machine Learning and Understanding
for Intelligent Extreme Scale Scientifc
Computing and Discovery

15-CS-1768

DOE Workshop Report
January 5-7, 2015
Rockville, MD

i

Machine Learning and Understanding
for Intelligent Extreme Scale Scientifc
Computing and Discovery

DOE Workshop Report
January 7–9, 2015
Rockville, MD

Workshop Organizing Committee

Michael Berry (Chair), University of Tennessee

Thomas E. Potok, Oak Ridge National Laboratory

Prasanna Balaprakash, Argonne National Laboratory

Hank Hoffmann, University of Chicago

Raju Vatsavai, North Carolina State University

Prabhat, Lawrence Berkeley National Laboratory

DOE ASCR Point of Contact

Robinson Pino

Cover: Machine learning techniques can be applied

to a wide range of DOE research areas, such as

automatically identifying weather phenomena

in massive simulation datasets..

ASCR Machine Learning for Extreme Scale Computing Workshop Report

1

2

2

4

4

Contents

1 Executive Summary 1

1.1 Self-Aware Operating and Runtime Systems

1.2 Machine Learning

1.3 Resilience and Trust

2 Acknowledgements 4

2.1 Self-Aware Operating and Runtime Systems

2.2 Deep Learning

2.3 Resilience and Trust

3 Introduction 4

3.1 Self-Aware Operating and Runtime Systems

3.2 Introduction to Machine Learning

3.3 Resilience and Trust

4 Motivating Science 10

4.1 DOE Science Drivers

4.2 Self-Aware Operating and Runtime Systems

4.3 Example of Future OS/R

5 Machine Learning 21

5.1 Machine Learning

5.2 Data Collection, Management and Integration

5.3 Metrics

5.4 Motivating Science from Topic 3

6 Challenges of Machine Understanding and Learning 25

6.1 Challenges of ML for Scientifc Discovery from Topic 2

6.2 Challenges of ML for High Performance Computing

6.3 Challenges at Exascale from Topic 3

6.4 Challenges for ML towards Resilience and Trust from Topic 3

7 Current and Future Research Directions 33

7.1 Research Directions in ML from Topic 2

7.2 Current and Future Research Directions from Topic 3

8 Interdependencies with Other Efforts 47

8.1 Interdependencies with Other Efforts from Topic 2

9 Interdependencies with Other Efforts from Topic 3 47

10 Common Themes, Findings, and Recommendations 48

10.1 Common Themes, Findings and Recommendations from Topic 2

10.2 Common Themes, Findings, and Recommendations from Topic 3

References

Appendix: Workshop Participants and Other Contributors

ASCR Machine Learning for Extreme Scale Computing Workshop Report

4

4

5

8

10

18

19

21

22

23

24

25

28

31

31

33

35

47

48

48

49

56

1 ASCR Machine Learning for Extreme Scale Computing Workshop Report

1 Executive Summary

1.1 Self-Aware Operating and Runtime
Systems

Large-scale parallel simulations and data analysis
drive scientifc discovery across many disciplines. To
drive larger and more detailed simulations, and deal
with larger data volumes, exascale machines capable
of 1018 operations per second are expected within
the next fve to ten years. However, the complexity of
developing and adapting modern simulation codes for
these architectures is increasing rapidly. Workloads
on exascale machines will be billion-way parallel.
Exploiting the full capability of the machine will
require carefully assigning application tasks to cores,
accelerators, deep memories, and other heterogeneous
compute resources, while simultaneously optimizing for
time to solution, data movement, power, and resilience.
Optimizations that improve performance on one
machine may slow down another. Worse, applications
themselves are dauntingly complex. Production
simulations comprise millions of lines of code and use
sophisticated, adaptive algorithms whose performance
is input-dependent. Complex workfows can couple
multi-physics simulation with data preprocessing and
post-processing modules.

Without wholesale change, this complexity will become

unmanageable, scientifc advancement will slow, and the cost of

new scientifc discoveries will increase dramatically. Currently,
human performance experts work with application
teams to tune their codes. Through painstaking effort,
repeated measurement, and manual parameter space
exploration, they can wring performance out of
benchmarks and simple codes. However, integrated
production codes have multiple physics modules
with distinct bottlenecks and scaling behaviors.
Simultaneously optimizing all of these components
together is too difficult even for performance experts,
and the most sophisticated simulations often run at
less than 10 percent of peak performance on today’s
machines. If current trends continue, achieving even 1 percent

of peak on an exascale machine may become an exceptional

accomplishment. Similarly, it takes many months for
vendors and system operators to stabilize new systems
and have them run in a reasonable regime. As system
complexity increases, time to full production will
continue to increase. The unexpected side-effects
of any software change result in increasing reluctance
to evolve platforms, hence increasingly slow evolution
of software.

For scientifc discovery to continue unabated, high
performance computing (HPC) optimization must be
done much faster than is possible with humans in the
loop. Exascale compute facilities must be self-aware, improving

themselves over time without human intervention. To handle
complexity at this scale, the system must accumulate
knowledge and act on it to tune performance, power,
and resilience parameters at runtime. Optimization
concerns must be separated from application logic to
hide complexity and allow computational scientists to
focus on producing new scientifc insights.

With this holistic approach,
the SAOSR will enable
performance portability to
any machine, while increasing
developer productivity and
speeding the advance of
science.

The Self-Aware Operating System/Runtime (SAOSR)
will provide the features needed to make exascale
optimization tractable, and to allow applications to
achieve high performance on any machine without
human intervention. The SAOSR will monitor itself,
leveraging machine learning techniques to increase
the rate of scientifc discovery over time. The SAOSR
will use learning techniques to understand expected
performance and to build models of data-dependent
adaptive codes. These models will be used to predict
performance and resource usage, and also to make
online optimization decisions. Most importantly, The
SAOSR will handle global decisions, optimizing across
coupled applications and operating system interfaces.
With this holistic approach, the SAOSR will enable performance

portability to any machine, while increasing developer

productivity and speeding the advance of science.

2 ASCR Machine Learning for Extreme Scale Computing Workshop Report

1.2 Machine Learning

The DOE charter includes broad support for scientifc
innovation in the areas critical to the US national
security and competitiveness. Progress in these areas
is predicated on the ability to conduct simulations and
computational experiments generating vast amounts
of data, and subsequently processing that data into
information. Signifcant DOE investments in state-
of-the-art experimental and computing facilities
have resulted in scientifc data being generated in
unprecedented volumes and velocities. Machine
learning techniques have proven to be invaluable
in the commercial world; and we believe that such
techniques can be an indispensable tool for extracting
insights from current and future scientifc datasets;
thereby enhancing scientifc productivity and
providing maximal science impact from existing DOE
investments.

Exascale-class systems will feature applications,
operating system and runtime frameworks running
at unprecedented concurrencies. At such scales,
human supervision and control of faults will become
impossible. Intelligent, dynamic, resilient runtime
systems that are capable of predicting, detecting
and recovering from faults will become the norm. We
believe that machine learning (ML) methods will play
a critical role in ushering in this new age of embedded
intelligence. Such augmented systems will perform
real-time allocation of power and other resources
consistent with user-defned constraints and priorities.
At the same time, it is important to design novel ML
algorithms, which extract the best performance of
many-core systems, while considering the pivotal
issues of reliability and data movement—the primary
impediments in designing exascale systems.

We believe that sustained long-term investment in the
feld of ML has the potential for a large payoff, both
in the short and long-term. Resulting advances, both
in the feld of machine learning, as well as science
domains, can potentially catalyze and revolutionize
new breakthroughs. We believe that the long-term
impact of these investments will beneft the DOE and
other federal and commercial organizations in the US.

1.3 Resilience and Trust

This report presents the case for a machine learning
research program to ensure that the scientifc integrity
and discovery from exascale computing and other DOE
user facilities is signifcantly enhanced by dramatically
improving the resiliency of scientifc data, applications,
software, and hardware systems, as well as the
trustworthiness of the scientifc results produced. We
believe this goal can be achieved by:

• Fault characterization: Characterize HPC faults
using existing and extended machine learning
techniques to analyze fault data that is produced
by HPC systems. This fault data will require fusing
disparate data from many different aspects of
the computer systems, including environmental,
hardware, software, and application performance.
This data is produced at very high volumes, in very
different time scales, and is currently not being
fused today. Machine learning will be used to
develop automated fault classifers based on this
fused fault data. We expect this to be an offline
process, where labeled and unlabeled fault data
is used to develop fault classifers. For example,
machine learning may show that when the
temperature of one part of the HPC system is more
than 3 degrees different from another part, there
will be increased I/O faults.

• In situ fault detection: Use classifer models developed
offline to detect faults and learn new patterns
in situ. There are several challenges with this
approach, one is gaining access to data that can
reasonably predict faults, which may require
dynamically enabling log information, another
challenge is the scale and speed which is required
to analyze the data, which will likely require some
means of high performance computing. If a fault is
detected, then processing needs to be very quickly
shifted to systems unaffected by the fault. This
requires near real-time classifcation of potential
faults, their locations, and the system affected, a
capability that does not exist today.

• Fault prediction: Predict faults before they actually
occur so that the system can be repaired or
faults avoided when running an application.
This will require machine learning algorithms
that can determine precursors of faults, similar
to the way certain medical tests can predict
the onset of diseases. Finding these precursors
requires capturing large volumes of data over a
long periods of time, and tracing back through
a fault to fnd early warning signs of problems.
Unsupervised machine learning methods combined
with time-frequency representations of the data,

such as wavelets, can be used to fnd common
patterns that occur before a fault. A model can
then be built to detect and act on these precursors
before a fault occurs.

• Trusted results: The frst three areas above focus on
creating an HPC environment that is resilient to
failure, which enables a scientist to have trust in
an application’s results. However, there will always
be a set of faults or combination of faults that do
not produce fault data, yet the resulting output of
an application is not correct. To ensure the output
of an application is producing accurate results,
the output of an application must be examined for
accuracy. This is quite a challenging task, given the
extremely large amounts of output data, the normal
variability associated with stochastic simulations,
and the computational expense of running these
models. There may be a handful of reference output
data from which to determine an accurate result.
Quite likely, sections of a single run may need
to be used as training data to determine normal
variability across a range of simulated parameters.
From this analysis, we will develop a measure of
trustworthiness based on the similarity of previous
or earlier results that needs to be reported back to
the domain scientist, so that he or she can assess the
trustworthiness of the results.

Expanding on this, the trustworthiness of this type
of output is not limited to exascale computing. Any
of the DOE user facilities that produces scientifc
data faces the potential of untrustworthy results for
a wide variety of reasons ranging from equipment
problem, to manual error, malicious intent, to even
sabotage. Machine learning algorithms can be
used to train on trustworthy data from a variety of
user facilities, and help provide scientists a better
understanding of the trustworthiness of their
results.

• Extensions to trust: Given the need to examine
scientifc output using machine learning methods,
the natural extension would be to help the
domain scientist understand more than just
the trustworthiness of the results. It would be
valuable to use machine learning methods to train
on interesting sections of output data, such as a
severe storm in a climate simulation, to see if these
methods can be used to detect similar phenomenon
with new output results. In this way, a scientist
can have the confdence that their scientifc data
havw been reviewed computationally, and the most
promising areas have been highlighted.

Such a program will help
ensure the scientifc integrity
of these results produced
from DOE user facilities
and help further scientifc
discovery from the wealth
of data produced at these
facilities.

In summary, given the volume and complexity of
data generated from DOE user facilities and exascale
computing, we believe than an ASCR ML program
focused on machine intelligence is needed to ensure
the resiliency and trust of scientists in simulation and
experimental results. Such a program will help ensure
the scientifc integrity of these results produced from
DOE user facilities and help further scientifc discovery
from the wealth of data produced at these facilities.

ASCR Machine Learning for Extreme Scale Computing Workshop Report 3

4 ASCR Machine Learning for Extreme Scale Computing Workshop Report

2 Acknowledgements

2.1 Self-Aware Operating and Runtime
Systems

We thank all the participants of the workshop for
submitting high quality abstracts that led to this
report. The self-aware operating and runtime systems
topic group would like to acknowledge Hank Hoffmann
(Univ. Chicago), Prasanna Balaprakash (ANL),
Dorian C. Arnold (Univ. New Mexico), Pete Beckman
(ANL), Marc Snir (ANL), Ron Brightwell (SNL),
Todd Gamblin (LLNL), Steven Hofmeyr (LBNL and
UCB), Una-May O’Reilly (MIT), Abhinav Sarje(LBNL),
and Stephen P. Crago (USC). Finally, we thank
Robinson Pino and Michael Berry for their feedback
throughout the workshop.

2.2 Deep Learning

We would like to thank Stefan Hau-Reige from
Lawrence Livermore National Laboratory for his
helpful discussion regarding the opportunities for
machine learning to revolutionize data analysis for
the Linear Coherent Light Source (LCLS) at SLAC.
Thanks also to SLAC and Kwei-Yu Chu for the LCLS
illustrations.

2.3 Resilience and Trust

The resiliency and trust topic group expresses gratitude
to the many contributors who have helped craft this
section of the report.

We thank Robinson Pino and Michael Berry for their
outstanding leadership of the machine learning
workshop, all the participants of the workshop who
helped broaden and shape our ideas, and to those who
helped write this report: Tom Potok (ORNL), Raju
Vatsavai (NCSU), Franck Cappello (ANL and UIUC),
Kurt B. Ferreira (SNL), Mahantesh Halappanavar
(PNNL), Ignacio Laguna (LLNL), Hoony Park (ORNL),
Arvind Ramanathan (ORNL), Arjun Shankar (ORNL),
Rangan Sukumar (ORNL), and Elizabeth Whitaker
(Georgia Tech).

3 Introduction

3.1 Self-Aware Operating and Runtime
Systems

Physical constraints are increasingly affecting
scientists’ interactions with HPC systems. Scientifc
researchers are no longer tasked with just maximizing
performance, but now must deal with maximizing
performance in the face of physical constraints. Scaling
to deep sub-micron transistors is increasing hardware
failure rates. Power consumption and heat dissipation
limit the hardware resources that can be brought to
bear at one time.Yet the increasing size of datasets
demands ever increasing compute performance. These
constraints create an environment where scientifc
application programmers must reason about not just
performance, but also power constraints and resilience
to hardware failures.

The problem is compounded due to the fact that
computer systems are increasingly complex, dynamic,
and highly nonlinear. The performance of an
application is infuenced by the interaction of many
different subsystems, each with its own feedback loops
and control mechanisms. These include instruction
scheduler, cache controller, memory controller, power
controller, task scheduler and memory manager at the
node level; and network routing and I/O services at the
global level. Application programmers have limited
knowledge on the behavior of these various subsystems,
and even vendors seem be unable to understand the
complex interactions between these subsystems.
Furthermore, their behavior changes dynamically in
response to temperature changes, faults, or changes in
the environment, in ways that cannot be anticipated.
Small changes (in temperature or in the behavior of a
code) can lead to large changes in performance.

5 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Application codes are also becoming more complex,
often involving the tight coupling of modules that were
developed independently. Even if the behavior of each
module is well understood, the emergent behavior of
the composed application may be hard to predict.

Even if the behavior of computer systems were
predictable, it would be unrealistic to expect
application developers working at exascale to be both
experts in their application domain and have the deep
systems knowledge required to maximize performance
under power and resilience constraints and react to
dynamic fuctuations.

Machine learning represents
a broad class of techniques
that can help provide well-
founded solutions to many of
these exascale challenges.

Instead, exascale systems should put more intelligence
in the operating system and runtime (OS/R) to help
alleviate the burden of programming these machines.
Smarter operating systems could take on the challenge
of constrained optimization, reacting to dynamic events
and providing guarantees.

The very nonlinear behavior of compute systems,
and the complexity of the interactions, limit the
applicability of classical control theory. Machine
learning represents a broad class of techniques that can
help provide well-founded solutions to many of these
exascale challenges. In this report, we detail some of
the ways in which ML techniques can address specifc
challenges of exascale OS/R.

3.2 Introduction to Machine Learning

3.2.1 What is Machine Learning?

Machine Learning

Supervised
Learning

Unsupervised
Learning

Semi-supervised
Learning

Reinforcement
Learning

Classification Clustering Low-density
Separation

Monte Carlo
Methods

Regression Dimensionality
Reduction

Graph-based
Methods

Temporal
Difference Methods

Figure 1. Landscape of Machine Learning approaches and tasks

Machine learning tasks are often grouped into several
broad categories, depending on the nature of the
data and information available to the algorithm.
One categorization is based on what information is
provided to the algorithm.

• In supervised learning, the algorithm is presented with
example inputs and “ground truth” outputs, and the
goal is to learn a general rule that maps inputs to
outputs.

• In unsupervised learning, the algorithm is presented
with example inputs with no “ground truth”
labels, and the goal is to fnd structure, e.g., hidden
patterns, in its input.

• In reinforcement learning, the algorithm interacts with
a dynamic environment, e.g., a robot interacting
on its environment, and the task is to perform a
certain goal, e.g., having the robot perform a given
task, without explicit information on how close the
algorithm has come to the goal.

Of course, there are many variants. For example,
between supervised and unsupervised learning there is
semi-supervised learning. Here, only a small fraction of
the inputs given to the algorithm are provided ground
truth labels. Another categorization of ML tasks
arises when one considers the desired output of an ML
algorithm. For example, a support vector machine is a
classifer that divides its input space into two regions,
separated by a linear boundary.

6 ASCR Machine Learning for Extreme Scale Computing Workshop Report

• In classifcation, the input data is divided into two or
more classes, with labels, and the machine learning
algorithm outputs a model that assigns unseen
inputs to one or more of these classes.

• In regression, the setup is similar except that the
outputs are continuous rather than discrete.

• In clustering, one is typically not given labels for the
input data, and the output consists of a grouping of
the data.

• In dimensionality reduction, one outputs a lower-
dimensional space that describes important
properties of the data.

Although machine learning grew out of the quest
for artifcial intelligence, its scope and potential
is much more general. For example, it has strong
connections with statistical modeling and data
analysis, and attempts to learn and apply concepts from
neuroscience, or neuromorphic computing. While many
view machine learning as focusing on prediction, based
on known properties learned from the training data,
related methods in data mining focus on the discovery
of previously unknown properties in the data. Similarly,
inference and learning are two extremely related topics
that are referred to differently by researchers with
different backgrounds.

While the methods depend on areas of computer
science and statistics out of which they grew (e.g., data
mining uses many machine learning methods, but often
with somewhat different goals in mind), many of these
techniques are tools that could be used by downstream
scientists in different ways, albeit in somewhat
modifed ways or with somewhat modifed objectives.
For example: quantitative prediction versus qualitative
understanding. Most ML methods are developed
for applications where one does not have a strong
understanding of the data, and thus the models have to
do more of the work, and the evaluation metric is
some sort of prediction task. This is very different than
using ML methods to obtain understanding of the
data, and in general there is a big tradeoff between the
two and the latter is probably more relevant for DOE
scientifc applications.

3.2.2 DOE-Relevant Challenges in Machine
Learning

In the exascale timeframe, scientifc progress will be
predicated on our ability to process vast, complex
datasets from extreme scale simulations, experiments
and observational facilities. Even at present, scientifc
data analysis is becoming a bottleneck in the discovery
process; we can only assume that the problem will
become intractable in a decade. At the moment,
scientists are often forced to create their own ad hoc
solutions where a lack of scalable analytic capabilities
means that there are large-scale experimental and
simulation results that cannot be fully and quickly
utilized. Moreover, the scientists lack dynamic insight
into their analyses, unable to modify the experiment
or simulation on the fy. In this section, we comment
on challenges that the DOE scientifc and research
community will face in the area of machine learning.

• New capabilities: Machine learning has a rich history,
and a successful track record in the commercial
world, but several challenges in DOE are unique
and require novel methods. DOE needs to develop
expertise in applying existing ML methods and
focus research capabilities to develop, extend and
customize methods and apply them successfully
to scientifc problems relevant to DOE. Some
of these problems are documented in Section 4.1
and Table 1.

• ML frameworks for HPC platforms: The feld of
computational modeling and simulation has made
major progress in the past decades due to robust
scientifc software architectures developed by DOE
(MPI, PETSc, Trilinos, etc.). Similarly, in order to
make major advances in machine learning, and data
analytics more broadly, we need to develop a robust,
production framework for deployment on DOE’s
extreme scale systems. The framework should
support DOE computer architectures, fle systems,
and data formats. Individual researchers and
developers can utilize the framework for deploying
their state-of-the-art research, and more effectively
utilize large scale computational resources across
the DOE complex.

• Usability and out-of-the-box learning: In order for
machine learning to have broad impact across the
DOE complex, it is imperative that the methods
work well out-of-the-box. In other words, we can’t
expect domain scientists and interested users
to become experts on various methods and how
parameters associated with methods might impact
the accuracy of the prediction. In order to address
this challenge, we will need machine learning
methods to incorporate meta-level heuristics

7 ASCR Machine Learning for Extreme Scale Computing Workshop Report

(such as cross-fold validation and auto-tuning)
to provide good performance.

• Scaling ML methods for exascale: In order to keep
pace with the increasing volume of scientifc big
data, novel scalable ML methods will need to
be developed and implemented. It is likely that
these implementations will run on portions of the
exascale hardware, where considerations such as
power consumption, cost of data movement across
the memory hierarchy and resilience will become
important to address. Current implementations are
largely ignorant of such considerations; we will
require ML research to be more closely connected
with the exascale programs.

3.2.3 NRC/NIST Big Data reports

Prior to delving into the details of science drivers
and resulting machine learning requirements unique
to DOE, it is important to acknowledge two major
efforts that have been conducted recently in the big
data analytics space: the NRC Frontiers in Massive
Data Analysis report [31] and the use cases gathered
by NIST [2, 106]. These cover industry, government, and
academic applications and illustrate many facets of big
data systems. While not exhaustively comprehensive,
these two studies give us a way to identify particular
challenges and the overall context in which they sit.

NRC studied in detail seven application areas: Earth
and planetary observations, astronomy, biological
and medical research, large numerical simulations,
social network analysis, national security (command
and control, cybersecurity, remote surveillance), and
telecommunications and networking (managing a
global network). NIST collected, at a fner granularity,
51 specifc big data use cases covering (partially)
the frst six of the NRC areas, as well as instruments
(particle sources, light sources), commercial (search,
commerce, fnance), government operations, science
and commodity sensors, and energy. Both studies
distilled general features with the NRC’s insightful
Seven Computational Giants of Massive Data Analysis
covering Basic Statistics, Generalized N-Body Problems,
Graph-Theoretic Computations, Linear Algebraic
Computations, Optimizations (e.g. Linear Programming),
Integration, Alignment Problems. Aspects highlighted
in Ogre analysis [51] of NIST use cases include
categories such as pleasingly parallel (26), MapReduce
(25), iterative MapReduce (23), graph (9), fusion (11),

streaming/dynamic data-driven application systems
(41), classifcation (30), search/query (12), collaborative
fltering (4), local machine learning (36), global machine
learning (23), workfow (51), geographic information
systems (16), simulation results (5), and agents (2). The
numbers in parentheses give an estimate of number of
the 51 use cases exhibiting different features.

3.2.4 Success and Limitations of Machine
Learning in the Commercial World

Machine learning is used extensively in the commercial
world, for instance, to improve targeted advertisements
(Google Ads), to predict user behavior (Twitter), to
develop improved recommendation systems (Netfix,
Amazon) and to suggest friends (Facebook/LinkedIn).
Typically, the success of machine learning in the
commercial world stems from the capability of
gathering and processing a large amount of data in
various forms in a timely manner. This has prompted
the development of big data analytics tools such
as Apache Hadoop MapReduce (Apache Big Data
Stack) and more recently Apache Spark (Berkeley
Data Analytics Stack). Also, many industry machine
learning applications have considered supervised
learning because they rely on data that mostly comes
from system logs or user activity logs, which can be
used to supply the label of each training sample in an
automatic way. Originally, many industry applications
of machine learning could be considered as data
mining, or describing/representing data, which is in
some sense a simpler task than inference.

An open research challenge
for the DOE machine
learning community is
whether common analytics
frameworks can be developed
that can be applicable to both
environments.

8 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Based upon the success in applying simpler data
analysis and machine learning algorithms for
relatively simple tasks, in recent years industry
has begun more aggressively attempting to
address more challenging tasks, e.g., fne-scale
user modeling, recognizing faces in pictures, real
time speech recognition, advertisement placement
and optimization, and automatically generating
descriptive captions in plain English for images.

Some leading examples include Microsoft research
on a deep learning system that demonstrated a top-1
result that classifes 22,000 categories of pictures at
29.8 percent of accuracy, (a random guess will result in
1⁄22,000 = 0.004 percent). They also demonstrated real-
time speech translation between Mandarin Chinese and
English [125]. Although this task involves relatively
long training time compared with other ML algorithms,
predicting a new instance based upon a trained model
can be done in a real time with a relatively small
amount of compute resources. For instance, the Siri
application uses a deep learning trained model, and
the voice recognition in the Google Android phone
also uses a deep learning trained model. A recent
study between Carnegie Mellon University and Google
showed that the software system for deep learning
can be exploited for other relatively computationally
intensive machine learning algorithms such as Latent
Dirichlet Allocation (LDA) for topic modeling. In this
particular application, the training of deep learning
requires thousands of CPU cores (Google, Microsoft
Research studies) or requires a few tens of GPUs,
for a few days. Industry researchers estimate that
a petafop-class system will be required in order to
complete training of deep learning networks within a
reasonable amount of time. Industry data centers are
throughput oriented, providing interactive response
to accommodate a large number of users. This is in
contrast to the performance-oriented nature of HPC
facilities run by DOE. An open research challenge
for the DOE machine learning community is whether
common analytics frameworks can be developed that
can be applicable to both environments.

3.3 Resilience and Trust

The current increase in speed of high performance
computers from petafops to exafops is not driven
by increases in processor speed, as it has been in the
past, but instead by the combination of processors.
The number of cores in an exascale computer will
easily be in the tens of millions, as will the other
components necessary to create such a large machine.
The science produced from simulation and analysis
on these machines will help guide worldwide climate
policy, provide new understanding in quantum and
astrophysics, provide breakthroughs in biology, and
new ways of analyzing massive data.

With the dramatic increase in the number of
components in an exascale computer comes a dramatic
increase in the potential amount of diagnostic data that
these computers will produce. In the past, this data had
been used to alert an operator to the failure of a given
component; however, with the volume and speed with
which fault data is produced, it will be impossible to
process it manually [36, 22].

The scientists using these computers expect them
to reliably run very large and complex applications
producing trustworthy results. Numerous studies
have shown this goal may be in jeopardy, as very
rare component-level faults may produce frequent
system-level faults as the number of components
within an HPC system dramatically increases. The
common methods of dealing with system faults, such
as restarting from a known good state (checkpoint
restart on fle system), or manual root cause analysis
to fnd the cause of faults may no longer be effective
or even doable at such scales and complexities. The
trustworthiness of results may be compromised due
to undetected or silent faults. Such faults give the
impression that the application completed without
issue, but with incorrect results, and potentially
incorrect scientifc interpretation. At best, this is an
unacceptable result for the scientifc community, at
worst; this can result in a misinterpretation of climate
projections or design faws in nuclear power systems.
Given the scale and complexity of the computers and
scientifc applications, determining a trustworthy result
is an open question.

9 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Trust

We defne trust as a relationship between two entities
and characterized by the confdence that an entity will
work according to expectations, and that if a task
is delegated to this entity, it will successfully perform
the task. Trust is involved in a situation in which
a system or agent is vulnerable or at risk based on the
actions of another entity upon which it depends
for a necessary service. We can represent components
of the scientifc computing process as entities,
including computation (or algorithms), users of these
computations, and the system that executes them. Trust
in an entity is context-dependent, that is the degree
of trustworthiness of an entity is dependent on what we
trust that agent to do. An entity’s trustworthiness may
be computed based on performance history on similar
tasks and its reputation based on information gathered
from other entities, as well as knowledge of the
characteristics of the entity.

Resilience

Resilience in HPC generally encompasses the
collections of techniques and mechanisms that allow
an application to complete despite the presence of
faults which may manifest as incorrect/lost execution
or system state. The faults and their associated errors
and failures are dealt with by a number of techniques,
including prevention, prediction, detection, diagnosis,
and recovery (correction, tolerance). Lastly, these faults
can occur at all levels of the HPC system, and thus
these mechanisms may exist in the hardware, frmware,
system/runtime levels, libraries, and application
software. Therefore, coordination is typically required
for effective and efficient resilience.

The ultimate goal of enabling ML for trust and
resilience of HPC systems is to support the scientifc
computing user. The intent is to increase the degree of
trustworthiness of the system to increase the quality
of the results. This quality of results is dependent upon
the trustworthiness of the entire HPC system and may
be enabled by using two complementary approaches.
First, we want to understand the trustworthiness of
components in an intelligent HPC environment to
enable the operating system to make dynamic, adaptive
decisions. This intelligent operating system may reason
about resource management, power usage, resource
needs, and costs, while monitoring and controlling

resources that can come from a variety of sources, for
example logs and/or sensor data. Second, we want to
use ML for verifcation of simulation data to ensure
expected properties are guaranteed. This verifcation
might be carried out through checking intermediate
results as the simulation progresses.

We further believe that the trustworthiness of results
highlighted in HPC systems are also found in other
DOE user facilities. The challenge of trusting the
results of large-scale experiments, may well be found
in sophisticated analysis of these results themselves.
Additionally, this analysis of results may be valuable
in helping scientists discover new phenomena within
their dataset that may have been otherwise missed with
manual methods.

We believe that machine
learning is a critical
technology that will further
the fourth paradigm of
modern scientifc discovery,
and complement and
support other models of
scientifc inquiry.

10 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4 Motivating Science

4.1 DOE Science Drivers

DOE supports the four fundamental paradigms
of scientifc discovery: we have made substantial
investments in theoretical research; a large number of
experimental facilities are shedding light on natural
phenomena from the subatomic to the astronomical
scale; computational modeling and simulation are
providing us with valuable insights into scientifc
phenomena and their impact on society; and fnally the
paradigm of data-driven discovery is taking root across
numerous domains.

We believe that machine learning is a critical
technology that will further the fourth paradigm of
modern scientifc discovery, and complement and
support other models of scientifc inquiry. In this
section, we elaborate on a few sample applications,
challenges, and the potential role of ML methods.

4.1.1 Pattern Classifcation for HPC
Climate Simulations

Modern petascale and future exascale platforms will
further the progress of computational science and
support fundamental breakthroughs in a broad array of
scientifc disciplines. As a leading example of the

Figure 2: Examples of extreme

weather phenomena observed

through satellite and radar.

Clockwise from bottom-left:

extra-tropical cyclone,

atmospheric river, derecho and

tropical cyclone events.

importance and success of computational modeling,
climate simulations provide us with an unprecedented
view of the state of the Earth’s present and potential
future climate under global warming. Climate modeling
faces a large number of fundamental challenges:
scaling applied mathematical techniques to operate at
kilometer-scale models, scaling code implementations
to run efficiently on exascale platforms, representing
improved physical and chemical processes both at the
sub-grid and global scales, and accounting for various
sources of uncertainty. Several of these challenges
are being addressed by various programs in DOE. For
the purpose of this report, we will comment on data
analysis challenges resulting from the massive datasets
generated by climate simulations.

Contemporary climate codes, such as CAM5 [3],
when run in 25-km spatial resolution with 6-hour data
multi-variate dumps, produce over 100TB from a
25-year integration period. The current CMIP-5 archive
[4], consisting of international contributions from a
number of climate modeling groups, consists of over
5PB of data; this dataset was mined extensively for the
IPCC AR5 report [5]. It is anticipated that CMIP-6
dataset [7] will cross the exabyte threshold with 25-km
model runs being the norm. Faced with this massive
deluge of complex, spatio-temporal data, it is inevitable
that the data analytics community will need to develop
sophisticated pattern detection tools which can extract
scientifcally meaningful information. One example of

11 ASCR Machine Learning for Extreme Scale Computing Workshop Report

the types of climate data analytics of societal relevance
is the characterization of extreme weather. Figure 2
illustrates the types of extreme weather observed in the
natural climate system. Phenomena such as cyclones
and atmospheric rivers can have widespread and long-
lasting impact on national economies. Understanding
how extreme weather will change as a result of future
climate changes is an important open question.

Figure 3: Pattern detection tools can help in quantifying and assessing

model performance. In this example, a highly scalable pattern detection

tool TECA [105] was applied to CAM5 simulation output (top) to

extract tropical cyclones tracks (bottom).

Climate codes are now able to reproduce the initiation
and development of such extreme weather phenomena.
The challenge is fnding the phenomena of interest in
petabytes of data! A limited class of extreme weather
phenomena (such as tropical cyclones, Figure 3) has
been studied extensively by meteorologists, and have
a procedural defnition which can be implemented
efficiently. However, a broad class of single events
(e.g., extra-tropical cyclones, derechos, weather fronts,
blocking events) and multiple interacting events (e.g.,
Hurricane Sandy system, teleconnections) do not have a
clear statistical or quantitative description.

We envision that ML techniques, which have been
highly successful in pattern detection of for computer
vision problems, can be adopted to fnd and localize
spatio-temporal phenomena in climate datasets. We

also note that climate model output is a surrogate for
a broad class of HPC simulation output. The need to
extract patterns in terabyte- or petabyte-sized datasets
is a fairly generic and cross-cutting requirement, and is
applicable to all major applied science programs with
an HPC component (e.g., combustion, astrophysics,
high-energy physics, plasma physics). Successful
demonstration of ML techniques to fnd known and
unknown patterns in climate simulations will go a long
way in the adoption of such methods by the broader
research community.

4.1.2 Regression and Clustering for
Material Science and Computational
Chemistry

Predicting the properties of new material/molecules.
Historically, the methods for discovering new
materials have been trial-and-error based. Signifcant
effort is now being invested into the development
of high-throughput approaches to quickly survey
and focus work on a smaller pool of candidates. The
Materials Genome Initiative, launched in 2011, strives
to create broad and open databases of materials data
generated both experimentally and computationally.
These databases [75] are being designed to support
data mining and to interface with workfow software
that will enable rapid prototyping of new materials in
silico. Thus the question “Can we predict the property
of a material that has never been synthesized?”
will remain important to supporting innovations in
materials research.

Using state-of-the-art frst-principle techniques (theory
of quantum mechanics), many material properties
can be approximated in silico, albeit at signifcant
computational expense. Even small molecules can
require hours to hundreds of hours of CPU time to
compute chemical properties using quantum chemistry
computational methods like density functional theory
(DFT). One promising avenue of research exploits a
database of already-calculated properties to substitute
inexpensive ML-generated predictions for expensive
frst-principles calculations for novel molecules [65, 96,
111]. In theory, as illustrated in Figure 4, predicting the
electronic properties of the billion possible molecules
containing 13 heavy atoms could be accelerated by 3–4
orders of magnitude by training a learning machine on
a small fraction of the database. While initial work

12 ASCR Machine Learning for Extreme Scale Computing Workshop Report

shows this avenue of research to be very promising,
many open questions remain, such as how to design
good feature vectors to describe molecules and choose
robust learning methods ,and how to extend methods
to more complex molecules and to a broader set of
molecular properties. However, massively expanding
the predictive reach of frst-principles computations
via ML techniques may well be the pivotal step for
actually achieving a comprehensive molecular
property database.

classical approach (˜ hours/molecule)
˜105 CPU years

prediction

Quantum
Machine

GDB-13
(109 molecules)

0.1% subset

electronic
properties
database

labeling (1 sec/molecule)
(˜102 CPU years) training 30 CPU years

(˜ year)

Figure 4: Using machine learning, the electronic properties of new

molecules can be predicted from an existing database in a fraction of

the time it would take to complete a frst-principles computation. (Used

with permission from von Lillienfeld)

Another important application is using ML to bridge
the gap between atomistic and mesoscale simulations.
Here, the exact details of how atoms interact with their
nearest neighbors require, again, expensive quantum
mechanics calculations that are computationally
limited to tens to hundreds of atoms. In order to scale
from thousands to millions of atoms, the scale at
which many phenomena of interest occur, mesoscale
simulations of materials using classical molecular
dynamics rely on fast empirical interaction calculations
that are typically 10,000 times more computationally
efficient than their quantum counterparts. These fast
functions are, in effect, predictions of the output of
the expensive quantum calculations over a continuous
high-dimensional space. In the past, these have
been human-designed functions, based on physical
principles and a small set of data. ML methods, in
contrast, use an expansive training set of quantum-
accurate calculations to exceed human intuition
in constructing a predicting function from a larger
possible function space [15, 116, 124].

Even further along the nanoscale-mesoscale axis,
many DOE-funded researchers are investigating how
to design and control materials whose structure and
behavior depend on mesoscale interactions, such as
polymers, colloids, complex fuids, membranes, and
granular materials. These materials, ubiquitous in
nature, are found in many engineering applications.
Generally speaking, the emergent mesoscale behaviors
of these materials cannot be approached by frst-
principles atomistic calculations at all. For example,
thermodynamically stable colloidal crystals can be
self-assembled from nanoparticles, each of which is
composed of thousands of atoms and the stress-strain
relationship of granular materials is an aggregate
behavior that is determined by the local structural
details of macroscopic particles that are visible
to the eye. Determining the aggregate behavior of
such materials is determined largely by experiment
or computationally expensive simulations, where
researchers seek to identify the rules that determine
how the properties of the sub-units of such a material
determines the aggregate behavior [13, 61, 34, 91,
16, 88]. The end goal is to be able to design new
materials with engineered microstructures and desired
properties. Finding the connection between the design
of material sub-units and the aggregate behavior
of the particles is still largely dependent on human
cognition-based pattern detection, with some successes
transcending human cognition by using evolutionary
algorithms to fnd optimal solutions [94]. We identify
this as an area that has yet to take advantage of ML
techniques, but where ML may well be key to initiating
the design era of mesoscale nanoengineered materials
via self-assembly.

For problems of material design ranging from
molecular to mesoscale, the parameter space is
very large, even combinatorially increasing, and the
interaction between parameters can be complex.
ML, thus, is a promising method for expanding the
predictive power of experimental and computational
datasets to predict the properties of novel materials
and accelerate the material design.

13 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4.1.3 Classifying Large Sets of Data

In select areas of material science and chemistry, high-
throughput experimental and computational techniques
are leading to the creation of massive databases.
The defning characteristic of these high-throughput
methods is that data is generated faster or exists in
larger volumes than can be analyzed through traditional
methods and new automated learning techniques are
required [33, 82]. Figure 5 shows an illustration of how
ML was applied [103] to computationally generated
data to group noisy simulation data by the crystal type
that self-assembled. Researchers had previously studied
the dataset extensively by hand, but the automated
learning technique was able to discover a new crystal
structure for the frst time. Figure 6 shows an example
of how ML was applied to experimentally generated
high-throughput data. Researchers discovered a novel
rare-earth-free permanent magnet by performing an
unsupervised cluster analysis of the diffraction data
from a composition spread wafer that provided a
combinatorial library of ternary alloy compositions [82].

Figure 5: Illustration of unsupervised clustering algorithm fnding

similar crystalline structures in a dataset.

C
a)

The need for better methods for learning from large
datasets is especially applicable to computational
material science where improving computational
resources and algorithms are accelerating the rate at
which data is generated. However, as the rate at which
data can be amassed through both computational
simulation and experiment continues to accelerate, new
methods of automatically recognizing and cataloging
patterns in data based on machine learning will be
necessary to alleviate the analysis bottleneck. These
problems can be addressed via robust unsupervised ML
techniques that can discover the common patterns in a
dataset [103].

Feature learning from large datasets: A common problem
across the felds of computational material science,
chemistry, and physics is the need for robust feature
methods to encode the high-dimensional data of an
N-body system into a minimal vector representation,
or feature vector. In the examples above, [96, 127, 124,
116, 65, 111, 45, 103], where ML has been successfully
applied to a research area, the key to good performance
was the selection of a good descriptor/feature vector.
These feature vectors are used not just for ML, but
also to support powerful metamodeling techniques
that allow chemical and mechanical properties to be
accurately quantifed. The effectiveness of any ML
method depends frst on having a feature vector that
captures the right invariances (rotational, translational,
index permutations). Indeed, all successful application
of ML to material systems discussed relies on careful
initialization of the right feature vector. These feature
vectors are referred to alternatively as collective
variables, order parameters, and local or global
descriptors. In general, the power of metamodeling

X-ray
diffraction

Sa
m

pl
e

In
de

x
(C

om
po

si
tio

n)

Analysis
Cluster techniques is directly limited by the correctness

of the choice of feature vector and by the length of
vector required.

A BLibrary Q spacing

Initial research efforts have been applied to designing
ML methods for taking a large volume of simulation
data and extracting lower dimensional coordinates b) C
[87, 101, 113] or learning the lower dimensional

X-ray
diffraction

A B algorithms, such as deep learning, that could take a
Feature vector space Feature vector density Clustering results

large body of data and automatically extract a minimal
feature vector that separates ordered states from other

Figure 6: A cluster analysis of a high-throughput X-ray diffraction ordered states as well as disordered states could have
dataset is used to generate a structural phase distribution diagram [82]. an immense impact on the feld.

Cluster
Visualization

manifold that the higher dimensional simulation data
occupies [45]. In general these are numerically intensive
calculations that have been successfully applied to
only a handful of small systems. Machine learning

14 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4.1.4 Pattern/Anomaly Detection for
Light Sources

Figure 7: An artist’s rendering depicts an experiment at SLAC that

revealed how a protein from photosynthetic bacteria changes shape

in response to light. Samples of the crystallized protein (right), called

photoactive yellow protein or PYP, were sprayed into the path of

SLAC’s LCLS X-ray laser beam (bottom left). Some of the crystallized

proteins had been exposed to blue light (left) to trigger shape changes.

Diffraction patterns created when the X-ray laser hit the crystals

allowed scientists to re-create the 3-D structure of the protein (center)

by light [69]. Figure 8 illustrates how LCLS captures
X-ray diffraction patterns resulting from the laser
colliding with injected nanoparticles.

Deriving scientifc insights using LCLS is a complex
process that is hampered by several challenges that
ML can help overcome. First, the massive amounts of
rapidly collected X-ray diffraction imagery data is
beyond human ability to fully inspect, let alone
annotate. Totaling 20 terabytes per day, the imagery
acquisition rates can exceed 10 GB/second for
experiments running at 120 Hz. By 2017, next-generation
XFEL facilities like LCLS-II and the European XFEL
will offer pulse rates at several of orders magnitude
beyond that of LCLS (tens of kHz to several MHz),
leading to dramatically increased data rates. Second, of
the millions of images collected each day, only a small
fraction are useful, i.e., very few images actually contain
well-resolved diffraction patterns from the particles of
interest. Finally, LCLS is an exquisite instrument with
many sensitive settings that allow the laser to have
properties ideal for probing different samples leading
to better images. Controlling these settings in real time
would improve the yield of good images and improve the
scientifc productivity of LCLS.

and determine how light exposure changes

its shape. Image courtesy of SLAC National

Accelerator Laboratory [119].

As new scientifc instruments and
sensors are developed and used to
collect an ever-increasing amount
of data, ML techniques will play
a critical role in helping scientists
to triage and automatically fnd
patterns of interest. The DOE
Office of Science light sources: the
National Synchrotron Light Source
at BNL, the Stanford Synchrotron
Radiation Lightsource at SLAC, the
Advanced Light Source at LBNL, the
Advanced Photon Source at ANL,
and the Linac Coherent Light Source
(LCLS) at SLAC, are all examples
of powerful scientifc instruments that can generate
large amounts of experimental data. LCLS, for
example, has enabled scientists unlock the mysteries
of materials at the atomic and molecular level. As
depicted in Figure 7, using the LCLS’s X-ray Free
Electron Laser’s (XFEL) unprecedented brightness,
spatial and temporal resolution, scientists recently
imaged the highest-resolution protein snapshots ever
taken with an X-ray laser, revealing how a key protein
in a photosynthetic bacterium changes shape when hit

Figure 8: Nanoparticles are injected into the LCLS X-ray beam as

an aerosol using a sample injector. Diffraction patterns are recorded

with a pair of X-ray CCD detectors. Space between the CCD detectors

allows the X-ray beam to pass through to a beam dump. (Rendering by

Kwei-Yu Chu, LLNL.)

Recent advances in ML, specifcally unsupervised
feature learning with deep learning neural networks
(UFLDL), hold the potential to overcome these
aforementioned challenges and help accelerate the

15 ASCR Machine Learning for Extreme Scale Computing Workshop Report

scientifc discovery process on LCLS. Given the massive
amounts of unlabeled imagery, UFLDL can be used to
learn fundamental basis patterns of the images. UFLDL
is able to effectively learn basis patterns or features
that help the neural network to reconstruct the original
imagery without any supervision. These features can
then be used to build a classifer layer of the deep neural
network for automatically partitioning the images into
useful and not useful categories offering LCLS scientists
the ability to automatically identify good images.
Additionally, the UFLDL features can be used for
clustering the imagery into sets of similar images, which
can help scientists to automatically sort their data. An
added beneft to this approach comes from the fast speed
with which the evaluation of new imagery is performed
by deep neural networks. Deep neural networks
accelerated by GPU hardware will be able to keep up
with the image acquisition rates of the next generation
XFELs. Finally, deep learning has shown some successes
in the feedback control of systems. In reference [95], a
deep learning model successfully learned control policies
directly from high-dimensional sensory input using
reinforcement learning. This deep convolutional neural
network was able to learn how to automatically play
several video games, even beating a human expert on
several of the games. Applied to the control of an LCLS
experiment, this approach can be used to improve the
yield of scientifcally valuable imagery.

Pattern Detection in Images

While the light sources present a range of daunting
image processing challenges; there is a broader class of
scientifc domains that involve processing of data from
microscopes, telescopes, satellites and so on. Identifying
objects (shapes of patterns) in the image (e.g., unsupervised
classifcation of cells in multidimensional XFM datasets
[127]); classifying objects into categories and associating
labels and descriptions are important tasks.

The computer vision community has made tremendous
progress on related problems in object recognition
and classifcation (CIFAR10 [80], ImageNet [112],
Labeled Faces in the Wild [73]). Further research is
needed into whether techniques applicable for fnding
readily labeled object categories can be translated to
fnding scientifc objects of interest. One of the unique
challenges posed by scientifc datasets stems from the
high dimensionality of data: a typical ImageNet dataset
might be 256 x 256 x 3 in size; scientifc image data
often includes higher spatial resolution (1000 x 1000)
and frequency measures (1K–1M) [127]. In these cases,
applying relatively simple ML techniques like principal
component analysis can fail.

(a) An example of scientifc image data from the Center for Nanophase

Materials Sciences at ORNL.

(b) An example from ImageNet.

Figure 9: Sample image data analysis problems: In (a) we are tasked

with detecting a subtle edge in the middle of fgures, while in (b)

we need to detect a cat. Also (a) is a visualization of 256 × 256 × 16K

dimensional data, while (b) is a 256 × 256 × 3 dimensional data.

16 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4.1.5 Analysis of Text Data

Scientifc articles have been one of the primary
sources for text analysis. With text analysis, we can
determine the most frequent terms in each text
document and the most distinctive terms of a text
document from other documents in a set. In such a way,
we can classify documents such as web pages, news
articles, and scientifc articles, with minimal human
labors. Text analysis can help scientists to survey
a huge amount of scientifc literature across domains.
This will be more effective when we are able to
perform interdisciplinary research. For instance, with
text analysis, we can analyze scientifc articles from
major outlets of each domain, without necessarily
understanding all the backgrounds of each article.
Thus, before creating a team of scientists on material
science/chemistry/physics/ and pharmacy, we can
set reasonable hypotheses on exploring new chemical
compounds with certain pharmaceutical effects.
After setting up hypotheses, scientists can organize
a team to check if generated hypotheses can be
meaningful or not. In that way, scientists can perform
their studies in a less laborious and more timely
manner. Or, perhaps, more unbiased and breakthrough
hypotheses can be explored.

For instance, as shown in Figure 10, a survey paper in
1987 described a few factors associated with migraine
and magnesium. Today, however, using a text analysis
of the entire PubMed online library, we can identify
133,193 connections between migraine and magnesium.
Digesting the entire PubMed online library would be
a time-consuming task, but if we can accurately
index documents and connect relationships between
documents, scientists can more easily determine what
will be an interesting hypothesis to test or what would
be a proper experimental setting.

Figure 10: Comparison of the connections between migraine and

magnesium. Eleven connections were found in 1987, while the present

day count stands at 133,193.

4.1.6 Embedded Intelligence for Exascale
Systems

In Topic 1, the distributed performance monitoring of
the computer cluster itself was proposed as a streaming
application to which online machine learning-based
feedback methods could be used to tune the system. In
a similar way, the distributed large-scale applications
may themselves need to be treated as streaming
applications. Here we propose that, in the future, to
manage the I/O limitations relative to velocity of data
produced, ML-based feedback methods will need to
be applied locally to the data streams emitting from
resources such as large-scale scientifc simulations,
large-scale experimental apparatuses, and distributed
sensor systems such as Smart Buildings to triage and
prioritize data.

It is already the case that limitation of I/O and data
storage means that large-scale scientifc applications
and experimental systems can only store a small
fraction of the data that is produced. For exascale
computing, the fraction that will be stored will be even
smaller. This will drive the need for more dynamic I/O
decision making by applications; that is, making choices
on-the-fy to store data based on its importance or
signifcance rather than using the more common static
models for storing data at fxed frequencies. This model
of triaging data may well be similar to how raw data is
handled from the Large Hadron Collider, where data is
fltered and compressed locally based on its predicted
signifcance, so as not to overwhelm I/O resources. For
example, in large multi-scale, multi-physics scientifc
computations, there is often a desire to detect rare/
fast/local events in the simulation, such as a rare
nucleation event in a simulated supercooled liquid,
or a computational event, such as a numerical error
caused by too large of a time step, or the numerical
evidence of a soft error (e.g., bit fip) on a node.
Identifying and capturing the details of these rare and
distributed events, whether to record statistics, rollback
calculations, or divert resources, is likely to be an
important part of minimizing I/O, handling hardware
or software failures, and managing extremely large
calculations. Often the exact form of these anomalous
events may not be known ahead of time.

Machine learning-based methods that process
streaming data from scientifc applications will be
an essential part of detecting recordable events or
anomalies in the data stream (e.g., symptoms that
the application or experiment is not performing as
expected due to hardware with soft errors, algorithms,
or a bug in the calculation), to allow a real-time,
vice post-processing, response from system or scientist.

17 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Such sampling and detection will need to be performed
locally, without signifcantly impacting the application
performance, and only lightly using the communication
network. The detection of anomalies from streaming
data in such a distributed environment without
signifcantly impacting the performance of the system
represents an interesting open problem.

4.1.8 Summary

We have presented vignettes documenting requirements
from some of the leading scientifc applications
from simulations, large scale facilities, smaller scale
instruments and HPC platforms. Table 1 presents a
broader range of analytics tasks from all DOE applied
offices, and how they map onto favors of machine
learning methods. Clearly, investments made in core
ML research and production tools for deploying novel
capabilities will pay off across the board for DOE. We
now elaborate on specifc challenges for the feld of
machine learning when faced with DOE’s scientifc
requirements.

Table 1: Relevance of various ML techniques to a broad spectrum of

DOE problems; Supervised Learning (SL), Unsupervised Learning

DOE Science Domain Analytics Problem SL UL SSL

Climate/BER Extreme Weather Detection X X X

Astrophysics/HEP Halo Finding X

Plasma Physics/HEP+FES Tracking Magnetic Reconnections X

Material Science/BES Predicting Synthetic Materials X

Light Sources/BES Pattern/Anomaly Detection X X

Particle Physics Detectors/HEP Pattern/Anomaly Detection X X

Tokamaks/FES Pattern/Anomaly Detection X X

Telescopes/HEP Transient Detection, Data Fusion X

BioImaging/BER Clustering X

Genome Sequencers/BER Sequencing, Assembly X

Smart Buildings/ARRA X X

HPC systems/ASCR Fault Detection, Perf. Prediction X X X

(UL), Semi-supervised Learning (SSL)

18 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4.2 Self-Aware Operating and Runtime
Systems

The traditional operating and runtime (OS/R) system
runs in an open loop where the mapping phase is
static, the system runs the application in the same
way repeatedly, irrespective of the state of the system
and other applications running in the system. The
mapping decisions are performed in an ad-hoc manner
at design time. In contrast, SAOSR is an empirical,
evidence-based system that observes the system
and running applications to understand, model,
predict, and optimize application behavior by making
model-informed decisions. A high-level overview of
the differences is shown in Figure 11. In summary,
traditional OS/Rs:

1 Force the application programmer to optimize for
the system; and

2 Cannot respond to unpredictable runtime changes.

A self-aware OS/R will:

1 Optimize the system for the current application; and

2 Flexibly adapt to runtime fuctuations. Where the
traditional OS/R is rapidly becoming a barrier to
scientifc discovery, the SAOSR will increase the
rate and decrease the cost of future discoveries.

The SAOSR will adapt at different spatial scales,
including the node, machine, and facility level. At the
node level, OS/R will use multi-metric performance
models (e.g., for run time, power, energy, memory

Traditional OS/R Self-aware OS/R

When Decisions Made Design Time Runtime

How Decisions Made Ad-hoc, based on
guesses about future

Evidence-based

Understanding User Goals No Yes

Optimizes For System Metrics
(Utilization)

Application Metrics
(Science accomplished)

Performance Static Improves without user
action

Decide Act

Decide Act

Observe

footprint) based on the hardware/software/application
knobs. At the machine level, OS/R will use models
for communication, load balancing, and I/O. More
importantly, it will try to understand how other
applications are using the shared communication and
I/O resources, how they affect the performance of
the given application, and fnally fgure out the best
way to run the given application. At the facility level,
OS/R will use multi-metric performance models for
facility-wide resource utilization, power constraints,
user satisfaction, and time to solution to optimize job
scheduling, staging phases of the application, and fle
transfers. Model-informed decisions will be made at
every level with multiple, coordinated feedback loops.
In particular, the coordination will happen both bottom
up (node to facility) and top down (facility to node).
The decisions made at the node-level should propagate
up to the facility level and vice versa via interfaces
that allow decision-making components (actors)
to communicate.

The crucial component of the SAOSR is a closed
loop and/or feedback loop that informs the SAOSR’s
own decision-making process. The SAOSR will refne
and update its own performance models to take into
account dynamic changes in the system and model
inaccuracies. This feedback loop will help the OS/R
to constantly adapt itself (hence the “self” portion of
self-aware OS/R) and improve the system’s overall
effectiveness in aiding scientifc discovery. This use of
feedback and self-monitoring is the key distinguishing
feature of the self-aware OS/R. In summary, the
responsibility of efficiently mapping the application
to the extreme-scale system will be the responsibility

of the self-aware OS/R
through accumulation and
use of knowledge gained
from the application and
underlying hardware.

Figure 11: Comparison of a self-aware

OS/R with a traditional approach.

19 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4.3 Example of Future OS/R

Almost all technical reports on exascale systems
identify the power consumption of the computers as
the single largest hardware research challenge [12,
18, 37, 72]. This challenge increases when we couple
simulations with each other or with in situ analysis.
In this section we illustrate the benefts of a future
SAOSR through an example which optimizes the
energy consumption of a clustering application which
would analyze the data from a scientifc simulation.
Specifcally, we look at the K-means clustering
benchmark from MineBench [98].*

* We emphasize that this example shows what is possible. We do not

intend to limit the scope of the self-aware OS/R to this application,

techniques, or even the general power/performance optimization

problem.

4.3.1 Challenges

Optimizing K-means clustering is difficult for several
reasons. First, it will be coupled with a simulation.
Optimizing a coupled application is a distinct
challenge from traditional HPC optimization problems.
Instead of making K-means run as fast as possible, our
self-aware OS/R should make it run at the same speed
as the application it is analyzing while minimizing its
power consumption. Second, this optimization problem
requires a great deal of knowledge to solve. More than
knowledge of the single fastest or most energy-efficient
system confguration, solving this problem requires
knowledge of the power and performance available in
all system confgurations and the extraction of those
confgurations that represent Pareto-optimal tradeoffs.
Acquiring this knowledge is additionally complicated
by the fact that these power/performance tradeoffs are
often application-dependent or even input-dependent.

4.3.2 Approaches

Machine learning techniques represent a promising
approach to addressing this problem. Offline approaches
collect profling data for known applications and use
that to predict optimal behavior for unseen applications
(example systems using offline approaches include [129,
115, 85, 83, 26]). Online approaches use information

collected while an application is running to quickly
estimate the optimal confguration (example systems
using online approaches include [86, 102, 117, 104,
11, 84]). Offline methods require minimal runtime
overhead, but cannot adapt to particulars of the current
application. Online methods customize to the current
application, but cannot leverage experience from
other applications. In a sense, offline approaches are
dependent on a rich training set that represents all
possible behavior, while the online approaches generate
a statistically weak estimator due to small sample size.

The strength of this approach
is that it quickly matches
the behavior of the current
application to a subset of
the previously observed
applications.

We can combine the strengths of both offline and online
learning using a Hierarchical Bayesian Model (HBM)
model (the implementation is called LEO) to estimate
power and performance tradeoffs [93].We assume that
there is some set of applications for which the power and
performance tradeoffs are gathered offline. HBM-based
approaches use that set of known applications to form
prior beliefs about the probability distributions of the
power and performance achievable in different system
confgurations. Given that information, the HBM takes
a small number of observations of the given application
and uses a hierarchical model to estimate the power
and performance for that application in all the other
confgurations.The strength of this approach is that it
quickly matches the behavior of the current application
to a subset of the previously observed applications. For
example, if the HBM has previously seen an application
that only scales to 8 cores, it can use that information
to quickly determine if the current application will be
similarly limited in its scaling.

20 ASCR Machine Learning for Extreme Scale Computing Workshop Report

4.3.3 Results

For this example, we run on a 16-core Linux x86 server
with hyperthreading (allowing up to 32 cores to be
allocated). The system has 16 different clock speeds
and 2 memory controllers. With these three parameters,
there are 1,024 possible system confgurations. For any
given speed of the simulation, we would like K-means
to match it and minimize power consumption. If the
self-aware OS/R can quickly estimate the power and
performance tradeoffs for this application, it can
determine the optimal performance confguration for
any power limit.

To illustrate the benefts of HBMs, we compare it with
three other approaches: heuristic, offline learning, and
online learning. The heuristic uses the well-known
race-to-idle strategy—simply allocating all resources
(cores, clock speed, etc.) to K-means and then idling
the system once the application completes. The
offline learning approach builds a statistical model of
performance and power for each confguration based
on prior measurements of other applications. The
online approach uses quadratic regression to learn the
tradeoffs for each confguration while K-means
is running.

The heuristic approach simply assumes that the most
energy-efficient confguration is the one where all the
system resources are in use, but that has been shown to
be a poor assumption for this type of application [71,
90]. The offline approach predicts average behavior for
a range of applications, but it may be a poor predictor
of specifc applications (K-means, in this case). The
online approach will produce a good prediction if it
takes a sufficient number of samples, but the required
number of samples may be prohibitive.

HBMs combine the best features of both the offline
and online methods. At runtime, it changes system
confgurations, observes the power and performance,
and combines this data with that from previously
seen applications to obtain the most probable
estimates for other unobserved confgurations. The
key advantage of the HBM approach is that it quickly
fnds similarities between K-means and previously
observed applications. It builds its estimation not from
every previous application, but only those that exhibit
similar performance and power responses to system
resource usage. This exploitation of similarity is the
key to quickly producing a more accurate estimate than
either strictly online or offline approaches.

(a)

(c)

(b)

(d)

Figure 12: Estimation for K-means clustering using LEO, an HBM

implementation. LEO accurately estimates performance (a) and power

(b) for 1024 possible system confgurations, allowing LEO to construct

the Pareto-optimal frontier of power and performance tradeoffs (c).

These frontiers are then used to determine minimal energy

confgurations for various system utilizations (d).

Figure 12 shows the results for this example. Figure 12 (a)

shows LEO’s performance estimates as a function of
system confguration, while Figure 12 (b) shows the
power estimates. These runtime estimates are then used
to reconstruct the Pareto-optimal frontier of the power/
performance tradeoff space shown in Figure 12 (c). This
last fgure shows the estimates produced by the offline
and online approaches as well. Finally, Figure 12 (d)

shows the effects of using these estimates to determine
optimal system confguration for various utilization
levels. As can be seen in the fgures, LEO is the only
estimation method that captures the true behavior of
the application and this results in signifcant energy
savings across the full range of utilizations.

Learning the performance for K-means is difficult
because the application scales well to 8 cores, but its
performance degrades sharply after that. In addition,
the consideration of clock speeds and memory
controllers mean that performance is a non-linear
function of the confguration. It is, in general, difficult
to fnd the true optimal of a non-linear function
without exploring every possible confguration. The
offline learning method predicts the highest
performance at 32 cores because that is the general
trend over all applications. The online method predicts
peak performance at 24 cores, so it learns that
performance degrades, but would require many more
samples to correctly place the peak. LEO, in contrast,
leverages its prior knowledge of an application whose

21 ASCR Machine Learning for Extreme Scale Computing Workshop Report

performance peaks with 8 cores. Because LEO has
previously seen an application with similar behavior,
it is able to quickly realize that K-means follows this
pattern and produce accurate estimates with just a
small number of observations. Furthermore, using
LEO to allocate for energy efficiency produces an
energy consumption just 6 percent above optimal
compared to 50 percent increased energy for the
online approach, over 2× for offline and over 3.5× for
the race-to-idle heuristic.

We now outline three
technical approaches key to
developing the self-awareness
necessary to accelerate
scientifc fndings while
decreasing cost per insight.

While this example illustrates a few of the potential
benefts of SAOSR and gives reason to believe that
this is a promising area of research, there is much
research to be done to explore such techniques in the
context of exascale systems. This example was carried
out for one application on a small-scale, homogeneous
system. The research program for /sas will be done in
the context of extreme-scale systems, a wider range
of DOE applications, and multiple-user systems with
heterogeneous hardware, where the dimensionality of
the optimization problems is much larger.

5 Machine Learning

5.1 Machine Learning

Enabling Approaches for a Self-aware OS/R
Given the need for an extreme scale system that
autonomously improves over time, we have described a
SAOSR by illustrating its key properties and examples.
We now outline three technical approaches key to
developing the self-awareness necessary to accelerate
scientifc fndings while decreasing cost per insight.

Self-awareness sets up an extensive set of OS/R
requirements:

• The analytic models within the OS/R that we
are accustomed to developing manually must be
automated because they do not suffice. The SAOSR
has more components and more interactions than
are tractable for a human to manage. Therefore
automated models are needed. Sometimes the
parameters of these models will need to be
adaptively tuned. Other times the parameters of the
models themselves will need to be revealed from
within large candidate sets.

• Optimizations will be performed on behalf of an
application or performance engineer. The objectives
will be application-specifc and the SAOSR
will need to respond to the “knob selections” of
the performance engineer. For this, automated
optimization is needed because this information has
to be used at execution time.

• The SAOSR will optimize resources, recognize
patterns, load balance and re-adjust in multiple
ways. Some of the logic for this re-adjustment
is dependent on what applications will be
executing–other parts of the logic are dependent
upon information supplied by the application
or performance engineer while yet others are
architecturally specifc. Some tasks may call for a
single strategy covering the use cases, others for
different strategies for different ones, or the SAOSR
may yet need to, on the fy, devise a strategy “online.”

• For runtime decision making, the SAOSR should
exploit multi-objective optimization, where
the search algorithm should optimize multiple
conficting objectives simultaneously, which yields
a Pareto-optimal set of solutions for exploring
potential tradeoffs among multiple objectives.
For example, using the offline models, select the
Pareto front for different runtime scenarios and
metrics; identify the operating condition at runtime
and choose the appropriate solution from the
Pareto front; when the models require signifcant

22 ASCR Machine Learning for Extreme Scale Computing Workshop Report

calibration, use the offline Pareto front as a (warm)
starting point to potentially refne the solution.
Subsidiary methods need to be developed to address
the variability and noise inherent in many of the
metrics of interest.

• In general, the SAOSR needs to gather and exploit
measurements of the complex inter-relationships
between its own components, among coupled
applications and between the application and its
components.This process requires automated system
identifcation and variable sensitivity analysis.

• With the help of instrumentation and interfaces
that communicate key measurements and
objectives, the SAOSR’s actors need support for the
decisions that guide their actions.

Machine learning offers a way to approach many of
these requirements. Whereas some of them seem to
require very explicit information about a system that
is too complex to specify explicitly, machine learning
allows experiments; i.e., proposed models, candidate
optimizations of complex confgurations to be
empirically tested. It uses the collected feedback (post
hoc or immediately, with or without labeling) as its
exemplars for inferring general solutions.Whereas some
of the requirements demand information that doesn’t
become available until execution, machine learning
allows the SAOSR, at that point, to experiment with
solutions that it can improve upon once their merit or
the gradient of improvement is determined.

Machine learning can also accommodate the
requirements for awareness-based intelligence to be
acquired on different temporal scales: offline, online,
and in hybrid circumstances. For offline requirements,
the SAOSR can collect experiential data in the
aggregate and use machine learning to infer a model or
actor logic that can then be transferred to the SAOSR.
Here both supervised and unsupervised techniques can
be exploited. For online requirements, the OS/R is faced
with noisy, limited data and, because it is important
to be sensitive to learning overhead, reinforcement
learning techniques are appropriate.

In general, machine learning allows the SAOSR
to convert the empirical data of experiments into
knowledge that it accumulates and uses to support
continuous improvement. At the same time, it is
important to recognize that machine learning
will not solve every problem. The SAOSR requires
advancements in the state-of-the-art machine learning
algorithms from outside the system’s context so that it
has a bigger and better set of general techniques at its
disposal. We anticipate that many challenges will arise

in the customization of techniques to the extreme scale
or SAOSR context. Indeed, we anticipate that SAOSR
will motivate and be the proving ground for DOE
research generating advances in fundamental machine
learning techniques.

5.2 Data Collection, Management and
Integration

Self-aware operating systems and runtimes must
sense the (software and hardware) environmental
features that impact the performance and behavior
of the platform and incident applications. Such
environmental data includes static features, such
as processor/core confgurations and network
performance capabilities, and dynamic features,
such as current system load and observed network
performance. In the context of collecting and managing
this data, we identify several research challenges:

• Identifying what data to collect: machine learning
components will facilitate feature extraction to
identify what data is relevant to the various OS/Rs
optimization challenges. Additionally, application
users and system administrators should be able
to specify user and system goals. For example, a
user may specify behaviors or characteristics that
denote application progress, such as loop indices.
Accordingly, user and administrator input may also
dictate what data should be collected.

• Identifying data collection points: Once the desired
set of data is established, we must identify the
necessary (or perhaps best) data collection points.
These points can occur anywhere along the runtime
software stack from the application code to
auxiliary libraries to the middleware and runtime
to the operating system.

• Instrumenting data collection points: Data collection
points must be instrumented to collect desired data.
Such instrumentation may be static (encoded
a priori in the application or OS/R software,
compile-time) or dynamic (online) during the
system’s execution.

• Controlling raw data: As a system executes, the amount
of raw data needed may change over time. It is
important to consider mechanisms that can throttle
data collection rates and data fltration mechanisms
that can sift collected raw data.

• Managing data volumes: data aggregation mechanisms
can be useful for reducing data volume often without
loss of information. Aggregation mechanisms should
be fexible and customizable since they may target
different types of data or different usage scenarios.

23 ASCR Machine Learning for Extreme Scale Computing Workshop Report

• Establishing holistic views: In order to gain system-wide
awareness and make holistic adaptation decisions,
the SAOSR must either harness distributedly
collected data to singleton learning and decision
processing elements or the system should allow
individual elements to use local data to make local
decisions that meet global constraints and goals. The
former is conceptually easier but requires efficient
and highly scalable data propagation mechanisms.
The latter does not require data movement, but is
conceptually more difficult to realize.

Additionally, to establish holistic views, data collected
from different elements (different levels of the software
stack or different scopes with the same level of the
stack) may need to be integrated and reconciled. For
instance, it may be necessary to align or correlate
performance-counter data collected within the OS
kernel with functions at the application level. Another
example may be correlating the observed application
performance data with a particular confguration of
the SAOSR.

5.2.1 Interfaces

One of the key approaches to building a self-aware
OS/R will be defning and implementing the interfaces
that enable different components to transfer relevant
information. We identify three main components that
will be present in any self-aware OS/R implementation.
The frst is a sensor that can be used to monitor the
current state of the system and application. The second
is an actuator which can be confgured to change the
behavior of the system. The third is an actor, or an
individual self-aware component which monitors the
sensors and determines actuator settings.

Given these components, a self-aware OS/R should
include the following interfaces: one to communicate
monitoring information from sensors to actors, one to
communicate settings from actors to actuators, and one
to communicate between independent actors. Each is
discussed in more detail below.

• Actor to Actor: A large exascale system will not
be managed by one monolithic actor because of
the scale of the system and because of the need
to accommodate separately developed resource
managers that manage different resources. This
leads to two problems. The lesser one is to avoid
duplication in the collection of data from the same
sensors. The more signifcant problem is to ensure
that different actors do not act at counter purpose:
Even if two actors, in isolation, manage resources
in an efficient manner, their coupled action may
result in a system that is unstable and operates far

from optimum. To avoid this problem we need a
good theory on the composition of feedback loops
and interfaces that support such a composition.
We expect that actor-to-actor communication
will support the hierarchical and distributed
management of resources, their coordination,
as well as composition of strongly interaction
feedback loops at the same level.

• Sensor to Actor: We envision that sensor to actor
will manage the communication and will have
additional intelligence for handling noise, sensor
failure detection, and data aggregation.

• Actor to Actuator: Controller for actor to actuator needs
methodologies for distributed communication settings.

5.3 Metrics

In order to motivate research on a SAOSR, we need to
establish high-level metrics. Our intent is to establish
metrics that can be used to establish the value of the
research, but some of these metrics may also be thought
of as objectives of the run-time system. The overarching
metric is that the self-aware OS/R should optimize
application progress that matters to scientists. We
focus on application-level progress because traditional
system utilization metrics can be misleading. For
example, a system may be highly utilized doing “busy
work” that is less productive than an alternative. We
also recognize that this application progress must be
determined in the context of constraints, which could
be either fxed or negotiable. Relevant constraints
include power consumption and hardware resources
used. This single overall goal can be broken into
sub-goals that address performance, performance
portability, and productivity and cost issues.

Performance portability will become a frst-order goal
for exascale systems because of the extreme complexity
of these systems. In the past, performance portability has
been a second-order goal because scientifc application
owners were often willing to invest the time required to
get the necessary performance for an application on a
specifc system. For exascale systems, it will be infeasible
for application owners or even performance engineers or
programmers to meaningfully optimize an application for
a system of that complexity.

An envisioned SAOSR will do this performance
optimization automatically and will do the
optimization better over time, so that programmers
will not have to. As a side effect, the application will
have performance portability and will be expected
to achieve good performance on any system that

https://alternative.We

24 ASCR Machine Learning for Extreme Scale Computing Workshop Report

implements the SAOSR. The performance portability
applies to an application running on a single system
with different resources available over time (for
example, as other applications are run or more
resources become available or as resources fail or are
taken away). Performance portability also applies to
running an application on different instantiations
of a given architecture, potentially with different
numbers of nodes or different mixes of heterogeneous
resources. Performance portability potentially applies
to completely different architectures too, as long as the
system implements the SAOSR interfaces. A potential
secondary metric is to characterize how stable
application performance is across different systems,
where stability may be defned as a function of system
resources (which may be complicated to defne).

We have also considered a number of cost metrics,
where cost is defned broadly to include metrics that
should be reduced to minimize the cost of producing
scientifc discovery. These cost metrics include
application programmer time, system administrator
time, performance engineering time (which may or
may not overlap with application programmer and
system administrator time), and operating costs (such
as power consumption). Measuring the productivity
of programmers and engineers is notoriously difficult.
Nevertheless, we believe it is important that we
recognize these metrics and the improvement in these
areas that a SAOSR would bring, and the problems
in these areas that the DOE will have if a SAOSR
is not developed. Since a SAOSR will optimize the
performance of applications automatically, the
application programmer will not be expected to consider
performance in the specifcation of the application
program, so this will reduce the programmer’s time, and
the metric of application programmer time will capture
that savings.With today’s systems, system administrators
must manually examine log fles to try to determine the
root cause of performance issues. With a SAOSR, this
functionality will also be performed automatically, so
the metric of time that system administrators use to
investigate performance issues will also be reduced.
Finally, there is a whole class of programmers and
engineers that work on optimizing performance of
applications. We hope that a SAOSR will allow us to
repurpose those programming and engineering cycles
more directly toward scientifc discovery.

5.4 Motivating Science from Topic 3

The research results supported by DOE’s scientifc user
facilities will shape national and worldwide policy in
climate change and energy production and usage. These
scientifc results must be accurate and trustworthy for
science to drive these policies.

Much of the scientifc discovery will be done with
exascale computing, with the main scientifc areas
driving the need for improved resilience and highly
trustworthy results being:

• Combustion science: Creating a fundamental
understanding of combustion to increase efficiency
by 25–50 percent and lower emissions from internal
combustion engines using advanced fuels and new,
low-temperature combustion concepts.

• Climate change science: Understanding the dynamic
ecological and chemical evolution of the climate
system with uncertainty quantifcation of impacts
on regional and decadal scales.

• Energy storage: Gaining a fundamental
understanding of chemical reaction processes at the
atomic and molecular level required for predictive
design of new materials for energy storage and
predictive engineering of safe, large-format,
durable, rechargeable batteries.

• Nuclear power: Enabling reactor-scale simulations to
allow safe, increased nuclear fuel burn times, power
upgrades, and reactor lifetime extensions, and in
doing so reduce the volume of spent fuel.

Very sophisticated data analysis methods are needed
to ensure that an HPC system is running correctly,
despite faults, and that the output of an application
is accurate, reproducible, and trustworthy. There are
a wide variety of data analysis methods ranging from
statistical to sampling to machine learning approaches.
While all can be very effective for understanding a
dataset, statistical and sampling approaches typically
are driven by hypothesis, while machine learning
approaches are driven by data. Since only a small
percentage of faults in an HPC system are clearly
understood, data-driven machine learning appears to
be the best approach. Machine learning approaches
have been highly effective in understanding high-
dimensional data, and discovering hidden associations
and higher-order effects within the data.

25 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Beyond exascale computing, there is the question of
the trustworthiness of scientifc results from DOE user
facilities. There are a number of potential problems
when running a scientifc experiment, from instrument
errors to recording errors to analysis errors. A major
challenge to the scientifc community is the ability to
reproduce published results. This drives the need
for methods that can quickly and accurately determine
if scientifc results are self-consistent, and consistent
across experiments. Unsupervised machine learning
methods have been shown to be effective in comparing
results and show promise in addressing these types
of problems.

The fnal motivation is for scientifc discovery; the vast
majority of scientifc results are never analyzed due
to the sheer volume of data. Supervised and semi-
supervised machine learning methods can be used by
creating training sets from desired simulation and
experimental results, and use these training sets to
automatically fnd desired results within new results.
This will give scientists confdence that the entire result
sets have been reviewed, and that interesting data have
been highlighted.

6 Challenges of Machine
Understanding and
Learning

6.1 Challenges of ML for Scientifc
Discovery from Topic 2

6.1.1 Four V’s of Scientifc Big Data:
Volume, Variety, Velocity, and
Veracity

DOE science application areas listed in the previous
section require research into a range of ML methods.
Table 2 summarizes the unique challenges pertaining
to these applications. This is important to appreciate,
especially in the context of commercial big data
analytics, wherein active research and software
development is being conducted, albeit for applications
of a different favor. As Table 2 indicates, the volume
aspects of scientifc big data is substantial. Single
simulation runs or experimental acquisitions may
result in datasets in the range of O (100GB–100TB).
We only expect this number to increase with the
availability of exascale-class systems. Thanks to
a Moore’s Law-like improvement in electronic
fabrication, we expect experimental devices to also
increase their pace of data acquisition. The variety
challenges in scientifc big data is tremendous:
simulation output is typically multi-variate and spatio-
temporal in nature. The phenomena of interest might

DOE Application ML Challenge Volume Velocity Variety Veracity

Telescopes/HEP Pattern Detection O(100)TB 10GB/s MM, MI Sensor noise,
acquisition
artifacts

Table 2: Characterization of scientifc big data problems along volume, velocity, variety and veracity dimensions. Size/velocity

estimates are for problem sizes and confgurations circa 2014; multi-variate (MV), spatio-temporal (ST), multi-modal (MM),

multi-instrument (MI), hardware counters (HC), and environmental monitors (EM).

HPC systems/ASCR Log Analysis, Fault
Detection

O(1)TB 100 GB/s HC, EM Missing data

Climate/BER Pattern Detection O(100)TB N/A MV, ST Simulation
accuracy

Material Science/BER Prediction,
Regression

O(100)GB N/A

Light Sources/BES Pattern Detection O(10)TB 100 GB/s MM Noisy sensors,
missing data

be multi-scale, spanning a range of temporal durations.
For experimental acquisitions, procedures requiring
inference across multiple instruments might require
data fusion across multiple devices with varying
characteristics. Finally, the veracity challenges in
scientifc data are worth highlighting. Any reasonable
statistical inference procedure needs to account for
the quality of the dataset, the properties of the noise
inherent in the sampling process, and any missing data.
While simulation datasets typically do not suffer from
quality issues; these concerns become paramount when
processing observational products.

Scarcity of Labeled Training Data

Scientifc analytics faces the recurring challenge
of relative scarcity of annotated data available for
supervised learning. There is, however, a nearly infnite
supply of unlabeled data that is constantly being
collected, and with the proliferation of new sensors
and the growth of inexpensive data storage, the rate
of data collection is likely to continue to outpace that
of human hand-annotation. The commercial world,
buoyed by the success of purely supervised training
models like Google’s deep convolutional network [81]
for image classifcation and Baidu’s deep recurrent
network for speech recognition [64], has chosen the
approach of collecting more annotated training data
to improve ML performance. Utilizing crowd-labeling
tools like Amazon Mechanical Turk, companies can
obtain plenty of hand-annotated data for supervised
learning. Crowd-labeling, however, is often not a viable
approach for many DOE mission-relevant datasets
which require more advanced understanding of the
data for accurate annotation. Additionally, budgetary
and policy considerations may make crowd-labeling
infeasible due to monetary or data sharing constraints.
For these reasons, it is important to continue research
on improving purely unsupervised or semi-supervised
machine learning algorithms that can learn with none
or few annotated training data.

6.1.2 Broad Applicability to Multiple
Science Domains

Feature Engineering

For the vast majority of machine learning techniques,
data is not fed to the algorithm in a raw form for the
analysis. Rather, data is fed to the algorithm in a pre-
processed form known as a feature vector, which is a
lower-dimensional representation of the data. While
there are some techniques to assist in reducing the
dimensionality of complex data, generally speaking,
the best feature vectors are handcrafted, that is based
on expert knowledge of what variables are likely to be
important. In many types of complex data, it remains to
be seen whether automated techniques can recover the
same powerful expert handcrafted features.

While ML techniques may have broad applicability
across domains, how to generate robust feature vectors
does not. Generally, the predictive power of an ML
technique is directly dependent on how well the feature
vector has been constructed (e.g., Are there too many
or too few features? Are they invariant to details of
the problem that are irrelevant?). Therefore, often, the
majority of the work in generating good predictions
from machine learning lies in engineering the best
vector of features for a given problem. Determining
how to dimensionally reduce the complex domain data
so that ML techniques can be used is an open research
problem in every scientifc domain and, by far, the
largest research obstacle.

Interpretability

One difference between developing predictive models in
industry versus by scientists is the latter have a vested
fundamental interest in understanding why X predicts
Y. While sometimes a robust predictive ML model is
sufficient, generally scientists are more interested in
extracting insight from the output of data analysis
algorithms. Standard ML methods are designed to do
the former over the latter. Thus a major challenge in
extending existing machine learning tools for scientifc
applications is to develop them into more interpretable
data analysis methods.

We point out that improved interpretability is
a problem common to many powerful abstract
mathematical techniques, where advances in
interpretability directly lead to better and wider
application to scientifc domains. For example, in
contrast with Principal Component Analysis and
SVD-based data analysis methods, CX/CUR matrix
decomposition [89, 100], are low-rank matrix

ASCR Machine Learning for Extreme Scale Computing Workshop Report 26

27 ASCR Machine Learning for Extreme Scale Computing Workshop Report

decompositions that are explicitly constructed from
actual data elements and thus are interpretable in
terms of quantities that domain scientists understand.
These methods have been applied to large-scale
data problems in genetics, astronomy, and mass
spectrometry imaging [89, 100].

Usability

Machine learning is rapidly becoming a critical tool
for performing science, moreover a tool that will be
wielded increasingly widely by non-experts. By
out-of-the-box applicability, we mean that the degree
of ML-specifc expertise that a domain scientist should
need to master to successfully apply ML should be
minimal. Here we describe the common obstacles
faced by a domain scientist in successfully deploying
ML techniques.

• Since many machine learning algorithms offer
similar capabilities, choosing the best algorithms to
induce the appropriate model requires an expertise
in individual algorithms. Which ML algorithm or
set of algorithms should be selected?

• Each ML algorithm has parameters that need
to be tuned to achieve best performance. Often
choosing these parameters is more art than science,
and involves trial-and-error selection or a deep
knowledge of the workings of the algorithm.

• Ultimately, choosing the right volume of training
data, combination of features, algorithm, and
parameters is determined by the complexity and
details of the underlying model, which is in turn,
what the scientist is seeking to discover. Thus,
successfully implementing a ML model is inherently
an iterative process.

A robust machine learning framework should:

• Allow different algorithms to be easily interchanged
for rapid experimentation;

• Provide tools designed for scientifc applications;

• Provide diagnostic tools to aid the selection of
tuning parameters;

• Provide tools to assist with cross-validation of
model choices;

• Provide scalable versions of algorithms; and

• Be provided in a library that can be easily
implemented in an HPC environment.

This defnition of usability highlights the dual and
sometimes conficting goals: develop high-performance
methods; and develop methods that are more consistent
with user productivity. For example, computing even
basic statistical regression diagnostics, such as the
diagonal elements of the hat matrix, on a terabyte-
or petabyte-sized matrix is currently not possible in
general. Interactive analytics tools need not be the
highest performance, but integrating them in a high-
performance environment such as is supported by DOE
labs is an important challenge.

6.1.3 Deep Learning Frameworks for
Science

It is well understood that successfully applying the
most proven and robust ML algorithms to a dataset
involves frst crafting the best low-dimensional
representation of the data for applying the ML
algorithm to, or feature engineering. Part of the
attraction of deep learning algorithms (versus shallow
learning algorithms) is that they promise to avoid the
need to handcraft a feature set. This is a powerful claim
that, in theory, could revolutionize the application of
ML to new problems.

First, however, this capability has yet to be
demonstrated outside of a handful of problems
more related to industry applications than science
applications. Second, deep neural networks have an
especially large number of tuning parameters for
controlling model complexity, which ultimately affect
how well the model fts the data. Finding the best
parameter set via a cross-validation optimization
procedure is a computationally intense effort.

Here we see a signifcant opportunity for the DOE to
make a unique contribution to the feld of machine
learning where the contribution could have a
signifcant impact on DOE scientifc applications and
where we cannot count on industry to take the lead.
What especially differentiates the DOE from other
science-funding organizations with respect to this are
DOE’s extensive HPC resources. An HPC environment
may be highly suitable and even necessary for applying
and tuning deep learning methods, frst for accelerating
the core neural network learning process, and, second
for parallelizing the training of models with different
parameter settings.

28 ASCR Machine Learning for Extreme Scale Computing Workshop Report

6.2 Challenges of ML for High
Performance Computing

We now review the current state of production
analytics stacks in the commercial world and comment
on requirements for developing and deploying ML
software on extreme-scale systems.

6.2.1 Production ML Software Frameworks
for HPC systems

We consider the challenges of creating an HPC ML
software framework in the context of the current
HPC-ABDS (High Performance Computing - Apache
Big Data Stack) software stack. ABDS-Stack [50]
presents a comprehensive list of 289 data processing
software from either HPC or commercial sources. Many
critical components of the commodity stack (such as
Hadoop and HBase) come from Apache projects. We
note that data systems constructed from this software
can run inter-operate on virtualized or non-virtualized
environments aimed at key scientifc data analysis
problems. In Figure 13 we further layer some of the
HPC-ABDS subsystems and contrast HPC and ABDS.
We believe there are many opportunities for DOE
to leverage the rich ABDS software ecosystem by
evaluating the software on the left side of Figure 13
and selectively incorporating capabilities, for instance.

In some cases like orchestration, there are new
approaches like Apache Crunch that should be
compared with the mature HPC solutions. In areas like
streaming, there is no well-established HPC approach
and direct adaptation of ABDS to DOE’s requirements
is appealing. An in-depth investigation needs to be
conducted for various layers in the complete ABDS
stack [50] and Figure 13.

More generally, since linear algebra methods are at the
heart of many machine learning algorithms, there is an
important need—and one to which DOE capabilities
synergize very well—to develop novel linear algebra
theories and frameworks that go beyond optimizing
gigaglops and wall-clock time to considering metrics
such as implicit regularization, computing to different
levels of precision, considering power and performance
in conjunction with other metrics, developing tools as
uniformly as possible in extreme scale applications,
and developing tools for ill-structured sparse matrices.

We list the following specifc challenges:

• Providing high performance in the context of ABDS software:

Since most of ABDS emphasizes scalability
over performance, an important objective is to
determine how to also produce high performance
environments. This requires addressing better node
performance and support of accelerators like Xeon
Phi and GPUs.

Orchestration
Libraries

High-Level Programming
Platform as a Service

Languages
Streaming Parallel Runtime

Coordination
Caching

Data Management
Data Transfer

Scheduling
File Systems

Formats
Virualization

Infrastructure

Big Data ABDS
Crunch, Tez, Cloud Dataflow
MLlib/Mahout, R, Python
Pig, Hive, Drill
App Engine, BlueMix,
Elastic Beanstalk
Java, Erlang, SQL, SparQL
Storm, Kafka, Kinesis
MapReduce
Memcached
Hbase, Neo4J, MySQL
Sqoop
Yarn
HDFS, Object Stores
Thrift, Protobuf
Openstack

CLOUDS

HPC-ABDS
Integrated
Software

HPC, Cluster
Kepler, Pegasus
Matlab, Eclipse, Apps
Domain-specific Languages
XSEDE Software Stack

Fortran, C/C++

MPI/OpnMP/OpenCL

iRODS
GridFTP
Slurm
Lustre
FITS, HDF
Docker, SR-IOV

SUPERCOMPUTERS

Figure 13: Comparison of current data analytics stack for cloud and HPC infrastructure.

29 ASCR Machine Learning for Extreme Scale Computing Workshop Report

• Data movement and resilience: Most commercial ML
software is geared towards throughput-oriented
performance on commodity clusters, which are at
a different design point compared to HPC systems.
Considerations such as extreme concurrency, data
movement, and resilience will become important on
exascale-class platforms and need to be considered.

• Storage and data management: Currently, most scientifc
data analysis is centered on fles. However, we
expect that in the future, scientifc data analysis
will expand to integrate approaches of Object
stores, SQL and NoSQL. HPC distributed and
parallel storage environments need to be reconciled
with the data parallel storage seen in HDFS in
many ABDS systems.

• Communication, (high level or basic) programming, analytics

and orchestration: These areas have seen rapid
commodity/commercial innovation. Reconciling
these layers with an HPC environment will
be challenging, although there is substantial
development here to leverage off.

6.2.2 ML Algorithms at Exascale

State-of-the-art research and software for scalable
machine learning has focused on scaling the
algorithms for multi-core systems and clusters
with commercial off-the-shelf processors. However,
with exascale systems on the horizon, power
consumption of individual components and cost
of data movement are expected to be the primary
deciding factors in achieving sustained performance.
Thus, power consumption has resulted in the advent
of revolutionary architectures, which are expected to
execute at near threshold voltage (NTV). This includes
several many-core architectures (NVIDIA GPUs, Intel
Xeon Phi, AMD APUs), in addition to several more
on the horizon. Much of the existing ML software has
focused on using multi-core systems, but is not suitable
for lightweight many-core architectures. As a frst step,
there is a need to design programming frameworks and
candidate algorithms which can seamlessly leverage a
combination of multi-core and many-core systems.

An undesirable impact of NTV execution is the
tremendous increase in soft errors, which can possibly
result in silent data corruption (SDC). A few case
base studies exist on the impact of soft errors on the
accuracy of respective applications. In many cases,
iterative applications—which should self-correct
themselves—have been shown to converge incorrectly.
It is imperative to study the effect of soft errors on ML
algorithms, and to design fault-tolerant algorithms. In
addition to silent errors, permanent faults are expected
to increase sharply due to combining individual

components at massive scales. A performance-only
optimization of machine learning algorithms de facto
in the machine learning community is insufficient in
solving the big data challenge on exascale systems
using machine learning. As a result, it is critical to
understand and address the delicate balance of power,
performance, and reliability in designing machine
learning algorithms, which has been largely ignored in
the machine learning community.

There are several complementary efforts in DOE
(X-Stack2, Co-Design centers, FastForward2)
addressing the triage of power, performance, and
reliability. However, these efforts are necessary,
but insufficient in addressing the challenges imposed
by ML algorithms. Machine learning algorithms
feature a richer variety of data structures and
communication patterns.

Resilience is an open issue for machine learning
algorithms, while it is being addressed for legacy
algorithms such as PDEs. Similar to PDEs, machine
learning algorithm data structures are susceptible
to soft errors, possibly resulting in SDC. Hence, it is
critical to design algorithms, which are resilient to soft
errors. Similarly, little to no research has been done
in addressing the cost of data movement in machine
learning algorithms. Novel algorithms for machine
learning, which would provide bounds on accuracy loss,
to address the data movement challenges are critical in
tackling the primary impediments for exascale.

6.2.3 Specialized Hardware for Machine
Learning—Neuromorphic Computing

The ending of Dennard scaling [35] is causing on-chip
power densities to increase as transistor dimensions
shrink. This is expected to lead to a phenomenon
known as “dark silicon,” [44] where different parts
of a chip will need to be turned off in order limit
temperatures and ensure data integrity. Thus, in future
multi-core processors, all the processing cores may not
available at time. It is expected that heterogeneous
processing architectures with specialized processing
cores will become more common to counter this
problem. The specialized cores can process their
specifc classes of applications very efficiently, thus
consuming much lower power. In order to warrant their
use, specialized cores need to be reprogrammable to
ensure a sufficiently large application base. At present,
specialized processing is already in use with systems
having GPUs in addition to CPUs.

Reprogrammable specialized neuromorphic computing
hardware for ML would have signifcant applications in

30 ASCR Machine Learning for Extreme Scale Computing Workshop Report

exascale systems if they can signifcantly accelerate the
algorithms and reduce the power consumed.The scope
of applications would be particularly broad if in situ
training can be carried out directly in the hardware.
In situ analysis of system sensor data using conventional
computing systems can be have a heavy overhead, thus
this analysis is typically done either offline or with very
simple online learning algorithms. Specialized hardware
for machine learning would be able to aid in this analysis
with little performance and power overheads. Other
applications include fnding patterns in large datasets
and the other applications outlined in this report.

Research is needed in the design of specialized
neuromorphic computing hardware and software for
ML algorithms as this can have a transformative effect
on exascale systems and applications. Processing
systems that can learn in situ are especially important
to examine. New classes of ML algorithms that
are better suited to this hardware should also be
investigated to make the best use of the specialized
hardware. In particular, neuromorphic computing
and biologically inspired algorithms that build on the
collective behavior of a group of neurons can have
strong information processing capabilities.

Several new classes of ML circuits promise signifcantly
lower area and power overheads. In particular, memristor-
based processing systems have been shown to reduce
power consumption by over 100,000 times and chip area
by over 1,000 times compared to existing mainstream
computing systems [1].Within a neuromorphic computing
architecture, memristor devices can inherently mimic the
behavior of biological synapses [120].

Figure 14: Two layer network for learning three-input, odd-parity

function [1].

The basic neuromorphic computing architecture
involves memristor devices arranged into
programmable arrays (crossbars) to model a large
set of neurons in a low area footprint (see Figure 14).
In this type of circuit, a pair of memristors models a
synapse (see Figure 15) based on the conductance of
the memristors. Inputs to the synapse in a neuron are
modulated by the memristor conductance resulting in
current fows that are added to generate the neuron
outputs. Thus, the memristors are not only storing
data, but also computing a multiply-add operation in
the analog domain. This leads to their signifcant low
area and power consumption. One particular beneft
of memristive systems is their capability for high-
performance in situ learning using parallel, high-speed
circuits [67]. The low-power, high-performance, and
in situ learning capability of memristor-based neural
network processing, or neuromorphic computing,
systems make them highly attractive for extreme
acceleration of ML algorithms.

Figure 15: Circuit diagram for a single memristor-based neuron [1].

Several recent studies have proposed using
neuromorphic processors to approximate applications
at very low power consumption [118]. Chen et al. have
examined the mapping of several applications from
the PARSEC benchmark suite into neural form [27],
while St. Amant et al. have shown that by mapping
applications to neuromorphic form, energy savings
of up to 30 times can be seen for general purpose
applications [118].

31 ASCR Machine Learning for Extreme Scale Computing Workshop Report

6.3 Challenges at Exascale from Topic 3

First, hardware will see more frequent faults due to
increased scale. With the stagnation of CPU clock
rates, a system 1,000× more powerful than today’s
petascale systems will likely need 1,000× more
components to deliver this increased performance
[23]. This 1,000-fold increase in component count
will likely lead to a 1,000-fold increase in the failure
rate. This is compounded by the fact that shrinking
transistor feature sizes and near-threshold voltage
logic needed to address energy concerns may further
increase the hardware failure rates.

Second, software errors at each level of the system will
likely be more frequent due to increased complexity of
the software stack. At the application level, dramatic
increases in concurrency, emerging programming
models, and increasingly complex workfows are likely
to lead to increased errors. At the system and runtime
levels, the diverse hardware technologies expected on
future systems (heterogeneous architectures, deeper
memory hierarchies, etc.), will demand richer and
more complex sets of system services than observed on
today’s systems, further increasing failure potential.

Resilience is a crosscutting concern for exascale
systems as these systems must be capable of predicting,
detecting, informing, and isolating errors and failures
at all levels of the system, from low-level hardware to
application-level software. Each of these hardware and
software levels are expected to exhibit higher fault
rates than observed on current systems for reasons
outlined below.

• Quantifying trust
 worthiness
• Deep learning

6.4 Challenges for ML towards
Resilience and Trust from Topic 3

The goal of machine learning is to be able to use data
or expert experience to create a computer model to
solve a specifc problem potentially as illustrated in
Figure 16. Problems where machine learning has been
successfully used include predicting future searches
based on past searches, clustering documents by
content, answering questions, automatically translating
documents to other languages, recognizing faces from
images, recommending products and services, and
recognizing objects within videos, to name a few.

A type of problem that machine learning is ideally used
for is to classify data into groups based on the features
or known aspects of the data. Unsupervised learning
relies solely on the data and not on prior information;
supervised learning relies on training examples
or previously known information. An example of
unsupervised learning is document clustering, where
a collection of documents is converted to term-weight
vectors, then document similarity vectors, then a
cluster showing the similarity relationship among the
documents [110]. An example of supervised learning
is recognizing handwritten letters. Training examples
from handwritten letters are used to train machine
learning classifers to recognize specifc letters of the
alphabet. Once trained, these classifcation models can
then be used to classify previously unseen data.

Traditionally, the major challenges in machine learning
algorithms have been the lack of ability to scale to
large datasets given the computational complexity

of many of the algorithms, the need for
impractically large numbers of training
examples, and the need to retrain the model

• In-situ fault detection • Model adaptation • Adaptive sampling if the domain changes. These three areas
• Higher-order techniques

• Integration with • Data fusion are being addressed with highly efficient
• Manifold learning and parallel algorithms, semi-supervised • Streaming analysis

methods that require a fraction of the
• Failure models

Figure 16: An overview of the different aspect of

resilience for extreme-scale systems and the associated

machine learning tasks.

• Anomaly detection
• Prediction of faults
• Pattern recognition
• Failure models
• Decision trees

• Hidden Markov Models • Fault prediction models

Post-fault: Reconfiguration Pre-fault: Robustness

Evolve

Recover Withstand

Reconfigure Anticipate

• Sample bias

real-time environments
• Deep learning
• Supervised and

unsupervised learning

• Learning models
• Decision trees
• Deep learning methods
• Feature selection
• Dynamic Bayesian nets

32 ASCR Machine Learning for Extreme Scale Computing Workshop Report

1

number of training sets, and online learning methods 2 Science of trust and resilience in HPC computations—the
that adapt to the data in near-real time. However, understanding of the event logs (What is collected
several challenges still remain, such as: and how useful is it for predicting failures and

• Sample bias—where data sampling methods cause
models to be skewed;

• Anomalies detection—misclassifcation of faults and
anomalies;

• Domain changes—given the wide range of HPC
applications, can a generalized model be developed
to work across applications;

• Adaptive sampling—how to gather more information
when it is needed;

• Streaming analysis—given the volume and speed of
the data, how to predict outcomes without offline
storage and analysis of the data;

• Tight integration with real-time environments—how
to efficiently run models on HPC platforms to
enhance resilience and trust, but without impacting
applications; and

• Quantify the trust worthiness of the HPC application—
what is an appropriate measure of trust for a
scientifc application and data? What are the
dimensions of trust which will be incorporated into
this measure (is this measure a vector of values
rather than a single number)? What are the sources
of information upon which to base our reasoning
about the trustworthiness?

We believe that recent advances in scalable ML, when
combined with the understanding and subject matter
expertise from HPC operations and HPC event-log
datasets, can enable the development of proactive
failure management methods. Until recently, the
application of machine learning algorithms on HPC
event logs faced three major challenges in the iterative
process of pattern discovery and pattern recognition
to predict occurrence, coverage and extent of failures
at the leadership computing facilities. The three
challenges were:

Data science—do we need another supercomputer to
analyze the terabytes of event-log data generated
by leadership computing infrastructure? Are data
analysis algorithms going to be fast enough to
crunch terabytes for HPC operations personnel to
be proactive;

provenance?), and understanding applications
with respect to hardware interactions, the inter-
application dependencies, etc.; and

3 Library of models—that learn and infer from
increasing data size, more data sources (logs,
sensors, users, etc.), fewer examples of failures and
interdependent relationships.

Machine learning algorithms need to be designed to
operate online and at scale. There are two reasons
why online learning is necessary: the confguration
of executions in HPC systems is never the same and
different applications are executed concurrently and
the state of the different system software is evolving
with time. So information needs to be acquired in a
permanent regime. Since there is not enough storage
space to store all events coming from all sources,
fltering is necessary before storage. Outliers need to
be detected from the fow of apparently normal events.
Only a selected subset of all events will be stored.

As mentioned in Section 9, many sources of errors (we
use this term in a generic way. It could be replaced
by disruption, corruptions, etc.) can reduce the level
of trust that we have in simulation results. Applied
mathematics already offer techniques to mitigate errors
coming from several sources. Others sources like bugs,
malicious attacks, and silent data corruptions still
need to be mitigated. Trust and resilience raise similar
questions: what is the cost that a user is ready to pay
for them (What is an acceptable overhead in terms of
execution time and additional hardware resources,
energy?). Trust also raises new questions: since trust
is not necessarily binary, can we provide at the end of
the execution a trust level (or confdence level) of the
simulation results? Conversely, could users express a
requirement in level of trust before the execution, in
order to guide the execution toward this objective? This
could be seen as the level of risk that a user is ready
to accept. Another question concerns the coverage for
trust: does trust need to cover all sources of errors or
can we consider levels of trust with respect to each
source of errors.

33 ASCR Machine Learning for Extreme Scale Computing Workshop Report

7 Machine Learning-built Models to Understand Current and Future
Research Directions

7.1 Research Directions in ML from
Topic 2

In this section, we will identify the major research
directions of the feld of machine learning in industry
and academia. Figure 17 provides the taxonomy for the
traditional high-level ML areas and provides examples
of the well-known techniques that fall into the various
categories. Much research still lies in improving the
generality and robustness of the techniques in these areas.
However, we also would point out that some of the most
interesting and applicable research directions in ML do
not neatly ft into the traditional taxonomy.These research
areas are noted in the box at the bottom of Figure 17.

Figure 17: Taxonomy of various ML approaches and methods.

the Past and to Predict the Future

For example, one would like to understand how the
data was generated and to use that knowledge to
make predictions.When labeled data is not available,
the process of creating this understanding is often
referred to as unsupervised learning. If multiple types of
variables are available, one of which may be interpreted
as providing labels, then the task of building a
prediction model, which allows one to predict the future
value of a target variable as a function of the other
variables, is often referred to as supervised learning.
There are many variations. For example, one may have
only a small number of labels, one may receive labels
iteratively, etc. These are often called semi-supervised
learning or reinforcement learning. Important to the
use of all of these is the famous observation from the
late George Box that all models are wrong, but some are
useful. While the model-building literature presents a
vast array of approaches and spans many disciplines,

Machine Learning

Supervised
Learning

Unsupervised
Learning

Classification

Instance based (k-NN, LVQ)

Bayesian (Naive Bayes, BBN)

Kernel Methods (SVM, RBF, LOA)

Decision Trees (CART,
Random Forest, MARS)

Artificial Neural Nets (Perceptron,
Hopfield network, SOM, Black Prop)

Ensemble Methods (Boosting,
Bagging, AdabBoost)

Clustering Regression Dimensionality
Reduction

Linear Algebra, Graph Theory, Optimization, Statistical Learning Theory

OLS, Logistic, Mars,
LOESS, Ridge, LASSO,

Elastic Net

K-means, hierarchical,
EM, GMM, DBSCAN,

OPTICS

PCA, ICA, MDS,
NMF, CCA, Isomap,

LLE, CX/CUR

Deep Learning (RBM,
DBN, CNN)

34 ASCR Machine Learning for Extreme Scale Computing Workshop Report

model building with massive data is relatively
uncharted territory. For example, most complex
models are computationally intensive and algorithms
that work perfectly well with megabytes of data may
become infeasible with terabytes or petabytes of data,
regardless of the computational power that is available.
Thus, for large-scale problems and in different types
of applications such as scientifc applications, one
must re-think the trade-offs between complexity
and computational efficiency. Many approaches are
used to address many of these questions, but many
challenges remain. There are two types of challenges
here. The frst is scaling up existing algorithms. In
some cases, this means scaling up on architectures not
optimized for ML. The second challenge is identifying
objectives and algorithms that are more appropriate
for particular applications. In this case, the goals of the
user of machine learning might be very different if one
is interested in high-quality quantitative prediction
versus obtaining qualitative understanding of the data.

Unsupervised Learning

Unsupervised learning or data analysis aims to fnd
patterns in the data. This can include the following:

• Clustering. This is partitioning data into groups so
that data items within each group are similar to
each other and items across different groups are
not similar. For example, K-means, hierarchical
clustering, and mixture models are popular
algorithmic approaches.

• Dimension reduction. This represents high-dimensional
data points by points in a lower-dimensional space
so that some properties of the data can be preserved.
For example, one approach might be to preserve
enough information to fully reconstruct the data, and
another may be to preserve only enough information
to recover distances among data points.

• Anomaly detection. This is determining whether a data
point is an outlier (e.g., is very different from other
typical data points). One general approach is to use
a statistical model to characterize the data, and an
outlier is then an unlikely point.

• Characterizing the data through basic statistics, such as
mean, variance, the frequency distribution of node
degrees in a graph, etc. Although simple, a challenge
here is to fnd computational algorithms that can
efficiently work with massive data.

• Testing whether a probability model of the data is consistent

with the observed statistics, e.g., whether the data
can be generated from a Gaussian distribution, or
whether a certain statistical model of a random
graph will produce a graph with observed
characteristics.

Existing approaches to address these questions include
probabilistic modeling approaches, non-probabilistic
approaches based on optimization, and procedures that
try to fnd desired structures. For example, a mixture
model can be used as a statistical model for addressing
the clustering problem, while an optimization model
does not. There are also clustering procedures that
are not based on optimization or statistical models.
For example, in hierarchical agglomerative clustering,
one starts with each single data point as a cluster,
and then iteratively groups the two closest clusters to
form a larger cluster; this process is repeated until all
data is grouped into a single cluster. In a loose sense, it
also builds a useful model for the data that describes
similarity relationship among observations; but the
model is not detailed enough to generate the data in a
probabilistic sense.

Supervised Learning

Supervised learning is sometimes called predictive
modeling. In this case, one typically has a response
or output variable Y, and the goal is to build a
function f(X) of the inputs X for predicting Y. Basic
prediction problems involving simple outputs include
classifcation (Y is a discrete categorical variable) and
regression (Y is a real-valued variable).
Statistical approaches to predictive modeling can be
generally divided into either generative models or
discriminative models. In a generative model, the joint
probability of X and Y is modeled; that is, P(X|Y).
The predictive distribution P(Y|X) is then obtained
via Bayes’ theorem. In a discriminative model, the
conditional probability P(X|Y) is directly modeled
without assuming any specifc probability model for
X. An example of generative model for classifcation is
linear discriminant analysis. Its discriminative model
counterpart is linear logistic regression, which is also
widely used in practice. The maximum likelihood
estimation (MLE) is a common parameter estimation
method in these cases, but one can defne other criteria
to optimize. For example, one may consider a geometric
concept such as a margin and use it to defne an
optimization criterion for classifcation that measures
how well classes are separated by the underlying
classifer (which leads to support vector machines).

Another issue with high-dimensional data is that there
are a large number of variables that are observed that
are difficult to handle using traditional methods such
as MLE. Regularization approaches are often used
in these cases. Examples of such methods include
ridge regression and the Lasso method for least-
squares ftting. Often, nonlinear prediction methods
can achieve better performance than linear methods

35 ASCR Machine Learning for Extreme Scale Computing Workshop Report

and an important research topic in massive data
analysis is to investigate nonlinear prediction models
that can perform efficiently in high dimensions. In
many cases, this requires primitive scalable methods
for least-squares regression and low-rank matrix
approximation. Developing improved algorithms for
these problems is a continuing challenge and in recent
years the use of randomization as a resource has led
to qualitatively improved algorithms for regression
and low-rank matrix approximation problems in very
large-scale settings.

An important challenge is to see how these types of
approaches can fruitfully be combined with online
prediction methods (which can be regarded both as
modeling for sequential prediction and as optimization
over massive data) such as stochastic gradient methods.
Online algorithms do not require all data to be stored
in memory, since each time they are invoked, they look
at one or a small batch of observations. One popular
approach is stochastic gradient descent.

7.2 Current and Future Research
Directions from Topic 3

Over the last few years, resilience has become a major
issue for HPC systems, especially, in the context of
DOE’s vision for exascale computing [22, 36, 42]. State-
of-the-practice methods (i.e., checkpoint-restart [43],
event-correlations [52], replication [47, 40] and failure
prediction [57]) have become operationally infeasible
or do not scale for millions of cores; accommodate
heterogeneity in architectures (CPU, GPU, etc.);
account for different failure modes (hardware, software,
application, etc.); and, different hierarchies (input-
output, memory, disk, network, etc.) of possible failures.
The outstanding challenge is fnding new proactive
methodologies that will reduce the instability of
exascale systems while allowing users’ applications to
run without interruption.

Major challenges in applying machine learning to
resilience and trust in supercomputing are the multiple
types of heterogeneities in the log data (i.e., including
hardware faults, network-faults, soft errors, etc.). This
requires machine learning algorithms to include:

• A suite of methods to handle different aspects
of variations (as in multi-task learning, science
domain-specifc adaptation);

• View-based learning (as in multi-view learning—
different codes at different times), instance
variations (i.e., multi-instance learning—same code
run at different times);

• Label variations (i.e., multi-label learning—scaling
to increasing types of faults); and,

• Oracle discrepancies (as in labeling method—
manual, sensed, automatic), etc.

While novel methodologies, applications, and theories
for effectively leveraging these heterogeneities are
being developed, the work is still in nascent stages.

There are multiple challenges:

1 How can we effectively exploit the label/
example structure to improve the classifcation
performance?;

2 How can we handle the class imbalance problem
when facing one or more types of heterogeneities?;

3 How can we improve the effectiveness and
efficiency of existing learning techniques for large-
scale problems, especially when both the data
dimensionality and the number of labels/examples
(different types of failures) are large?;

4 How can we jointly model multiple types of
heterogeneities to maximally improve the
classifcation performance?; and

5 How do the underlying assumptions associated with
multiple types of heterogeneities affect the learning
methods?

7.2.1 General Failure Model

Most existing resilience solutions are application-
specifc and difficult to adapt into other applications.
Although few application blind solutions are reported,
since they need to consider unnecessarily large
amounts of application elements with no failure models
being known, they inevitably incur large overhead.
Machine learning-based general failure models will
mitigate both limitations; they are based on abstract
signatures, not by features specifc to an application,
and thus are easy to apply to other applications and
lightweight in footprint.

Machine learning-based failure models for resilience
are broadly categorized into two areas: failure
detection and failure prediction. Although the latter
is a more rigorous and proactive form than the other,
they are both based on data analytics. In general,
log data such as syslog or resilience, availability,
and serviceability (RAS) outputs and synthetically
injected failure data are considered essential for this
end. However, data analytics on this data imposes
challenges. Data is voluminous, complex, and

36 ASCR Machine Learning for Extreme Scale Computing Workshop Report

heterogeneous (i.e., structured or unstructured, textual
description or numeric readings).

In order to enable applications to make decisions
based on the trustworthiness of resources, multiple
hybrid learning techniques will be applied in an
ensemble learning approach using a metareasoner
to select from or combine solutions provided by
multiple learning modules. The approach for learning
and reasoning about trust in a large network of
nodes uses an iterative, multi-step hybrid reasoning
algorithm consisting of causal models represented as
Bayes nets, being fed by information retrieved from
network probes or logs. The models capture causality
among variables that represent precursors to trust
outcomes, and produce data for use by other machine
learning methods. These methods include knowledge-
based approaches, including case-based learning and
reasoning, and statistical approaches. There are many
machine learning approaches that both separately
and in combination could be applied to provide
insight, both quantitative and qualitative, into the
trustworthiness of entities. These approaches will be
investigated.

7.2.2 Fault Characterization

Characterize HPC faults using existing and extended
ML and deep learning techniques to analyze fault data
that is produced by HPC systems.

Building Resilient Scientifc Applications via
Generalized Machine Learning Models

Resilience—coping with runtime faults—has been
identifed as a top challenge to achieving exascale. As
new generations of microprocessors are created, soft-
error rates increase as a consequence of technology
scaling and the need to reduce energy consumption.
In addition, a signifcantly larger number of software/
hardware components are expected at exascale, which
will further increase failure frequencies. Applications
must survive in unreliable environments, thus we need
to design efficient resilience mechanisms.

Application B

Application C

Application D

Fault, Error &
Failure Data

Protect
Applications

Learning

System

Models

Figure 18: Workfow to protect applications by learned models.

We propose a novel, automatic approach to protect
scientifc applications from faults by leveraging
application-independent ML models. Most existing
resilience solutions are algorithm-specifc (and only
suitable for a subset of applications) [20, 38, 74].
While others are algorithm-independent, they incur
high overhead by over-protecting the application
(since application failure models are unknown, they
tend to protect unnecessary application elements or
state) [17, 30, 29, 53]. By building general algorithm-
independent failure models via ML, our solution is
the frst to automatically protect specifc application
components to reduce fault detection and recovery
overhead. Developers will no longer spend time
adapting resilience techniques to their algorithms or
face unnecessary slowdown due to fault detection code.

Application Resilience Data

Fault injection into applications is the most common
approach to study resilience properties and a huge
amount of fault data can be obtained in this way. To
have a sense of this data space, a single serial kernel
can be injected with faults in different machine
instructions on the order of 500 billion (depending on
code size and runtime). With a more complex parallel
code, this number can easily reach up to quadrillions
(1015) of fault data points that need to be analyzed just
for a single application.

Building General Failure Models

By analyzing fault data, we can build a failure model
for an application. A failure model explains how
and when faults make different components of an
application fail. Our research questions are: Can we
use the failure model of an application to develop
protection mechanisms for another application?

Further, can we use a small set of application kernels
to build failure models that generalize to a larger set
of applications? If this is possible, we would spend less
time protecting new applications (by avoiding long
fault injection campaigns) while maintaining efficiency.

We argue that it is possible to generate application-
independent failure models by using hardware- and
system-specifc features rather than algorithm-specifc
features. Examples of algorithm-specifc features
include the number of particles in a simulation
or the size of a matrix. System- and hardware-
specifc features might include the type of executed
instructions or the number of bytes in a memory region.

37 ASCR Machine Learning for Extreme Scale Computing Workshop Report

The reasons behind our argument are twofold:
1 An algorithm-specifc feature from application A

may not exist in application B; and

2 Faults originate from the hardware and propagate
to the system, thus hardware- and system-specifc
features are likely to capture failure characteristics
in a general way.

The next section casts the problem of generating
a failure model as an ML problem and presents a
case study using our approach to efficiently protect
applications against silent errors.

We can express the generation of a failure model
as a pattern classifcation problem in supervised or
unsupervised learning as follows (see Figure 18). Let
S denote the state of an application or a system. S can
take one state from a set, for example {faulty, non-
faulty} or, if we want to predict future states, {will-
fail,will-not-fail}. Let \vec{v}. V⃗ denote a vector of
values for n collected metrics [m0,...,mn]. These metrics
can be any features of the system or application. A
pattern classifcation problem would be to induce or
learn a classifer function F mapping the universe of
possible values for V⃗ to the range of states S. Given a
vector V⃗ , we can then use this function to predict if the
application is (or will be) in a faulty state or not.

Case Study

Silent errors are some of the most catastrophic errors
because they may affect numerical results—applications
show no fault symptoms, although their fnal output
may be incorrect. Our goal is to detect silent errors
and to make them visible, thus users can take remedial
actions promptly. A common approach to detect silent
errors is to duplicate computations and to compare

them; if they differ, an error is detected. A widely
accepted approach is the one proposed by Chang, et al
[25], which duplicates computation at the granularity
of instructions. However, this method incurs a high
overhead because almost all instructions are duplicated
in all applications. We can improve the efficiency
of Chang’s method using our model-generalization
approach as follows.We train an ML classifer (decision-
tree) where feature vectors comprise characteristics of
an instruction, such as its type and the instructions it
infuences (all hardware- and system-level features).
To train the classifer, we use labeled data from
instruction-level fault injection in a molecular dynamics
code (CoMD) using LLVM. For each instruction, we
obtain a feature vector V⃗, and, by observing whether
the application crashed or not, we label each vector
with non-silent or silent. Out of 365 injections, 233
(63.8 percent) result in non-silent errors and 132 (36.2
percent) result in silent errors. If our model is general
enough (see Figure 19), we hypothesize it can be used
to protect new applications, or different versions of the
same application, using a simple algorithm:

1 Check every instruction in the code of the new
application;

2 Ask the classifer if an error in this instruction
would cause a silent error; and if so,

3 Protect that instruction.

With a perfect classifer, our approach would incur a
slowdown of only 1.36 (since we would protect only
instructions in which a silent error can occur), whereas
the traditional approach [25] of naively protecting all
instructions would have a slowdown of at least 2. Thus,
our approach would be 2 ⁄ 1.36 = 1.47 × faster than [25].

CRASH = 107
SE = 64

Yes No

CRASH = 3
SE = 15

CRASH = 1
SE = 23

Yes No

CRASH = 8
SE = 16

Is a STORE
instruction? (189)

Yes No

Is number of
function calls ≤ 7.5? (48)

CRASH = 2
SE = 8

Yes No

CRASH = 5
SE = 2

CRASH = 0
SE = 75

Yes No

CRASH = 6
SE = 30

Remaining instructions in
basic block ≤ 7.5? (17)

Yes No

Is number of future
function calls ≤ 12.5? (111)

Are there pointers in the
forward slice? (237)

Yes No

Remaining instructions in
function ≤ 15.5? (128)

Is a pointer instruction? (365)

Figure 19: Decision tree of fault injection results in molecular dynamics code (SE = silent error, CRASH = application aborted)

https://follows.We

38 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Feature Selection

Hardware and systems provide a wide range of features
to model a resilience problem. Selecting the right
features (or fltering out those that do not provide much
information) is critical. Key research questions are:

1 What features should be measured to model the
type of faults that we want to detect? (some features
may be fault specifc); and

2 How to sample measurements effectively at runtime
without incurring high overhead?

Model Adaptation

What if a model from application A is not general
enough to be used in application B? Can model A be
adapted (perhaps automatically) for B, and, if so, how?
Can we form equivalence classes of similar failure
behavior? What makes an application similar to
another application in terms of resilience? Answering
these valid research questions will require extensive
experimentation, analyzing useful features, and
developing practical algorithms to compare code
structures and fault propagation properties.

Leveraging Proxy Applications

Proxy applications—used by DOE national labs in
co-design efforts—are small, tractable codebases
that represent some functionality of larger, more
complex applications (their parents). Protecting a
full application from faults requires spending a large
amount of time in fault injections. In a large-scale
application, it may be prohibitively expensive to collect
sufficient training data. However, if a proxy application
resembles its parent in terms of resilience, we can train
models from that proxy application and can use it to
protect its parent in less time.

We propose to improve the efficiency and applicability
of resilience techniques using generalized failure
models that can be built via ML. This work will spawn
novel resilience solutions for exascale.

7.2.3 In Situ Fault Detection

Use classifer models developed offline to detect faults
and learn new patterns in situ.

Using Machine Learning to Optimize
Uncoordinated Checkpointing Performance

In response to alarming projections of high failure rates
due to increasing scale and complexity of HPC systems
[19], many researchers have focused on methods and
techniques for resilient extreme-scale HPC systems
and applications. Considering non-algorithm-specifc
resilience approaches, researchers have studied
both coordinated checkpoint/restart (cCR) and
uncoordinated checkpoint/restart (uCR) protocols, with
cCR having emerged as the de facto standard.

cCR protocols preempt all application processes to
record a snapshot of the application’s global state. cCR
is attractive for several reasons. Its coordination protocol
guarantees that the most recent global checkpoint
captures a consistent global view, removing the need
to store multiple checkpoints, sent messages, or other
additional state information and thereby minimizing
storage requirements. cCR also admits a relatively
simple recovery procedure that does not suffer from
rollback propagation, a scenario in which the most
recent checkpoints from each application process do not
comprise a consistent global state [41]. cCR does suffer
from I/O contention issues since all processes checkpoint
simultaneously, and with cCR protocols, upon a failure,
even the surviving processes are perturbed as they
must rollback to their most recent checkpoint.The
rework executed by surviving processes also results
in potentially unnecessary energy expenditures. uCR
protocols, in which each process in an application makes
independent decisions about when to checkpoint, can
mitigate cCR’s I/O contention problem since processes
are not forced to take checkpoints simultaneously.
Additionally, when uCR is coupled with message
logging, when failures occur, surviving processes are not
forced to rollback to their most recent checkpoint and
therefore can run ahead in their execution—unless and
until they depend on a message from a failed process.

Though uCR protocols show promise, recent results
show that the communication of an application and
its associated dependencies can signifcantly impact
the performance of uCR [49]. This impact can be so
great that, at certain scales, cCR to a shared parallel
flesystem can outperform uCR to local non-volatile
storage [49].

39 ASCR Machine Learning for Extreme Scale Computing Workshop Report

p0 p0

m1

δ

δ

δ

p0

p1 p1 p1

m2

p2 p2 p2

t1 + δ t2 + δ

m1

m2

t1 + δ t2 + 2δ

δ

δ

(a) Without checkpointing (b) Coordinated checkpointing (c) Uncoordinated checkpointing

Figure 20: Propagation of uncoordinated checkpointing delay through application communication dependencies. The processes p0, p1, and p2

exchange two messages m1 and m2 in each of the three scenarios. The black regions denote coordinated (b) and uncoordinated (c) checkpoint delays

m1

m2

t t1 2

marked with d.

The possibility of uCR protocol activities inducing
delays amongst processes, including processes that
do not communicate directly with each other, is
analogous to the manner in which operating system
noise can affect HPC applications [48, 70]. Figure
20 illustrates this phenomenon. Figure 20 (a) shows
a simple application running across three processes
(p0, p1, and p2). These three processes exchange two
messages, m1 and m2. We assume here that these
messages represent strict dependencies: any delay
in the arrival of a message requires the recipient to
stall until the message is received. Figure 20 (b) shows
the impact of coordinated checkpoint/restart (cCR).
Because all of the checkpointing activity is coordinated
across processes, the relative progress of the processes
is unperturbed and all of the dependencies are satisfed
at the appropriate time. Figure 20 (c) illustrates
the potential impact of relaxing the coordination
requirement in uCR. If p0 initiates a checkpoint at the
instant before it would have otherwise sent m1, then p1

is forced to wait (the waiting period is shown in grey)
until the message arrives. If p1 subsequently initiates a
checkpoint before sending m2, then p2 is forced to wait.
Part of the time that p2 spends waiting is due to a delay
that was originated by p0.The key point is that without
coordination, checkpointing delays can propagate based
on communication dependencies in the application.

Our position is that machine learning can be used
to increase the performance of uCR by determining
when local checkpoints can be taken such that they
do not amplify the overheads as illustrated in Figure
20. Standard methods are incapable of effectively
determining the proper time to take a checkpoint
as a local cannot determine a priori if it is currently
involved in a communication dependency chain. In
addition, system- and platform-level algorithms can
create dependencies with nodes the application does
not directly communicate with.

Prompt Failure Detection through Integrating
Disparate and Heterogeneous Offine and
Online HPC Instrumentation Data

The Advanced Scientifc Computing Research (ASCR)
program and the HPC community have invested in a
number of resilience technologies, including checkpoint/
restart [66], containment domains [30], and resilient
solvers [30, 68]. However, we still lack more fundamental
capabilities that can assist proactive decisions in using
these technologies: prompt detection of faults or
abnormal status of the system. HPC systems are heavily
instrumented for monitoring system health, producing
voluminous data that can be used to disclose insight in
this regard. However, no systematic approach to
integrating diverse datasets exists today, which restricts
primary use of the data to monitoring of mere occurrences
of some known patterns in each data separately. The
main challenge resides in discrepancy between different
data sources. These data sources, collected at different
locations and layers of the system, are inherently
heterogeneous and disparate; some data includes
numeric readings while other data includes textual
content or both. Furthermore, despite their enormous
practical importance, certain types of instrumentation
data are never logged due to insurmountable overheads
to collect and populate them into a designated database
or repository. For example, real-time CPU status,
memory utilization levels, or congestion status of the
high speed interconnect between routers (or switches)
are produced not only at a high-speed rate, but also at
an embarrassingly large number of locations. Since
compiling a full collection of these instrumentation data
without inficting the rest of the system is currently
impossible, the data ia used either to capture a statistical
synopsis or simply discarded. Therefore, while learning
and correlating logged data sources is a large-scale
offline data analytic problem by itself, incorporating
such online data into the holistic learning framework
opens up another set of algorithmic and architectural
challenges.

40 ASCR Machine Learning for Extreme Scale Computing Workshop Report

For the offline analysis, in addition to heterogeneous
nature of the data, the fact that very few failure cases
are typically reported in logs should be considered.
Since this constitutes a weakly supervised setting where
data for the target concept is scarce but other related
data ia abundant, relation extraction [10, 92] methods in
conjunction with semi-supervised learning such as multi
task learning [9] to disclose semantic associations among
word terms from the textual logs are adequate to apply.
Likewise, mappings between multi-dimensional spaces
constructed from numerical instrumentation data can be
learned using regression-based learning techniques, such
as smoothing kernel-based regressors to learn non-linear
relationships in the data or deep learning approaches.
More importantly, mappings between groups of relations
from textual and a set of features from numeric data
should also be examined to establish comprehensive
characterizations of a fault model. Such a model should
include causal relations, occurrences of the identifed
relations and associated numerical readings over time.
Statistical Markov models, such as Hidden Markov
Models (HMMs) or Dynamic Bayesian Networks (DBNs),
where different compositions of relations possibly
constitute latent variables or different states, are good
candidates to apply.

For the online analysis, a distributed online machine
learning approach seems to be an excellent choice.
In particular, we propose to create a distributed
streamlined data cube that, at a conceptual level,
follows a conventional Online Analytic Processing
(OLAP) cube, i.e., (a) different instrumentation data
readings constitute one set of dimensions, (b) locations
or layers in a hierarchy another set of dimensions,
and (c) time the third type of dimension. Each cell
of the cube represents a reading measured from an
instrumentation point at a particular timestamp. The
challenge is then to apply analytic algorithms over the
cube while keeping it at its minimal footprint. Whereas
we can dynamically compress the time dimension by
adopting a tilted time frame [60] that produces fner
resolutions for recent data and coarser resolutions
for distant data, reduction of the cube in the other
dimensions without much compromising analytic
quality is a bigger challenge. More specifcally, the cube
should be abstracted in a hierarchy where information
minimally necessary for the analytic algorithms are
represented as layers that aggregate data from lower
layers which do not need to be stored. Since the cube
will be inherently distributed over the underlying
network, it is important to construct a topology-aware
hierarchy. This will pose an interesting optimization
problem with respect to an allowable error bound and
different network topologies. Even preliminary results
on this research will provide valuable feedback to

vendors for their next data instrumentation design. In
parallel, a set of distributed, streamlined algorithms
that together construct failure models from the cube
should be developed.

Online Data-driven Statistical Inference Tools
for Fingerprinting and Improving Resilience of
High-Performance Computing Application

HPC applications are undergoing a dramatic shift in
their overall design and architecture as a consequence
of the availability of heterogeneous computing
resources. Instead of having to scale HPC applications
exclusively based on CPUs, modern compute
architectures are imposing on developers to scale their
applications across CPUs, graphics processing units
(GPUs) and other emerging architectures such as co-
processors. The combination of heterogeneous resources
within emerging exascale architectures promises
to provide unprecedented compute capabilities for
scientifc applications. However, one of the pitfalls of
heterogeneous architectures is that it is difficult to
predict how and when different components will fail.
Additionally, future exascale applications will have to
make efficient use of inter- and intra-node parallelism
(i.e., concurrency), memory footprint, data footprint
and locality, as well as be reliable to node-level or
component-level failures. HPC applications typically
generate vast amounts of data about the processes
they run on supercomputing systems in the form of
“event logs.”As heterogeneous compute resources
become more prevalent, these event logs have become
more complex and represent examples of big data,
consisting of both structured and unstructured data.
Apart from recording the status of current progress of
jobs/processes, these event logs record rich information
about the status of hardware and software, data,
memory and network resource usage. This information
represents multi-modal spatial and temporal data that
has immediate value in not only profling applications
but also in learning to predict where applications
may fail when resource failures occur. We propose a
scalable framework that uses event logs and other
performance information collected from other sources
(e.g., fle systems logs, performance management logs,
network logs, etc.) to perform near-real time analysis
of HPC applications to develop novel statistical
fngerprinting of resource usage, predict failure
modes, and provide novel capabilities to recover from
hardware/application failures. The framework utilizes
a novel multi-modal representation of event logs where
by these datasets are modeled as three-dimensional
tensors [79]. For example, tracking network logs can
provide information on the time point (t), the source

41 ASCR Machine Learning for Extreme Scale Computing Workshop Report

(s) and destination (d) ports. The entry within each (t)
can indicate how many packets were routed on these
(s) to (d) ports. Similar tensor representations can be
built for other types of event logs that capture the
state of the application/HPC resource. However, these
tensors can be represented as independent streams of
data that need to be analyzed in tandem to fngerprint
applications or resources.

Our approach to fngerprint HPC resources and
applications is based on dynamic and streaming tensor
analysis algorithms [122, 14, 107, 109] that specifcally
capture time-evolving patterns of the aforementioned
tensors. Using extensions to target multiple data
streams [99] simultaneously, we will develop linear
and hybrid ML models [28,108] that can provide
quantitative insights into the resource utilization
profles of HPC resources. Further tensor analysis
models can track application resource use profles
across multiple data streams to identify anomalous
behaviors and provide insights into failure modes of
these applications. The tensor analysis models can be
summarized using higher-order techniques to obtain
generative profles of how applications use HPC
resources. These quantitative insights can be integrated
with existing integrated performance management tools
to provide a seamless end-user experience that can:

1 Aid system administrators to prioritize resource
utilization for specifc applications;

2 Inform end-users about potential failures based on
past/previous runs; and

3 Aid optimization of applications for HPC
deployment.

The failure modes detected from application runs
(using dynamic and streaming tensor analysis
algorithms) will also aid in improving resilience of
HPC applications. In particular, based on temporal
profles generated from multiple data streams, we
build resource utilization maps that forecast how
applications perform with only CPUs, or with CPU-
GPU hybrid environments [8]. The utilization profles
can then be tailored to specifc application contexts
and made available to both end-users and system
administrators to better aid recovery from failures.
We will discuss our framework in the context of our
experience in running long time scale molecular
dynamics (MD) simulations. As MD simulations take up
nearly 35 percent of supercomputing time allocations,
the ability to address resiliency and trust issues from
application specifc contexts can be critical for their
success at exascale.

7.2.4 Fault Prediction

Predict faults before they actually occur so that the
system can be repaired or faults avoided when running
an application.

Machine Learning for Failure Prediction

Understanding the behavior of failures in HPC systems
is very important in order to address their reliability
problems. Event logs are often a source of information
for analyzing the cause of failures in cluster systems.
However, the size of these fles has continued to
increase. Current systems can generate up to tens
of GB of data per day, making any manual analysis
unrealistic. Research in this feld has turned to data
mining and ML techniques to characterize events
generated by current HPC systems. Machine learning
is a powerful tool that efficiently extracts patterns in
high-dimensionality sets and can provide accurate
correlations between defned behaviors. We combined
ML with signal processing techniques that are best
suited to characterize the behavior of events affecting
the system, highlighting the differences between
failures [54, 55, 56]. Different system components
exhibit different types of syndromes, both during
normal operation and as they approach failure. In
general, errors are often predicted by changes in the
frequency or regularity of various events. Moreover, ML
techniques become much more efficient when applied
to the derived markers rather than to the original
signal. Specifcally, we adapted the sequential GRITE
algorithm to work with our signals. By merging it with
a fast signal analysis module we were able to guide
the extraction process toward the fnal result, thereby
reducing the complexity of the original data-mining
algorithm. The correlations extracted with the ML
algorithm are used online to predict future occurrences
of failures. This step uses a novel methodology for
online failure prediction based on a pattern-extraction
algorithm specifcally designed for streams of data
with multiple dimensions. The method updates the
correlations live as new events are generated in the
system, in parallel with triggering predictions. A
modifed PCA algorithm extracts the most specifc
multidimensional items, then an alternative online
PrefxSpan algorithm mines sequences of events.
We have made multiple experiments on different past
and current production HPC systems, from BlueGene
systems, to NCSA’s Mercury and Blue Waters. For
BlueGene/L the results show that we can accurately
predict almost 50 percent of total failures with high
precision (90 percent). The Blue Waters has one order
of magnitude more events generated that contain
complex correlations. However, we showed that when

42 ASCR Machine Learning for Extreme Scale Computing Workshop Report

analyzing only a specifc type of failures, the predictor
can obtain over 60 percent recall and a precision of
over 85 percent. These results are very promising.
There are multiple directions to extend this research
area. First, the prediction methodology can be easily
extended to any other data gathered from the system,
such as performance metrics and information about the
application behavior. Second, instead of generalizing
the existing predictors in order to capture all failure
types and their varying behaviors, this direction focuses
on developing specifc predictors for each unpredicted
failure type, starting with fle system failures. Finally
these techniques could be extended for performance
degradation prediction.

7.2.5 Trusted Results

The frst three areas above focus on creating an HPC
environment that is resilient to failure, which enables a
scientist to have trust in an applications results.

Machine Learning for SDC Detection

Machine learning provides a promising, effective,
and efficient direction to detect SDC during runtime
in scientifc applications [62]. A strategy based on
data analytics has many advantages over classic
detection techniques. In particular, a lightweight data-
monitoring technique can impose a low overhead on the
application compared to expensive techniques such as
replication. Also, data monitoring and outlier detection
can be offered by the runtime transparently to the user.
The principle is to analyze the application datasets and
its evolution in order to detect outliers. Here, we take
the example of a computational fuid dynamics (CFD)
application simulating a turbulent fow and we analyze
the velocity felds. In Figure 21(a) below, we show a
multi-dimensional clustering of velocity feld variable
gradients. The same cluster in Figure 21(b) is plotted
in the presence of data corruption, where the color
denotes the magnitude (bit position) of the corruption.

Gamma distribution

D
el

ta
 d

is
tr

ib
u

ti
on

(a) Fault free

D
el

ta
 d

is
tr

ib
u

ti
on

Gamma distribution

(b) Data Corruption

Figure 21: A multi-dimensional clustering of velocity feld variable

gradients with (a) and without (b) data corruption.

From the results shown in the fgure, we can observe
how the corrupted data immediately stands out as clear
outliers within the cluster. A point that should be taken
into account while measuring the detection capabilities
of these detectors is that not all the bits in the IEEE
foating-point representation need to be protected. For
instance, a corruption in the most signifcant bits is
likely to generate a numerical instability, inducing the
application to crash. Such soft errors might be silent to
the hardware but not to the application. On the other
hand, corruption happening in the least signifcant
bits of the mantissa might be negligible because they
produce deviations that are lower than the allowed error
of the application. Coming back to the CFD example, if
we neglected the four most signifcant bits (numerical
instability) and the four least signifcant bits (negligible
error), we could say that data analytics based detectors,
provide a coverage of 83 percent in this example.

43 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Using data analytics solutions for SDC detection
opens a whole new feld of research. The community
is just at the beginning of this exploration. The
frst results are extremely encouraging in terms of
detection performance and overhead on execution time.
Advanced ML techniques combining multiple data
analytics approaches need to be investigated to achieve
a lightweight, transparent, accurate, and very portable
SDC detection techniques.

Expanding on this, the trustworthiness of this type of
output is not limited to exascale computing.

7.2.6 Representation of Trust: Supporting
Resilient Decision-Making in the
Context of Large-Scale Sensor
Networks

Researchers are exploring the characterization, roles,
and representation of trust in support of resilient
decision-making in the context of a widely connected
network of nodes such as the Internet of Things,
networks of sensors, or data and sensor fusion in
intelligence, surveillance, and reconnaissance
applications. In this abstract we will explore concepts
and approaches to develop the trust framework
needed to support decision-making in a large-scale
network of sensors, such as a smart power grid.

Our defnition of trust should be framed in the context
of the set of decisions that will be enabled by reasoning
about the level of trust that the decision-making module
has in individual nodes, sets of related nodes or types
of nodes, providing information to the system or using
or supplying services.The representation and reasoning
approaches must be scalable, and this scalability is
enabled by a distributed collaborative agent-based
approach to machine learning and decision-making to
evaluate the trust of nodes and to use that information
for intelligent decisions.

A smart power grid will reason about resource
management, power usage, resource needs and costs,
while monitoring and controlling resources. Being
able to reason about the level of trust in given nodes
is important because decisions depend upon an
accurate situation awareness (based on the knowledge
aggregated and inferred from the sensor data) and on
the reliability of appropriate resources assigned for
services. The cognitive reasoning modules providing
decisions will be able to query or probe nodes for
features related to assessing a level of trust in the node.
This probing can be used to increase confdence in the
trust level being calculated by the system.

The features upon which the trust level of a node is
based include:

• Uncertainty levels of measurements associated with
the information coming from the node;

• Provenance—where does the information about this
node come from?;

• Perishability—how current is the information that
we have about this node and how quickly does the
information change?; and

• Past performance and reliability.

Many of the features that we will use to represent the
trust of a node will be predefned for us from the data
existing in data logs. We will also have an opportunity
to derive features from combinations of features.
In addition, active learning techniques allow us to
probe or query for pieces of information that would
help to characterize the trust level of a node. These
probes will be guided by a value-of-information (VOI)
calculation produced by a Bayesian network used to
model the causal relationships among trust-related
variables in the network of nodes. A representation
that characterizes different aspects of behaviors and
behavior patterns for each node or node type will need
to be developed so that behavioral features can be
extracted and used as attributes in data analysis.

Nodes will inherit trust features based on their node
type or characteristics enabling a calculation of trust
for new nodes as they become part of the network. A
confdence level will be associated with the trust value
assigned to a node and a level of risk will be assigned
to any decision involving a node. The level of risk is
based on the consequences or cost of misjudging the
trust level of a node. Trust is dynamic and dependent
on the decision which will be based upon that trust.

We propose to use multiple hybrid ML techniques in
an ensemble learning approach based on an approach
used by the DARPA Integrated Learning Project (GTRI
provided a case-based learning module) which used
a metareasoner to select from or combine solutions
provided by multiple learning modules. The approach
for learning and reasoning about trust in a large
network of nodes uses an iterative multi-step hybrid
reasoning algorithm consisting of causal models of
observable domain variables and their relationships to
domain activities and outcomes, network structures,
performance patterns and other domain concepts
represented as Bayes nets being fed by information
retrieved from network probes. The models capture
causality among variables that enable precursors to
trust outcomes. The information feeding the models
comes from the massive data retrieved and analyzed

44 ASCR Machine Learning for Extreme Scale Computing Workshop Report

by the domain clustering and classifcation using
multiple machine learning techniques that perform
continually on streaming inputs and will be analyzed
and exploited. These machine learning methods utilize
dimension reduction, classifcation, and clustering
as underlying methods for data analytics of high-
dimensional data and will include both knowledge-
based (case-based learning and reasoning) and
statistical approaches. There are many machine
learning approaches that both separately and in
combination might provide insight (both quantitative
and qualitative) into the trust indicators of individual
nodes and of collections of nodes of a particular type or
which share a common set of characteristics.

A similarity metric must be defned to represent
the distance between any two instances in the trust
feature space. The development of a similarity metric
will include an analysis of the distance between sets
of given values features with non-numeric values.
There are a number of similarity approaches. The
most common are based on variations of Euclidean
distance (the square root of the sum of the squares of
the differences in feature values). A similarity metric
allows for the features to be weighted to represent
their importance to the particular characteristic that
we are interested in. These feature weightings can be
learned (by regression analysis for example, or learned
incrementally using the least mean squares algorithm)
or weights can be given by a subject matter expert.
A confdence calculation will be associated with
each trust calculation to enable the decision-making
algorithms to assess risk associated with trusting a
particular node. The framework described here would
support an evaluation of trust levels of nodes in a
large network for the purpose of supporting intelligent
resilient decision-making.

7.2.7 Extensions to Trust

Given the need to examine scientifc output using
machine learning methods, the natural extension would
be to help the domain scientist understand more than
just the trustworthiness of the results.

Application of Modern Machine Learning
Methods for Self-Aware and Resilient
Leadership High-Performance Computing

Over the last few years, resilience has become a major
issue for HPC systems—especially in the context of
DOE’s vision for exascale computing [22, 36, 42]. State-
of-the-practice methods such as checkpoint-restarting

[43], event correlation [43], replication [40, 47] and
failure prediction [57] become operationally infeasible
or do not scale for millions of cores, accommodate
heterogeneity in architectures (CPU, GPU, etc.) or
account for different modes (hardware, software,
application, etc.) and different hierarchies (input-
output, memory, disk, network, etc.) of possible failures.
The outstanding challenge is that of fnding new
proactive methodologies that will reduce the instability
of exascale systems while allowing application runs of
scientifc user interest without interruption.

We posit that recent advances in scalable machine
learning, when combined with the understanding and
subject matter expertise from HPC operations and
HPC event-log datasets, can enable the development of
proactive failure management methods. Until recently,
the application of machine learning algorithms on HPC
event logs faced three major challenges in the iterative
process of pattern discovery and pattern recognition
to predict occurrence, coverage, and extent of failures
at the leadership computing facilities. The three
challenges were:

1 The data science—do we need another supercomputer
to analyze the terabytes of event-log data generated
by leadership computing infrastructure? Are data
analysis algorithms going to be fast enough to
crunch terabytes for HPC operations personnel to
be proactive?;

2 The science of data—the understanding of the event
logs (what is collected and how useful is it for
predicting failures), understanding applications
with respect to hardware interactions, the inter-
application dependencies, etc.; and

3 The scalable predictive functions—the ability to construct,
learn, infer from increasing data size, more data
sources (logs, sensors, users, etc.), fewer examples of
failures, and inter-dependent relationships hidden as
hierarchies and cascades of events.

Today, based on experiments and benchmarks, we
have learned that machine learning algorithms can be
deployed at scale on terabytes of streaming data for
real-time predictive analytics. One such benchmark
study to understand algorithms and their dependencies
to different scalable compute architectures (shared
memory, shared storage, and shared nothing, etc.) was
conducted at ORNL. The study showed that it is indeed
possible to analyze event-log data (sizes as big as two
years of archived data) fast enough to be proactive both
with pattern discovery and recognition.

45 ASCR Machine Learning for Extreme Scale Computing Workshop Report

With the goal of addressing the science-of-data
challenge and the design of predictive functions at
scale, ORNL has invested in a scalable predictive
analytics toolbox consisting of the following:

1 Deep learning algorithms [76] that automate the
feature engineering process by learning to create and
sift through data-driven feature representations;

2 Learning algorithms in associative-memory
architectures [121] that can seamlessly adapt and
include future data samples and data sources;

3 Faceted learning that can learn hierarchical
structural relationships in the data; and

4 Multi-task learning frameworks that can learn several
inter-related predictive functions in parallel [123].

We will showcase the opportunity to unleash these
scalable machine learning tools and present the vision
as a roadmap that includes:

1 Identifcation of data sources relevant to HPC
resiliency;

2 Collection, integration, and staging of a variety of
data sources (spatial arrangement of components,
sensor information, event logs, etc.);

3 Automated and manual sifting of potential
predictive indicators; and

4 Building, deploying, and validating those predictive
models at scale for fault diagnosis and maintenance.

ML Techniques for Resiliency, Trust and
Effcient Operating Systems

Consider large workfows with interrelated tasks
that are common to numerous scientifc computing
applications of interest to ASCR. A key challenge
of executing such workfows on extreme-scale
systems with complex interconnection networks is
mapping and scheduling the tasks to compute nodes
in the most optimal manner possible. Attempting
traditional optimization techniques on an extreme-
scale system with 105 to 107 compute nodes would be
computationally infeasible. Further, mapping may need
to be done without explicitly building task graphs, and
within certain time bounds on computation.

To address these challenges, novel methods need to
be developed. Machine learning techniques based
on dimensionality reduction and manifold learning
are good candidates. For example, task graphs can
potentially have complex interdependency structures.
However, if there exists a low-dimensional manifold
in this complex structure, then identifying such
a structure will enable efficient mapping on the

Figure 22: An illustration for manifold learning. Source: https://sites.

google.com/site/nips2012topology/

underlying system to minimize data movement. For
example, two tasks (nodes in the task graph) can be
further apart in the task graph, but can be closely
interrelated and might be closer in a low-dimensional
manifold of the task graph (illustrated in Figure 22).
Thus, mapping them on two compute nodes closer
on the network would minimize data movement.
Further, identifying low-dimensional manifolds of
communication networks is also important. The
problem can then be formulated as alignment of
two networks—task graph to computer network—to
minimize data movement, and consequently energy
consumption, costs [77].

There are several approaches to manifold learning,
however they pose additional challenges at extreme
scale. Graph-based techniques play an important role,
but are not necessarily amenable to implementation on
large-scale distributed architectures. Construction of
k-nearest-neighbor graphs involve compute intensive
O (N2) similarity comparisons for N elements and could
result in imbalanced graphs. Further, (semi-) supervised
learning algorithms on these graphs that are based on
graph techniques such as random walks or eigenpair
computation of the graph Laplacian are not ideal
when applied to extreme-scale systems [63]. Potential
research directions include development of scalable
graph-based algorithms, randomized matrix algorithms
that allow tradeoff between accuracy and performance,
and novel distributed algorithms for computing
eigenpairs of the graph Laplacian. Scalable techniques
in the computation of k-nearest-neighbor graphs using
approximate b-matching is also a potential research
area with large impact on the quality of solutions
[24, 77].

Identifying frequent patterns in extreme-scale
computing can appear in several forms. For example,
frequent task patterns (or kernels) can be highly
optimized in the form of low-level implementations
(assembly or hardware). Further, identifcation of code
patterns can be used in auto-tuning of large-scale
applications, especially running on heterogeneous
architectures envisioned for extreme-scale systems.

https://google.com/site/nips2012topology
https://sites

46 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Using machine learning techniques to identify frequent
patterns in hardware or software failures will lead to
improvements in the resilient design or confguration of
a system. Given that domain experts can annotate part
of the data, efficient supervised learning techniques
would be especially informative. Existing ASCR
HPC systems can be instrumented and studied to
identify common failure points which can be used as
design criteria for building trustworthy and resilient
components in exascale systems. As stated earlier,
several graph-based techniques can be employed, but
they will need re-evaluation and re-implementation
for extreme-scale architectures. In some cases, it is
not always possible to introduce parallelism without
a direct impact on the convergence properties of the
algorithm. For example, it has been shown that the
amount of parallelism is limited by the structure of the
input expressed via its algebraic connectivity [114]. In
this case, alternative scalable approaches need to be
explored as well.

The cost and benefts of
moving the data and
processing modules around
for purposes of computational
locality and system resilience
remain largely unexplored.

Classifcation and Optimization of Processing
and Data Layouts for Resilience

The next generation of HPC infrastructures will evolve
from being scientifc data creation instruments to
data-creating-and-analyzing instruments. This will
lead to new system reliability profles and constraints
that applications and operating systems will need
to operate within. A well-known recent example
of a changing application usage and fault profle
infuencing the system software stack is the Google
File System [59]—the use of extremely large-scale
arrays of fle storage devices and the accompanying
proportional failure increase gave rise to the inherently
redundant fle-system design. Understanding failure
characteristics and the predictive responses to fault
events is a frst discovery step. Analyzing system logs
and failure characteristics with analytic techniques
is a natural approach [39, 56, 97, 130] with several
analytic methods discussed in the literature [128]. Here
we discuss and explore the learning required to enable
applications to dynamically employ combinations
of redundancy-based techniques and algorithmic
techniques to achieve trustworthy computing. While
methods such as triple modular redundancy may be
cost- and resource-prohibitive in general, the nature of
the new data generating and analyzing paradigm can
allow redundancy to be increasingly a complementary
tool in reliability. The cost and benefts of moving the
data and processing modules around for purposes of
computational locality and system resilience remain
largely unexplored.

The algorithmic approach for failure tolerance in
combination with data and software replication can
ensure resilience and trust in the results by using a
priori execution plans together with dynamic run-time
system performance predictions. These predictions
would fuse information from machine hardware
sensors and log records in order to predict both
hard failures, as well as soft failures (e.g., resource
bottlenecks) that may lead to irrecoverable failures
or severe degrading of the system requiring different
forms of rollbacks. The learning challenge we propose
is to dynamically classify and compare the access and
execution patterns with online, existing (or known)
traces, and optimize their ft with the dynamically
developed execution plans for the collection of active
processes. The run-time optimization of the cost-
benefts of replication will include a combination of
access patterns prediction and classifcation on the fy,
and co-scheduling the data and compute layouts.

47 ASCR Machine Learning for Extreme Scale Computing Workshop Report

8 Interdependencies with
Other Efforts

8.1 Interdependencies with Other Efforts
from Topic 2

As identifed in Topic 1, machine learning can
potentially enhance analytical methods with data-
driven methods that learn in the operating environment
to overcome noise while avoiding unnecessary detail in
the performance, scheduling, and I/O models. Below we
roughly map some of the specifc exascale challenges
that were called out to the challenges and advances in
ML that are identifed in this document.

Making More Effective Use of System Logs

System data is highly specialized, semi-structured and
often nuanced by proprietary factors outside of the
system owner’s control. Even system experts often have
a hard time determining why and where issues arise.
Areas of machine learning that appear particularly
relevant to this problem include:

• Anomaly and change detection—Recent ML advances
have put these traditionally hard-to-defne
problems on frm mathematical footings and these
advances could be used to identify low probability
patterns in log data that may otherwise go
unnoticed.

• Interactive analysis tools—While automated event
detection and diagnosis for automated tuning
is the eventual goal, machine learning may be
able to provide productivity gains in the shorter
term by simply making the system engineer’s job
easier through a combination of visualization and
interactive anomaly and change detection tools.

• Statistical relational learning—ML methods that
use relational representations may be able help
anomaly and change detection methods better
handle the semi-structured and highly specialized
nature of log data.

ML for Control and Decision Problems

Topic 1 identifed a number of scheduling and control
problems that need to be automated, e.g., memory
staging decisions, resource allocation and scheduling.
Many of the challenging problems in reinforcement
learning, decision making and control are being
addressed by fnding mappings (or reductions) to
simpler problems (such as classifcation) where mature
ML theory and methods can be applied.

9 Interdependencies with
Other Efforts from Topic 3

The level of trust that a scientist has in simulation
results depends on many potential sources of errors,
vulnerabilities, and techniques to detect, potentially
quantify, and mitigate these errors. On one hand, there
are many sources of errors:

1 The mathematical model representing the physics;

2 The discretization, stochasticity, truncation, and
iterative process involved in numerical methods;

3 Limited precision operators;

4 Bugs at any level between the application and the
hardware;

5 Silent data corruptions from external
uncoordinated causes;

6 Malicious potentially coordinated attacks; and

7 Input data.

On the other hand, there are domains, particularly
in applied mathematics, developing research to
mitigate some these errors: validation and verifcation,
uncertainty quantifcation, and data assimilation.
However, it is clear that existing efforts do not cover
all sources of errors and this opens up wide research
opportunities. In particular, we believe that machine
learning has a role to play as a complement to existing
applied mathematics approaches.

A machine learning resilience and trust program will
need to work closely with efforts in exascale resilience,
operating system resilience, deep learning, and
scientifc data analysis.

48 ASCR Machine Learning for Extreme Scale Computing Workshop Report

10 Common Themes,
Findings, and
Recommendations

10.1 Common Themes, Findings and
Recommendations from Topic 2

• Topic 1 (Smart OS/R) and Topic 3 (Resilience
and Trust) are important capabilities that will
be critical to the execution of O(Billion)-way
concurrent tasks on the exascale platform.
Human control and intervention at that scale are
impossible; we will need smart machine learning
methods to enable a highly productive exascale
environment.

• Scientifc discovery in the DOE complex will
be advanced by exascale simulations, as well as
a range of scientifc instruments. The scientist
is increasingly becoming the bottleneck in the
scientifc discovery process. We believe that machine
learning will be a central technology that will
enable the scientist to overcome the big data deluge
and further scientifc progress.

• DOE needs to invest in a robust machine
learning program that will make key advances in
developing new capabilities, creating a production
infrastructure for big data analytics and tackling
complex modern scientifc datasets. This program
will enable dynamic, intelligent runtime systems to
further productivity on exascale systems.

10.2 Common Themes, Findings, and
Recommendations from Topic 3

The move to exascale computing will dramatically
increase the number of components in the HPC system.
The increase in computational power will enable
new scientifc discovery, but will also lead to shorter
application mean time between failures as the number
of hardware components increase. There will also be
an unprecedented volume of system data available
from these computers. In the past this data has been
manually analyzed to improve the overall operation of
the computer, which given the volume and complexity
of exascale data, will no longer be feasible.

This data includes information about the facility
where the computer is located, the various hardware
components, the software systems, and the scientifc
applications. Data about the application development,
the application users, and the data sources, to name

a few, can contain highly relevant information to the
operations of an exascale computer. The challenge
comes in deriving valuable information from this
massive collection of disparate data. Experts clearly
understand the frst-order performance effect on these
computers, but this understanding does not account for
all or even most of the faults observed. This data will
be at a volume and complexity that makes it impossible
to manually analyze—there needs to be a new way to
analyze this data.

We believe that machine learning methods can help
uncover second- and third-order effects, as well as
previously unknown effects within this data. Not
only does this provide a much greater insight into the
operations of an exascale computer, but it also provides
a fast and automated way to assess the reliability of
the system and the trustworthiness of the scientifc
application results.

We believe these discoveries can lead to:

• Scientifc applications that very rarely fail or
perform poorly due to HPC system failures; and

• Scientifc applications on HPC systems will
have a quantifable trustworthiness which will
dramatically improve the scientifc integrity of
exascale computing.

There is clear evidence that such an approach will
be successful. Machine learning techniques including
clustering, feature extraction, and correlation analysis
were applied successfully for failure prediction
from system logs is some specifc cases, like for the
BlueGene/L systems and several of the LANL systems.
However, failure prediction on recent systems like
Blue Waters is more challenging due to the dramatic
increases in both the system log size and system
event categories. Blue Waters has about two orders of
magnitude more event categories than systems where
failure prediction was obtaining good results. These
experiences suggest that more research is needed
to apply machine learning techniques for failure
prediction in current petascale systems and for even
more complex future exascale systems.

These results point to the need for new and stronger
methods for analyzing large, diverse, and complex
data. Among the challenges are how to fuse, represent,
and analyze environmental, hardware, software, and
application data arriving at very high volumes, in
different time scales, and often text-based.Various
machine learning methods can be used to characterizing
faults within this data, but new methods are needed to
deal with the limited amount of labeled fault data.

49 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Another valuable aspect of machine learning is the
ability to work in situ on data streams so that data does
not need to be stored and analyzed offline. This requires
new methods to perform near-real time classifcation
of potential faults, their locations, and systems affected
with minimal impact to the application.

The ultimate goal is to be able to accurately predict
and anticipate faults based on machine learning
methods. This requires assessing faults based on time
and location, and determining precursors for the faults.
This will require a new understanding and machine
learning experimentation on fnding fault precursors,
adaptive sampling, and innovative compression
algorithms.

Exascale computing has the promise of spurring new
scientifc discovery, but runs the risk of jeopardizing
scientifc integrity if the mean time between failures
is not maximized. Machine learning provides a way of
understanding the system data in new deeper ways,
and can provide dramatic improvements in resilience
and the trust scientists put into application results.
Therefore, we recommend that ASCR establish a
machine learning program to ensure the resiliency of
exascale systems and trust in the generated output,
which ultimately determines the scientifc integrity of
such systems.

References

[1] Tarek M Taha, Raqibul Hasan, and Chris Yakopcic.
Memristor crossbar based multicore neuromorphic
processors. 2014 27th IEEE International System-on-
Chip Conference (SOCC), 383–389, 2014, IEEE.

[2] Use cases from nist big data requirements wg
v1.0. http://bigdatawg.nist.gov/_uploadfles/M0180_
v15_1305888391.docx, 2013.

[3] CESM CAM5. http://www.cesm.ucar.edu/working_
groups/Atmosphere/development/, 2014.

[4] Coupled model intercomparison project phase 5.
http://cmip-pcmdi.llnl.gov/cmip5/, 2014.

[5] Intergovernmental panel on climate change, ffth
assessment report. http://www.ipcc.ch/report/ar5/,
2014.

[6] Supernovae detection. http://newscenter.lbl.
gov/2014/05/21/confrmed-stellar-behemoth-self-
destructs-in-a-type-iib-supernova/, 2014.

[7] WCRP coupled model intercomparison project phase
6. http://www.wcrp-climate.org/wgcm-cmip/wgcm-
cmip6, 2014.

[8] P. K. Agarwal, S. S. Hampton, J. Poznanovic, A.
Ramanathan, S. R. Alam, and P. Crozier. Performance
modeling of microsecond scale biological molecular
dynamics simulations onheterogeneous architectures.
Concurrency and Computation: Practice and
Experience, 25(13):1356–1375, 2013.

[9] R. Ando and T. Zhang. A framework for learning
predictive structures from multiple tasks and unlabeled
data. Journal of Machine Learning and Research, 6
(Nov):1817–1853, 2005.

[10] G. Angeli, J. Tibshirani, J.Y. Wu, and C. D. Manning.
Combining distant and partial supervision for relation
extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
2014.

[11] J. Ansel, M. Pacula,Y. L.Wong, C. Chan, M.
Olszewski, U.-M. O’Reilly, and S. Amarasinghe.
Siblingrivalry: online autotuning through local
competitions. In CASES, 2012.

http://www.wcrp-climate.org/wgcm-cmip/wgcm
http://newscenter.lbl
http://www.ipcc.ch/report/ar5
http://cmip-pcmdi.llnl.gov/cmip5
http://www.cesm.ucar.edu/working
http://bigdatawg.nist.gov/_uploadfiles/M0180

50 ASCR Machine Learning for Extreme Scale Computing Workshop Report

[12] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins,
D. Crawford, J. Dongarra, D. Kothe, R. Lusk, P. Messina,
T. Mezzacappa, P. Moin, M. Norman, R. Rosner,V.
Sarkar, A. Siegel, F. Streitz, A. White, and M.Wright. The
opportunities and challenges of exascale computing.
DOE ASCR Workshop Report, 2010.

[13] A. G. Athanassiadis, M. Z. Miskin, P. Kaplan, N.
Rodenberg, S. H. Lee, J. Merritt, E. Brown, J. Amend,
H. Lipson, and H. M. Jaeger. Particle shape effects on
the stress response of granular packings. Soft Matter,
10:48–59, 2014.

[14] K. Balasubramanian, J. Kim, A. A. Puretskiy, M. W.
Berry, and H. Park. A fast algorithm for nonnegative
tensor factorization using block coordinate descent and
an active-set-type method. In Text Mining Workshop,
Proceedings of the Tenth SIAM International
Conference on Data Mining, pages 25–34, Columbus,
OH, 2010. April 29–May 1.

[15] A. P. Bartok, M. C. Payne, R. Kondor, and G. Csanyi.
Gaussian approximation potentials: The accuracy of
quantum mechanics, without the electrons. Phys. Rev.
Letters, 104:136403, Apr 2010.

[16] F. Bates and G. Fredrickson. Block Copolymers—
Designer Soft Materials. Physics Today,
52(February):32, 1999.

[17] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch,
F. Cappello, N. Maruyama, and S. Matsuoka. Fti:
High performance fault tolerance interface for
hybrid systems. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
32:1–32:32, New York, NY, USA, 2011. ACM.

[18] P. Beckman, R. Brightwell, B. R. de Supinski, M.
Gokhale, S. Hofmeyr, S. Krishnamoorthy, M. Lang,
B. Maccabe, J. Shalf, and M. Snir. Exascale operating
systems and runtime software. DOE ASCR Workshop
Report, 2012.

[19] K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill,
and J. Hiller. Exascale computing study: Technology
challenges in achieving exascale systems. Defense
Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO), Tech.
Report, 15, 2008.

[20] G. Bronevetsky and B. de Supinski. Soft error
vulnerability of iterative linear algebra methods.
In Proceedings of the 22Nd Annual International
Conference on Supercomputing, ICS ‘08, pages 155–164,
New York, NY, USA, 2008. ACM.

[21] Caltech-JPL. The caltech-jpl summer school on big
data analytics (coursera). https://www. mooc-list.com/
course/caltech-jpl-summer-school-big-data-analytics-
coursera, 2014.

[22] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer,
and M. Snir. Toward exascale resilience. International
Journal of High Performance Computing Applications,
23(4):374–388, 2009.

[23] F. Cappello, A. Geist, W. D. Gropp, S. Kale, B.
Kramer, and M. Snir. Toward exascale resilience: 2014
update. Supercomputing Frontiers and Innovations,
1:1–28, 2014.

[24] U.V. Catalyurek, F. Dobrian, A. Gebremedhin, M.
Halappanavar, and A. Pothen. Distributed-memory
parallel algorithms for matching and coloring. In
Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 1971–1980. IEEE, 2011.

[25] J. Chang, G. A. Reis, and D. I. August. Automatic
instruction-level software-only recovery. In Dependable
Systems and Networks, 2006. DSN 2006. International
Conference on, pages 83–92. IEEE, 2006.

[26] J. Chen, L. K. John, and D. Kaseridis. Modeling
program resource demand using inherent program
characteristics. SIGMETRICS Performance Evaluation
Review, 39(1):1–12, June 2011.

[27] T. Chen,Y. Chen, M. Duranton, Q. Guo, A.
Hashmi, M. Lipasti, A. Nere, S. Qiu, M. Sebag, and O.
Temam. Benchnn: On the broad potential application
scope of hardware neural network accelerators. In
2012 IEEE International Symposium on Workload
Characterization (IISWC), pages 36–45. IEEE, 2012.

[28] C. S. Chennubhotla and A. Jepson. Hierarchical
eigensolvers for transition matrices in spectral
methods. Advances in Neural Information Processing
Systems (NIPS’05), 17:273–280, 2005.

[29] V. Chippa, D. Mohapatra, A. Raghunathan, K. Roy,
and S. Chakradhar. Scalable effort hardware design:
Exploiting algorithmic resilience for energy efficiency.
In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 555–560, June 2010.

https://mooc-list.com
https://www

51 ASCR Machine Learning for Extreme Scale Computing Workshop Report

[30] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D.W.
Kim, D. H.Yoon, L. Kaplan, and M. Erez. Containment
domains: A scalable, efficient, and fexible resilience
scheme for exascale systems. In High Performance
Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, pages 1–11, Nov 2012.
[31] Committee on the Analysis of Massive Data
Committee on Applied and Theoretical Statistics Board
on Mathematical Sciences and Their Applications and
Division on Engineering and Physical Sciences Frontiers
in Massive Data Analysis. Frontiers in Massive Data
Analysis. The National Academies Press, 2013.

[32] D. J. Crandall, G. C. Fox, and J. D. Paden. Layer-
fnding in radar echograms using probabilistic
graphical models. In Pattern Recognition (ICPR), 2012
21st International Conference on, pages 1530–1533.
IEEE, 2012.

[33] S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N.
Mingo, S. Sanvito, and O. Levy. The highthroughput
highway to computational materials design. Nature
Materials, 12(3):191–201, Mar. 2013.

[34] P. F. Damasceno, M. Engel, and S. C. Glotzer.
Predictive Self-Assembly of Polyhedra into Complex
Structures. Science, 337(6093):453-457, July 2012.

[35] R. H. Dennard, F. H. Gaensslen,V. L. Rideout, E.
Bassous, and A. R. LeBlanc. Design of ion-implanted
mosfet’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, 1974.

[36] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G.
Aloisio, J.-C. Andre, D. Barkai, J.-Y. Berthou, T. Boku,
B. Braunschweig, F. Cappello, B. Chapman, X. Chi, A.
Choudhary, S. Dosanjh, T. Dunning, S. Fiore, A. Geist,
B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin,Y. Ishikawa, F. Johnson, S. Kale, R.
Kenway, D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky,
T. Lippert, B. Lucas, B. Maccabe, S. Matsuoka, P.
Messina, P. Michielse, B. Mohr, M. S. Mueller, W. E.
Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato,
E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R.
Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J.
Taylor, R. Thakur, A. Trefethen, M.Valero, A.Van Der
Steen, J.Vetter, P. Williams, R. Wisniewski, and K.Yelick.
The international exascale software project roadmap.
International Journal of High Performance Computing
Applications, 25(1):3–60, Feb. 2011.

[37] J. Dongarra, J. Hittinger, J. Bell, L. Chacon, R.
Falgout, M. Heroux, P. Hovland, E. Ng, C. Webster, and
S. Wild. Applied mathematics research for exascale
computing. DOE ASCR Workshop Report, 2014.

[38] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J.
Dongarra. Algorithm-based fault tolerance for dense
matrix factorizations. SIGPLAN Not., 47(8):225–234,
Feb. 2012.

[39] N. El-Sayed and B. Schroeder. Reading between the
lines of failure logs: Understanding how hpc systems
fail. In Dependable Systems and Networks (DSN), 2013
43rd Annual IEEE/IFIP International Conference on,
pages 1–12. IEEE, 2013.

[40] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K.
Ferreira, and C. Engelmann. Combining partial
redundancy and checkpointing for hpc. In Distributed
Computing Systems (ICDCS), 2012 IEEE 32nd
International Conference on, pages 615–626, June 2012.

[41] E. N. Elnozahy, L. Alvisi,Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys
(CSUR), 34(3):375–408, 2002.

[42] E. N. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox,
F. Godfrey, A. Hoisie, and J. Simons. System resilience
at extreme scale. Technical report, Defense Advanced
Research Project Agency (DARPA), Tech. Rep, 2008.

[43] E. N. M. Elnozahy, L. Alvisi,Y.-M. Wang, and D.
B. Johnson. A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv.,
34(3):375–408, Sept. 2002.

[44] H. Esmaeilzadeh, E. Blem, R. St Amant, K.
Sankaralingam, and D. Burger. Dark silicon
and the end of multicore scaling. In 2011 38th
Annual International Symposium on Computer
Architecture(ISCA), pages 365–376. IEEE, 2011.

[45] A. L. Ferguson, A. Z. Panagiotopoulos, I. G.
Kevrekidis, and P. G. Debenedetti. Nonlinear
dimensionality reduction in molecular simulation: The
diffusion map approach. Chemical Physics Letters,
509(1–3):1–11, 2011.

[46] E. Ferrara, M. JafariAsbagh, O.Varol,V. Qazvinian,
F. Menczer, and A. Flammini. Clustering memes in
social media. In Advances in Social Networks Analysis
and Mining (ASONAM), 2013 IEEE/ACM International
Conference on, pages 548–555. IEEE, 2013.

52 ASCR Machine Learning for Extreme Scale Computing Workshop Report

[47] K. Ferreira, R. Riesen, P. Bridges, D. Arnold,
J. Stearley, J. H. L. III, R. Oldfeld, K. Pedretti, and
R. Brightwell. Evaluating the viability of process
replication reliability for exascale systems. In
Conference on High Performance Computing
Networking, Storage and Analysis, SC 2011, Seattle,
WA, USA, November 12–18, 2011, Nov. 2011.

[48] K. B. Ferreira, P. Bridges, and R. Brightwell.
Characterizing application sensitivity to os interference
using kernel-level noise injection. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, SC
’08, pages 19:1–19:12, Piscataway, NJ, USA, 2008. IEEE
Press.

[49] K. B. Ferreira, P. Widener, S. Levy, D. Arnold, and
T. Hoefer. Understanding the effects of communication
and coordination on checkpointing at scale. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 883–894. IEEE Press, 2014.

[50] G. Fox, S. Jha, Q. Judy, and L. Andre. Kaleidoscope
of (apache) big data stack (abds) and hpc technologies.
http://hpc-abds.org/kaleidoscope/, 2014.

[51] G. C. Fox, S. Jha, J. Qiu, and A. Luckow. Towards
an understanding of facets and exemplars of big
data applications. Proceedings of 20 Years of Beowulf
Workshop, accecpted.

[52] S. Fu and C.-Z. Xu. Exploring event correlation
for failure prediction in coalitions of clusters. In
Supercomputing, 2007. SC ’07. Proceedings of the 2007
ACM/IEEE Conference on, pages 1–12, Nov 2007.

[53] H. Fujuta, R. Schreiber, and A. Chien. It’s time for
new programming models for unreliable hardware.
In Proceedings of the international conference on
architectural support for programming languages and
operating systems (ASPLOS), 2013.

[54] A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu,
and W. Kramer. Adaptive event prediction strategy
with dynamic time window for large-scale hpc systems.
In Managing Large-scale Systems via the Analysis of
System Logs and the Application of Machine Learning
Techniques, page 4. ACM, 2011.

[55] A. Gainaru, F. Cappello, and W. Kramer. Taming of
the shrew: modeling the normal and faulty behaviour
of large-scale hpc systems. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 1168–1179. IEEE, 2012.

[56] A. Gainaru, F. Cappello, M. Snir, and W. Kramer.
Fault prediction under the microscope: A closer look
into hpc systems. In Proceedings of the International
Conference on High 60 Performance Computing,
Networking, Storage and Analysis, page 77. IEEE
Computer Society Press, 2012.

[57] A. Gainaru, F. Cappello, M. Snir, and W. Kramer.
Failure prediction for hpc systems and applications:
Current situation and open issues. International
Journal of High Performance Computing Applications,
27(3):273–282, Aug. 2013.

[58] X. Gao, E. Ferrara, and J. Qiu. Parallel clustering
of high-dimensional social media data streams. 2014.
Technical Report.

[59] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google fle system. In ACM SIGOPS Operating Systems
Review, volume 37, pages 29–43. ACM, 2013.

[60] C. Giannella, J. Han, J. Pei, X.Yan, and P. S.Yu.
Mining frequent patterns in data streams at multiple
time granularities. Next generation data mining,
212:191–212, 2003.

[61] S. C. Glotzer and M. J. Solomon. Anisotropy of
building blocks and their assembly into complex
structures. Nature Materials, 6(7):557–562, Aug. 2007.

[62] L. B. Gomez and F. Cappello. Detecting silent
data corruption through data dynamic monitoring for
scientifc applications. PPoP 2014, 2014.

[63] M. Halappanavar, J. Feo, O.Villa, A. Tumeo, and
A. Pothen. Approximate weighted matching on
emerging manycore and multithreaded architectures.
International Journal of High Performance Computing
Applications, Pages 413-430,Volume 26 Issue 4,
November 2012.

[64] A.Y. Hannun, C. Case, J. Casper, B. C. Catanzaro, G.
Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, and A.Y. Ng. Deep speech: Scaling up end-
to-end speech recognition. CoRR, abs/1412.5567, 2014.

[65] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M.
Rupp, M. Scheer, O. A. von Lilienfeld, A. Tkatchenko,
and K.-R. Mller. Assessment and validation of machine
learning methods for predicting molecular atomization
energies. Journal of Chemical Theory and Computation,
9(8):3404–3419, 2013.

http://hpc-abds.org/kaleidoscope

53 ASCR Machine Learning for Extreme Scale Computing Workshop Report

[66] P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (blcr) for linux clusters. In Journal
of Physics: Conference Series, volume 46, page 494. IOP
Publishing, 2006.

[67] R. Hasan and T. M.Taha. Enabling back propagation
training of memristor crossbar neuromorphic processors.
In 2014 International Joint Conference on Neural
Networks (IJCNN), pages 21–28. IEEE, 2014.

[68] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B.
Kramer, and F. Cappello. Modeling and tolerating
heterogeneous failures in large parallel systems. In
High Performance Computing, Networking, Storage
and Analysis (SC), 2011 International Conference for,
pages 1–11. IEEE, 2011.

[69] A. Heller. Groundbreaking science with the worlds
brightest x rays. https://str.llnl.gov/JanFeb11/hau-
riege.html, 2014.

[70] T. Hoefer, T. Schneider, and A. Lumsdaine.
Characterizing the Infuence of System Noise on Large-
Scale Applications by Simulation. In International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC’10), Nov. 2010.

[71] H. Hoffmann. Racing vs. pacing to idle: A
comparison of heuristics for energy-aware resource
allocation. In HotPower, 2013.

[72] A. Hoisie, D. Kerbyson, R. Lucas, A. Rodrigues,
J. Shalf, and J.Vetter. Modeling and simulation of
exascale systems and applications. DOE ASCR
Workshop Report, 2012.

[73] G. B. Huang, M. Mattar, T. Berg, E. Learned-Miller,
et al. Labeled faces in the wild: A database forstudying
face recognition in unconstrained environments. In
Workshop on Faces in ‘Real-Life’ Images: Detection,
Alignment, and Recognition, 2008.

[74] K.-H. Huang and J. Abraham. Algorithm-based
fault tolerance for matrix operations. Computers, IEEE
Transactions on, C-33(6):518–528, June 1984.

[75] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D.
Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G.
Ceder, and K. A. Persson. Commentary: The materials
project: A materials genome approach to accelerating
materials innovation. APL Materials, 1(1), 2013.

[76] T. Karnowski. Deep machine learning with spatio-
temporal inference. PhD thesis, University of Tennessee,
2012.

[77] A. Khan, M. Halappanavar, F. Manne, and A.
Pothen. Computing approximate b-matchings in
parallel. In CSC14: The Sixth SIAM Workshop on
Combinatorial Scientifc Computing, 2012.

[78] M. C. Kind and R. J. Brunner. Somz: photometric
redshift pdfs with self-organizing maps and random
atlas. Monthly Notices of the Royal Astronomical
Society, 438(4):3409–3421, 2014.

[79] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM Review, 51(3):455–500, 2009.

[80] A. Krizhevsky and G. Hinton. Convolutional deep
belief networks on cifar-10. Unpublished manuscript,
2010.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classifcation with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[82] A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen,
K. Ho,V. Antropov, C. Wang, M. J. Kramer, C. Long, and
I. Takeuchi. On-the-fy machine-learning for high-
throughput experiments: search for rare-earth-free
permanent magnets. Scientifc Reports, 4, 2014.

[83] B. Lee, J. Collins, H. Wang, and D. Brooks. Cpr:
Composable performance regression for scalable
multiprocessor models. In MICRO, 2008.

[84] B. C. Lee and D. Brooks. Efficiency trends and
limits from comprehensive microarchitectural
adaptivity. In ASPLOS, 2008.

[85] B. C. Lee and D. M. Brooks. Accurate and
efficient regression modeling for microarchitectural
performance and power prediction. In ASPLOS, 2006.
[86] J. Li and J. Martinez. Dynamic power-performance
adaptation of parallel computation on chip
multiprocessors. In HPCA, 2006.

[87] A. Ma and A. R. Dinner. Automatic method for
identifying reaction coordinates in complex systems.
The Journal of Physical Chemistry B, 109(14):6769–
6779, 2005. PMID: 16851762.

[88] R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G.
C. Schatz, and C. A. Mirkin. Nanoparticle superlattice
engineering with dna. Science, 334(6053):204–208, 2011.

[89] M. W. Mahoney and P. Drineas. Cur matrix
decompositions for improved data analysis.
Proceedings of the National Academy of Sciences,
106(3):697–702, 2009.

https://str.llnl.gov/JanFeb11/hau

54 ASCR Machine Learning for Extreme Scale Computing Workshop Report

[90] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber,
and T. F. Wenisch. Power management of online data-
intensive services. ISCA, 2011.

[91] A. J. Meuler, M. A. Hillmyer, and F. S. Bates.
Ordered network mesostructures in block polymer
materials. Macromolecules, 42(19):7221–7250, 2009.

[92] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled
data. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2–Volume 2, pages 1003–1011.
Association for Computational Linguistics, 2009.

[93] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann.
A probabilistic graphical approach for optimizing
energy under performance constraints. In ASPLOS,
2015.

[94] M. Z. Miskin and H. M. Jaeger. Adapting granular
materials through artifcial evolution. Nature Materials,
12(4):326–331, 2013.

[95] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

[96] G. Montavon, K. Hansen, S. Fazli, M. Rupp, F.
Biegler, A. Ziehe, A.Tkatchenko, A.V. Lilienfeld, and
K.-R. Müller. Learning invariant representations of
molecules for atomization energy prediction. In F.
Pereira, C. Burges, L. Bottou, and K.Weinberger, editors,
Advances in Neural Information Processing Systems 25,
pages 440–448. Curran Associates, Inc., 2012.

[97] N. Nakka, A. Agrawal, and A. Choudhary.
Predicting node failure in high performance computing
systems from failure and usage logs. In Parallel and
Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on,
pages 1557–1566. IEEE, 2011.

[98] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G.
Memik, and A. Choudhary. Minebench: A benchmark
suite for data mining workloads. In IISWC, 2006.

[99] S. Papadimitriou, J. Sun, and C. Faloutsos.
Streaming pattern discovery in multiple timeseries.
In Proceedings of the 31st International Conference
on Very Large Data Bases,VLDB ’05, pages 697–708.
VLDB Endowment, 2005.

[100] P. Paschou, M. W. Mahoney, A. Javed, J. R. Kidd, A.
J. Pakstis, S. Gu, K. K. Kidd, and P. Drineas. Intra- and
interpopulation genotype reconstruction from tagging
snps. Genome Research, 17(1):96–107, 2007.

[101] B. Peters, G. T. Beckham, and B. L. Trout.
Extensions to the likelihood maximization approach
for fnding reaction coordinates. The Journal of
Chemical Physics, 127(3):-, 2007.
[102] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and
C. A. Shoemaker. Flicker: A dynamically adaptive
architecture for power limited multicore systems. In
ISCA, 2013.

[103] C. L. Phillips and G. A.Voth. Discovering crystals
using shape matching and machine learning. Soft
Matter, 9:8552–8568, 2013.

[104] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing
power requirements of instruction scheduling through
dynamic allocation of multiple datapath resources. In
MICRO, 2001.

[105] Prabhat, O. Rbel, S. Byna, K. Wu, F. Li, M. Wehner,
and W. Bethel. Teca: A parallel toolkit for extreme
climate analysis. Procedia Computer Science, 9(0):866–
876, 2012. Proceedings of the International Conference
on Computational Science, fICCSg 2012.

[106] J. Qiu, S. Jha, and G. C. Fox. Towards hpc-abds:
An initial high-performance bigdata stack.

[107] A. Ramanathan, P. Agarwal, M. Kurnikova, and C.
Langmead. Lecture Notes in Computer Science, volume
5541, pages 138–154. Springer Berlin Heidelberg, 2009.

[108] A. Ramanathan, A. J. Savol, P. K. Agarwal,
and C. S. Chennubhotla. Event detection and sub-
state discovery from biomolecular simulations
using higher-order statistics: Application to enzyme
adenylate kinase. Proteins: Structure, Function, and
Bioinformatics, 80(11):2536–2551, 2012.

[109] A. Ramanathan, J. O.Yoo, and C. J. Langmead. On-
the-fy identifcation of conformational substrates from
molecular dynamics simulations. Journal of Chemical
Theory and Computation, 7(3):778–789, 2015/01/27 2011.

[110] J. W. Reed,Y. Jiao, T. E. Potok, B. A. Klump, M. T.
Elmore, and A. R. Hurson. Tf-icf: A new term weighting
scheme for clustering dynamic data streams. In
Machine Learning and Applications, 2006. ICMLA’06.
5th International Conference on, pages 258–263. IEEE,
2006.

55 ASCR Machine Learning for Extreme Scale Computing Workshop Report

[111] M. Rupp, A. Tkatchenko, K.-R. Müller, and O.
A. von Lilienfeld. Fast and accurate modeling of
molecular atomization energies with machine learning.
Phys. Rev. Letters, 108:058301, Jan 2012.

[112] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpaty, A. Khosla, M.
Bernstein, et al. Imagenet large scale visual recognition
challenge. arXiv preprint arXiv:1409.0575, 2014.
[113] E. E. Santiso and B. L. Trout. A general set of
order parameters for molecular crystals. The Journal of
Chemical Physics, 134(6) 2011.

[114] C. Scherrer, A. Tewari, M. Halappanavar, and D.
Haglin. Feature clustering for accelerating parallel
coordinate descent. In Advances in Neural Information
Processing Systems, pages 28–36, 2012.

[115] D. C. Snowdon, E. Le Sueur, S. M. Petters,
and G. Heiser. Koala: A platform for os-level power
management. In EuroSys, 2009.

[116] J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and
K. Burke. Finding density functionals with machine
learning. Phys. Rev. Letters, 108:253002, Jun 2012.

[117] S. Sridharan, G. Gupta, and G. S. Sohi. Holistic
run-time parallelism management for time and energy
efficiency. In ICS, 2013.

[118] R. St Amant, A.Yazdanbakhsh, J. Park, B.
Thwaites, H. Esmaeilzadeh, A. Hassibi, L. Ceze, and
D. Burger. General-purpose code acceleration with
limited-precision analog computation. In Proceeding of
the 41st Annual International Symposium on Computer
Architecuture, pages 505–516. IEEE Press, 2014.

[119] A. Stark. X-ray laser acts as tool to track lifes
chemistry. https://www.llnl.gov/news/ x-ray-laser-acts-
tool-track-lifes-chemistry, 2014.

[120] D. B. Strukov, G. S. Snider, D. R. Stewart, and
R. S. Williams. The missing memristor found. Nature,
453(7191):80–83, 2008.

[121] S. Sukumar and K. Ainsworth. Pattern search
in multi-structure data: a framework for the next-
generation evidence-based medicine. Proceedings of
SPIE, 9039, 2014.

[122] J. Sun, D. Tao, and C. Faloutsos. Beyond streams
and graphs: Dynamic tensor analysis. In Proceedings
of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ‘06, pages
374–383, New York, NY, USA, 2006. ACM.

[123] C. Symons, S. Sukumar, B. Park, M. Shankar, R.
Vatsavai, R. K. Archibald, A. Ganguly, and S. Prowell.
A predictive analysis toolbox for ultrascale data
exploration. Technical report, Oak Ridge National
Laboratory, 2011.

[124] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M.
Foiles, and G. J. Tucker. A spectral analysis method
for automated generation of quantum-accurate
interatomic potentials, 2014. [125] N.Y. Times.
Scientists see promise in deep-learning programs.
http://www.nytimes.com/2012/11/24/science/
scientists-see-advances-in-deep-learning-a-part-
of-artifcial-intelligence. html?pagewanted=all&_
r=0&pagewanted=print, 2014.

[126] L.Vu. Confrmed: Stellar behemoth self-
destructs in a type iib supernova. http://newscenter.
lbl.gov/2014/05/21/confrmed-stellar-behemoth-self-
destructs-in-a-type-iib-supernova/, 2014.

[127] S. Wang, J. Ward, S. Leyffer, S. M. Wild, C.
Jacobsen, and S.Vogt. Unsupervised cell identifcation
on multidimensional X-ray fuorescence datasets.
Journal of Synchrotron Radiation, 21(3):568–579, May
2014.

[128] Z. Xue, X. Dong, S. Ma, and W. Dong. A survey on
failure prediction of large-scale server clusters.

In Software Engineering, Artifcial Intelligence,
Networking, and Parallel/Distributed Computing, 2007.
SNPD 2007. Eighth ACIS International Conference on,
volume 2, pages 733–738. IEEE, 2007.

[129] J. J.Yi, D. J. Lilja, and D. M. Hawkins. A
statistically rigorous approach for improving
simulation methodology. In HPCA, 2003.

[130] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P.
Beckman. A practical failure prediction with location
and lead time for blue gene/p. In Dependable Systems
and Networks Workshops (DSN-W), 2010 International
Conference on, pages 15–22. IEEE, 2010.

https://lbl.gov/2014/05/21/confirmed-stellar-behemoth-self
http://newscenter
http://www.nytimes.com/2012/11/24/science
https://www.llnl.gov/news

56 ASCR Machine Learning for Extreme Scale Computing Workshop Report

Appendix: Workshop Participants and Other Una-May O’Reilly Massachusetts Institute of

Contributors

Dorian C. Arnold University of New Mexico

Prasanna Balaprakash Argonne National
Laboratory

Michael Berry University of Tennessee,
Knoxville

Ron Brightwell Sandia National
Laboratories

Franck Cappello Argonne National
Laboratory

Barry Chen Lawrence Livermore
National Laboratory

Stephen P. Crago University of Southern
California

Kurt B. Ferreira Sandia National
Laboratories

Todd Gamblin Lawrence Livermore
National Laboratory

Mahantesh Halappanavar Pacifc Northwest National
Laboratory

Hank Hoffmann University of Chicago

Steven Hofmeyr Lawrence Berkeley National
Laboratory/UC Berkeley

Tamara G. Kolda Sandia National
Laboratories

Ignacio Laguna Lawrence Livermore
National Laboratory

Seung-Hwan Lim Oak Ridge National
Laboratory

Robert Lucas University of Southern
California

Michael Mahoney University of California,
Berkeley

Byung Park

Carolyn Philips

Reid Porter

Thomas E. Potok

Prabhat

Judy Fox Qiu

Arvind Ramanathan

Abhinav Sarje

Dylan Schmorrow

Justin Shumaker

Marc Snir

Sreenivas R. Sukumar

Tarek Taha

Raju Vatsavai

Abhinav Vishnu

Elizabeth Whitaker

Yan Yufk

Technology

Oak Ridge National
Laboratory

Argonne National
Laboratory

Los Alamos National
Laboratory

Oak Ridge National
Laboratory

Lawrence Berkeley National
Laboratory/UC Berkeley

Indiana University

Oak Ridge National
Laboratory

Lawrence Berkeley National
Laboratory/UC Berkeley

SoarTech

U.S. Army Research
Laboratory

Argonne National
Laboratory

Oak Ridge National
Laboratory

University of Dayton

North Carolina State
University

Pacifc Northwest National
Laboratory

Georgia Tech Research
Institute

VSR, Inc.

	Structure Bookmarks
	Figure 5: Illustration of unsupervised clustering algorithm finding similar crystalline structures in a dataset.
	(a) An example of scientific image data from the Center for Nanophase Materials Sciences at ORNL.
	(b) An example from ImageNet.
	Figure 10: Comparison of the connections between migraine and magnesium. Eleven connections were found in 1987, while the present day count stands at 133,193.
	Figure 11: Comparison of a self-aware OS/R with a traditional approach.
	Figure 12: Estimation for K-means clustering using LEO, an HBM implementation. LEO accurately estimates performance (a) and power
	Figure 13: Comparison of current data analytics stack for cloud and HPC infrastructure.
	Figure 14: Two layer network for learning three-input, odd-parity function [1].
	Figure 15: Circuit diagram for a single memristor-based neuron [1].
	Figure 16: An overview of the different aspect of
	Figure 19: Decision tree of fault injection results in molecular dynamics code (SE = silent error, CRASH = application aborted)
	tt
	Figure 21: A multi-dimensional clustering of velocity field variable gradients with (a) and without (b) data corruption.
	/

