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Preface 
In June 2004 the DOE Office of Advanced Scientific Computing Research held a 
meeting to discuss the ASCR/MICS Strategic Plan. A number of the application scientists 
and computer scientists at the meeting came to the vocally expressed conclusion that the 
plan as presented was dangerously light on attention to data management, given the 
increasingly data-intensive nature of research supported by the Office of Science. This 
constructive criticism was well received and resulted in encouragement to hold a series of 
workshops that would be able to document gaps between the needs of application 
sciences and the data-management technology and tools expected to be available. 

The first workshop was held at SLAC on March 16–18, 2004, focusing on understanding 
application-science needs and currently available technologies. A smaller meeting of the 
“Extended Organizing Committee” was held at SLAC on April 20–22, 2004, discussing 
how to structure the workshop report and the program of the final workshop. The final 
workshop was held in Chicago on May 24–26, 2004, with a focus on understanding 
commonalities of need and on quantifying and prioritizing the costs of meeting the needs.  
After the final workshop, a series of phone conferences, open to all workshop 
participants, reconciled the many simultaneous writing and editing efforts. 

The workshops were far from being “yet another workshop to document needs of which 
we are all already aware.” The essentially unanimous opinion was that the workshops 
were exciting and valuable and advanced many participants’ thinking on data-
management issues. Of particular value was a “revolt” by some application scientists at 
the first workshop—a revolt provoked by being asked to consider the value to their work 
of apparently obscure computer science issues. For example, the word “ontology” was 
outstandingly successful in generating apprehensive incomprehension. Fortunately, the 
immediate outcome of the revolt was a successful attempt to reach a common 
understanding of the real issues facing scientists whose work has only recently become 
data intensive. 

The program of the workshops and the majority of the presentations are available at 
http://www-conf.slac.stanford.edu/dmw2004 

 

Richard P. Mount 

November 30, 2004 
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Executive Summary 
Science—like business, national security, and even everyday life—is becoming more and 
more data intensive. In some sciences the data-management challenge already exceeds 
the compute-power challenge in its needed resources. Leadership in applying computing 
to science will necessarily require both world-class computing and world-class data 
management. 

The Office of Science program needs a leadership-class capability in scientific data 
management. Currently two-thirds of Office of Science research and development in data 
management is left to the individual scientific programs. About $18M/year is spent by the 
programs on data-management research and development targeted at their most urgent 
needs. This is to be compared with the $9M/year spent on data management by DOE 
computer science. This highly mission-directed approach has been effective, but only in 
meeting just the highest-priority needs of individual programs. A coherent, leadership-
class, program of data management is clearly warranted by the scale and nature of the 
Office of Science programs. More directly, much of the Office of Science portfolio is in 
desperate need of such a program; without it, data management could easily become the 
primary bottleneck to scientific progress within the next five years. 

When grouped into simulation-intensive science, experiment/observation-intensive 
science, and information-intensive science, the Office of Science programs show striking 
commonalities in their data-management needs. Not just research and development but 
also packaging and hardening as well as maintenance and support are required. Meeting 
these needs is a medium- to long-term effort requiring a well-planned program of 
evolving investment. 

We propose an Office of Science Data-Management Program at an initial scale of 
$32M/year of new funding. The program should be managed by a Director charged with 
creating and maintaining a forward-looking approach to multiscience data-management 
challenges. The program should favor collaborative proposals involving computer 
science and application science or, ideally, multiple application sciences. Proposals 
bringing substantial application science funding should be especially favored.  

The proposed program has many similarities to the DOE SciDAC program. SciDAC 
already has a modest data-management component. The SciDAC program partially 
addresses many issues relevant to data management, and has fostered close collaboration 
between computer science and application sciences. Serious consideration should be 
given to integrating the management of the new Office of Science Data-Management 
Program and that of SciDAC or the successor to SciDAC.  
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Introduction: Science in an Information-
Dominated Age 
We are entering an information-dominated age. Ability to tame a tidal wave of 
information will distinguish the most successful scientific, commercial, and national-
security endeavors. Much elegant science has been performed over the centuries by 
subjecting simple observations to human intellect alone; but in the past few decades, our 
rising ability to automate observation and computation has opened otherwise inaccessible 
frontiers of the physical and biological sciences. The Office of Science has played a key 
role in these advances and has the ability and the responsibility to provide national and 
international leadership in information-intensive science. 

Why should science face up to the tidal wave of information? Do we no longer believe in 
the search for elegant simplicity that has motivated scientists from Galileo and Newton to 
Crick and Watson? Simplicity of concept remains a guiding light in science, but all 
scientists know that wondrous complexity can arise from simple concepts. Our new 
information-enabled science allows us to dare to observe and model the complex—to 
describe the richness of all life based on a simple fourfold genetic code, to search for the 
bedrock of physical laws by measuring the immensity of the cosmos and the behavior of 
uncountable cosmic interactions recreated on Earth. 

The scientific importance of managing data and information on an unprecedented scale is 
becoming clear—it is the limiting or the enabling factor for a wide range of sciences. At 
the most simplistic level, all sciences have needs to find, access, and store information. 
While the development of data-management technology is usually left to the computing 
industry, commercial efforts have been consistently inadequate to meet demanding 
scientific needs. As a result, many science programs have found themselves making 
mission-directed investments in data-management research, development, and 
deployment in order to meet their scientific goals. But, as the series of data-management 
workshops sponsored by the U.S. Department of Energy in 2004 made clear, such data-
management efforts are inadequate and unbalanced. 

Status of Scientific Data Management in the Office of Science 
Currently, two-thirds of Office of Science research and development in data management 
lies within, and at the discretion of, the individual scientific programs. About $18M/year 
is spent by the programs on data-management research and development targeted at their 
most urgent needs. This is to be compared with the $9M/year spent on data management 
by DOE computer science. This highly mission-directed approach has been effective in 
meeting only the highest-priority needs of individual programs; it has not produced the 
coherent, leadership-class program of data management that will be essential to address 
the scales and nature of the Office of Science programs. 

Not just research and development but also packaging and hardening as well as 
maintenance and support are required. Meeting these needs is a medium- to long-term 
effort requiring a well-planned program of evolving investment. Indeed, the larger 
program-centric data-management development projects are often started five or six years 
ahead of the required full-scale deployment. 
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An Office of Science Data-Management Program  
To address this situation, we propose an Office of Science Data-Management Program at 
an initial scale of $32M/year of new funding.  

The program should be managed by a Director charged with creating and maintaining a 
forward-looking approach to multiscience data-management challenges. The Director 
should strive to build a consensus across the application sciences on the scale and 
evolution of the budget for data management and on the evolving nature of the proposal 
solicitations that will define the program. 

The program should favor collaborative proposals involving computer science and 
application science or, ideally, multiple application sciences. Proposals bringing 
substantial application science funding should be especially favored because such 
funding is a strong validation of the application science’s urgent need. While 
collaboration should be welcomed, it will also be highly desirable that the collaborators 
can function as a single integrated interdisciplinary team whenever this approach is most 
appropriate. Involvement of the application sciences is expected to ensure that 
appropriate weight is given to hardening and packaging plus maintenance and support, in 
addition to relevant, career-enhancing computer science research. The Director should 
ensure that the proposal review process supports this approach.  

The proposed program has many similarities to the DOE SciDAC program. SciDAC 
already has a modest data-management component. The SciDAC program as a whole 
partially addresses many data-management-relevant issues, while ensuring close 
collaboration between computer science and application sciences. Serious consideration 
should be given to integrating the management of the new Office of Science Data-
Management Program and that of SciDAC or the successor to SciDAC.  

Structure of This Report 
Part I of this report presents the essential message: an overview of the science-driven 
requirements for data management and the recommendations resulting from the 
workshops. 

Section 1 presents brief summaries of the science that is enabled by and challenged by 
data management. 

Section 2 examines how the scientific investigation process involves storing, finding and 
accessing data and looks more specifically at the needs of the three groups of scientific 
activity: simulation-driven, experiment/observation-driven, and information-intensive. In 
the final part of this section, these needs are related to the detailed discussion in Part II. 

Section 3 presents the recommendations arising from the workshops and summarizes the 
information on application-science priorities and on existing data-management 
investments that lie behind the recommendations. 

Part II of this report systematically examines the data-management technologies relevant 
to science. A gap analysis shows where investment is needed. 
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Part I:  The Essential Message 
Science is the motivator for data management within the Office of Science. We therefore 
focus in this first part on eight representative scientific disciplines that are enabled by 
data management. As the brief summaries show, despite the differences among these 
diverse disciplines, they have striking similarities in their data-management needs.  

We explore these needs by regrouping the eight applications into three categories: 
simulation-driven applications, observation/experiment-driven applications, and 
information-intensive applications. We define the concept of workflow, explore its role in 
the scientific investigation process, and examine the central workflow components in 
each of the application categories. 

Based on this analysis, we identify six technology areas that are fundamental to 
supporting the data management requirements for scientific applications: 

• Workflow, data flow, data transformation 

• Metadata, data description, logical organization 

• Efficient access and queries, data integration 

• Distributed data management, data movement, networks 

• Storage and caching 

• Data analysis, visualization, and integrated environments 

These six areas are discussed in depth in Part II. 

We conclude Part I with a detailed recommendation for an Office of Science Data-
Management Program. Forming the basis of our recommendation is information on 
application science priorities and on current data-management investments. We discuss 
not only the level of support needed but also a management approach designed to meet 
the evolving data-management needs of the science programs. 
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I-1 The Scientific Challenges 
Dramatic improvements in scientific instruments as well as increasingly realistic 
simulation have resulted in enormous amounts of data and in concomitant challenges in 
managing that data. In this section we examine the data-management requirements of 
eight areas of science: (1) astronomy, astrophysics, and cosmology; (2) biology; (3) 
climate; (4) combustion; (5) fusion; (6) high-energy physics; (7) nuclear physics; and (8) 
nanotechnology. 

I-1.1 Astronomy, Astrophysics, and Cosmology 
We are entering a new era of precision in astrophysics and cosmology, driven on the one 
hand by an extraordinary array of new ground- and space-based observatories and the 
volumes of digitized information that they are supplying about our universe and on the 
other hand by large-scale and increasingly accurate simulations of the physical systems 
that give rise to the observable phenomena. As a consequence we are drawing new 
insights and making new discoveries about many fundamental questions regarding the 
nature of our universe, its contents, and its ultimate fate: 

• How did the universe begin and how will it end? 

• What is the nature of the dark matter and dark energy that appear to make up most 
of the universe? 

• How do stars die, disseminate, and produce the elements necessary for life? 

In order to shed light on these questions and others, new experiments are being planned 
that will probe the observable universe with unprecedented accuracy. The Large Synoptic 
Survey Telescope (LSST) [Tyson2002] will obtain repeat exposures of the entire night 
sky every two to three days, providing a dataset to search for transient objects such as 
supernovae with unparalleled efficiency and to measure the distortion in the shapes of 
distant galaxies by gravitational lensing. The SuperNova Acceleration Probe 
[Aldering2002], a proposed experiment for the DOE/NASA Joint Dark Energy Mission, 
will observe large numbers of supernovae at extremely large distances and will measure 
the change in dark energy properties over cosmological timescales. Accurate simulations 
of phenomena such as growth of structure in the universe and the explosions of 
supernovae will be essential to provide the theoretical framework for interpreting these 
observations and to allow the full precision of the data to be utilized. 
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Data management will be key to performing the ambitious programs outlined above. 
Three-dimensional simulations of stellar explosions being performed under the auspices 
of the DOE SciDAC TeraScale Supernova Initiative are currently producing data at the 
staggering rate of 5 TB per day, and the data aggregate produced will rise in the next few 
years from tens of terabytes to hundreds of terabytes per simulation. The LSST and other 
experiments will each produce up to 20 terabytes of data per night (see Figure I-1.1 and 
Figure I-1.2). These multiscale, multiphysics grand challenges are now being addressed, 
necessarily, by distributed, multidisciplinary teams. This trend will increase as data is 
accessed by communities encompassing thousands of users. In order to enable such 
collaborations, technology development is needed in data storage, networking, data 
analysis, data distribution, and visualization. 

Figure I-1.1: Snapshot from a stellar explosion simulation [Blondin2003]. Capturing the complex, 
turbulent dynamics in a supernova environment is a challenge for computational astrophysicists and 
visualization experts alike. 
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I-1.2 Biology 
Biological research is undergoing a transformation from a qualitative, descriptive science 
to a quantitative, predictive science as a result of the availability of high-throughput, 
data-intensive “omics” technologies, such as genomics, transcriptomics, proteomics, and 
metabolomics, together with the advance of high-performance computing. The generation 
and availability of community data repositories are revolutionizing the way biological 
research is conducted, creating a unique opportunity to apply a “systems” approach to 
address exciting new biological questions such as the following: 

• What biochemical pathways control a plant’s ability to create biomass or a 
microbe’s ability to produce hydrogen?  

• Can we identify natural populations of microbes that degrade or immobilize 
contaminants such as hydrocarbons or metals?  

• What cellular repair mechanisms are employed by bacteria that live in 
environments of ionizing radiation?  

• What communities of microbes are most effective in taking up excess carbon 
from the atmosphere? 

High-throughput experiments and simulations already are generating vast amounts of 
complex data. For example, high-end Fourier transform ion cyclotron resonance (FTICR) 
mass spectrometers generate 20 GB per sample. High-throughput proteomics facilities 
such as those planned as part of the DOE Genomics:GTL program will be able to analyze 
hundreds of samples per day, providing hundreds of petabytes of data per year within the 

Figure I-1.2: Concept design for the proposed Large Synoptic Survey Telescope (LSST), which will 
record an image of the entire night sky every 2 to 3 days. The 3-gigapixel camera (left) will produce 
up to 20 terabytes of data per night. 
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next decade. These data need to be analyzed, interpreted, and documented in order to 
create knowledge bases supporting meaningful comparisons of the results from one suite 
of analyses with another. Similarly, biomolecular simulations that relate structure and 
function of biological systems will be generating hundreds of gigabytes for each 
trajectory. All this information needs to be shared, annotated, archived, and made 
accessible to the general biological community.  

The need for integrating the complex data types and derived information presents a 
fundamental challenge in data management because the data sources are large, diverse, 
and geographically distributed. New mechanisms will be needed throughout the data 
lifecycle to, for example, capture rich data and model descriptions; document data 
accuracy, quality, and uncertainty; integrate heterogeneous information from independent 
sources; and perform data mining and visualization of high-dimensional information. 
These data repositories and associated data-management services will provide a critical 
infrastructure supporting globally distributed teams of researchers developing models of 
cells, organs, organisms, and biological communities and using these models to improve 
our lives. 

I-1.3 Climate 
The Earth’s climate is produced by the nonlinear interaction of physical, chemical, and 
biological processes in the atmosphere, the world ocean, sea ice, and the land surface. 
These processes interact to maintain our current mild and hospitable climate. 
Nevertheless, over one hundred years ago, Arrehenius hypothesized that the climate 
would warm as a consequence of industrial carbon dioxide emissions to the atmosphere. 
The Office of Science has a mission to understand how energy production and use affect 
the environment, including the potential consequences of greenhouse gas warming. There 
is much about climate interactions that we still do not understand:   

• How much internal variability exists in the climate system?   

• What processes produce this variability?   

• How will the climate system respond to changes in external forcing?   

• Can we predict the evolution of the climate?   

Climate system interactions cover a wide range of time and space scales, from a few 
hours and meters to many centuries and the entire globe. The datasets generated by both 
measurements and model simulations for analysis by climate researchers range in size 
from a few megabytes to tens of terabytes. Examples include raw measurements from 
satellite instruments, data from in situ observation networks such as the DOE 
Atmospheric Radiation Measurement program sites, and the output of three-dimensional 
global coupled climate models such as the Community Climate System Model (CCSM). 
Data from all these sources is maintained by several international institutions with 
varying levels of accessibility and technological sophistication. 
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Many climate research studies use climate models to conduct simulated experiments on 
the climate system (see Figure I-1.3). For example, research groups in the United States 
and elsewhere are conducting climate change simulations with the latest versions of their 
climate models to provide results for the next report by the Intergovernmental Panel on 
Climate Change (IPCC). CCSM simulations for IPCC are being conducted at an 
unprecedented horizontal resolution for the atmosphere (180 km), and the early results 
are encouraging. Although the models themselves have benefited from computer science 
research, the tools that scientists use for data analysis have received less attention and can 
barely cope with the current data volume, such as the 7.5 TB produced by a single 100-
year integration of CCSM. Already climate scientists spend half their time manipulating 
and analyzing data. In the near future, climate models will increase in resolution and will 
add algorithms to calculate the effects of unrepresented or underrepresented phenomena 
such as atmospheric chemistry and biogeochemistry. Satellite instruments scheduled for 
deployment will monitor a wider range of geophysical variables at higher resolutions, 
which will be used to validate climate models. All of these activities will overwhelm 
current capabilities and underscore the need for new technologies in data management 
and data analysis. The DOE SciDAC program has begun to address some of these issues 
with efforts such as the Earth System Grid, but more work must be done. 

I-1.4 Combustion 
Combustion science seeks to gain a predictive understanding of the combined effects of 
chemical reactions, multiphase fluid dynamics, and transport, which work together to 
release the chemical energy contained in fuels and oxidizers to generate heat and 
mechanical work. This science is important to improvements in fossil fuel combustion 
processes that represent over 85% of the energy used in the United States for 
transportation and stationary power generation. Finite fossil fuel reserves, environmental 
pollution, and climate change effects, as well as technological advances in materials 
processing, all drive the imperative for reacting flow science.  

 

Figure I-1.3 High-resolution climate simulation using 70 km cells and generating 11 terabytes of data 
per 100-year run. 



The Office of Science Data-Management Challenge 

 12 

Using a strategy that layers data, models, and simulation and analysis tools, scientists are 
rapidly conquering the enormous range of physical scales and complexity in reacting 
flows to gain fundamental new understanding of important combustion processes. 
Researchers are just beginning to simulate laboratory-scale turbulent flames using 
massively parallel computers combined with emerging models and codes (see Figure I-
1.4). These capabilities are enabling scientists to tackle long-standing fundamental 
questions that are key to gaining a predictive understanding:  

• Can we learn new ways to control ultra-lean turbulent auto-ignition reactions to 
enable efficient, zero-emission engines?  

• What fundamental changes and new possibilities are introduced by adding 
renewable hydrogen to combustors?  

• How can we uncover the most compact chemical models and implement them 
adaptively in large-scale simulations?  

• Can these and other validated submodels be developed to enable the science 
found at the larger scales of advanced experiments and real-world devices, or 
when the multiphysics complexities of complex fuels, soot, radiation, or sprays 
are introduced?  

Such combustion grand challenges and the increasing value of large-scale simulations are 
placing significant data-management challenges in the path of combustion research. 
Whether we consider direct numerical simulations of turbulence-chemistry interactions or 
turbulence-modeling-based computations of device-scale combustion systems, there are 
significant challenges in managing the sheer volume of data as well as mining from it the 
intricate details that contribute new physical insights and models. Current computations 
generate about 3 TB of raw data per simulation, posing new data storage and movement 
challenges and requiring a new paradigm for data analysis. In many instances, regions of 
interest in turbulent combustion data are intermittent, both spatially and temporally, 
driving a need for automated, efficient, on-line feature detection and tracking algorithms 
tailored to detect relevant scalar and vector quantities. Adaptive steering and subsetting 
of data as it is computed are needed to enhance discovery and further analysis and 
visualization of events whose occurrence was not known a priori. Clearly, advances in 
data management are necessary to achieve the scientific progress promised by large-scale 
computational combustion science.  
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I-1.5 Fusion 
Plasmas constitute over 99% of the visible matter in the universe and are rich in complex, 
collective phenomena. A major component of research in this area is the quest for 
harnessing fusion energy, the power source of the sun and other stars, which occurs when 
forms of the lightest atom, hydrogen, combine to make helium in a very hot (~100 
million degrees centigrade) ionized gas, or “plasma.” A fusion power plant would 
produce no greenhouse gas emissions, use abundant and widely distributed sources of 
fuel, shut down easily, require no fissionable materials, operate in a continuous mode or 
intermittently to meet demand, and produce manageable radioactive waste. The 
development of such a secure and reliable energy system that is environmentally and 
economically sustainable is a truly formidable scientific and technological challenge 
facing the world in the twenty-first century.  

The two principal approaches for confining the fusion fuel
 
on earth are magnetic and 

inertial. Magnetic fusion relies on magnetic forces to confine the charged particles of the 
hot plasma fuel, while inertial fusion relies on intense lasers or particle beams to 
compress a pellet of fuel rapidly to the point where fusion occurs. In the past two 
decades, the worldwide programs have advanced our knowledge of magnetically 
confined plasmas to the point where we can confidently proceed to the larger-scale 
International Thermonuclear Experimental Reactor (ITER) burning-plasma experiment. 

A number of grand challenge-scale plasma science questions need to be addressed in 
order to exploit the experimental program: 

• What are the actual dynamics that govern the breaking and reconnection of 
magnetic field lines in a hot plasma medium? 

• What is the best way to characterize plasma turbulence as a multibody problem 
involving collective dynamics? 

 
Figure I-1.4 Mixing in direct numerical simulation of a turbulent reacting CO/H2/N2 jet flame as 
revealed by the scalar dissipation rate isocontours. The black isoline corresponds to the 
stoichiometric mixture fraction. 
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• How can we unravel the mystery of the complex behavior of strongly nonlinear, 
nonequilibrium plasmas involved in atomic/material interactions with their 
external environments? 

• When considered as an integrated system including the relevant physics on all 
important time scales, how will the global profiles of the plasma temperature, 
density, current, and magnetic field evolve over time? 

In addition to dealing with vast ranges in space and time scales that can span over ten 
decades, the fusion-relevant problem involves extreme anisotropy, the interaction 
between large-scale fluidlike (macroscopic) physics and fine-scale kinetic (microscopic) 
physics, and the need to account for geometric detail. Increasingly realistic fusion 
simulations will result in large and diverse data demanding powerful data-management 
frameworks. In particular, ITER’s plasma production effort, planned around 2014, will 
generate an enormous amount of data, which will need to be collaboratively analyzed and 
managed in an international community.  

I-1.6 High-Energy Physics 
High-energy physics seeks to pose and answer the most fundamental questions about the 
particles and forces that make up our universe. High-energy physics, nuclear physics, 
astronomy, astrophysics, and cosmology are a set of deeply interconnected sciences 
bringing experiment, observation, theory, and simulation to bear on fundamental 
questions such as the following: 

• Are there undiscovered principles of nature: new symmetries, new physical laws? 

• Are there extra dimensions of space? 

• Why are there so many kinds of particles? 

• What happened to the antimatter after the Big Bang? 

• How can we solve the mystery of dark energy and dark matter? 

• What are neutrinos telling us? 
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Figure I-1.5 The Silicon Vertex Tracker is at the heart of the BABAR experiment at SLAC.  Its 
millions of sensitive elements typify the evolution of detector technology that is making experimental 
high-energy physics ever more data intensive. (Photo courtesy of Peter Ginter) 

 
Figure I-1.6 Simulated decay of Higgs boson in the future CMS experiment at CERN. (Credit: 
CERN)  Discovering and then studying the Higgs boson will require combing through petabytes of 
data. 
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It is an exciting time for experimental high-energy physics. Many of the questions may 
be answered in the next decade at the unprecedented collision energy of the Large 
Hadron Collider (LHC) at CERN,1 complemented by matter-antimatter “factories” at the 
Stanford Linear Accelerator Center and KEK2 and the current world’s highest energy 
collider at Fermi National Accelerator Laboratory (see Figure I-1.5 and Figure I-1.6).  

A common technical challenge runs through the past, present, and future of experimental 
high-energy physics: precision measurements in the quantum world of particles and 
forces require enormous statistics. Our ability to acquire and analyze huge volumes of 
data is one of the factors determining the feasibility and quality of the science. For 
example, collisions detected at the LHC will have a raw information content of close to a 
petabyte per second. Less than one-millionth of this information can be feasibly recorded 
and analyzed, so real-time decisions must be made by electronics and software to retain 
the millionth thought likely to reveal new physics. Even with this selectivity, physicists 
must seek revolutionary new approaches to data management and data analysis to allow 
scientific intuition and intellect to range unhindered over a daunting volume of data . 

I-1.7 Nuclear Physics 
Taking a step up from pondering the most fundamental particles and forces in nature, we 
can begin to ask questions about how the fundamental particles are brought together to 
form complex massive particles and what characterizes the forces that bind these 
particles. Here we are entering the realm of nuclear physics. 

• How is a proton constructed from three quarks and a field of gluons? We know 
that quarks account for 2% of the mass and 25% of the spin. How does the 
internal structure of protons and neutrons give rise to the binding and properties 
of the thousands of nuclear isotopes we find in nature? 

• In the Big Bang model of the universe, hadrons (protons, neutrons, mesons) 
formed during a period of expansion and cooling when the universe was about a 
microsecond old. What are the properties of the primordial plasma of quarks and 
gluons before the phase change to hadronic matter?  

 
Extensive programs in experimental and theoretical nuclear physics are making progress 
toward answering these questions; but as in all science, new insights give rise to new 
questions. The experimental programs have ever-increasing datasets; some investigations 
focus on a single, large data sample whereas others analyze the correlations across data 
samples. The scale of the data-handling issues is characterized by experiments having 
peak data generation rates of tens of megabytes per second, the major programs 
generating of order one petabyte per year, and data analysis environments having tens to 
hundreds of scientists simultaneously accessing refined datasets of tens of terabytes (see 

                                                 
1 CERN: European Laboratory for Particle Physics, Geneva, Switzerland. The CERN LHC program 
involves major U.S. participation. 
2 KEK: High Energy Accelerator Research Organization, Tskuba, Japan. 
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Figure I-1.7). Elements of the computational theoretical nuclear physics programs have 
similar characteristics to other simulation sciences, with significant needs for high-
performance parallel I/O attached to massively parallel computers, as well as 
geographically distributed data flow for small teams of scientists to share and manipulate 
data on the appropriate facilities. 
 

 

I-1.8 Nanotechnology 
As the needs of our high-technology society have advanced, so have our demands for 
new materials that are stronger, lighter, and cheaper yet perform well under severe 
conditions. Nanoscale features and molecular assemblies can have properties that are 
dramatically different from traditional materials, surfaces, and catalysts, offering 
enormous potential for meeting some of these pressing demands.  

Researchers in nanophase materials uses diverse instruments and techniques, including 
electron microscopy, X-ray diffraction, neutron scattering, and nuclear magnetic 
resonance. The new DOE nanoscience centers are being placed near major microscopy, 
synchrotron, or neutron-scattering user facilities to support this research.  

New facilities and instrumentation such as that built at the Spallation Neutron Source 
(SNS) at Oak Ridge National Laboratory provide orders of magnitude more neutron flux 
and larger detector arrays than predecessor facilities, with concomitant increase in data 
volume. At full capacity, SNS expects to have 24 instruments and plans to accommodate 

 
Figure I-1.7 Gold-gold nucleus collision measured by the STAR detector at the Relativistic Heavy Ion 
Collider.  The STAR detector can produce 2 gigabytes/s of compressed data. 
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1,000 or more guest researchers per year. Likewise, next-generation electron microscopes 
will be capable of taking much more detailed (and larger) images at shorter time 
intervals, as well as spatially resolved spectra, which increase data output by orders of 
magnitude. 

Nanoscience is young and is not yet straining against the limitations of the science of data 
management. However, data management is already a challenge, and there are growing 
needs to handle both complex and high-volume data that will be well served by 
exploiting developments driven by the other sciences.   
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I-2 The Roles of Data in Science 
Many scientists feel challenged by the quantity and complexity of their data. To 
paraphrase the comments of many workshop participants, “I’m spending nearly all my 
time, finding, processing, organizing, and moving data—and it’s going to get much 
worse.” The first hurdle faced at the workshops was to turn this sense of dread into a 
well-organized statement of technological needs. Application scientists (researchers in 
the science domains of the previous section) rapidly discovered that science could be 
grouped into three types of activity with similar problems: simulation-driven science, 
experiment/observation-driven science, and information-intensive science. These 
scientists, armed with the certainty that they were not strange outliers, even if their ability 
to speak computer science jargon was limited, were able to explore how their data-
management problems related to topics that made sense to the computer scientists. 

In this section, we examine the application-science needs using the three groupings that 
arose at the workshops. We then outline how computer scientists see the problems; a 
detailed examination of the issues and gaps from a computer-science viewpoint is 
presented in Part II. 

Before looking at the three-way grouping of application-science needs, we briefly 
examine the data flows and workflows used by scientists. 

I-2.1 Data Flows and Workflows in Science 
The workshop participants considered both spiral and linear models3 as ways of unifying 
the description of how science is done and how information flows. The spiral model 
describes well how a series of exploratory and confirmatory investigations lead to a 
growth of knowledge, but it is a poor vehicle for understanding the data flows in a single 
investigation. A simple, almost generic example of the linear model is shown in  
Figure I-2.1.  

                                                 
3 Software developers debate the merits of describing the software creation process with a linear model 
(perceived need leading to shrink-wrapped product) or a spiral model (it’s never finished: the existing 
product just help researchers understand the needs for the new, improved product). Scientists spend 
(perhaps) less time thinking about a good model for the scientific process. 
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Data often must be moved because the national facilities used to acquire or simulate the 
data are separate from the analysis facilities available to scientists. In more complex 
collaborative activities, data may even be moved to national centers in other countries to 
perform resource-intensive processing. 

Data frequently must be reorganized, for example to collect the subset of the data that one 
group of scientists intends to study. Reorganizing a gigabyte of data can take a few 
minutes on a workstation; reorganizing a petabyte can take months, monopolizing 
hardware worth millions of dollars. 

Pattern recognition and feature extraction are the keys to taming datasets too large to 
study directly. In many cases they are simply an automation of the visual searches for 
patterns and features that can be done by eye on small datasets. However, once the 
patterns and features have been extracted and stored in a more compact dataset, their 
analysis presents completely new challenges. 

For those scientists still working in a mode where the acquired or simulated data can be 
directly visualized, Figure I-2.1 collapses to just two boxes. However, this mode is 
becoming rare. Indeed, the three boxes in the middle of the figure occupy more and more 
of application scientists’ time. The central box—pattern recognition and feature 
extraction—at least has some intellectual content relevant to the science, but the data-
movement and organization activities reflected in the other two boxes are becoming 
increasingly onerous.  

A framework automating these activities would vastly enhance scientific productivity, 
particularly in data-intensive science conducted by small teams. Such a framework would 
also automate the capture (and audit) of all the steps taken by all participants so that the 
data provenance was assured. Such assurance becomes vital as small teams evolve into 
larger teams and then into worldwide collaborating communities.  

 
Figure I-2.1 hides the hardware and software components that accomplish the actions. 
Figure I-2.2 illustrates some of the hidden components that accomplish the multiple data-
related actions performed in many experiments and simulations. The top layer illustrates 
the control activities, the middle layer the software components, and the bottom layer the 
physical resources needed for the activities.  

 
Figure I-2.1: Simple view of a data flow and workflow in a scientific investigation. 
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I-2.2 Simulation-Driven Applications 
Many simulation scientists collaborate in small groups in most stages of the scientific 
process. Increasingly, however, scientifically important problems require large, 
multidisciplinary teams. In these instances, the need to access distributed data and 
resources is the rule rather than the exception. Scientific discovery requires that we 
ultimately create distributed environments that not only facilitate access to data but also 
actively foster collaboration between geographically distributed researchers. 

Typically, simulations are executed in batch because they are long running and the 
computational resources are located in a few supercomputing centers. Increasingly, 
however, simulation scientists are expressing the desire for interactive capabilities that 
will enable data management, analysis, and visualization “on the fly.”  

Regardless of the simulation domain or execution mode, the sizes of generated data are 
very large. For example, three-dimensional hydrodynamics simulations performed by the 
DOE SciDAC TeraScale Supernova Initiative are currently producing data at the rate of 5 
TB per day. More detailed and higher-dimensional simulations required for predictive 
science will drive data rates upward at an exponential rate. If the growing data monster 
cannot be tamed, hopes for scientific progress will be dashed. Major efforts are needed to 
ensure that scientists are provided the data-management tools required for innovative 
scientific investigations. 

While the particular steps performed by simulation scientists to obtain and analyze 
scientific data may differ significantly, three categories emerge as the central workflow 
components of simulation-driven science: data movement and reorganization, data 
analysis, and visualization. All involve data-management challenges.  

Figure I-2.2: Example of a workflow created in the scientific investigation process, showing the three 
layers: control flow, applications and software tools, and physical computer hardware. 
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Data Movement and Reorganization. Simulated data are often written out as thousands 
of files, in order to allow the supercomputer to perform I/O without bottlenecks. Hence, 
there arises a need for significant parallel I/O development and support. This begins with 
the need to define a portable, efficient industry standard and includes the need for 
interoperability between parallel and nonparallel I/O. Scientists must also store large, 
distributed datasets. While archival storage will be required, a significant fraction of the 
simulation data must be postprocessed and analyzed as it is produced, which in turn will 
require the ability to cache data on this scale. The processed data also must be augmented 
by metadata and annotations tracking their provenance. (Provenance may include 
information on the version of the code used to perform the simulation, parameters for 
both the simulation itself and the models, information on simulation input, the machine 
configuration used when the simulation was performed, and information about the 
compilers used.) In addition, researchers must be able to transfer the data efficiently; a 
potentially integral part of data transfer in a distributed context is data compression. 

Data Analysis. As volumes of simulated data increase, scientific discovery by visually 
rendering raw simulation data becomes impractical. Derived quantities often lend 
themselves best to scientific discovery. Data analysis prior to visualization may require 
data transformation; feature detection, extraction, and tracking; inverse feature tracking 
(clustering and correlation); and statistical analysis. For example, data may be mined 
from many files in order to identify and then track regions containing particular types of 
information, such as flame fronts. Data analysis also should be coupled with 
visualization. Moreover, there is a clear need for parallel data analysis routines that can 
be coupled with simulations run on today’s—and tomorrow’s—advanced computer 
architectures.  

Visualization. A principal role of visualization is the extraction of scientific 
understanding from the tractable datasets emerging from analysis. Visualization is also 
required to instrument intermediate stages of the computational pipeline, for example to 
see whether unexpected output from the simulation is confusing feature-extraction code. 
Long-running simulations can become vastly more productive if some information can be 
visualized in real time, allowing decisions to abort or steer the simulation. Latency can be 
critical in these applications. Visualization routines should be able to understand the 
common data model defined in the data workflow so that simulation scientists can easily 
create new visualization networks for specific application domains. 

I-2.3 Observation/Experiment-Driven Applications 
As with simulation applications, experimental and observational applications are dealing 
with ever-increasing data volumes, some of which will reach petabytes per year within 
the next few years. The challenges in managing these large datasets are driven by the 
diversity of requirements for the storage, organization, access to, and curation of data at 
different stages of the workflow process. 

I-2.3.1 The Workflow 
In the data acquisition phase of an experiment, data is collected by digitizing detectors 
and stored in a raw instrumental format. Data rates can be high enough that simply 
recording the data in real time can be a challenge. In some experiments (e.g., in high-
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energy physics), rates are rapidly approaching petabytes per second, well beyond those 
that can be stored and retrieved by today’s technology. Hence, real-time processing is 
done to determine which elements of data are likely to be interesting. These are recorded, 
while the vast majority of data is simply dropped.  

In the data-processing phase, data is transformed from instrumental format to a form that 
has some scientific meaning and has identified the important features in the data (e.g., 
raw events are processed into electron trajectories and energies). If the experiment is long 
running, this stage can be stable and repetitive, well suited to automation and coarse-
grained parallelization. In some experiments the raw data is then discarded as being too 
large to save in any practical manner. Data processing can be complex: data subsets may 
have complex interrelations, necessitating one or several intermediate persistent datasets. 
Generic workflow tools must be flexible so they can be tailored to each experiment’s 
specific needs.  

In the data analysis phase, the data is accessed by large scientific communities spread 
across multiple institutions. Data analysis can involve extensive visualization, complex 
queries, and cross-correlations among different datasets. By its very nature, this phase is 
dynamic and unpredictable. In some fields (e.g., astrophysics and biology), datasets from 
one experiment are analyzed in conjunction with datasets from other experiments. In 
other fields (e.g., fusion), datasets are compared with predictions from simulations. It is 
often desired to replicate datasets in multiple locations and reorganize them for more 
efficient analysis, but the sheer size of the datasets can make replication or reorganization 
take months. 

I-2.3.2 Technical Challenges 
Several key technical challenges are shared by current and future experiments. 

Storage. The low-level technologies for constructing large storage systems are being 
stressed. Moore’s law does not apply equally to all aspects of storage systems. Storage 
capacity is growing faster than bandwidth and access times, so we are driven to 
constructing massively parallel I/O systems to maintain throughput. Some experiments 
(e.g., in high-energy physics) necessarily access large numbers of kilobyte-sized chunks 
of data, which is an access pattern poorly matched to existing storage technologies. Equal 
ease of access to all bits of a large dataset is often not necessary. Data-caching techniques 
can be valuable to provide high-speed access to interesting subsets of the full dataset. 
Data integrity is important. Hardware and networks are not perfect, so data loss and 
corruption must be caught and fixed. As systems grow in size and complexity, problems 
may pass unnoticed until recovery becomes difficult and expensive. 

Data organization. A problem shared with simulations is data organization. Multiple 
processing versions exacerbate the problem. Data is seldom organized optimally for 
access during the analysis stage (e.g., by position on the sky). Instead, it typically is 
organized in the time order collected. Data reorganization can sometimes be cast as a data 
query (e.g., fetch all objects that match some search conditions). Relational databases 
(with indexing) provide much of the needed functionality, but they are currently unable to 
handle petabyte-scale datasets; further, the relational model is often poorly matched to 
the complex relationships needed in a database of processed experimental data. Some 
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specialized data-access tools work on files (e.g., ROOT), but generic solutions of this 
type do not yet exist.  

Data analysis. Large, data-intensive experiments can involve over a thousand scientists 
at hundreds of institutions in several countries. Data analysis is a major scientific 
challenge in itself and motivates nations to seek create their own centers of excellence 
that are funded by different sources from the main experiment. Grid technology to allow 
these distributed resources to be integrated is vital for scientific success. 

Data provenance. In experiments with hundreds of scientists and thousands of raw and 
processed data products, keeping track of data provenance is of high importance. 
Metadata and data model standards become even more important to ensure that datasets 
can be readily understood by users from outside a particular experiment. 

Data archiving. Experimental data generally have archival value: there are many 
examples of new understanding being extracted from data over ten years old. The 
archiving of data places demands on having well-defined metadata, robust storage, and 
open access mechanisms to the data. 

I-2.4 Information-Intensive Applications 
In some research areas, most notably biology and more recently homeland security, 
increases in computing, network, and data-storage capabilities are revolutionizing our 
ability to understand systems-level phenomena. In other areas, particularly combustion 
chemistry and nanoscience, such a systems-level approach is beginning to enable 
researchers to model dependencies between phenomena at scales from atoms to devices, 
directly connecting basic research with engineering application. 

The data-management challenge for systems-oriented research is not simply about data 
volume. More critical is the fact that the data involved is produced by multiple 
techniques, at multiple locations, in different formats and then analyzed under differing 
assumptions and according to different theoretical models. The need to understand such a 
heterogeneous collection of information involving thousands to billions of individual 
datasets, at the scale of communities and across disciplines, defines the core challenge 
faced in information-intensive applications. In essence, systems-oriented research aims to 
produce “big science” results by integrating the effort of thousands of independent 
research programs. 

To understand some of the issues facing information-intensive applications, consider a 
biology example involving measurements of the concentration of thousands of proteins in 
a cell as a function of exposure to a chemical contaminant. The protein concentrations 
can depend not just on the contaminant but on many factors such as the genetic sequence 
of the cells used, growth conditions, and cell age. In order to federate data from multiple 
experiments, all this metadata must be made explicit and persistently associated with the 
data. Further, assume that the experimental data will be compared with a simulation that 
accounts for the three-dimensional distribution of proteins within cells. The experimental 
data, which has no spatial information, must now be combined with additional 
information (e.g., microscopy data and knowledge about which proteins are usually found 
in various cell regions) and translated into the data model and format expected by the 
simulation. Conclusions about whether the simulation model accurately represents the 
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cell depend on the entire chain of data and the assumptions made at various stages. As 
research progresses, scientists might wish to automatically scan community data 
resources and re-evaluate the model as cells are studied under new conditions, more 
information about protein distributions is discovered, the model itself evolves, or new 
experimental techniques (with their own data models and formats) are developed and 
provide additional types of information about the cell. 

As the example illustrates, the complexity involved in information-intensive research is 
tremendous, and the ability to track metadata and relationships is quickly becoming a 
limiting factor. Scaling these capabilities to the community level—which involves 
capturing additional information, publishing data and metadata, curating public data 
resources, enabling documentation of relationships between different types of data 
maintained by different subcommunities, and providing reliable data and metadata 
discovery and access services to potentially billions of datasets to tens of thousands of 
researchers—is truly a grand challenge. Automation of this process, with robust tools that 
allow researchers to easily configure and control the underlying work, data, and metadata 
flows, will be a critical factor in realizing the promise of informatics-oriented research. 

Data-management tools must transparently support scientific research processes. In the 
same way that researchers performing data-intensive experiments and simulations should 
not need to become data managers to pursue their goals, those working in information-
intensive domains should not need to become knowledge engineers. Simple standard 
ways of viewing metadata and discovering data based on queries about its metadata and 
relationship to other information, a minimally invasive infrastructure to capture required 
metadata, and mechanisms to rapidly create, evolve, and map between semantic 
descriptions of data and of data processes will all be required. These capabilities may in 
turn need to be aggregated into coherent, knowledge-aware suites of experiment 
planning, design, and execution tools.  

Information-intensive techniques have already proven their value in areas such as 
bioinformatics, and they promise to fuel the next generation of research and development 
across many domains. The requirements noted here represent significant challenges in 
data management. However, the existing knowledge and technology base across data and 
information management, distributed computing, and semantic information processing 
strongly suggest that the requirements can be met. Success in this area will allow 
researchers to tackle complex, high-priority issues with an unprecedented breadth of 
expertise and resources.  

I-2.5 Foundation of Scientific Data-Management Technology 
The needs described above cover many aspects of data-management technologies. We 
organize the needed technologies into six areas, discussed briefly below and in detail in 
Part II:   

I-2.5.1 Workflow, Data Flow, Data Transformation 
Workflow management is a unifying need in virtually all science areas. The specification 
of scientific workflows is not simple, however, since it covers the tasks to be performed 
and the flow control specification, the software components to be used, the data flow 



The Office of Science Data-Management Challenge 

 26 

requirements between the components, and the storage systems involved. Workflows 
need to explicitly express the synchronization between tasks and to identify whether the 
tasks are used repetitively. In addition, there is a need to specify explicitly the data 
transformation tasks that must be performed in order to have the output of one component 
formatted properly as input for the next component. 

I-2.5.2 Metadata, Data Description, Logical Organization 
Metadata refers to the information on the meaning of the data being generated and 
collected by scientific applications. Metadata is essential for scientific investigations: 
without the orderly collection of the metadata, the data is of no value. The structure of the 
data—the data model—is also essential information. Some file systems, such as netCDF, 
have a header that indicates the structure associated with each file, but this is not 
sufficient. Additional information is needed, such as the units used, the person who 
generated the data, and the significance of the results. Another important aspect of 
metadata is the history of how data was generated—its provenance. Ongoing community 
annotation of data with additional notes about its quality and its relationships to other 
data is also becoming a key capability. 

Automating the collection of metadata becomes a necessity at the scales being discussed, 
although some metadata, such as the unstructured information traditionally kept in 
notebooks, may continue to be entered manually, with quality and completeness managed 
by policies and procedures. Moreover, the semantics (terms, meanings, and relationships 
among terms) of data and metadata models also needs to be as precise and as 
standardized as possible to support data interpretation and integration. Full descriptions—
the “ontologies”—can be powerful: their structure, such as broader terms and narrower 
terms forming hierarchies, may be sufficient to automate many aspects of data 
integration. To assure that scientific data retains its meaning and value as it is shared 
among researchers and over time, scientists must have access to flexible, easy-to-use 
metadata technologies.  

I-2.5.3 Efficient Access and Queries, Data Integration 
By efficient access we mean the ability to write data into a storage system and retrieve it 
efficiently. A consequence of dealing with large quantities of data is the need to find the 
subset of the data that is of interest. Often that means searching over billions of data 
objects, using several descriptors (attributes, properties) for the search. Searching can be 
facilitated by efficient high-dimensional indexing methods. Much of the scientific data is 
stored in files, with specialized formats. There is a need to provide data-querying 
capabilities over the content of such files, such as a general-purpose query system, 
similar to a database-management system but allowing the data to stay in the scientists’ 
files. This appears to be a unique requirement by scientific applications that is currently 
not addressed by the database-management industry. Another aspect of accessing data is 
the need to integrate data from multiple sources, perhaps in multiple formats and data 
structures. This is common for applications that correlate interrelated aspects of a system, 
such as biology applications in which genomics, proteomics, microarray, and spectral 
data must be correlated and integrated.  
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I-2.5.4 Distributed Data Management, Data Movement, Networks 
Attempting to move large volumes of scientific data exposes many bottlenecks. Even 
within a single site, the rates at which data can move between workflow components may 
be a constraint. When data is moved over wide-area networks, the difficulty is not only in 
having sufficient bandwidth but also in dealing with transient errors in the networks and 
the source and destination storage systems. Thus, moving a terabyte of data becomes a 
major task for the scientist. Grid middleware technology can be helpful, especially 
middleware components that perform monitoring and recovery for transient failures. A 
technique for avoiding repetitive data movement is replication of selected subsets of the 
data in multiple sites. Replication requires placement strategies based on actual and 
projected usage. Data can be placed not only in computer-center storage systems but also 
within a network fabric enhanced with temporary storage. Grid technology is already 
beginning to address such issues, by providing Grid storage management, data-movement 
tools, and replica catalogs.  

Management of user authentication and authorization to read or modify the data is vital. 
Even in a totally open environment, it is a disaster if one scientist’s mistake silently 
corrupts the data that a thousand colleagues are studying. Clearly a data-security 
infrastructure is needed that makes it easy to apply security while minimally burdening 
the scientist.  

I-2.5.5 Storage and Caching 
Reliable, robust storage technology is essential for scientific data. Some scientific data, 
such as experimental or natural phenomena observations, is irreplaceable, and thus 
scientific investigation cannot tolerate undetected data-retrieval errors. In several Office 
of Science programs, the disk, tape, and server technology for data storage already 
dominates computing costs. It is important that the scientific community continue to 
work with storage system vendors to ensure the availability of affordable, reliable storage 
systems.4  

Storage hardware must be used effectively. Large-scale simulations can produce data at a 
rate much faster than a single storage system can absorb it. Similarly, instrument data can 
be generated a very high rate and needs to be moved to storage systems at that rate. The 
obvious solution is parallel I/O, but without adding complexity for the scientist, 
especially when data must be moved across the country or between computers.  

Another issue involving the efficient use of storage systems is the management of files 
that are staged from robotic tape systems. When a large volume of datasets is generated, 
the data is typically archived to tape, but only a portion of the data (areas of interest) 
needs to be moved to disk. The technologies for automating the process of moving 
needed data from tape to disk (while making the migration imperceptible to the 

                                                 
4 For example, the high-capacity tape cartridges currently used by the most data-intensive scientific 
programs were developed as a result of interactions with a leading vendor. 
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application) and for choosing what to keep in cache are important capabilities for 
scientific data management. 

I-2.5.6 Data Analysis, Visualization, and Integrated Environments 
Scientific investigation requires various tools for data analysis and visualization, as well 
as integrated environments in which these tools can operate seamlessly. As the size and 
complexity of the raw data generated by simulations, experiments, and observations 
increase, researchers will increasingly rely on analysis and visualization techniques to 
preprocess and summarize the data into a more comprehensible form. The derived data 
and visualization output then become the primary results that are shared with the 
community. In order to generate this derived data, advances in data analysis techniques 
are needed, including improved feature identification and tracking, sophisticated 
representation and search algorithms for find regions similar to a query region in a 
database, real-time anomaly detection in streaming data, and scalable algorithms that can 
operate on different types of raw data.  

Further, with many different modalities of data coming on line, such as Web documents, 
experimental data, and journal papers, researchers are also interested in mining such data 
to find interesting associations. Visualization tools must be able to handle 
multidimensional datasets and scalable algorithms. New approaches for comparative 
visualization and 3-D data exploration need to be developed to aid the scientific 
investigation process.  

It also is important that these analysis and visualization tools be available, not only as 
standalone modules but also as part of an integrated environment where a researcher can 
easily work with different tools, without having to spend a lot of time on cumbersome 
and computationally expensive data transformations. In addition, uniform data formats 
are required to support different computer environments ranging from desktops to large 
supercomputers. 
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I-3 Recommendation: A Scientific Data-Management 
Program for the Office of Science 

The data-management workshops implicitly posed and explicitly answered the following 
questions: 

• Is data management a critical-path problem for DOE science domains? 

• Are there major unmet, or inadequately met, needs? 

• Is there substantial commonality between the sciences in data-management 
problems?  

• Can computer scientists and application scientists work together to address these 
problems? 

Five years ago5 the path forward was unclear. Today, as these workshops demonstrated in 
their presentations and even more in the working discussions, the answer to all four 
questions is a resounding “yes.”  

These findings argue strongly for an Office of Science Data-Management Program that 
will provide the needed capabilities for DOE’s scientific challenges by coordinating 
existing research and development efforts and bringing to bear additional resources that 
achieve a long-term vision on the scale warranted by the science mission. 

The workshops could capture only a snapshot of the current perceived needs for progress 
in data management. Since data-management needs evolve even faster than data-
management technology, the Data-Management Program must incorporate ongoing 
strategies for determining and applying priorities across the Office of Science. Here, we 
review the current Office of Science data-management efforts, identify the needs and 
priorities for additional research and development in data management, and present an 
approach for effectively carrying out such a program.  

I-3.1 Existing Office of Science Data-Management Effort 
Table I-3.1 summarizes the current Office of Science data-management effort. Many of 
the numbers are not precise and auditable, but they do represent the best estimates of 
involved scientists. All the efforts in this table are restricted to data-management 
research, development, deployment, hardening, and maintenance, excluding operations 
and equipment. For projects that are not uniquely focused on data management, an 
attempt has been made to estimate the portion of the project effort that is devoted to data 
management. In the case of the application sciences listed in the lower part of the table, 
the resources devoted to data management were estimated by the scientists who 

                                                 
5 For example, in October 1998, an ad hoc DOE Data Management Workshop was held at SLAC. Much 
valuable information was exchanged, but no clear need for action emerged from the workshop. Workshop 
presentations are at http://www-user.slac.stanford.edu/rmount/dm-workshop-98. 
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participated in the workshops. How complete is the picture? Only Office of Science 
funding is shown. As the table shows, the existing level of ASCR support for Office of 
Science data management is small compared with the investment that the application 
sciences feel is needed.  

 

 Resources Expended by DOE for Data 
Management Activities in $M/yr 

Project or Activity Computer Science 
Efforts 

Application 
Science Efforts 

SciDAC: Scientific Data Management ISIC 3.0  
SciDAC: Particle Physics Data Grid 0.5 0.6 
SciDAC: High-Performance Data Grid 
Toolkit 0.8  

SciDAC: DOE Science Grid6 0.2  
SciDAC: Fusion Collaboratory 0.4  
SciDAC: Earth System Grid II 1.8 0.4 
SciDAC: Logistical Networking 0.3  
Collaboratory for Multi-Scale Chemical 
Science 1.2  

Storage Resource Management for Data Grid 
Applications 0.5  

Scientific Annotation Middleware 0.6  
Astronomy and Astrophysics  0.6 
Biology  2.4 
Climate  4.0 
Chemistry/Combustion  0.1 
Fusion  4.0 
High Energy Physics   5.0 
Nuclear Physics  1.0 
Nanoscience  0.1 
TOTAL Existing Activity 9.3 18.2 

 

                                                 
6 Terminated August 2004. 

Table I-3.1 Existing Office of Science projects or activities with data-management components. See 
text for explanation of columns. 
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I-3.2 Needs and Priorities 
As a result of interactions with computer scientists at the workshops, application 
scientists were able to reach a clearer understanding of the areas of computer science and 
technology that were relevant to their current and immediate future problems. These 
needs and priorities are summarized in this section. 

I-3.2.1 Overall Priorities 
During the final workshop the application scientists were asked to make their best 
estimates of their priority ranking for the major areas described in Section I-2.5. Sciences 
were allowed to consider themselves simulation-intensive and/or experiment/observation-
intensive and/or information intensive. The results are shown in Figure I-3.1.  
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The priority assignments show many strong similarities among the sciences in each of the 
three categories. Even where differences exist, they may be more in timing. For example, 
traditional scientific visualization, focused primarily on visualization of continuum fields, 
has had little application in high-energy and nuclear physics; however, we can anticipate 
a greater role of more advanced visualization techniques in the future.  

Figure I-3.1: Overall priorities for each of the six areas of data management outlined in Section I-2.5
and discussed in detail in Part II. Each branch (simulation-driven, experiment/observation-driven, 
information-intensive) of each application science ranked the six areas from 1 (lowest) to 6 (highest). 
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I-3.2.2 Priorities for Additional Effort 
A complementary and even more probing request was made to each application science 
in an attempt to discover the urgent priorities for applying additional effort: “Imagine that 
your science has obtained funding for four FTEs to work on data management. Where 
would you put them to work?” Half-FTE assignments were allowed, and sciences were 
encouraged to consider the possibility of pooled effort in areas of common need. The 
results are shown in Figure I-3.2. 
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In several cases, sciences declared areas “high overall priority” but assigned few or no 
FTEs, explaining that because these data-management needs were already being 
addressed in some way, the most urgent investment must be elsewhere. For example, the 
astronomers did not assign additional effort to metadata issues because of the large (over 
$10M) international effort currently devoted to astronomy catalogs. 

The very restricted amount of additional effort that the sciences were allowed to allocate 
highlights stark differences between simulation-driven, experiment/observation-driven, 
and information-intensive sciences. However, summing over all types of application 
sciences, every area of data management requires significant additional effort. 

Figure I-3.2: Priorities for additional effort for each of the six areas of data management outlined in 
Section I-2.5. Each branch (simulation-driven, experiment/observation-driven, information-
intensive) of each science imagined how they would assign a very limited amount of additional effort.



The Office of Science Data-Management Challenge 

 

33 

I-3.2.3 The Problem with the Status Quo 
The workshops clearly demonstrated that the Office of Science programs have growing 
needs for data-management science and technology and that the needs of the programs 
have much in common. The current approach, with a few honorable exceptions, is “leave 
it to the science programs to fund their own data management.” This approach does too 
little to address the looming technology gaps and fails to exploit commonality in the 
needs of the programs.   

An additional major issue, appearing again and again during workshop discussions, was 
the difficulty of funding the hardening and packaging and the deployment and 
maintenance of the good solutions that arise from DOE research.  The result has often 
been that first-class computer science funded by ASCR has been unusable by the 
application sciences because there was no means to put computer science results into 
practice. Opportunities for U.S. science to capitalize on revolutionary data-management 
developments are being lost. 

I-3.3 Setting the Scale of a Data-Management Program 
The scale of the additional resources was estimated from both the computer science and 
the application science perspectives:  

• The computer science participants were asked to estimate a minimum level of 
computer-science effort required to make appropriate progress on each of the 
subtopics appearing in Part II. Their estimation was 78 FTEs for computer 
science. 

• The application science participants were asked to estimate the minimum level of 
additional effort on data management that their program will be driven to provide 
to achieve its mission. That is “How many FTEs would your program really have 
to make available?” Their estimation was 30 FTEs from the science programs. 

Given their origins, these two estimates must be regarded as complementary. Historically, 
even with these two sources of effort, there have always been major gaps in hardening 
and packaging as well as maintaining and supporting computer science “products.” As 
the tables in Part II show, the computer science work is predominantly in the research and 
development stages.  The science programs know from experience that their effort must 
go mainly into deployment and maintenance, with some hardening and packaging. 

While vital, people are not always enough. The development of scalable approaches to 
high-volume data management is impossible without the availability of test facilities 
involving substantial hardware investments. Experience in data-challenged fields 
indicates that these facilities add about 50% to the development cost. Considering that 
information-intensive efforts have more modest hardware needs leads to an average 
increment of about 30%. Thus, the required scale of additional effort is about 108 skilled 
FTEs, plus test facilities, translating into a program of about $32M per year. 
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I-3.4 Developing the Office of Science Data-Management 
Program  

An effective Data-Management Program requires the following actions: 

• Ongoing assessment and ranking of efforts based on the evolving needs of the 
science programs 

• Full exploitation of the considerable commonality between sciences to drive the 
development of tools that have wide applicability 

• Setting of an appropriate balance between research and development, hardening 
and packaging, and maintenance and support 

• Careful sizing of the program to optimize the long-term scientific productivity of 
the Office of Science 

The SciDAC program was repeatedly identified during the workshops as having two 
related key aspects that must appear in a Data-Management Program for 21st-century 
science: 

1. Cross-disciplinary collaboration as the foundation of most major projects 

2. Joint application-science and computer-science funding of some major projects 

SciDAC has already shown hundreds of scientists that cross-disciplinary collaboration is 
difficult but exciting and ultimately highly productive.  

In large measure, the requirement for priority ranking based on the needs of the science 
programs can be addressed by ensuring that a large fraction of the funding, be it new or 
existing, flows through these programs to the cross-disciplinary projects they identify as 
important. This approach also ensures that appropriate attention will be given to 
hardening and packaging, maintenance and support, in addition to the computer-science 
research issues. 

The ideal core approach thus becomes the following:  

1. Provide additional data-management funding for both ASCR and the science 
programs, such that both can fully carry out their roles in the data-management 
program. 

2. Require the majority of successful proposals to involve both funding and 
collaborators from ASCR and the science programs. 

3. Provide oversight at the Office of Science level to ensure that the data-
management funding is set at a level that optimizes Office of Science success and 
that solicitations result in projects that are appropriately forward-looking and 
interdisciplinary. 

4. Appoint a Program Director with responsibility for the coherence of the program. 
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Part II:  Data-Management Technologies and Gap 
Analysis 
Part II of this report sets out the computer-science perspective on the exciting needs for 
data-management research and development that are driven by the requirements of the 
application sciences. The computer scientists were asked to characterize the maturity of 
each needed activity that they identified: was it at the pure research and development 
stage, or was it beginning to be focused on the later stages of a product lifecycle, such as 
hardening and packaging or even support and maintenance. 

We were not surprised to find that the majority of activities were considered to have an 
initial focus on research and development. But prominent computer scientists stressed 
that working with application scientists to harden and generalize data-management tools 
was itself a productive area of computer science. 

Each section in this part of the report concludes with a table listing the topics where work 
is needed and indicating whether the main focus is on research and development, 
packaging and hardening, or support and maintenance. The intention is that this material 
inform, rather than determine, the future process that will allocate Office of Science 
resources to work on data management based on evolving needs and opportunities. 
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II-1 Workflow, Data Flow, Data Transformation 
We focus here on four areas of workflow: specification, execution, monitoring, and 
development. 

II-1.1 Workflow Specification 
Workflow management systems help in the construction and automation of scientific 
problem-solving processes that include executable sequences of components and data 
flows. In addition, such systems typically offer the following services: 

 
• Automatic sequencing of component (or “operator”) invocation 
• Component and flow synchronization 
• Direction, control, and fail-over management of data flows between components 

(for example, through “background” data movers) 
• Tracking and reporting mechanisms (process progress, auditability, provenance, 

quality) 

The resulting gains in scientific productivity are comparable with the huge gains 
previously achieved by the introduction of database technologies that made components 
data-independent.  

II-1.1.1 Current Status 
In general, the workflow market can be divided into business-oriented workflow products 
and scientific workflow systems. Business-oriented products such as FileNet, Oracle 
Workflow, and IBM’s MQ Workflow are used mainly for document distribution, 
business processes, and e-commerce. In comparison, scientific workflow systems operate 
on large, complex, and heterogeneous data; can be computationally intensive; and 
produce complex derived data products. Scientific workflow systems often need to 
provide for load balancing, parallelism, and complex data flow patterns between servers 
on distributed networks. To date, very few scientific workflow products have been 
produced, and these are mostly academic and in their experimental stage and not used on 
a large scale. Examples of such systems include Ptolemy/Kepler [Kepler], SCIRun, 
Triana, Taverna, and commercial systems such as Scitegic/Pipeline-Pilot and Inforsense. 

Workflow specifications can be described by using a number of different layers (see 
Figure II-1.1). The layers represent different aspects of the workflow, such as control 
flows, data flows (including I/O), event flows, software components, computational 
elements, and storage components. For example, the control layer allows the workflow to 
describe the sequence of tasks to be performed (expressed as actigrams or datagrams), 
where each task can invoke one or more software components. 

1. Flow layer – This layer describes execution ordering of tasks by using different 
views of sequencing, branching (decision making, parallelism), and feedback 
(loops)—different constructors that permit flow of execution control. Examples of 
constructors are sequence, choice, parallelism, and join-synchronization. Tasks in 
their elementary form are atomic units of work; they may also invoke other 
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applications and/or tools. In compound form, a task can be a subworkflow, that is, 
a module consisting of an ordered execution of a set of tasks.  

2. Application and Software Tools layer – This layer describes the invoked 
applications and software tools used by the workflow tasks. In most cases there is 
a one-to-one correspondence between tasks and invoked applications. Additional 
narrative explanations can also describe the invocation mechanism (i.e., 
CORBA,7 Web services). 

3. I/O System layer– This layer describes the I/O systems that allow efficient 
read and write operations by the applications. Predicted data volumes and their 
characteristics, such as streaming granularity, can also be described on this layer. 

4. Storage and Network Resource layer – This layer provides information about 
physical devices used by the tasks during their executions. The information 
includes performance-related issues such as the required data transfer rates. 
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II-1.1.2 Gaps and Needed Research 

Graphical representations of control and data flow in scientific workflows have 
scalability limitations as the number of components becomes large. A scientific workflow 
language is needed that can describe the following effectively: 

• Inputs and outputs for each components 
• Metadata of the workflow 
• Granularity of tasks, subworkflows 

                                                 
7 Common Object Request Broker Architecture; see the Object Management Group’s website: 
http://www.omg.org/  

 
Figure II-1.1 Anatomy of a scientific workflow-management system 
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• Task invocation – Web services, CORBA, wrappers, callbacks 
• Human tasks: notifications and alerts, steering 
• Data-flow streaming granularity 
• Performance expectations  

An emerging area of study, similar to the extensive work done in software patterns, is 
workflow patterns. This area grew out of the Ph.D. work of Kiepuszewski in 2002. It is 
reminiscent of the EDSS DAG patterns but is more elaborate. Today, it is primarily the 
work of Wil van der Aalst and collaborators [Aalst00], who have expanded concepts in 
graph theory to understanding workflows and workflow languages. The contributors to 
workflow patterns lament that workflow products have been created without much 
thought to their theoretical completeness or formal capacities. The workflow patterns 
group, therefore, seeks to refine the construction of workflow languages into a scientific 
process. The group does not advocate any specific language but is exploring Web Service 
Composition Languages as a subset of workflow languages.  

II-1.2 Workflow Execution in Distributed Systems 
In order to prepare for the future needs, the framework implementation must be scalable 
and be able to send data from thousands of heterogeneous processors to other receivers, 
which can be from one processor to thousands of processors. Otherwise trivial overheads 
can become significant on the scale of thousands of processors. Where the data source is 
not reproducible (e.g., time-dependent astronomical sky surveys) or simply very costly, 
the implementation must be able to accept the full flow of data. Optimizing the load 
balancing of all elements is a particular challenge in a distributed system. 

The handling of security in the workflow management system involves two separate 
issues. First, the workflow management system should provide access controls to the 
scientists and their collaborators that limit access to the scientists’ specific workflow. 
Only the collaboration group should be able to create, modify, and monitor their 
workflow. Second, the workflow will need to hold the credentials of one or more of the 
collaborators to enable the various workflow components to access the necessary 
resources. The workflow management system will need to protect the credentials while 
they are in the custody of the system. 

Data marshaling in particular is something of an orphan: the components themselves 
should not need to know that they might be using data from or sending data to remote 
distributed or parallel components. If they did, there would be an explosion of complexity 
inside the components. Thus, data marshaling must take place in the framework. Existing 
component frameworks such as CCA, however, do not address data marshaling.  

II-1.3 Monitoring of Long-Running Workflows  
The benefits of workflow monitoring are numerous: 

• Predicting the future behavior of a running workflow 
• Enabling flexible decisions and deadline-miss prediction 
• Providing knowledge about the current workflow (state, data, and timing) 
• Supporting active notification about certain conditions 
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• Enabling dynamic workflow optimization 
• Allowing for off-line workflow analysis applicable to local and distributed 

workflows 

II-1.3.1 State of the Art  
Workflows are monitored in both online and offline mode. Online monitoring is 
performed while the process is running and is designed to provide information about the 
current state of local and outsourced workflows (for user, application, and other 
modules). Online monitoring typically generates log files for analysis and offline 
monitoring. Offline monitoring is performed by analysis of the log files and can help in 
workflow optimization and failure detection and recovery. 

II-1.3.2 R&D and/or Deployment Needed 
Complex scientific workflows will often run for long periods and thus will need to be 
able to recover from dynamic changes. The first issue is how to handle well-defined fault 
conditions such as a server that is down or a resource that cannot service the request at 
that moment (e.g., it is out of storage space) when the workflow manager tries use the 
resource. 

The second issue is how to treat failures that render resources (temporarily) inaccessible, 
but not necessarily inoperative. The problem of monitoring resources accessed over wide-
area networks is an example. If the network between the monitoring service of the 
workflow management system and the resource that is acting on behalf of the workflow 
partitions (no communication is possible between the two halves), then the monitoring 
service cannot determine whether the resource is still acting on behalf of the workflow 
manager.  

Users must be able to specify and optimize the policy to be applied in both of these 
situations: to decide whether the workflow should be restarted using different resources 
or to wait for the original resource to become available again or both. 

II-1.4 Adapting Components to the Framework  
We must allow for easy integration of existing data-mining algorithms facilitating feature 
extraction and tracking. These data-mining modules should take advantage of the 
common data model of the framework. In addition, we must allow for the easy 
integration of legacy codes as well as for new high-performance versions of legacy codes 
that ultimately are created. Such integration will require the development of a workflow 
framework with interface standards to enable workflow composition, automation, 
interoperability of workflow components, and extendibility. Integration often involves 
the creation of “adaptors” and “bridges” that allow for interoperation between 
technologies of different provenance. 
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II-1.5 Summary Table 

 

Issues  

Research 
and 

Development 

Hardening 
and 

Packaging 

Deployment 
and 

Maintenance 

 
 
Comments 

Granularity of 
tasks, 
subworkflows 

  

Task invocation  Wrappers for legacy 
codes 

Human tasks: 
notifications, 
alerts, steering 

  

Data-flow 
streaming 
granularity 

 Research needed both 
in the specification 
and in the 
implementation 
phases 

Performance 
expectation 

  

Workflow engine 
for scientific 
applications 

  

Integrated data-
flow management 

  

Failure detection 
and recovery 

 Especially needed for 
distributed and long-
running workflows 

Data-driven flow 
control 

  

Performance-
driven flow 
control 

  

Workflow 
optimization 

  

Run-time resource 
coordination 

  

Workflow 
Security 

  

Data marshaling   

Table II-1.1: Summary of the major issues that require further research and/or deployment efforts in 
the area of scientific workflows. The ellipse marks the current position of the issue relative to pure 
R&D all the way on the left and off-the-shelf deployment all the way on the right. 
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II-2 Metadata, Data Description, and Logical 
Organization 

This section focuses on keeping track of data. High-throughput techniques and 
increasingly complex analysis workflows produce tremendous numbers of raw and 
derived datasets, causing an explosion in the number of datasets that must be managed 
within a single project. Management of data at the community level, and even across 
communities, is also a growing issue. Understanding complex real-world systems can 
require access to information from physics, chemistry, biology, environmental science, 
and more.  

We must enhance our ability to describe data and their relationships with other data—the 
logical organization—and to use that description to discover, interpret, evaluate, and 
transform the data. This additional description is often referred to simply as “metadata,” 
and managing such information is considered “semantic engineering,” or “knowledge 
engineering.”  

Several promising lines of research and development and a number of pilot and project-
level deployment efforts are available to guide the development of robust semantic data 
infrastructure. Conceptual models such as controlled vocabularies, schema, and 
ontologies provide increasing levels of description based on agreements concerning the 
meaning of terms, allowable data hierarchies, and the overall data model, respectively. 
Associated standards ranging from self-describing data formats and schema languages to 
ontology and inference languages allow these concepts to be recorded in human and 
machine-readable forms. Basic tools have also emerged for creating common 
descriptions, capturing metadata for individual datasets, and storing, viewing, querying, 
and making inferences from metadata.  

Nonetheless, significant gaps remain between current capabilities and the semantic 
cyberinfrastructure needed for next-generation scientific data management. Many of the 
gaps relate to the scaling of technologies. Phenomena studied in science span tens of 
orders of magnitude in size and duration. Scientific semantics, the definition of models 
and theories, are extremely precise. Some of the most challenging research projects 
involve semantics from multiple domains as simple as using nanoscale photon detectors 
to image galaxies or as comprehensive as investigating genetic determinants of disease 
and evaluating potential cures. Existing semantic technologies have never been deployed 
into an environment with so many simultaneous challenging requirements. 

For scientific use, the metadata infrastructure will need to be general and extensible 
enough to support arbitrary domain-specific metadata definitions and to support the 
evolution of these definitions over time. The infrastructure must support users across 
domains and virtual organizations in sharing data and metadata across multiple 
ontologies. Given the scale and robustness requirements, the infrastructure must be able 
to support distributed and replicated metadata stores that may be optimized for specific 
purposes, while still supporting federation across heterogeneous stores to enable complex 
data discovery operations, long-term digital preservation, and other global processes.  
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II-2.1 Data Models and Formats 
Data models and formats are defined early in the scientific lifecycle. Models are chosen 
to represent the phenomena under study and facilitate the testing of hypotheses. Formats 
are then chosen based on a combination of factors involving decisions about ease of use, 
efficiency, and compatibility with the existing infrastructure. Descriptions of the formats 
and models, which may be as limited as the use of well-known extensions on file names, 
convey these decisions to colleagues and software through other stages of the lifecycle.  

More formal descriptions reduce the expertise needed to understand data content and 
enable the development of more general software tools and increased automation of data 
flows. Common data formats, such as GIF and JPEG image formats, help encode best 
practices and allow some level of software reuse. Self-describing formats, such as the 
FITS format used by the astronomy community, the netCDF format used by the climate 
community, HDF, and more recently XML, enable richer sharing. For example, by 
defining common vocabulary or schema (e.g., using XML Schema), groups can define 
new common models without requiring new software for reading and writing files. 
Further, by their nature, self-describing formats support data inspection with generic 
tools. For example, using the Chemical Markup Language (CML), researchers can use 
standard tools to display chemical information such as three-dimensional molecular 
structures and can use standard schema validators to verify that a given dataset contains 
required information and is correctly structured. Beyond schema, modeling languages 
and ontologies formally describe relationships among data elements, allowing additional 
automation. For example, ontology languages such as OWL8 can be used to state that two 
units (e.g., “foot” and “meter”) are both units of linear measure, reusing existing, proven 
ontologies in ontology repositories. The statement can then be used to infer an automated 
translation between data using these units given a conversion factor. The use of 
ontologies in science is still in its infancy, but two examples are the Microarray and Gene 
Expression (MAGE) standards in biology.  

All of these technologies are primarily prescriptive: the decision to use them must be 
made before data can be recorded, and data acquisition and analysis tools must be built to 
support them. An alternative approach is to provide a machine-readable description of the 
format or model that can be applied to existing data to allow it to be interpreted in terms 
of common vocabulary, schema, or ontology. Scientific examples include several related 
approaches currently being standardized as the Data Format Description Language 
(DFDL) within the Global Grid, which targets description at the level of schema.  

While a strong base exists in this area, numerous challenges remain for meeting the needs 
of next-generation science. Although various tools exist for defining schema and 
ontologies (e.g., xmlspy,9 Protégé,10 and the Ontolingua11 development tool), they are 

                                                 
8 OWL: http://www.w3.org/TR/owl-features/  
9 Xmlspy: http://www.altova.com/products_ide.html  
10 Protégé: http://protege.stanford.edu/  
11 Ontolingua: http://www.ksl.stanford.edu/software/ontolingua/  
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aimed primarily at knowledge professionals. Easier-to-use tools are needed, for example, 
tools that guide researchers in developing or selecting ontologies and relevant pieces of 
ontologies as part of an overall research protocol development activity. Further, given 
that use of schema and ontologies both formalizes and increases the amount of 
information being recorded, capabilities for automating the capture and validation of 
information become critical. To enable such automation will require that the scientific 
cyberinfrastructure become metadata aware, allowing tools that generate metadata 
(domain software as well as middleware involved in data flow) to communicate it to tools 
that store, manage, and use it. 

Aside from these usability issues, there are also concerns that current tools will not be 
capable of handling formats and models as complex as those used in science, ranging 
from the ability to intelligibly display large models to maintaining performance when 
faced with large models and large data. Evolving formats and models, which is central to 
scientific progress, is also not addressed well in current systems. 

II-2.2 Managing Metadata 
During later stages of the scientific lifecycle, researchers need to recall appropriate 
subsets of their data for analysis and then may need to translate data into new formats and 
models, fuse data from multiple techniques, and publish derived results in other formats. 
As noted throughout this report, challenges arise in automating these steps in an efficient 
and cost-effective manner. Common formats and models and self-described or externally 
described formats are a critical foundation for higher-level query, translation, and 
workflow mechanisms and integrated user environments. All of these techniques, to 
varying degrees, decouple the domain-specific aspects of data (i.e., the meaning of the 
data) from its logical description and organization. Thus, issues related to efficiently 
working with large volumes of data can be tackled across domains and packaged in 
common programming interfaces and protocols.  

Currently, metadata is managed in a variety of ways: filenames and directory hierarchies, 
tagged information within files (e.g., XML, OWL), relational databases, metadata 
catalogs, and triple stores,12 as well as combinations of these. Metadata may be managed 
by multiple systems specialized for specific uses (e.g., replica catalogs, annotation 
servers) or combined in one (e.g., by using the WebDAV13 protocol, which supports 
storage and retrieval of arbitrary metadata). All of these approaches have advantages, and 
future metadata management systems probably will need to span them. Further, future 
metadata services must provide federation across distributed, independently managed 
metadata systems and among heterogeneous metadata ontologies (as well as versions of 
individual schema and ontologies).  

A variety of metadata catalog technologies are available, including the Globus Metadata 
Catalog Service [Singh2003], the Storage Resource Broker’s MCAT metadata catalog 

                                                 
12 See, for example, http://www.w3.org/TR/rdf-concepts/  
13 WebDAV: Web Distributed Authoring and Versioning, http://www.webdav.org/  
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[SRB], UCAR’s Thematic Realtime Environmental Distributed Data Services 
(THREDDS) [Domenico2002], and custom-designed, application-specific catalogs used 
by communities such as the Earth System Grid, the European Data Grid, and the Laser 
Interferometer Gravitational Wave Observatory project. Some, such as the Scientific 
Annotation Middleware14 (SAM), are exploring services for automated metadata 
extraction from files and metadata translation. Standards for interoperable metadata 
services do not exist outside specific areas (e.g., The Distributed Annotation Service, or 
DAS,15 used in biology and the Replica Location Services standardized by the Global 
Grid Forum). 

Richer metadata services must be developed to support a mixture of file-, database-, and 
catalog-based systems. These services will need to provide robust, high-performance 
fault-tolerant capabilities through techniques such as clustering, replication, and 
synchronization. While these features sometimes exist in file and database-level systems, 
most current catalogs are based on a centralized metadata repository for ease of 
maintaining consistency. Also needed are enhanced capabilities for supporting discovery 
and queries spanning schema and ontologies, managing their evolution, and controlling 
access to individual types of metadata.  

II-2.3 Using Data Descriptions and Relationships 
The term metadata includes not just the description of the contents of a dataset but also 
information about the relationships between datasets. Often, the logical organization of 
data—its relationships—is defined in terms of the processes in which these relationships 
are generated or used, for example, workflow/provenance, project/records management, 
annotation, and discovery. 

Scientific workflows consist of experimental data collection, simulation, and/or analysis 
tasks. Provenance information is metadata that describes the logical organization of data 
in terms of its origins, including the original conditions under which an ancestor dataset 
was produced, the sequence of transformations applied to produce the derived data, and 
the people and software involved in performing these transformations. Provenance 
includes description at the level of science (dataset A is the Fourier transform of dataset 
B) and engineering (the transform was done with version 2.3 of software package X on a 
specific compute resource). Provenance metadata, particularly engineering-level 
information, is most easily collected directly from applications and workflow systems 
and can be used to create new, related workflows, for example by using the provenance 
of one analysis pipeline to instantiate a parameterized analysis of additional datasets. 

An example of a workflow management system that captures provenance information is 
the Pegasus16 system for planning and execution in Grids, which was developed as part of 

                                                 
14 Scientific Annotation Middleware: http://collaboratory.emsl.pnl.gov/docs/collab/sam/  
15 Distributed Annotation Service: http://biodas.org/   
16 Pegasus: http://pegasus.isi.edu/  
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the GriPhyN17 (Grid Physics Network) project. The Pegasus system takes a high-level 
definition of a desired workflow and schedules the tasks in the workflow on available 
resources, based on the requirements of the tasks and the availability of resources in the 
Grid. Pegasus tracks the original abstract workflow, the input files, and the output files 
that are generated as products of the workflow execution. Pegasus highlights the fact that 
datasets are not the only entities that will require metadata descriptions; it will be 
necessary to describe hardware and software tools with information about their 
provenance and the data they are capable of processing. Another example is the MyGrid18 
system, which enables a biologist to dynamically compose workflows and discover 
quickly sequences of interest among the thousands returned by curated databases for an 
investigation.  

Tools such as problem solving environments, portals, and electronic notebooks can also 
document aspects of workflow, but they are more directly involved in the logical 
organization of data into project and experiment hierarchies. These tools can also be used 
to support a wide range of structured and unstructured annotations, such as a similarity 
between a gene in one organism and one in another, information about a detected feature, 
reviews of data and assertions about data quality, or simply some text about an idea for a 
new experiment triggered by current work. For example, the SAM-based Electronic 
Laboratory Notebook allows text, drawings, images, equations, and arbitrary files to be 
associated with data and organized into electronic chapters and pages. 

As with workflow, these other kinds of metadata can be used within corresponding 
processes, for example, reporting project progress, assembling legally defensible records 
of work, and aiding in data discovery. One also can combine types of metadata to support 
advanced queries. For example, scientists might search for potentially misidentified 
features derived from data from a specific instrument during a time period when, as is 
later discovered in an instrument log, it may have been miscalibrated.  

Despite successes in specific communities, use of metadata to support scientific processes 
is far from ubiquitous. As noted in previous subsections, numerous issues related to the 
capture and management of metadata need to be addressed to enable automation and 
integration of the types of functionality described here. In addition, more work will be 
needed to define the types and granularity of metadata, such as provenance, that should 
be captured, that is, that will provide sufficient value to justify the cost of their capture 
and management. Given that the analysis of cost/benefit ratios may show domain-specific 
results, ontology research will also be required to provide the correct level of detail for 
the desired capabilities and to categorize these capabilities into a set of general metadata 
services maintained as cyberinfrastructure.  

                                                 
17 GriPhyN: http://www.griphyn.org/  
18 MyGrid: http://www.mygrid.org.uk/  
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II-2.4 Summary Table 

 
 
Issues  

 
Research and 
Development 

Hardening 
and 

Packaging 

Deployment 
and 

Maintenance 

 
 

Comments 
Automated capture 
and validation of 
metadata 

 Addresses metadata for 
legacy and future data.  

Self-describing 
data formats and 
models 

 Supports the 
development of 
standardized data 
models in each domain 

Data description 
development 
tools/services 

 Addresses ease of use, 
graphical 
representations, 
granularity and 
scalability of schemas, 
data models and 
ontologies 

Inference engines, 
and metadata 
translation 
tools/services 

 Includes mappings, 
schema translations, 
and schema evolution. 

Languages for 
schemas, data 
models, and 
ontologies 

 Standards developed by 
the W3C and GGF 
must be adapted for 
scientific community 

Semantic models 
for workflows and 
integrated 
environments 

 Standardization of 
provenance, analysis 
and visual integration 
models (see Sections 
II-1 and II-2 in 
particular)  

Provenance-
tracking 
tools/services 

 Reusable tools across 
applications 

Scalable, 
distributed 
repositories for 
data models and 
associated 
tools/services 

  

Table II-2.1 Summary of the major issues that require further research and/or deployment efforts in 
the area of metadata, data description, and logical organization. The ellipse marks the current 
position of the issue relative to pure R&D all the way on the left and off-the-shelf deployment all the 
way on the right. 
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II-3 Efficient Access and Queries, Data Integration 
Most of the world turns first to commercial database management systems whenever 
there is a need to access or query nontrivial amounts of information. Scientists are quite 
happy to use database technology to handle simple tables and other database applications. 
Rarely, however, do they devote much effort to addressing their challenging data-
management needs with database technology alone.  

Why is this so? First, the database industry has often turned its back on scientific 
problems at a scale of 10 to 1,000 times those encountered by leading commercial 
customers. Second, database management systems normally provide features such as 
transactions and highly granular locking that are largely unnecessary for read-dominated 
scientific applications. 

One example of simultaneous success and failure is the use of Objectivity DB to store 
and access almost a petabyte of data from the BaBar high-energy physics experiment at 
SLAC. This deployment, particularly the five-year joint SLAC-Objectivity Inc. work on 
scaling issues, was a major technical success. Indeed, Objectivity Inc. attribute much of 
their current business to the capabilities developed and hardened during the work with 
SLAC. Nevertheless, BaBar has now largely abandoned Objectivity DB in favor of the 
high-energy-physics community code ROOT, which embodies a minimalist set of object 
persistency and access mechanisms and is perceived by scientists as much simpler. 

If, in addition to advancing database technology for commerce and national security, the 
BaBar-Objectivity experience had also been perceived as bringing even a small net 
benefit to individual scientists, the experience would have strongly supported a major 
thrust focused on the use of database management systems at the leading edge of 
scientific data management.  Even with the experience of partial failure, there is a strong 
case for promoting contact among data-intensive science, computer scientists focusing on 
database issues, and the commercial database industry.  This contact should extend to 
trial deployments, in judiciously chosen areas of data-intensive science and database 
technology.  

The next two subsections address two of the key technologies needed for scientific data 
access and querying. The third subsection then describes issues of data integration.  

II-3.1 Large-Scale Feature-Based Indexing 
An effective indexing scheme can speed many data analysis tasks. To illustrate the 
challenges, current approaches, and potential solutions, we give two examples: searching 
large high-dimensional datasets and identifying regions of interest. 

Many large datasets contain a large number of attributes. For example, a typical high-
energy physics experiment produces a summary dataset with 500 searchable attributes for 
billions of collision events. To find interesting events, physicists may apply range 
conditions on a handful of attributes, such as “numberOfTracks > 1000 and 
numberOfAntiParticles > 3.” Efficiently answering these partial-range queries is a serious 
challenge. The traditional indexing techniques, such as B-trees and hashing, are 
inefficient for datasets with a large number of searchable attributes. Even 
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multidimensional indexing techniques, such as R-trees, are efficient only for datasets 
with no more than 10 or 15 attributes. If there are more attributes or if the user query 
involves only a small number of the indexed attributes, a brute-force scan is more 
efficient than these indexing schemes. 

A typical scientific computation, such as computing the heat generated from an ignition 
kernel, requires the identification of features known as “regions of interest.” Usually a 
region of interest is identified in two steps: a searching step to find all the objects 
satisfying some user-defined conditions and a region-growing step to group the objects 
into connected regions. Most approaches partition data according to spatial attributes. 
Since the conditions usually also involve other attributes, these approaches are essentially 
performing a brute-force scan in the searching step. A number of researchers have 
proposed using database indexes to speed the searching step; however, such schemes 
slow the region-growing step because they break apart neighbors on the underlying mesh. 

Another possible technology is the bitmap index, which is effective for scientific datasets 
that typically are read-only or read-mostly. Bitmap indexing has been shown to 
significantly outperform all other indexing techniques for partial-range queries. In 
particular, bitmap indexes are efficient in identifying features on regular meshes. Since 
the bitmap index does not reorder the data, it can speed the searching step without 
slowing the region-growing step. One high-energy physics experiment is working on its 
own version of bitmap indexes, and another one is planning to do so. 

Effectively searching over billions of small objects is a problem facing many scientific 
applications.. To be more useful, however, the bitmap index approach needs to be 
extended to work with more complex meshes, such as those from adaptive mesh 
refinement. Since both searching and feature identification are typically performed as 
parts of a larger analysis process, an important research and development issue is to 
seamlessly integrate the bitmap indexing software with other analysis and visualization 
tools.  

II-3.2 Query Processing over Files 
Traditional databases (e.g., those based on relational or object models) provide 
capabilities such as the ACID19 properties, which make them attractive for transactional 
or ad hoc analysis queries. Such database systems hide from the user the details of most 
underlying operations, including I/O, storage, access strategies, indexing, and data 
movement. These databases tend to be “heavyweight,” and their designs are generally 
optimized for workloads quite different from those found in scientific applications.  

In scientific data-management systems, many applications require capabilities to perform 
queries and analysis over a very large number of (large) files. The structure and content 
of these files depend on the application domains they come from. For example, files 

                                                 
19 ACID: Atomicity of transactions, Consistency of the database after every transaction, Isolation between 
simultaneously requested transactions, Durability of information committed to the database by successful 
transactions. 
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containing climate modeling data may be in NetCDF format, whereas data from a high-
energy-physics application may be in a specialized format called ROOT. Thus, the 
functions and programs to perform analysis and queries are written by using the 
interfaces available with those formats. Furthermore, parallelization and scalability for 
these functions, including I/O operations, are critical for obtaining good performance. 

Figure II-3.1 illustrates the functionality envisioned by a scientific database system. The 
system must have capabilities for managing metadata generated and derived from 
scientific data, a query and analysis capability on these metadata, and the ability to 
manage a large number of files with associated query functions. 
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The metadata management component entails use of a “lightweight” database system 
(e.g., MDMS [Chou00, No03]). Such a system is responsible for storing and managing 
metadata and the results of queries. The runtime systems component refers to libraries for 
data access and manipulation supporting high-performance I/O as well as various 
interfaces related to the particular application domain. Thus, users can continue to use 
access functions from their application domain without being constrained by the database 
system. Queries and analysis functions, part of the third component, permit users to 
develop applications by using standard interfaces and libraries. 

Scientists need a unified query interface that will support queries over data and metadata 
in different formats, with implementations that are reusable in many contexts. In addition, 
these tools can also benefit from the provision of reusable facilities for buffering, 
caching, and indexing scientific information. Together, these facilities will move us 
closer to filling the following large gaps between the current available scientific data 
query facilities and the growing user requirements: 

• Dealing with heterogeneity and legacy data. Advanced data integration 
techniques are required to successfully use the increasingly rich collection of 
shared scientific data.  

Figure II-3.1 Illustration of functionality required for query processing over files 
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• Interdisciplinary data sharing. The same datasets may be used very differently by 
different user groups. For example, the neutron scattering data produced by SNS 
will be postprocessed in diverse manners by scientists from the fields of material 
science, physics, chemistry, and biology.  

• Integrated data query and storage services. In a transparent, query-enabled 
distributed data environment, storage and data access services should be 
integrated with data query facilities, in order to efficiently replicate and retrieve 
interesting data for users.  

Some tools do exist for interactively browsing datasets. For example, the Scientific Data 
Browser developed at NCSA [SDB] enables users to use a Web interface for browsing 
through annotated scientific datasets written in popular formats such as HDF and 
NetCDF. Another example is the GODIVA framework developed at UIUC [Ma04], 
which provides lightweight database support to help visualization tool developers 
organize and search for in-memory datasets. 

How to provide data-format-independent, application-tailorable facilities for buffering, 
caching, indexing, and querying information is an open research problem in the database 
research community. The first step in answering this question is to investigate what the 
interface (API) should be for access to these facilities. The second step is to federate and 
integrate such facilities across multiple data and metadata sources. The third step is to 
integrate the new data query facilities with large-scale data storage services, in order to 
provide seamless location of interesting data. 

II-3.3 Data Integration  
In answering fundamental questions about natural phenomena, application scientists 
routinely deal with multiple data and information sources. For example, to identify and 
characterize regions of functional interest in genomic sequence requires full, flexible 
query access to an integrated, up-to-date view of all related information. However, the 
dramatic growth of scientific data sources has made the task of finding, extracting, and 
aggregating relevant information extremely difficult because of a number of factors. 
First, the data sources are physically distributed and heterogeneous in how information is 
stored, organized and managed. Second, they reside on heterogeneous hardware 
platforms with diverse software interfaces. Third, the data is of different types (e.g., text, 
video, images, audio) and formats (e.g., netCDF, HDF, SILO) as well as dynamically 
changing in both content and form. 

Data integration aims to provide users with a uniform interface to access, relate, and 
combine data stored in multiple, geographically distributed, and possibly heterogeneous 
information sources. It enables users to focus on specifying what they want, rather than 
thinking about how to obtain the answers. Consequently, users are freed from the tedious 
tasks of finding the relevant information sources, interacting with each source in 
isolation, using a particular interface, and combining data from multiple sources. 

II-3.3.1 State of the Art 
Data integration requires resolving the differences and inconsistencies in the data 
management systems (e.g., different vendors), in the data models (e.g., relational, 
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network, ER, object-oriented), in the query and data manipulation languages, in the data 
types (e.g., text, graphics, multimedia, hypermedia), in the format (e.g., structured, semi-
structured, specialized formats), and in the semantics. The ability to manipulate data 
requires both a characterization of the internal structural and semantic properties and a 
characterization of the relationship of the dataset to the associated material. Moreover, to 
achieve the vision of data integration, one must have the technology to describe the data 
models, data structure, data format, and data semantics.  

Given that the support for such metadata descriptions exists, we can take two general 
approaches to providing data integration: data warehousing and federated databases.  

In data warehousing, information from each source from the domains of interest to 
specific users is extracted in advance, translated and filtered as appropriate, merged with 
relevant information from other sources, and stored in a (logically) centralized repository. 
When a user poses a query, the query is evaluated directly at the repository without 
accessing the original information sources. Data warehousing has been extensively 
researched in the context of analytical processing for decision support in the business 
domain, and the technique has, in general, been successful for domains where the system 
is specialized to the application. There remains, however, a need for general-purpose 
scientific data warehousing tools that can support structured data as well as files in a 
uniform way based on the metadata descriptions. 

In the federated databases approach, the user query is decomposed and sent by the data 
integration system to appropriate information sources that can answer the query. Once the 
partial results are obtained, the system performs the appropriate translation, filters and 
merges the information, and returns the final answer to the user. Federated databases 
have had some success, especially when the systems being federated are similar and 
support the same data model (such as federating relational database systems). However, 
their use with heterogeneous data systems, data models, and data formats that exist in 
scientific domains is still an open research area.  

II-3.3.2 Gaps and Research Needed  
In order to advance science, infrastructures are needed that enable not only using but also 
fusing information from multiple scientific data sources from multiple digital archives. 
The integration should be built both within and across boundaries of established 
disciplines. Such integrated infrastructures should embrace existing but complementary 
data organization mechanisms supported by digital libraries, data Grids, and persistent 
archives. They should be scalable in terms of the size and number of databases and 
should be supported by efficient underlying storage and file systems. They should be 
based on standards, to the extent possible, and should be driven by domain-specific 
ontologies. Data integration technology should be readily used by workflow systems. The 
combined system should support data ingestion from remote sensors and experimental 
devices, publication into collections, analysis on compute platforms (possibly 
specialized), comparison with simulations, and archiving for long-term preservation. 
Hence, the data integration must become an integral part of workflow processing 
environment. 
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II-3.4 Summary Table 

 
 
Issues 

Research 
and 

Development 

Hardening 
and 

Packaging 

Deployment 
and 

Maintenance

 
 

Comments 
Large-scale feature-
based indexing 
 

 Feature-based refers to 
indexes for searching 
over multiple features 
concurrently 

Integration of 
indexing technology 
with analysis and vis 

  

Lightweight data 
querying from large 
datasets  

 Lightweight refers to 
partial data 
management 
capabilities, such as 
excluding locking and 
recovery 

Querying files in 
multiple data 
formats 

  

Integrated data 
query storage 
services 
 

  

Integrated metadata 
management and file 
management 

         Metadata refers to 
information about the 
content in files 

Specialized 
scientific 
warehousing 

  

General-purpose 
scientific data 
federation 

  

Data integration in 
workflow systems 

           

 

Table II-3.1: Summary of the major issues that require further research and/or deployment efforts in 
the area of efficient access and queries, data integration. The ellipse marks the current position of the 
issue relative to pure R&D all the way on the left and off-the-shelf deployment all the way on the 
right. 
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II-4 Distributed Data Management, Data Movement, 
Networks 

The management of distributed data raises numerous challenges. The transfer of such 
data requires attention to data placement and replication, data flow, and multiresolution 
data movement. Effective management of distributed data also places demands on the 
network infrastructure. Moreover, the issue of security becomes paramount whenever 
large amounts of data must be transferred. In this section we address each of these 
concerns. 

II-4.1 Data Placement 
In the same way that the load register instruction is the most basic operation provided by 
a CPU, so is the placement of data on a storage device the foundation on which any data 
management system resides. Data placement consists of two elements: selection of an 
available storage location capable of holding the data (we refer to such a location as a 
“lot” [Bent2002]) and the actual transfer of the data into this location. Data placement is 
thus a two-step operation. First, an appropriate lot has to be secured; only then can the 
data be copied from its current location to the allocated space. Since both steps require 
the allocation of resources, they must be treated as individual tasks each of which may 
experience arbitrary delays in execution. Moreover, they can also fail or be denied 
execution altogether. It is therefore essential that at all levels data placement tasks be 
treated in the same way computing tasks are treated [Kosar2004].  

Regardless of whether it is an end user, an application, a middleware component, or a 
low-level system function, the entity that triggers a data placement request must be able 
to influence when, where, and for how long the data should be stored. The decision can 
be based either on the properties of the target storage unit (e.g., proximity to the current 
data location, reliability, throughput) or on a set of goals or intentions (e.g., keeping the 
checkpoint data until the end of the simulation run). Providing data placement services 
requires an appropriately layered design. 

Currently, a plethora of mechanisms exist for moving data from one storage device to 
another. Only few systems provide mechanisms for data placement, however. File 
systems treat data placement as a side effect of creating a file or writing to a file. In fact, 
some file systems support a user-based quota mechanism that prevents a user from 
storing more than a predefined amount of data. Within a single system, file systems are 
the default provider of data placement mechanisms and generally offer no user control of 
placement. Within an organization, mechanisms vary widely from network file systems 
(e.g., NFS and AFS) to hierarchical media (i.e., disk and tape) file systems (e.g., HPSS). 
In wide area networks, data transfer mechanisms include file transfer tools (e.g., 
GridFTP) and data block servers (e.g., IBP or iSCSI). The different mechanisms provide 
a spectrum of utilities capable of controlling properties like access times, throughput, 
reliability, and scalability. These mechanisms should be available to scientists when they 
need fine-grained control, albeit with a tradeoff in complexity of use. 
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On the other hand, scientists who does not need such fine-grained control should be able 
to invoke a policy layer that will implement their intentions. For example, within a single 
simulation run, a scientist may wish to store checkpoints within the supercomputer for the 
duration of the next time-step, save all the output of every time-step, and select regions of 
data in a remote storage system. The need for checkpoints requires storage that has low 
latency, high-throughput, and short duration. The need for the entire output data requires 
storage with high reliability for long duration (in this case, latency and throughout are 
secondary). The need for select regions of data stored remotely requires low latency and 
high throughput to the remote user (who may be the same application scientist). Although 
many mechanisms exist for data transfer, research and development is still required to 
create schedulers and planners for storage space allocation and the transfer of data. 

II-4.2 Replica Management and Movement 
Replica management and cache management are closely related, but replica management 
focuses on the particular issues that arise in the management of geographically distributed 
copies of datasets. In geographically distributed computing environments, computational 
tasks may be performed at locations that are far away from necessary datasets [CDF+02, 
KLSS03, Atkinson2003, Chervenak2004]. In such cases, remote data access can be 
orders of magnitude slower than access to a local file. Replication involves creating 
multiple copies of identical files or portions of files in order to increase data locality and 
fault tolerance and to reduce the latency of data access in a wide-area, distributed 
computing environment. Traditional replica management for transactional database 
management systems keeps track of table updates and synchronizes the changes among 
the database replicas. In scientific applications, most datasets are read-only after they are 
published, and data access is predominantly file-based; these characteristics simplify 
replica management because update synchronization is not needed. 

Conceptually, replica management for read-only data is quite straightforward. It involves 
copying one or more files and registering them in a replica-tracking catalog or using a file 
representation that supports internal replication [SSS04]. In practice, however, specifying 
the precise replication actions needed to enhance performance in a given situation 
requires careful analysis because these actions depend on factors such as the overall 
schedule and priorities of outstanding requests, security and resource access policies, and 
the current state of distributed system resources. Specifically, the following issues need to 
be addressed: (1) specifying the source files to be copied and registered; (2) specifying 
the target directory or locations for the data; (3) specifying the catalogs in which new 
replicas should be registered; (4) coordinating copy and registration operations; (5) 
identifying and recovering from failures; (6) considering the state of resources, including 
network performance, existing replica locations, and the availability and performance of 
storage systems and computational resources; and (7) considering policy issues, including 
security and resource management policies that define which groups and applications 
have permission to access particular datasets, storage systems, and computational 
resources and what priorities are assigned to different requests.  

An important task of a replica management system is replica selection: choosing among 
available replicas the one that will provide the best performance. In a distributed 
environment, replicas often reside on storage devices with access latencies ranging from 
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minutes up to several hours. For instance, some replicas might be stored on a disk cache, 
while others are stored on tape drives. In addition, the network connections between the 
storage systems and computational nodes can vary significantly depending on the 
theoretical throughput of the network and the current network load. A replica manager 
should select the best replica with respect to specified criteria, such as minimizing access 
latency or maximizing overall distributed system throughput. This selection requires 
monitoring tools that track the network throughput and latency, storage system 
availability and performance, and the current load of CPU resources.  

File replication arises in various scientific use cases. Typically, scientific datasets are 
stored in files and organized in a directory structure. In the most common use case, a 
scientist specifies a source physical directory and requests that the entire directory be 
copied to a target physical directory [SSS04]. A variation of this use case is to select and 
replicate files from the source directory according to some pattern, such as pattern 
matching on file names. In another variation, the scientist specifies explicitly one or more 
files or portions of files to be replicated. 

Each use case raises requirements for significant research, both in the theoretical 
computer science of queuing and scheduling and at the systems and application 
integration level.  

At the basic systems level, replica management services need to use the best available 
techniques for robust, high-performance data transfer: in particular, parallel streaming 
protocols with efficient and automatic recovery and restart of failed transfers. These 
systems must handle collections of files as a single request, and they need to operate in a 
manner that supports the security model of the wide area environment. Technologies such 
as the GridFTP protocol [GridFTP2004], the Reliable File Transfer Service [RFT2004], 
and Logistical Networking [PADB03] have made significant inroads in this area, but 
further work remains to make these tools faster, more powerful, and automatic.  

Replica catalog mechanisms such as the Replica Location Service [CDF+02, 
Chervenak2004] have applied innovative techniques in cataloging structures that enhance 
speed and overall system reliability when tradeoffs can be made in probabilistic rather 
than transactional integrity of returned results. Such approaches have proven well suited 
to wide-area computing environments. The next steps of research in cataloging require 
improvements in the robustness, scalability, and self-organization of distributed replica 
catalogs [Cai2004]; management of flexible, distributed name spaces as a higher layer 
above the raw catalog mapping service; and integration of virtual-organization and 
group-cognizant authentication and authorization models into replica catalogs. 

At the next level up, replication management needs to be integrated into a wide-area 
distributed workflow management system such as those being developed in Grid projects 
(e.g., PPDG, GriPhyN [Deelman2002, RF02], iVDGL, EEGE, and LCG). At this level, 
the work of replication needs to be both preplanned and request-triggered. The state of 
replication within a wide-area computing environment is a significant factor in the 
performance of a given workflow. Great opportunities for speedup exist by prestaging 
replicas to places where they will be most likely to offer workflow planners 
[Deelman2002] the opportunity to collocate computations with the datasets they require. 
Research on such wide-area prestaging, called “data placement scheduling” [RF03, 
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RF03b, CCM+04], has shown fruitful results, but further investigation is needed to 
optimize the algorithms and to turn them into production-ready components. Significant 
research is also needed to develop policy-driven workflow planners and schedulers that 
consider space availability in a policy-cognizant manner, allocating space in a manner 
consistent with the priority of various workloads in a distributed, multi-virtual-
organization environment. 

On a more general level, a concern of replica management systems is preventing the 
misuse of datasets or resources, either by deliberate security violations or by inadvertent 
incorrect system usage. For example, the replica management system may refuse to 
execute a user request that would retrieve petabytes of data and monopolize distributed 
system resources, thereby starving other requests, or a request that would perform 
unauthorized or inadvertent destruction of data.  

II-4.3 Data Flow between Components  
Data flow between components typically is characterized by a source and destination 
“component” and flow(s) between the components that can be described by a transfer 
function. Such a function is multidimensional and, in a general sense, provides all 
information about how the data may be affected by the interconnecting link. Explicit data 
flow transfer function, quality of service profile, and other properties are a necessary part 
of a data-flow specification. 

II-4.3.1 State of the Art 
Different characteristics of data flows are more important to some classes of applications 
than to others. Fusion scientists need moderate transfer rates, but they need guarantees of 
maximum transfer time to ensure they can make appropriate adjustments to the next 
experiment. Remote control of instrumentation requires very low bandwidth, and 
scientists can work around high latency, but the latency must be constant (low jitter) or 
they risk damage to expensive equipment. Genomics data analyses and high-energy 
physics event analyses have very large aggregate bandwidths, but these flows can be 
distributed and are largely independent of each other. Leading-edge simulation analyses 
are resource intensive; and prudent computational planning, steering, and validation of 
the workflows (whether manual or automated) are necessary. At the beginning, flows 
tend to be tightly coupled and synchronous. As the scenario progresses, however, they 
may well be both asynchronous and more loosely coupled. Data streaming from an 
instrument may be irreplaceable and therefore reliability is of utmost important. 
Streaming video is time sequential, so retransmission is not an option; some loss of data, 
is allowed, but such video is also jitter sensitive. 

As a rule, a scientist  should not have to care how the flow occurs, so long as the 
performance satisfies the requirements and the flow occurs between “components” 
specified at an appropriate level of abstraction,. For example, the scientist should be able 
to state, “These data need to be at Caltech by 6AM tomorrow.”  
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II-4.3.2 Gap Analysis and Research Needs 
Although various applications each have a different set of requirements for data transport, 
we can distinguish broad areas where research and development is needed.  

We stated that application scientists would prefer to specify data-movement constraints in 
a “normal” language.” To achieve this goal, we need a framework that allows for 
specification of such parameters, with automated negotiation. Initially, we will likely 
need to specify data-movement-specific parameters, but in the longer term, we need 
schedulers and brokers that take high-level requirements and appropriately configure the 
data-movement services. Probably, we can build on work such as service level 
agreements and the WS-Agreement20 standardization effort. 

To fulfill a service level agreement for data movement requires resource management for 
data-movement services. Preventing unauthorized use of a data-movement system is 
easy, but ensuring that authorized users do not overload some part of the system is not. 
Resource management for data movement presents much greater challenges than does 
resource management of compute jobs. The vast majority of data movement uses a shared 
network infrastructure, making it extremely difficult to predict how long a data transfer 
will take. Moreover, data movement requires the coscheduling of resources at both ends 
of the transfer. 

No single data-movement mechanism is appropriate for all data-movement tasks. A 
mechanism that is very efficient at moving bulk data over the wide area will likely 
perform poorly in an application where latency is critical. Multiresolution data flows and 
dynamic service coupling give rise to an even broader range of movement requirements. 
Transparency of service location is generally considered desirable. However, if it turns 
out that the source and destination are in the same process space, different mechanisms 
may be selected. A way of determining “locale” of source and destination, development 
of data-movement mechanisms for different locale cases, and transparent negotiation of 
these mechanisms is critical for achieving maximum performance. 

Despite the exponential growth in network and hardware speeds, data-movement 
requirements will continue to exceed the capability of a single host. Current multistream 
data transfer utilities are capable of managing multiple TCP streams only between a 
single pair of hosts. Work is required to develop algorithms and the appropriate 
techniques for using multiple machines during a transfer. By design, such approaches will 
support activities that are resource hogs, so integration with the resource management 
system described above will be a requirement. 

To date, the majority of data-movement work has been directed at TCP-based, packet-
switched networks—the vast majority of the currently available resources. However, 
optical networking allows the allocation of dedicated end-to-end optical links in a rapid, 
automated manner. Future data-movement systems will need to take advantage of this. 

                                                 
20 Web Services Agreement draft, http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-
agreement.pdf  
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The data-movement service must be able to decide when such a circuit is appropriate, and 
then set up such a circuit, ideally through standard, high-level interfaces. 

Dedicated circuits in turn change the rules and environment. Fairness is no longer an 
issue; therefore, TCP no longer must be used, and more aggressive protocols have no 
down side. Future data-movement systems should be engineered to be as transport-
protocol-agnostic as possible, able to take maximum advantage of the environment, while 
still being a good network citizen. 

The data-movement systems of the future will be complex and dynamic. For example, a 
simple service level agreement requiring data movement to be complete within 12 hours 
may invoke other services, allocate optical circuits, dynamically change transport 
protocols, and dynamically change the set of resources on which it operates during a 
transfer. Such systems will be “autonomic,” or “self-healing,” to some extent, but they 
will eventually still fail. Determining the source of the failure will be possible only if 
detailed state is exposed at every step and if appropriate troubleshooting services are 
available to gather this state—which out of necessity will be widely distributed—and 
present it in a coherent manner. 

II-4.4 Multiresolution Data Movement 
Multiresolution data models are those in which portions of the problem domain are 
represented at low resolution, while others are represented at a higher resolution. 
Adaptive mesh refinement (AMR) methods (see [BerkeleyAMR], [Norman1999], 
[Bryan2000]), allow high-resolution grids to be placed and sized precisely where needed 
to adequately capture physical or other detail at prescribed error tolerances. By applying 
refinement technique recursively, AMR supports local mesh refinement relative to the 
global coarse grid at scales ranging from two to six orders of magnitude, depending on 
the application. AMR and similar multiresolution technologies are capable of achieving 
resolutions levels previously impossible with a global uniform fine grid.  

Multiresolution processing plays an important role in remote and distributed visualization 
applications, and considerable research has been done in the area of multresolution data 
representation and transmission. The best-known examples focus on progressive 
transmission of terrain-style meshes, although more recent work addresses simplification 
of point-sampled surfaces, edge-collapse strategies, vertex clustering, and wavelets. 
Reformatting datasets as multiresolution hierarchies allows a low-resolution subset of 
data to be sent for initial inspection, followed by progressive transmission of increasing 
resolution on a best-effort basis. A recent example implementation is LLNL’s Terascale 
Browser (see [VIEWS]). The Terascale Browser uses a multiresolution data model based 
on a space-filling-curve storage and retrieval strategy that supports efficient access to 
multiple resolutions of a structured, 3-D volume. In each case, a single-resolution dataset 
is reorganized into a multiresolution hierarchy of components so that it can be transported 
and reconstructed progressively.  

Unfortunately, all these techniques require significant reorganization of data in order to 
enable more responsive multiresolution remote visualization and data transport 
mechanisms. The data reorganization is expensive, but it is mandatory in order to support 
effective data analysis methods and interactive visual exploration. In general, it is not 
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practical for sensors or simulation codes to output data in a multiresolution data layout 
suitable for analysis, visualization, and transport because these data reorganizations are 
extremely I/O intensive and can greatly impact the efficiency of systems designed 
primarily for compute-intensive workloads. Many multiresolution indexing schemes 
expand the data to many times the size of the original dataset. The intense I/O 
requirements call for criteria for system balance different from those used for running the 
simulation codes that produce the data. Furthermore, for practical reasons, the compute 
resources required to perform these data reorganizations must be placed as close as 
possible to the source of the data. Doing so requires significant advances in security and 
authorization technology in order to push data-intensive computing tasks out to the data 
sources.  

A general-purpose infrastructure of services and reusable components that support 
progressive-resolution data transport requires a common data model that can fully 
express these hierarchical multiresolution representations. Unfortunately, no general-
purpose multiresolution data model exists that can be used to build families of data 
analysis tools. Because “one size doesn’t fit all,” there will likely never be such a model. 
Efforts that assumed a top-down approach to developing common data models have 
repeatedly proven unworkable. It is essential that advanced data modeling efforts initiated 
by scientific data-management experts begin with a community-focused approach that 
provides data representations, data models, and components that can be reused within a 
well-defined domain. In the longer term, community-driven models should eventually be 
able to share features and components and possibly merge capabilities. Such efforts 
require close coordination between the scientific community and data-modeling 
architects using a SciDAC-like model for interdisciplinary cooperation.  

II-4.5 Networking with Embedded Storage and Computation 
Most approaches to managing the high volumes of data involved in data-intensive science 
assume the absence of any infrastructure to work with transient data. In this context, data 
is said to be “transient” between the time it is generated at a source (e.g., a supercomputer 
simulation, an instrument or detector, an aggregated set of repositories) and the time it is 
archived or discarded. During this time it needs to be easily available to a (potentially 
large and distributed) research group for analysis, visualization, or some other form of 
processing. These elements of the research workflow environment—the data generators, 
the required processing resources, and the team of people who must coordinate in the 
effort—are often widely spread, both geographically and administratively, across a 
variety of network locations. As the quantity of data involved continues to escalate, the 
struggle to manage transient data around this collaborative work space becomes 
increasingly burdensome and difficult. 

At the root of the difficulty is the fact that the current Grid fabric—the combination of 
research networks and significant storage and computational resources attached to 
them—is not well adapted to the exigencies of transient management. The problems 
associated with buffering huge flows of data provide a prime illustration of this fact. Data 
inevitably needs to be buffered, for periods ranging from seconds to weeks, in order to be 
controlled as it moves through the distributed and collaborative research process. In order 
to meet the diverse and changing set of application needs of different research 
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communities, large amounts of nonarchival storage are required for transient buffering 
and must be widely dispersed, easily available, and configured to maximize flexibility of 
use. In today’s Grids, however, massive storage is concentrated mostly in data centers, 
available only to those with user accounts and membership in the appropriate virtual 
organizations, allocated as if its usage were nontransient, and encapsulated behind legacy 
interfaces that inhibit the flexibility of use and scheduling. This situation severely 
restricts the ability of some application communities to access and schedule usable 
storage on demand in order to make their workflow more productive. 

For managing data in transit, processing resources in the current Grid are similarly 
constrained. The research workflow could often be made much more efficient if the data, 
while it is being buffered in transit, could easily be searched, reduced, reformatted, error 
encoded, encrypted, compressed, and so on. Even if, contrary to the current situation, 
significant storage resources for workflow buffering were ubiquitously deployed, having 
to move all the data to the edge of the network in order to perform any of these 
processing operations would drastically limit the efficiencies that would otherwise be 
gained. Consequently, effective management of transient data requires that some form of 
processing power, capable of being shared and scalably deployed the way network 
bandwidth is, be added to buffer resources as part of the common Grid fabric. 

II-4.6 Security, Authorization, and Integrity 
A serious problem in data management is defining and implementing security that 
appropriately controls access to data and data storage resources while ensuring data 
integrity and availability. All scientists need to be sure that their data will not be 
corrupted or lost, and most require security and privacy for at least some of their data. 
Data may be stored in a system local to the scientist, but it is more likely on a shared 
storage system accessible over the Internet. Access protection for data and usage controls 
of data resources require that storage management interoperate with an authentication 
system provided by the infrastructure, as well as implementing or interoperating with 
policy mechanisms verifying and enforcing authorization rights to access data and 
storage resources. 

Various methods exist for authorizing a person to access a system. All methods typically 
require some version of a site-specific identity (such as the person’s userid) is stored on 
the storage system. This approach does not scale easily, however, to even tens of sites 
and thousands of users because this information gets out of date, and it is hard to 
maintain and verify continuously. For this reason, the concept of a “virtual organization” 
(VO) is emerging to allow members access to data and storage resources based on their 
authenticated identity within the VO. The advantage of this approach is that only 
authorizations for the VO-managed identity need to be updated rather than separate 
authorizations for every possible site/userid that members of the VO are permitted to 
access. Depending on the level of access requested and the sensitivity of the data, the 
authorization might be performed in advance and presented offline in the form of a pass 
(e.g., read access for files of experiment A, ability to allocate up to 2 GB of space at a 
single site) while other actions might require online authorization (e.g., delete a directory 
of files belonging to someone else). Developing well-functioning robust VO 
authorization systems is still a research issue. 
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The VO approach helps solve the data access authorization problem for the 
owner/creator, but, in general, authorization is still a difficult, open problem. Consider a 
scientist who wishes to allow only one colleague to see a set of files. Where should this 
information reside? If the authorization information is managed by the storage system, 
then the identity of the colleague must be known and maintained by the storage system, 
adding significant complexity. In addition, if the set of files is replicated to other storage 
systems, then the authorization information needs to be propagated to these storage 
systems as well. On the other hand, if such information resides with the VO system, then 
the VO needs to manage “access control lists” for millions of files residing on multiple 
storage systems. Furthermore, the VO authorization manager must be notified by the file 
owner of any authorization changes desired. While simple VO authorization systems 
have been designed in the Grid community (e.g., Community Authorization Service 
[CAS]), no technology available today can manage authorization as part of a VO in a 
robust, efficient manner. Nor does the technology exist to enable authorization decisions 
to be communicated securely to an enforcement mechanism within the various storage 
management systems. 

Authorization also raises the issue of allocation and enforcement of quotas. Again, a VO 
authorization system can be used to enforce a policy of usage by its members. It can 
assign usage quotas and user priority levels for various quotas sizes. For storage systems, 
there needs to be some measure for the quota. A decentralized approach to quotas and 
reservation is to define the limits of resource use for each user within the VO and to rely 
on a combination of self-policing and detection of abuse. The model for this approach is 
the Internet approach to resource sharing in communication. Self-policing, which can be 
enforced by the consensual use of middleware that applies appropriate resource bounds, 
can work in communities where most users are responsible and penalties for abuse of 
resources are high. Detection of abuse includes looking for patterns that violate 
acceptable bounds of use or periodic global auditing of resource utilization in a system 
too decentralized to permit continual auditing or a high degree of control. While a 
decentralized approach does not enable the same level of assurance of resource 
availability through reservation as more centralized systems, its strengths are scalability 
and high utilization of available resources. 

In the Grid community, several efforts are under way to standardize storage allocation 
and usage monitoring. These include storage resource managers and NeST for various 
operating systems as well as network-attached storage. A complementary effort is needed 
for VO authorization managers, however, as well as the coordination between such 
systems.  

Confidence about data integrity can be improved by using end-to-end techniques, 
analogous to those used to implement secure communication across the Internet. At the 
cost of application complexity and computational resources, digital signatures and other 
techniques that leverage secure hashes and public key encryption systems can be applied 
to data when it is stored, making it resilient to corruption or tampering even when 
replicas are made and distributed. Data integrity can be further improved by keeping data 
encrypted until it is under the control of an authorized reader and integrity can be verified 
by that reader directly, particularly for data that has internal structure. 
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II-4.7 Summary Table 

 
 
 
Issues 

Research 
and 

Development 

Hardening 
and 

Packaging 

Deployment 
and 

Maintenance 

 
 

Comments 
Data placement 
mechanisms 

  

Data placement 
policy 

  

Replica management   

Data flow between 
components 

  

Multiresolution data 
movement 

  

Networking with 
embedded storage 

  

Networking with 
embedded 
computation 

  

Security – 
authentication and 
authorization for 
data access 

  

Table II-4.1: Summary of the major issues that require further research and/or deployment efforts in 
the area of efficient access and queries, data integration. The ellipse marks the current position of the 
issue relative to pure R&D all the way on the left and off-the-shelf deployment all the way on the 
right. 
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II-5 Storage and Caching 
Data storage is becoming an increasing challenge in high-performance scientific 
computing. In this section we focus on advances in storage technology, I/O, and 
automated storage techniques for meeting this challenge. 

II-5.1 Storage Technology 
When an application can generate 100 to 1,000 times more data, will the state of storage 
technology be adequate to support that data? We believe that storage capacity of disks 
and tapes will scale sufficiently but that high-performance access to disk and tape data 
will be increasingly difficult. 

II-5.1.1 Magnetic Disks 
For the past twelve years, disk storage capacity has scaled slightly faster than 
computational capability. Figure II-5.1 shows that the compound growth rate for 
commodity disk capacity has been over 90% per year in the past six years. Industry 
experts agree that capacity growth will continue but is likely to be somewhat slower. 

 

 
 

History has shown that data transfer rates to disks have not kept pace with computational 
capacity [Grochowski]. While capacity scales with areal density (track bit density times 
track density), transfer rates scale with linear track bit density. Transfer rate also scales 

Figure II-5.1: Capacity evolution for commodity disk drives (reproduced with permission from G. 
Tarnopolsky, TarnoTek) 
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with the speed of the media relative to the read/write heads, but those speeds have 
changed slowly; for instance, disk rotation rates have only quadrupled in over thirty 
years—mechanical problems grow rapidly as rotation speed rises. Figure II-5.2 shows an 
annual compound growth rate of about 40% for streaming transfers between the disk 
surface and the head assembly.  

 

 

Rates for random access to small objects on disk are tied to rotation speed and the agility 
of the drive’s arm movement. Figure II-5.3 shows the evolution of seek and access times 
for server disk drives. The trend lines in the figure correspond to an annual compound 
rate of decrease of less than 9%, and predictions from industry experts21 are that the 
future rate of decrease will be slower.  
 

                                                 
21 “I do not believe that there will be much shorter access times in the future,” states G. Tarnopolsky, 
TarnoTek. “While rotation rates beyond 15K are possible in the future, these will likely occur at longer 
product time intervals,” says Ed Grochowski, Hitachi Global Storage Technologies. 

Figure II-5.2: Hard disk drive maximum internal data rate for enterprise/server mobile drives 
(reproduced with permission from Ed Grochowski, Hitachi Global Storage Technologies) 
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Incorporating disk drives into a storage system, including cache memories, I/O ordering, 
and RAID configurations, helps but does not solve the fundamental problems of data-
transfer rates and random-access rates. Storage system performance is reported 
[Grochowski] to have increased by a factor of only 100 in the past thirty years, less than 
17% compound annual growth.  

Taking into account all factors, transfer rate has scaled significantly less rapidly than 
computational capacity, and random-access rates are almost stagnant. Thus, applications 
will be increasingly rate-limited when storing and retrieving data from magnetic disk 
storage devices. 

The failure of transfer rate to scale fast enough portends serious problems as data 
quantities rise. In order for transfer rate to keep pace, more and more parallel paths will 
be required, which means more and more devices will be required. Random-access 
performance presents even more serious problems, portending the abandonment of disk 
technology in intense random-access applications. 

II-5.1.2 Magnetic Tape 
Magnetic tape continues to offer a good choice for archival storage. Error rates for tape-
resident data are normally better than those for disks, and tape-resident data is less 
vulnerable to total data loss through device failure, accident, or malice. The areal density 

Figure II-5.3: Seek and access times for server-class disk drives (reproduced with permission from 
Ed Grochowski, Hitachi Global Storage Technologies. 
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of recording on tape lags behind, but broadly tracks, that of recording on disk. As an 
archival store, tape is likely to remain five to ten times cheaper than disk and has a 
competitive volumetric storage density. 

Tape storage becomes expensive, however, if the data must be accessed at high speed or, 
even worse, at high speed with an unpredictable access pattern. Buying 100 Mbytes/s 
streaming throughput from an array of tape drives costs 40 to 100 times as much as from 
a disk array. Today’s robotic tape systems support efficient random access to objects of 
10 gigabytes or larger but are expensive and inefficient solutions for smaller objects. 

II-5.2 Parallel I/O: High-Performance Data Access for 
Computational Science  

While many advances have been made in 
general-purpose parallel and cluster file systems 
for enterprise systems, solutions and techniques 
that enable end-to-end performance targeting 
the needs of computational science are still 
lacking. Near-future applications require access 
speeds in excess of 10 Gbytes/s. Current “hero” 
file I/O benchmarks are in the 1 to 10 Gbytes/s 
range using as many as hundreds of disks in 
parallel. Translating these benchmark results 
into comparable end-to-end I/O performance 
has been difficult and will become more 
difficult as more disks and compute processes 
are added to the system.  

The MPI parallel programming model is 
common to most of the DOE high-performance 
computing facilities. This model works in terms 
of a cloud of parallel compute processes 
accessing a cloud of file servers as illustrated in 
Error! Reference source not found.. In order 
to provide both a convenient model for access 
and high throughput to storage, a collection of 
I/O components is used. This “I/O stack” 
consists of three distinct layers, including high-
level I/O libraries (e.g., PnetCDF and HDF5), I/O middleware (e.g., MPI-IO), and 
parallel file systems (e.g., PVFS2, GPFS, Lustre). 

For future applications to use this I/O model, the performance of these components must 
be improved, particularly in the area of throughput and scalability. One way of improving 
the stack as a whole is to tune how components communicate with one another. For 
example, implementing a richer language for describing I/O accesses to the parallel file 
system and using this language in MPI-IO can provide significant performance gains for 
scientific access patterns. Also needed are interfaces between layers to facilitate the 
transfer of semantic information to lower levels to optimize accesses, while providing 
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feedback to the higher layers. Furthermore, techniques that can use such interfaces to 
reduce synchronizations, reduce or remove need for locking, and optimize cache 
management will be necessary in order to scale parallel I/O functions to meet future 
needs. Likewise, high-level data models can better match the I/O system. The PnetCDF 
interface, as a replacement for HDF5, has provided as much as an order of magnitude 
higher I/O performance for astrophysics applications, in large part because its data model 
is a better match to the underlying I/O stack components. 

Further work is needed to characterize workloads in the workflow models, and a clear 
need also exists for file systems and other layers to be enhanced and adapted to enable 
data streaming. Moreover, parallel I/O layers must be enhanced to provide database-like 
functionality, including a capability to create, manage, and use metadata along with some 
customizable search and query functionality that can scale to thousands of large-scale 
concurrent accesses. 

II-5.3 Random I/O 
Scientists often think of disks as ideal random-access devices; but as disk capacity 
increases with time, disks are become unusable for many random-access applications. If 
used to store thousands of 10-megabyte objects, today’s disks may still be considered to 
support random access to these objects—the time spent moving to the first byte of a 10-
megabyte object is less than 10% of the time required for the head to read the object from 
the disk.22 Many scientific applications require the retrieval of much smaller objects, 
often at or below the kilobyte level, resulting in retrieval rates than can be dominated by 
disk access time. For example, if a typical 144-gigabyte disk drive were used to store 
100-byte objects, retrieving all of them in an access-time dominated mode would take 
over three hours—a retrieval rate of only 13 kilobytes per second, or over four thousand 
times slower than the disk’s streaming performance. 

With a performance gap of this magnitude, caching on a modest scale cannot be expected 
to eliminate the problem. High-transaction-rate commercial database systems address this 
issue with a memory cache equal to the size of the database; waiting for disk rotation is 
not an option. The scale of scientific datasets makes the “cache it all in memory” 
approach dauntingly expensive, but in many cases a memory-dominated approach is 
inevitable.   

The future challenge will be to exploit large-market technologies to create in-memory 
scientific databases that are cost-effective. In the scientific field there has been little 
exploration of the memory-cache sizes needed to derandomize disk I/O. Anecdotal 
information shows that 1% (10 gigabytes) of data-cache memory is totally ineffective in 
derandomizing access to 1 terabyte of high-energy physics data. Recent proposals (e.g., 

                                                 
22 For example, a Seagate 147 gigabyte 10,000 rpm disk transfers data from the disk to the head at an 
average of about 60 megabytes per second and has a read access time (rotational latency plus head-seek 
time) of 7.7 milliseconds to deliver the first byte of an object. The access-time overhead thus falls below 
10% for objects larger than 4.6 megabytes. 
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[Mount2004]) for approaches that are likely to be effective, call for data-cache memories 
of 10–100% of the data size, depending on the scientific field. 

II-5.4 Dynamic Data Storage and Caching 
A typical storage hierarchy for a large scientific computing center is shown in Figure II-
5.5. Successive layers of the hierarchy differ in capacity by less than a factor 100 but 
differ in access time by factors in the range 104–105. In the case of disk versus tape, the 
capacity of the disk-cache layer is relatively easy to optimize, since it is at most ten times 
as expensive per unit capacity as the tape storage layer, and the costs become comparable 
if the tape system is required to support significant access throughput. In the case of 
memory versus disk, however, optimization is likely to be seriously skewed by the 
hundredfold greater cost of memory. 

 

Caching has long been recognized as one of the most important techniques to speed 
access when data is transferred between different levels of a storage hierarchy with 
different characteristics: speed of access, latency of access, size, and cost per bit. DRAM-
based memory for caching can sometimes bridge the gap between storage system 
performance and compute/client requirements. Optimizing data accesses in high-
performance computing requires the strategic use of several principles: overlapping of 
computations and I/O (whether local or remote), prestaging, caching, and data 
replication. Caching in this environment can be further classified into distributed, 
hierarchical, and adaptive.  

We distinguish between caching and data replication. Caching involves the retention and 
removal of buffers to reduce access latencies to a single user or application. Replication 
implies the use of multiple copies (whole or partial) to reduce latencies in more than one 
user/application or for improved fault-tolerance. Caching relies on two properties of 
access patterns of application to be effective: temporal locality (if data is accessed once, 
it is likely to be accessed again soon) and spatial locality (if some data is accessed, then 

Figure II-5.5: Typical capacity and access time of a storage hierarchy (G=gigabytes) 
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other data in close proximity, e.g., in RAM or on the same storage tape, is also likely to 
be accessed).  

Large-scale storage systems have become so complex that cost of managing them can be 
greater than the cost of the system itself over its life-cycle. Innovative techniques are 
needed to address this problem. Dynamic and autonomic (and active) techniques to 
manage large-scale storage systems are becoming attractive, where the storage system is 
provided more intelligence and interfaces such that users/applications may specify what 
services are needed rather than how to provide them. Furthermore, quality-of-service 
specification and expectation will be an important part of storage systems. 

II-5.4.1 State of the Art 
Autonomic storage techniques are in their infancy. However, many caching techniques 
have been developed as systems have evolved. The quest for an optimum caching 
strategy has culminated in the development of numerous cache replacement policies 
some of which include least recently used, greedy dual size, and minimum average cost 
per replacement. One environment that uses caching techniques extensively in the 
manner envisaged for distributed data resources in scientific data management is Web-
caching, where proxy servers and reverse proxy servers are configured essentially as 
distributed caches. Other systems that provide distributed caching functionalities are the 
dCache and storage resource managers.  

II-5.4.2 Gaps and Needed Research 
Significant work is needed in the area of availability, tuning, maintenance, and 
transparent fault-tolerance. While commercial offerings can support very large data stores 
(e.g., 1 PB), they are not designed to scale to the numbers of clients that are expected in 
science domains, and their failure handling is not designed for the number of I/O servers 
and disks necessary to provide the throughput requirements of computational science. 
Further, the complexity of these systems makes managing and reconfiguring in the face 
of failures a difficult administrative task. Moving more intelligence into the storage 
system can alleviate the burden placed on administrative staff, reducing the effective cost 
of these resources. Eventually this storage infrastructure could become autonomous, 
creating situations where administrative intervention is necessary only when physical 
devices need to be removed or added to the system. These newer directions will require a 
large effort in defining models, interfaces, and I/O software, including file systems, 
resource management, libraries, and functions.  

Large-scale scientific applications need data transfers of the order of hundreds of 
gigabytes to tens of terabytes at very high rates among networks of data servers. Caching 
techniques and systems should take into account the dynamic nature as well as scales of 
systems and should address the following problems: latencies and data transfer rates of 
large data movements; collaborative caching within parallel and distributed systems as 
well as file-based caching; understanding and use of high-level access patterns that span 
datasets; and integration of caching techniques in the storage system at design time rather 
than adding caching to systems that are not designed to support it efficiently.  
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II-5.5 Summary Table  

 

Issues 

Research 
and 

Development 

Hardening 
and 

Packaging 

Deployment 
and 

Maintenance 

 

Comments 
I/O middleware for 
ultra-scale systems 

 Scalable software 
for portability and 
standardization 

Parallel file systems 
for clusters 

  

Parallel file systems 
for ultra-scale hybrid 
architectures 

 To take advantage 
of new generation 
of architectures 

Parallel file systems 
– reliability, 
availability, fault 
tolerance, and load 
balancing  

 Performance-
reliability tradeoffs  

Implementation of 
huge memory caches  

 Read-only caches 
meet most needs 

Optimized cache 
management and 
distributed caching 
techniques 

 Exploitation of 
large-scale 
memories for high-
performance I/O 

File system and I/O 
support for data 
streaming 

 To support new 
data types, 
streaming 
applications and 
workflows 

Active storage 
models and designs. 
Embedded 
functions, 
computing, software 
for autonomic and 
active storage 

 To enable 
computing and data 
analysis within 
active storage 
systems 

Autonomic storage 
techniques. Scalable 
software models and 
implementations for 
autonomic storage 

 May involve 
changes in software 
interfaces and 
functionality 
between hosts and 
storage systems 

Table II-5.1 Summary of the major issues that require further research and/or deployment efforts in 
the area of storage and caching. The ellipse marks the current position of the issue relative to pure 
R&D all the way on the left and off-the-shelf deployment all the way on the right. 
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II-6 Data Analysis, Visualization, and Integrated 
Environments 

Next-generation science applications will present substantial challenges, for not only 
scientific data management, but also for scientific visualization, data analysis, and related 
fields. At the most basic level, the need for new capabilities in these areas is a result of 
the fact that computer display technologies are not advancing at anywhere near the pace 
of data size and complexity and the human visual system evolves only imperceptibly. 
Increasingly, data analysis and visualization are “where the science is done,” as the raw 
data itself grows beyond our ability to perceive its meaning directly. Substantial effort 
will be required to scale data analysis and visualization tools in capability and capacity to 
handle the growth in data volume and complexity. Further, techniques to streamline and 
coordinate the use of data and visualization tools will become increasingly important.  

II-6.1 Data Analysis  
In order to understand datasets of increasing size and complexity, new algorithms will be 
required that allow researchers to quickly discover meaningful patterns without having to 
look directly at the raw data. Several classes of algorithms exist that have the potential to 
scale to the level required. However, significant research will be needed to bridge the gap 
between current capabilities and what will be needed for next-generation science projects. 
One aspect of this research will be moving the algorithms from serial to parallel 
implementations and porting them across various high-performance computing platforms, 
newer architectures, and advanced processing hardware. Many current data analysis 
routines are written in nonparallel languages such as IDL and are not scalable to massive 
datasets. While efficient parallel implementations may be trivial for some algorithms, 
significant redesign may be needed for others to, for example, address load imbalance 
issues and perhaps to move parts of the analysis closer to the data source.  

II-6.1.1 Feature Identification and Tracking 
Features are regions of data that satisfy some criteria, such as vortices in flow fields and 
flame fronts. Features can be represented directly through these criteria or indirectly 
through an example of the region of interest. In the latter case, there is a need for 
sophisticated techniques such as level sets to identify and characterize features, especially 
in data generated by using AMR or unstructured meshes, or on a parallel machine, where 
the feature may be split across processors. These algorithms will also need to be 
improved in terms of robustness to experimental noise and data registration issues. 
Tracking features as they evolve over time raises additional challenges, especially when 
the features split and merge over time.  

II-6.1.2 Searching for Needles in Haystacks – Feature-Based and Region-
Based Analysis 

Detected features and regions of interest often form the basis for subsequent analysis. For 
example, query-based techniques can be used to retrieve flame fronts in combustion 
simulations, which are then analyzed to identify trends as a function of the distribution of 



The Office of Science Data-Management Challenge 

 74 

chemical species or flow geometry. More complex queries are often formulated in terms 
of the raw data and require sophisticated search techniques. For example, a scientist may 
wish to find regions in a database that match (i.e., have a similar shape to) another plot. 
Such matching requires appropriate characterization of the query region and a similarity 
metric that can be used to retrieve regions in the dataset with similar characteristics. 
Work done in areas such as content-based image retrieval can be leveraged, but open 
research problems exist in tailoring the techniques to the needs of the scientific domain, 
searching in high-dimensional spaces, developing robust representations of the regions, 
and providing effective use of user feedback in refining the search. 

II-6.1.3 Anomaly Detection in Streaming Data 
Sometimes the data to be analyzed is streamed directly from an instrument or simulation 
(e.g., when monitoring an observation or experiment in progress). By analyzing the data 
as it is being generated, scientists can detect anomalies and error conditions and can steer 
the experiments or simulations to focus on interesting events. If the anomaly is known, a 
signature-based method can be used. Alternatively, the “normal” data can be modeled 
and deviations from that model can be flagged. Research is needed to expand existing 
capabilities in real-time algorithms, approximate algorithms, robust sampling techniques, 
and time-constrained queries, in order to handle massive and complex data. 

II-6.1.4 Comparative Analysis: Verification and Validation 
Scientific research often involves the comparison of two datasets, either for verification 
and validation or for reproducing the work of others. These comparisons are usually done 
at the feature level, and sometimes at the level of mesh points or pixels in an image. 
Research in this field, which is at its early stages, includes topics such as independent 
component analysis to remove characteristics specific to one simulation but not others 
and the development of metrics for comparison at the feature level. 

II-6.1.5 Data Fusion and Link Analysis 
Many application domains mine information across disparate sources of data such as 
journal papers, Web sites, and data from complementary experiments. Data fusion 
techniques are needed to combine these data sources so they can be analyzed as one. 
Significant work has been done in the context of Web mining and intelligence analysis in 
developing methods to analyze hypertext links between data such as text, documents, and 
figures. Progress has also been made in techniques to cluster and infer links between 
unstructured text documents, However, significant effort will be required to generalize 
these techniques to scientific data, including the use of semantic information in link graph 
analysis and the ability to include domain-specific knowledge and techniques to 
appropriately represent different types of data within more general clustering and link 
analysis models. 

II-6.2 Visualization 
Scientific visualization is the transformation of abstract data into images that are more 
readily comprehensible than the data itself. It is the primary means by which scientists 
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“see” their data, and it forms a central part of most, if not all, scientific processes. 
Visualization techniques can be applied to raw data as well as to the results of analyses; 
and, to a large degree, the challenges raised by increased data size and complexity for 
visualization mirror those of analysis tools. New visualization techniques are needed to 
make the patterns in large, complex datasets stand out. Visualization algorithms applied 
to raw data and, increasingly, to large subsets derived by analyses will need to shift from 
serial to parallel designs, including parallel transfer of data to large displays.  

II-6.2.1 Visual Representation of Multidimensional, Multimodal Data 
Most visualization research to date has focused on algorithms for static, single-variable 
fields, with a few efforts producing results for simple vector field visualization. However, 
data is increasingly being captured as a function of many dimensions (up to hundreds) 
and nonuniform coordinates. Advances in simulations that focus on physics, for example, 
produce highly complex output that defies analysis with current visualization technology. 
Another example is the angular distribution of radiation computed in radiation transport 
codes used in modeling supernova explosions. Other examples stem from computational 
biology and combustion, where chemical pathways are ill understood because of their 
complexity. In order to support next-generation science, advances will be required in 
multidimensional visualization, visualization of time-varying data, and methods for 
visualizing information that may have no natural mapping to space-time coordinates. 

II-6.2.2 Visual Comparative Analysis 
As the number and complexity of datasets grows, quick visual comparative analysis will 
become increasingly important. Such visualization might involve direct display of pixel-
level differences between datasets, visual display of statistics about the differences, or 
more domain-specific displays depicting, for example, areas of similarity/conservation in 
the genetic sequences of multiple species. As new comparative analysis techniques are 
developed, new visual representations will be required. For example, combining derived 
information such as multidimensional statistical information and uncertainty, or feature 
information, with an underlying data visualization would provide significant new 
capabilities for understanding the differences in data produced by different simulation 
runs or experiments. 

II-6.2.3 Interactive Visual Data Exploration 
Data visualizations are also used as a means to explore data (i.e., with navigation through 
the visual space selecting regions of interest). Interactive visual exploration has proven to 
be a powerful tool, allowing researchers to concentrate on science rather than the 
mechanics of interacting. In order to apply these techniques to large, multidimensional 
datasets, a range of advances will be required. Interaction with large datasets will require 
very efficient parallel data pipelines from source to construct three-dimensional displays, 
and animation will be required to allow additional data dimensions to be represented. 
Furthermore, collaborative visualization—which will stress distributed computing, data 
management, and networking infrastructure as data volume increases—will become 
increasingly useful as the range of phenomena within single datasets increases. 
Multiresolution techniques, allowing researchers to efficiently zoom to focus on patterns 
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at different scales, are another key aspect of interactive visualization. Early efforts in 
multiresolution visualization include the ChomboVis application, tailored to display data 
from AMR grids, and the Terascale Browser, which uses a custom multiresolution 
representation based on a space-filling curve to provide efficient access to large data at 
varying resolutions. Research is needed to produce standard multiresolution data models 
and efficient general algorithms that can be used across scientific disciplines. 

II-6.3 Integrated Environments 
The term integrated data analysis and visualization environment (IDAVE) refers to an 
integrated and unified set of software tools that provide an end-to-end solution for 
analysis and visualization of scientific data and simulation results. IDAVEs can 
accelerate the process of scientific inquiry and discovery and can lower the barriers to 
incorporating new techniques and performing research across disciplines. The central 
challenges in realizing IDAVEs relate to the fact that, while the value of IDAVEs grow 
rapidly with their scope (i.e., with the fraction of daily work a researcher can do within 
the environment), integration costs also grow rapidly. Thus, stable standard data models 
form the core of IDAVE implementations. Choices made about the data model directly 
affect the tradeoff between depth of integration and extensibility.  

IDAVEs support one or more interaction modalities. In “vertical integration,” the 
constituent technologies—data models, software components, workflow management, 
and so forth—are combined into something analogous to a finished application. In 
“horizontal integration,” similar technologies are combined from different sources, such 
as federating databases, so that they that appear as a single large data cache (often 
delivered as programming libraries). Combining these two modalities are toolkit 
approaches in which researchers select and script the constituent technologies to 
customize the toolkit to solve a specific task. Spanning this range from graphical 
application-like suites to lower-level frameworks that simplify construction of data and 
workflows, IDAVEs have been highly successful in increasing productivity and enabling 
software reuse. While opinions differ within the scientific applications community about 
which style of IDAVE is most helpful, IDAVEs of some form clearly will become 
increasingly critical for researcher productivity and effective software reuse. Producing 
next-generation IDAVEs will require end-to-end coordination across the proposed 
program, specifically with respect to models for managing data flow and appropriate 
programming and visual abstractions for representing data management processes. 

II-6.3.1 State of the Art 
A number of well-known visualization applications from both commercial ([AVS], 
AVS/Express, Khoros, [OpenDX]) and research organizations (apE,23 SCIrun) implement 
a toolkit-style visual programming interface to a data-flow-based execution model. 
Researchers draw lines that represent typed data flows between software modules that 

                                                 
23 The Animation Production Environment, or apE, originated from the Ohio State University and has since 
been transferred to Taravisual Corporation, 929 Harrison Avenue, Columbus, OH 43215. 
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perform atomic operations on data objects (e.g., specifying the extraction of a two-
dimensional slice from a three-dimensional array, which is the passed to an image viewer 
module). Strong data typing and the visual programming model have proven 
straightforward for nonexperts to learn and use, but use becomes more difficult as the 
number of data types and complexity of data processing increase. When data or module 
parameters change, the data flow network executes. In most cases, these environments 
are limited to execution on a single machine and cannot, for example, realize visual 
networks as grid workflows. Object-oriented (OO) environments for data analysis and 
visualization have similarly originated from both commercial (VTK) and research 
organizations. These environments consist of both class libraries [ROOT] and complete 
applications [Ecce] built around well-defined data models and atomic operations on data 
objects defined in the classes. Developer-level expertise is required to create or modify 
applications in an OO environment, but the level of integration can be much greater than 
is common in toolkit approaches. Like data-flow and OO environments, interpreted-
language environments originate both in industry [IDL] and in research [CDAT].24 The 
interpreted-language environments provide a high-level programming language for data 
manipulation, analysis, and visualization capabilities that are accessed via “subroutine” 
calls from an interpreted language front-end. The interpreted language supports common 
language constructs such as loops, subroutines, and conditionals as well as higher-level 
constructs applied to complex data types (e.g., matrix multiplication). These systems are 
also extensible in terms of their programmability and their ability to link with other 
software components. The ease with which new, external software may be used in these 
environments varies from implementation to implementation. 

II-6.3.2 IDAVEs: Gaps and Research Needed 
At the core of the IDAVE concept is the notion that software components in the 
environment share concepts related to data flow and data types. In order to function in the 
context of the proposed advanced data management technologies, IDAVEs will require a 
model that simultaneously incorporates concepts such as remote execution, data 
provenance, data integration services, and data replicas. Standardization of data 
primitives and mechanisms for invoking data flow services and recording provenance 
information, for example, would be one mechanism that woud provide the necessary 
level of coordination. Alternatively, or in addition, the incorporation of semantic data 
description and data integration capabilities could support mechanisms to automate 
aspects of data conversion and the integration of new algorithms and services.  

IDAVEs will require the development of high-level abstractions for working with data 
management services to, for example, allow researchers to compose a data analysis and 
visualization pipeline involving distributed data sources and parallel algorithms as easily 
desktop pipelines can be composed today. Programmatic and graphical representations of 
data sources, data types, and data management services will be needed. In order to 

                                                 
24 Over time, CDAT has evolved from being a purely interpreted-language interface to include a visual 
front end that invokes the functions previously accessible only from a Python script. 
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accommodate different levels of access to the underlying complexity of the data 
processing workflow, multiple levels of abstraction will be needed. Mechanisms for 
exposing details within a toolkit approach and then hiding them to produce application-
like functionality will have to be developed. While some conceptual models exist for 
such rich IDAVE interfaces, significant work will be needed to realize systems capable of 
supporting activities, with dynamically varying levels of detail, across the planning, 
execution, and exploration phases of research.  

While IDAVE development is likely to remain an area of active research for some time, 
incremental steps should be taken within the proposed program. The data-management 
capabilities discussed throughout this document are clearly necessary to support next-
generation science, but using them effectively could require significant expertise and 
effort on the part of practicing researchers. IDAVE data and process models, coupled 
with integrating programming and graphical interfaces, will simplify common tasks, 
automate the mechanics of using advanced data-management technologies, and enable 
reuse of analysis, visualization, and other technologies. 
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II-6.4 Summary Table 

 
 

Issues 

Research  
and 

Development 

Hardening 
and 

Packaging 

Deployment 
and 

Maintenance 

 
 

Comments 
Feature extraction 
and tracking  

 Algorithms for non-
Cartesian meshes; 
sophisticated tracking 
algorithms 

Searching for 
needles in hay-
stacks  

 Algorithms to 
support massive 
datasets 

Anomaly 
detection in 
streaming data  

 Need approximate, 
real-time, 1-pass 
algorithms 

Comparative 
analysis and 
visualization  

 Need features and 
metrics for 
comparison 

Data fusion and 
link analysis  

 Need algorithms to 
fuse multimodal data 
and find associations 
among them 

Scalable data 
analysis  

 Algorithms for 
parallel distributed 
data; need to address 
load balancing 

Advanced 
visualization 
techniques  

 Feature-based, 
multiresolution, 
multimodal 

Interactive visual 
data exploration  

  

Standardized 
process and data 
models for data 
flow  

  

IDAVE 
architecture and 
design  

  

IDAVE interface 
development  

  

Table II-6.1 Summary of the major issues that require further research and/or deployment efforts in 
the area of storage and caching. The ellipse marks the current position of the issue relative to pure 
R&D all the way on the left and off-the-shelf deployment all the way on the right.  
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