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Executive Summary  

A Department of Energy (DOE) Fault Management Workshop was held on June 6, 2012 
at the BWI Airport Marriot hotel in Maryland. The goals of this workshop were to: 

1. Describe the required HPC resilience for critical DOE mission needs 
2. Detail what HPC resilience research is already being done at the DOE national 

laboratories and is expected to be done by industry or other groups 
3. Determine what fault management research is a priority for DOE’s Office of Science 

and National Nuclear Security Administration (NNSA) over the next five years  
4. Develop a roadmap for getting the necessary research accomplished in the timeframe 

when it will be needed by the large computing facilities across DOE 

The workshop was attended by representatives from the DOE national laboratories: Oak 
Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), Los Alamos 
National Laboratory (LANL), Lawrence Berkley National Laboratory (LBNL), Lawrence 
Livermore National Laboratory (LLNL), Pacific Northwest National Laboratory (PNNL), 
and Sandia National Laboratories (SNL). It also included vendor representation from 
IBM, Intel, and Cray.  

The resilience requirements for national nuclear security applications, advanced reactor 
simulations, simulations of materials in extreme conditions, and climate simulations were 
discussed and it was found that they require different types of resilience. Some require 
run times of weeks to months. Some require extreme accuracy and bit-wise 
reproducibility; and most require resilience that works at extreme scale.  

Unique at this workshop was a discussion of the many fault management research 
projects that are already being done at the DOE national laboratories. These efforts 
include making checkpoint/restart more efficient, fault prediction and avoidance, 
incorporating resilience into programming models, and algorithm-based fault tolerance. 
This discussion identified an existing deficiency in understanding the types and rates of 
faults in current and future HPC systems.  

The workshop’s recommendations for high priority DOE activities and investments are: 
(1) the formation of a Resilience Technical Council with representation from each DOE 
laboratory and responsible for: identifying research gaps and scope of efforts required, 
and coordinating the research to ensure integration and compatibility of the solutions.  
(2) research and development into fast global and local checkpointing to address DOE’s 
immediate resilience needs and provide an evolutionary path for legacy applications;  
(3) research to characterize and quantifying the resilience problem, which includes 
identifying the types, rates, and causes of faults in future HPC systems and developing a 
fault model that specifies detection, notification, and recovery options for HW/SW 
solutions.  

Once the problem is characterized, research is needed to eliminate the barriers to 
resilience solutions including: integrating fault detection and containment throughout the 
software stack, providing resiliency features and support in programming environments, 
failure avoidance, and developing resilient algorithms that enable applications to adapt 
and recover from faults and even silent errors.  



1.0 Introduction  

Fault management has been identified as a critical need for future HPC systems 
[Kogge08]. The 1000-fold increase in computational capabilities expected over the next 
decade, along with incorporation of techniques for reducing energy consumption, are 
predicted to increase the error rate of the largest systems to a point where present 
checkpoint/restart methods will no longer be viable. Without research into new fault 
management techniques and the development of supporting resilience technologies, 
DOE’s mission critical applications may not be able to run to completion, or worse, will 
complete but get the wrong result due to undetected errors. To determine the DOE 
mission needs in resilience, and the gaps in present research, a DOE Fault Management 
Workshop was held June 6, 2012 at the BWI Airport Marriott in Maryland. It was 
attended by representatives from the DOE National Laboratories: ORNL, ANL, LANL, 
LBNL, LLNL, PNNL, and SNL. The workshop also included vendor representation from 
IBM, Intel, and Cray. All attendees are experienced researchers in fault tolerance and 
resilience, and most of the attendees had also attended a Multi-Agency Resilience 
Workshop held in Catonsville, Maryland in February 2012.  
 
The intention of this one day follow-up workshop was to build on the work done at the 
Multi-Agency workshop [Daly12] (which covered the broad needs of multiple agencies) 
and focus specifically on what are DOE’s critical mission needs that will be impacted by 
resilience, what is the resilience research already conducted by other groups, and what 
research will need to be done by DOE. The goals of the Fault Management Workshop 
were to: 

1. Describe the required HPC resilience for critical DOE mission needs 
2. Detail what HPC resilience research is already being done at the DOE national 

laboratories and is expected to be done by industry or other groups 
3. Determine what fault management research is a priority for DOE’s Office of Science 

and NNSA over the next five years  
4. Develop a roadmap for getting the necessary research accomplished in the timeframe 

when it will be needed by the large computing facilities across DOE 
 
The next two sections detail the DOE mission need for resilience and the present 
resilience research across the DOE complex. Section 4 discusses the risks, uncertainties, 
and barriers to more effective fault management. Section 5 describes research 
opportunities and priorities to address immediate needs, to quantify the resilience 
problem, and to eliminate barriers to resilience solutions. Section 6 presents a roadmap 
for resilience over the next decade. 

 
2.0 DOE Mission Need for Resilience  

DOE’s Office of Science and NNSA have several critical mission deliverables, including 
annual stockpile certification and safety assurance for NNSA and future energy 
generation technologies for Office of Science. Computer simulations are key to meeting 
these deliverables and must be resilient enough to complete in time and correctly to meet 
the respective critical mission need. A number of representative mission needs and their 
resilience requirements are given in the following examples. 



 
Resilience Needs in Materials Aging Simulations 

Understanding the aging of materials in extreme environments is critical to the design of 
future nuclear reactors as well as assuring the safety of the nation’s nuclear stockpile. 
Material simulation under extremes of temperature, stresses, and radiation require very 
complex multi-physics codes that often run for days and weeks on the largest computing 
systems in the nation. They exhibit a tight coupling between the different parts of the 
simulation code as it is necessary to capture the complex interactions, like temperature of 
the material affecting the behavior of the material under stress. Thus faults, if undetected 
or not contained, can quickly propagate throughout the solution. The scale of these 
simulations requires hundreds of thousands of processors to provide a solution in a timely 
fashion. At these scales resilience to permanent and transient faults in hardware and 
software, as well as resilience to undetected errors, becomes a serious issue. The 
resilience requirements for materials aging requires that multi-week simulations be able 
to complete (perhaps with restart) and not have the final result corrupted by faults during 
the run. 
 
Resilience Needs in Simulations for National Security 

National nuclear security applications enable simulations that allow the NNSA to assess 
and certify the safety, security, and reliability of the nation’s nuclear stockpile. 
Calculations needed to support the mission include many capability simulations requiring 
high resolution and/or high physics or engineering fidelity.  These capability simulations 
generally require days to weeks to complete, well beyond the expected mean-time-to-
interrupt for future computer architectures.  Thus, inclusion of fault management and 
mitigation strategies will be required in the hardware and at all levels of the software 
stack. In addition, unlike ensembles of calculations in which the general trend of a 
distribution is the focus, high resolution and high fidelity simulations specifically target 
understanding the impact of small features and details.  For this reason, accuracy and 
reliability are of paramount importance in these simulations.  Small errors can be very 
significant.  Thus, in high fidelity simulations, resilience of the computations and 
reliability of the answers produced are critically important.  This drives a requirement for 
resilience, reliability, and robustness.  
 
Resilience Needs in Advanced Reactor Simulation 

Advanced Reactor simulations involve very large calculations to be solved in 
“reasonable” times to solution. The requirement for “correctness” is extreme.  Codes are 
validated on the basis of bit-level reproducibility of simulation runs. Validation is 
required for the results to be trusted for both regulatory and public policy. The pressure 
for bit-level correctness and for accuracy in the results is extreme. As with many 
engineering simulations, reactor design simulations require high levels of structural 
complexity that arise from complex geometries, complex nuclear interactions, and 
complex materials compositions - the wealth of specific structure that typifies an 
engineering simulation.  This complexity means that algorithms and data structures are 
less likely to be “naturally resilient”, so the software/system/machine will need provide 
the needed resilience. 



 
In contrast to science where characterizing a trend structure or identifying a new 
phenomenon might require only approximate modeling or simple boundary conditions, 
engineering simulations try to characterize specific constants and exact values using 
precisely measured or constrained geometries and boundary conditions.  As such, even 
seemingly small errors can be of great significance. 
 
Resilience Needs in Climate Simulation 

The climate community has traditionally had some of the longest running simulations in 
HPC. It is not unusual for climate simulations to run for months in order to predict 
changes in climate over the next century or more. Like advanced reactor simulations, 
climate simulation codes are validated on the basis of bit-level reproducibility, and hence 
there is a requirement for bit-level correctness even in long running simulations. This 
resilience requirement is already a problem today on petascale systems. We have 
observed weather simulations that produce bit-wise reproducible results 49 out of 50 
times, but in a small but significant fraction of the simulations the results are different. 
We attribute this to the growing probability of getting silent errors on these large systems. 
With future systems having 100X more memory and at least 10X more nodes, the climate 
community will be seriously compromised by the growing silent error rates. 
 
Today climate simulation codes use global checkpoint/restart to survive weekly system 
maintenance and the occasional hardware failure. A future resilience requirement for 
climate simulations is that very long (months) simulations must be supported and the 
overhead of the fault management technique (be it checkpointing or something else) 
cannot take up a significant fraction of the time to solution. 
 
Difference from Data Center Resilience Needs 

The resilience requirements for DOE's large-scale computing facilities differ in key ways 
from those of large-scale commercial data centers, such as Google and Amazon.  These 
differences arise largely from the workload these facilities support.  Commercial 
workloads tend to be composed of a large number of independent tasks; each task 
requires little or no data from any other task.  In contrast, a typical workload for a DOE 
computer is comprised of a large number of highly-dependent tasks that frequently 
exchange large amounts data with many other tasks.  This tight data dependency requires 
different approaches to fault management.  An error in a calculation on one processor can 
quickly lead to errors on other processors and total failure of a processor can stop the 
progress of the entire running application.  The standard approaches used by Google 
applications, such as ignoring the lost information or redundantly calculating the 
information do not scale for tightly coupled DOE problems, and hence are not sufficient 
by themselves to manage faults occurring on systems running DOE applications.  
Another characteristic of DOE's scientific applications, again resulting from their tight 
data dependencies, is their sensitivity to small fluctuations (jitter) in the execution time of 
any given task.  Due to this sensitivity, most application workloads are run on dedicated 
processors. Commercial workloads, on the other hand, are often run on time-shared 
processors. When DOE applications are run on such time-shared processors, they exhibit 
much poorer performance. 



 
3.0 Present DOE Resilience Research  

This section enumerates the many resilience research projects already going on in the 
DOE labs and those projects funded by DOE outside the labs. The projects are grouped 
by topic. There is a particularly large amount of exploration around programming models 
and fast checkpointing techniques. 
 
Holistic frameworks. The Coordinated and Improved Fault Tolerance for High 
Performance Computing Systems (CIFTS) project at Argonne National Laboratory, 
Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory, Indiana 
University, the Ohio State University, and the University of Tennessee, Knoxville, (1) 
created a fault tolerance backplane specification that allows all levels of the software 
stack, including libraries, run-time systems, and applications, to exchange fault 
information and conduct fault management in a coordinated manner [Gupta09], (2) 
developed a prototype reference implementation of the fault awareness and notification 
interface specification [Gupta09], and (3) improved fault tolerance capabilities in key 
libraries and applications [Bouteiller12, Hursey09, Ouyang11, Shet11, Zheng09]. 
 
Programming models. Greg Bronevetsky from Lawrence Livermore National 
Laboratory received a 2011 Presidential Early Career Award for Scientists and Engineers 
and a 2010 DOE Early Career Award for his research in studying the impact and 
propagation of hard and soft faults in HPC systems. Mattan Erez from University of 
Texas, Austin, received a 2012 DOE Early Career Award for his research in resilience-
specific programming constructs (Containment Domains) that aim at providing 
programming model support for fault isolation and state tracking during recovery 
[Sullivan11]. Containment domains are programming constructs with transactional 
semantics, which enable the scalable, efficient, and application-aware protection of 
programs against many types of faults. At its core, a containment domain indicates that 
all data generated within the domain must be checked for correctness before being 
communicated outside of the domain. Containment domains are nested and hierarchical, 
and provide a means to preserve and restore state in an optimal way within the storage 
hierarchy. In addition, containment domains also provide mechanisms for allowing 
various forms of error detection to be used, which enable the application-aware, need 
proportional hardening of programs. This allows algorithmic specific verification to be 
used in concert with containment domains, in addition to standard hardware based error 
detection. There is also an ASCR-funded effort involving the University of Chicago, 
ANL, and HP called Global View Resilience, which shares many of the key ideas of 
containment domains, but exploits global naming and an open, library-based view. These 
elements combine flexible programmer control and management with compatibility with 
irregular, dynamic computational structures. 
 
SNL has developed a programming model concept of selective reliability and an 
algorithmic strategy to produce new classes of algorithms that can run through soft errors.   
The first working algorithm is a fault-tolerant GMRES (FTGMRES) linear solver, which 
can converge in the presence of soft errors.  FTGMRES is a two-level algorithm such that 
the outer level keeps data and performs computation in "highly-reliable" mode and the 



inner level works in low-reliable mode where failures including local process failure and 
soft errors can occur.  The majority of computation occurs in the inner level, keeping cost 
in line, while the outer level assures correct answers and recovers from any failures.  
Although this approach has been demonstrated for one particular algorithm, much 
additional work is required to extend it to other algorithm domains, and to develop 
programming model, runtime system and operating system support, and to determine 
proper hardware configurations that could support selective reliability. 
 
ANL has explored the use of MPI collectives for the generation of error correcting data 
under ASCR base funding. In this work [Gropp04] it was shown that MPI collectives 
(i.e., MPI_Reduce_Scatter) could be used as an efficient method of generating RAID5 
style parity layout for synchronized I/O. This approach eliminates many of the overheads 
associated with client-driven parity calculation, assuming that well-defined 
synchronization points are available for the computation to occur. 
 
Recent DOE-sponsored efforts at Oak Ridge National Laboratory, Argonne National 
Laboratory, and the University of Tennessee, Knoxville, also focused on a standardized 
fault-tolerant MPI specification and implementation [Buntinas12, Hursey11, Hursey12, 
MPI-FT]. 
 
LBNL has pursued system-level checkpoint/restart on modern platforms, by 
implementing checkpoint/restart for Linux in a package called Berkeley Lab 
Checkpoint/Restart (BLCR).  BLCR provides saves and restores the state of processes 
running on a Linux system.  BLCR cooperates, via callbacks, with a coordination scheme 
implemented by an MPI library to create coordinated checkpoints when processes span 
several nodes.  Since most existing MPI libraries only perform global coordination, in 
production BLCR is limited to perform only global checkpoints, i.e. every process must 
write a checkpoint. This global checkpoint limitation is not an inherent limitation of 
system-level checkpoints, but rather a result of the primitive sync-and-stop methods 
adopted by existing production MPI implementations.  Several research projects have 
demonstrated non-blocking or asynchronous checkpoints performed with BLCR, but 
these techniques have not yet been adopted by the production MPI libraries used on 
DOE's high-end computers. Similarly, the limitation to MPI is not a BLCR limitation.  
LBNL and UT Austin, as part of DOE's Degas effort, are collaborating (using the 
Containment Domains model) to develop small-scale local coordination schemes, and to 
demonstrate a PGAS-based scheme for resilient execution, which uses checkpoint/restart 
as part of the recovery scheme. 
 
Pacific Northwest National Lab (PPNL) has explored the design of scalable checkpoint-
restart mechanisms for PGAS programming models, specifically Global Arrays. Gioiosa 
et al. [Gioiosa05] designed efficient kernel-level checkpointing in the Linux kernel that 
supports triggering of checkpoints through interrupts in as little as 2.5 microseconds. 
Checkpoints taken as frequently as once per minute were shown to incur overheads less 
than 6%. Tipparaju et al. [Tipparaju07] augmented Global Arrays with checkpoint-restart 
support. Subsequent work [Scarpazza07,Villa09] studied automatic identification of 
global recovery lines in PGAS models using system-level virtualization technologies, to 



enable low-overhead virtualization and communication and computation and to provide 
seamless migration capabilities. 
 
PNNL explored the design of flexible checksum mechanisms for generalized Cartesian 
distributed multi-dimensional matrices that can co-locate the checksums with the data, 
while tolerating correlated failures [Ali11CF,Ali12]. The algorithms designed to 
determine the checksums were shown to be scalable while supporting a variety of fault 
and distribution constraints. More broadly, PNNL explored the design of fault tolerant 
data stores. The appropriate choice of redundancy for a data structure depends on its use 
in a specific context. Ali et al. [Ali11] systematically explored the use of matrix data 
structures in the key modules NWChem to infer the performance of various fault 
tolerance schemes. The study showed that a given application module might need 
different fault tolerance treatment depending on the input size, whether it is used 
standalone or as part of a another module's calculation, and whether it is capability run or 
a medium-size run focused on time to solution. 
 
PNNL has designed a fault tolerant communication runtime system for PGAS models 
using the "continued execution" recovery methodology. The proposed infrastructure is 
used to design selective replication methodology using read-only and read-write data 
attributes in PGAS models using Global Arrays as the research vehicle. The proposed 
interface is being used to design a fault tolerant NWChem. The measured overhead in 
presence of faults is less than 10%, and less than 5% in absence on faults. Vishnu et al. 
have recently focused on designing soft error resilient mechanisms for Global array 
applications such as NWChem and started by performing detailed analysis of the 
importance of critical data structures, their associated bits and the result of bit flips to the 
program execution. 
 
Recovering from failures involves detection of global recovery lines and restoring overall 
execution to a globally consistent state. Pacific Northwest National Lab has explored 
mechanisms to recover applications to a globally consistent state without rolling back all 
processes. Ali et al. [Ali11PDP] demonstrated that maintaining redundant application 
state kept synchronized through duplicated communication is efficient when the 
application is compute-bound and the communication can be effectively overlapped. The 
work demonstrated negligible overhead for this approach using key modules in 
NWChem.  
 
Work stealing is a promising technique to dynamically tolerate variations in the execution 
environment, including faults, system noise, and energy constraints. Dinan et al. 
[Dinan10] presented an algorithm for selective restart using a lightweight, distributed task 
completion tracking mechanism. Compared with conventional checkpoint/restart 
techniques, this system offers a recovery penalty that is proportional to the degree of 
failure rather than the system size. Ma and Krishnamoorthy [Ma12] presented the first 
algorithms for fault tolerant work stealing for task collections operating on global data. 
The work demonstrated that the overheads (space and time) of the fault tolerance 
mechanisms are low, the costs incurred due to failures are small, and the overheads 
decrease with per-process work at scale. 
 



The SciDAC Sustained Performance, Energy and Resilience (SUPER) Institute is 
pursuing multiple research directions including an integrated, application-level approach 
to resilience. The approach includes design, development and application of fault 
injection tools to identify the vulnerability of specific code regions, design and 
implementation of targeted techniques to reduce that vulnerability as well as language-
level extensions to allow the autotuning of the trade-off between performance and 
resilience. The project has demonstrated that algebraic multigrid (AMG) is naturally 
resilient and that relatively inexpensive triplication of selected pointers greatly improves 
its time-to-solution for fault probabilities that are expected in future systems. Further, the 
project is investigating programming models for resilience at extreme scale as well as 
compiler techniques to automatically add redundant computations. 
 
Compiler support. In the ESoftCheck project [Yu09], compiler techniques were 
explored to remove redundant checking for transient and soft errors in executables, 
assuming that memory and caches are sufficiently protected but that paths in the CPU are 
not. The approach keeps two copies of each register value and executes operations twice 
(on different copies), with errors detected by comparison. Optimizations are applied 
taking into account cases where registers are also hardware protected, where a later check 
will cover the register directly or indirectly (by checking a different register whose value 
depends on the first), and where checks inside loops may be moved out of the loop. 
 
Fault prediction, avoidance, and recovery. The RAS for Petascale High-End 
Computing and Beyond project at ORNL, North Carolina State University, and Louisiana 
Tech University performed research and development in (1) reliability analysis for 
identifying pre-fault indicators, predicting failures, modeling and monitoring component 
and system reliability, and fault injection tools to study impact and propagation within the 
operating system and runtime environment [Boehm10, Gottumukkala10, Taerat09, 
Naughton09], (2) proactive fault tolerance technology based on prediction-triggered 
migration away from components that are about to fail [Engelmann09, Nagarajan07, 
Wang12a], (3) reactive fault tolerance enhancements, such as incremental checkpointing 
support [Wang10, Naksinehaboon10] and checkpoint interval/placement adaption to 
actual and predicted system health threats [Nassar08], and (4) holistic fault tolerance 
through combination of adaptive proactive and reactive fault tolerance [Tikotekar07]. 
 
Soft error susceptability. LANL is studying the soft error susceptibility of ASC 
applications through fault injection.  Some of this work involves construction of new 
fault injectors [DeBardeleben11] while other portions involve augmenting existing ones 
from other sources.  Regardless, the goal of these experiments is to identify regions of 
codes that are particularly vulnerable (or even resistant) to data corruption. One study that 
has been ongoing for over a year involves running a suite of applications on idle nodes to 
look for silent data corruption.  This is done to baseline the rate of soft errors seen on 
supercomputers. A newer code project at LANL has begun involves rewriting a legacy 
ASC code into modern software engineering techniques that includes writing the 
application from the ground up to be aware of faults.  This work has had some early 
successes and demonstrated that for portions of the code certain fault tolerant MPI 
techniques are beneficial.  



 
In collaboration with the University of Illinois at Urbana-Champaign, LANL has been 
studying ECC chipkill in an effort to predict when single symbol chipkill will not be 
sufficient and instead necessitate double symbol chipkill.  An analytical model with a 
detailed reliability analysis has been created which looks out towards an exascale 
supercomputer and has been verified with a Monte Carlo simulation. 
 
Fast checkpoint techniques. ORNL’s Soft-Error Resilience for Future-Generation High-
Performance Computing Systems project is doing research and development in (1) HPC 
checkpoint storage virtualization to improve checkpoint/restart efficiency by aggregating 
a variety of resources, such as memory, Solid State Disks, and disks [Li10, Wang12b], 
(2) MPI process-level software redundancy using state-machine replication to eliminate 
fault handling through rollback/recovery in HPC [Elliott12, Engelmann11], (3) software-
based ECC to enhance memory protection from soft errors [Fiala], and (4) soft-error 
injection tools to study the vulnerability of science applications and of CMOS logic in 
processors and memory. 
 
ANL and LLNL are further investigating the use of solid state storage as part of the 
NoLoSS project, also funded as part of ASCR Advanced Architectures. The goal of this 
project is to explore potential roles and benefits of in-system storage in extreme-scale 
computational science. This project is exploring two avenues related to resilience. First, 
the team is developing enhancements to the Scalable Checkpoint/Restart Library (SCR) 
[Moody10], a tool for the management of checkpoint files on in-system resources (e.g., 
solid state). These enhancements include compression of checkpoints and techniques for 
coordination of asynchronous writes to external storage. Second, the team has extended 
the I/O Forwarding Scalability Layer (IOFSL) [Ali09] to include a write-behind buffering 
capability. This is one possible approach for incorporating burst buffers into future 
systems, with the advantage of not requiring modification to the existing parallel file 
system software. 
 
Reliable storage. An important component of resilience is the detection of errors in data 
on persistent storage. University of Connecticut and ANL explored the cost of detecting 
silent data corruption in storage systems [Narayan09] by calculating and storing CRC 
data alongside each data block in a PVFS [Carns00] storage system. Experiments found 
that for aligned accesses (i.e., those that modify whole blocks) the overhead of CRC 
storage and checking was approximately 5% for writing and 22% for reading, while for 
unaligned access the read-verify-write process required in writing accounted for as much 
as a 75% overhead over writing without this data security. 
 
4.0 Risks and Resilience Concerns  

The strategic risk is not meeting the DOE mission critical needs. The specific risk is that 
insufficient resilience will lead to application crash, hang, delay, or wrong answer.  The 
attendees expressed concern about the short-term vision in much of the present research, 
particularly the research involving the improvement of checkpointing techniques. But this 
evolutionary path is seen as the only way to address the immediate resilience needs of the 
DOE mission critical applications and the most efficient way to provide a path for legacy 



applications. In taking the next steps beyond checkpointing, there was concern that the 
revolutionary techniques will require an understanding of the actual errors seen on DOE’s 
HPC systems, the rate of these errors, and ideally the most common cause. This 
knowledge is presently unknown and needs to be researched right away so that some 
confidence can be applied to extrapolations of error rates of future systems.  Attendees 
pointed out that even when the knowledge of actual errors is known; the lack of a holistic 
framework or standard APIs for detection, notification and recovery will cause a barrier 
to the creation of portable fault tolerant application codes. 
 
Providing resiliency features and support in programming environments is a significant 
barrier to enabling revolutionary application resiliency and fault management.  For 
example, the MPI-3 FT working group is attempting to define the semantics and 
interfaces required for MPI to survive node failures.  While this has led to a concrete 
proposal that is being actively discussed in the MPI forum, it has not, yet, reached the 
necessary consensus to make it part of the MPI-3 standard. Further, this addition only 
focuses on the ability for MPI to continue operation after node failure; it does not address 
other failure types or recovery and node re-attachment procedures, which would be 
needed to provide a comprehensive solution. Making fault tolerance features part of the 
MPI standard is still far from adoption. 
 
Outside of MPI, even less progress has been made in programming model visible fault 
management capabilities.  While some work has been done in ARMCI/GA, in general 
that model does not see widespread use.  The somewhat more common global address 
space (GAS) languages of Unified Parallel C (UPC) and Fortran with Co-arrays have not 
at all considered how events like node failures could be represented and communicated.  
In addition, while MPI resilience to network failures has been demonstrated on some 
current machines, such resilience for the above GAS languages has additional issues such 
as how to provide resilient atomic memory operations (AMOs) and how to provide 
efficient and resilient fine grained communication. Finally, some newer languages such 
as Chapel also are effectively GAS languages and have similar concerns and need for the 
definition of interfaces and semantics. 
 
In the future, there is also some expectation that node local failures should also be 
recoverable, which means that even languages and models only providing local execution 
and parallelism will also need well defined interfaces and semantics for fault 
management.  OpenMP is a good example of a programming model needing additional 
work in this area.  How effective the handling of node local failures can be will depend in 
large part on the ability of the HW to isolate the failures. Without such functionality, 
many (though possibly not all) node local failures will turn into full node failures. 
 
Besides fail-stop behavior, another particularly challenging and concerning area is in the 
integrity of calculations.  Industry trends are indicating that it will become increasingly 
difficult to be confident in calculations – both from computational elements and data 
storage elements.  The reasons for these trends are varied but effects from terrestrial 
neutrons, naturally occurring alpha particles, electro-magnetic interference, temperature, 
and voltage fluctuations are seen today and expected in greater levels in the future.  



Usually these faults are transient in nature but permanent faults from these sources are 
not unheard of. 
 
Today, most DOE applications do not employ sophisticated ways of checking the 
integrity of their results.  Generally a subject matter expert is involved in verifying 
application outputs but obviously this is challenging and highly impractical.  Advances in 
naturally resilient algorithms, automatic checking applications, algorithm-based fault-
tolerance, and tools (particularly source-level language and compiler tools) are badly 
needed moving forward.  Similarly, there is a great need for an understanding of how 
these faults manifest, propagate, and can be prevented – both in hardware and software. 
 
Current parallel file systems are seen as both unreliable and a performance bottleneck for 
many applications [Bent09, Lofstead08]. Parallel file systems are a major cause of 
application interrupts on current-generation systems, and the expected growth in node 
counts is likely to exacerbate this problem. While parallel file systems can deliver a great 
majority of the underlying hardware bandwidth for carefully-written synthetic 
benchmarks, rarely do applications approach hardware speeds, and current parallel file 
systems rely on expensive, enterprise storage. New designs are needed that leverage 
lower-cost components, that better tolerate component failures, and that provide integrity 
guarantees that can be used to support application end-to-end data integrity. 
 
5.0 Research Plan  

The workshop attendees identified a number of research opportunities in fault 
management. The attendees also discussed and endorsed the formation of a “Resilience 
Technical Council” to facilitate the coordination and integration of different fault 
management efforts. The technical council would have representation from each of the 
DOE labs and would be responsible for: 

• Identifying the research gaps that need to be addressed,  
• Accessing the scope of effort required,  and  
• Ensuring integration and compatibility of the various solutions.  

 
The rest of this section lays out the opportunities in a timeline fashion. First, we address 
immediate needs in resilience that require minimal changes to applications. Second, we 
present the research efforts needed to characterize and quantify the resilience problem. 
Then once characterized, we describe the opportunities to eliminate barriers to resilient 
solutions. 
 
5.1 Address Immediate Needs  

Currently, global synchronous checkpointing is the standard way of dealing with fail-stop 
interruptions for most DOE applications. Simply put, this allows applications to rollback 
state and resume from an earlier application saved snapshot. When considering how 
viable this approach is there are a few issues to look at: (1) the amount of time it takes to 
save application state, (2) the expected amount of time useful work can occur before the 
application faults and needs to recover, (3) and the amount of time it takes to restart from 
a failure. Historically the rates of failure have been low enough that the amount of work 



accomplished between failures was high. However, reports [Daly06] indicate that due to 
the high component counts of extreme-scale systems and large application states, 
applications will be unable to perform much useful work due to being in a near-constant 
state of recovery. 
 
Advances are desperately needed in drastically reducing checkpoint and restart times, 
drastically increasing expected system MTBF, and breaking the need on global 
synchronicity of DOE applications.  Evolutionary approaches might be viable if all 
aspects were tackled together. Otherwise, revolutionary solutions will be required.  
Without these improvements it is highly unlikely that checkpointing will be viable on 
expected exascale systems. Additionally, advances that entirely remove the need to 
rollback and recover global system state when small amounts of components fail would 
be highly beneficial and could be achieved by breaking the need on global synchronicity 
of checkpointing. 
 
To first approximation, the optimal checkpoint interval is �2 · ���� · �• 	
�, where 
MTBF is the mean time between failures and Chkpt is the time to take a checkpoint 
[Young74]. Thus, the fraction of system time lost due to checkpoints and restarts is, 
approximately ��• 	
� �2 · ����⁄ �. In order to maintain the same efficiency, the 
checkpoint time has to be reduced in proportion to the reduction in MTBF. A variety of 
techniques are currently being developed to do so: 

1. In memory checkpointing, using RAID techniques [Moody10]. Mirroring is simplest, 
but leads to a significant increase in memory consumption. Higher RAID levels imply 
more communication and more computation. 

2. Checkpointing using non-volatile RAM (NVRAM). Memory consumption using 
mirroring is less of an issue. This technique is promising, given the evolution of 
NVRAM technologies, but NVRAM wear-out is a concern at high checkpoint rates. 

3. Asynchronous checkpointing.  Coordinated checkpointing causes bursty IO, which is 
bad for IO performance. Various IO buffering techniques can palliate the IO 
burstiness. More radically, checkpointing can be combined with message logging, to 
avoid the need for coordinated checkpointing altogether [Elnozahy 02]. 

 
The use of these techniques could reduce checkpoint time by an order of magnitude; and 
hence accommodate systems with an MTBF of less than an hour as long as undetected 
errors do not corrupt the result over the course of the entire simulation.  
 
Further research is required to develop these techniques, including: 

• Research into hierarchical checkpointing schemes, where in-memory checkpoints are 
consolidated on local memory (perhaps nonvolatile storage).  

• Research into architecture support for remote access to the NVRAM of a failed node. 
This would greatly facilitate the use of local nonvolatile memory for checkpointing. 

• As checkpointing frequency increases, the chance that an error will propagate and 
corrupt the backup before the error is noticed gets much more likely. Research into 
better detection and containment are needed. 



• With very frequent checkpointing, the probability of errors during checkpointing 
cannot be ignored, and schemes that can recover from such errors are needed. An 
alternative would be to be able to trade-off reliability and time-to-solution or energy 
consumption (e.g., using redundant computations), and execute the checkpoint logic 
in a reliable mode. 

 
Recovery time, which is ignored in a first order analysis, becomes significant when the 
checkpoint time is reduced by the above techniques [Daly06]. For example, with an 
MTBF of 30 minutes, and a checkpoint time of 2 minutes, one would checkpoint every 
10 minutes or so, and restart, on average, after three checkpoints. Recovery time includes 
the time to diagnose the cause of failure, and to allocate resources to replace failed 
resources. Research is needed to develop faster (and more scalable) approaches for error 
diagnostics and for dynamic resource management. For example, the OS could 
continuously provision the runtime with spare nodes. New interfaces between the system 
monitoring infrastructure and application runtime will be needed to ensure that the run-
time is quickly made aware of node failures. The overhead for updating the 
communication infrastructure (routing tables maintained by the system and 
communication structures maintained by the MPI library) will need to be significantly 
reduced. 
 
Avoiding the need for a global restart can reduce fault recovery time. Error containment 
becomes much more critical in this case to prevent the error from propagating to other 
nodes. If the state of other nodes is known to be correct, then one only needs to restart the 
failed node and replay the lost messages from a message log. Such a scheme significantly 
reduces the overall volume of IO and/or communication, but may not reduce restart time 
if all processes wait for the failed process to recover. Dynamic load balancing becomes 
important for such a scheme to work. An additional problem is that, as programming 
models change, the fixed association between a hardware container (node) and a software 
container (process) may be lost. More dynamic programming models will require more 
complex recovery schemes. 
 
5.2 Understand the Resilience Problem 

One major issue that makes developing effective, practical fault management difficult is 
the lack of quantitative data describing the types and rates of faults that occur on present 
systems, and are expected to occur on future systems. Faults can be permanent (hard), 
meaning a hardware or software component has failed and must be replaced or rebooted 
to continue. Faults can be transient (soft), meaning a component may perform incorrectly 
for an instant then go back to working fine. The least understood are undetected faults, 
also called silent errors. These can be either permanent or transient. The characteristic is 
that they are not detected. It is known that today’s HPC systems have all three types of 
errors, but their frequency, root causes, and interdependencies are not well understood. 
  
Most existing analyses address only permanent (hard) errors and assume that (1) 
components fail at fixed rates often set based on commercial-off-the-shelf failures-in-
time (FIT) rates and (2) component failures are independent. Large-scale measurements 
publishing failure time distributions and component correlations (or fault-tree models) for 



HPC systems are scarce. We require empirical studies of existing systems, as well as 
estimates and models of error rates in future systems, in order to design fault 
management approaches. In addition to the rate of failures, it is also important to 
understand the failure modes involved. Performing these measurements on systems in 
situ requires coordinating the various DOE centers, establishing consistent measurement 
procedures and definitions, and careful audits to make sure that each site performs the 
measurements correctly. 
 
Today, the cost/benefit trade-off between the key system design factors of performance, 
resilience, and power consumption is not very well understood. The only existing model 
incorporating resilience and performance, targets global synchronous checkpoint/restart. 
Models for other approaches, such as combining local checkpoint/restart with message 
logging, algorithm-based fault tolerance, and selective process/task or data redundancy, 
are missing, including metrics to compare these resilience methods fairly. In addition, 
there are currently no models and no evaluation methods for identifying the impact on 
power consumption for any resilience solution, especially concerning the expected high 
cost of data movement in future HPC architectures. Modeling and simulation tools are 
needed to understand the tradeoffs and facilitate hardware/software performance, 
resilience, and power consumption co-design. 
 
Five key fault management research areas must be addressed today to have impact in the 
long run include: First, faults must be detected, either by hardware, the operating system 
software, or the application. Second, a notification infrastructure must be in place to send 
fault information to the necessary components (e.g. the application, job scheduler, and 
error log). Third, a standard fault model needs to be developed so that fault notification 
and recovery can be handled uniformly. Although the detected faults may vary widely 
across systems, many faults (e.g. processor timeouts) are common across a wide class of 
systems.  Fourth, it is also important that we have realistic expectations of how faults 
may be handled. What are the recovery options? Will some other level of the software 
stack take care of the recovery? When will it do so and at what efficiency? For example, 
many fault notifications occur well after the point at which it is simple to deal with them.  
A simple example is a fault experienced during write-back to main memory; an error 
experienced during write-back would only occur once there was sufficient cache pressure 
to evict the line, and the code that wrote the data initially may not have the ability to 
recalculate it.  Forcing all data to be flushed out immediately is one possible answer, but 
it comes at a tremendous performance cost. We cannot expect users to program around 
all possible faults, but we should provide a taxonomy of possible solutions for the set of 
most likely faults. Fifth, DOE researchers need to work together to create a standard fault 
test suite based on the knowledge gained from activities described in this Section. 
Scientists could then use such a suite to evaluate different fault management solutions to 
measure their effectiveness, performance, and robustness. 
   
5.3 Eliminate Barriers to Resilient Solutions 

Faults on extreme-scale systems are expected to occur throughout the entire system stack 
from the hardware all the way up to the application. Some responsibility for detecting 
faults resides in each of these layers. A major barrier to creating resilience solutions is 



that there is no communication or coordination between the layers of the stack in fault 
detection and management, nor coordination for preventive or corrective actions. The 
elimination of this barrier requires crosscutting solutions, in particular, a holistic fault 
tolerance framework to build standardized solutions within. The April 2012 exascale 
planning workshop [ERC12] began a process of listing possible resilience interfaces 
between all the different layers of stack. This effort could be leveraged to start the design 
of a holistic fault tolerance framework. 
 
Future systems may provide complex hardware trade-offs where one can dial the trade-
off between the frequency of errors and the efficiency of the computation (in time and 
energy). This trade-off could be achieved in many different ways, for example: 

• High power, high resilience cores, together with low-power, low resilience cores on 
the same chip 

• Cores that can run multiple independent threads, or can run a pair of threads with 
comparison logic 

• Cores that can run with higher voltage threshold for higher reliability or lower 
threshold, for lower power consumption 

Similar performance, resilience, and power consumption tradeoffs may be available for 
parts of the storage infrastructure, for example using RAID-0, RAID-1, …, RAID-6. 
 
Today’s system software has limited fault tolerance and fault awareness. The OS and 
runtime systems, besides needing to survive faults themselves, need to provide 
notification and recovery capabilities to affected applications. To facilitate fault recovery, 
system software needs to be designed to confine errors/faults, to avoid or limit their 
propagation, and to recover from them when possible. 
 
Fault avoidance techniques aim to predict the imminent failure of components so as to 
avoid application failures. For example, if node failures can be predicted ahead of time, 
then a process, task, or thread can be migrated away from a node or core ahead of its 
failure, avoiding its impact and the need for restart. Such a scheme effectively increases 
the MTBF. More research is needed to assess the effectiveness of fault avoidance. In 
addition, one will need efficient support for process/task/thread migration and for the 
dynamic adaptation of the communication infrastructure. 
 
As discussed in section 4.0, providing appropriate programming model support for fault 
management is an important step for any application resiliency solution, especially when 
considering ease of use. Fault management researchers need to work with runtime and 
programming environment developers to incorporate fault awareness into their respective 
environments and tools. The efforts of the MPI-3 Fault Tolerance Working Group should 
be supported and adopted, possibly before full ratification of the standard if that gets 
mired in concerns, such as ubiquity. Standards discussions should also be started as soon 
as possible on the interfaces and semantics required by global address space (GAS) 
programming models, such as Unified Parallel C (UPC) and Fortran with Co-arrays. 
Support for resilience to network failures for GAS models can largely be hidden from the 
programmer (except possibly for some performance concerns). However research is still 



needed on appropriate methods, likely via a combination of hardware and software, for 
the most efficient implementation of resilient communication including vanilla transfers, 
atomic memory operations, and other higher-level communication features, such as active 
messages. This requires interactions with appropriate standards bodies that govern these 
languages. OpenMP is another candidate programming model for discussion of fault 
management interfaces for handling node local faults. 
 
A more revolutionary approach to recovery is to avoid altogether the need for 
checkpoints. Present DOE applications are neither fault tolerant nor fault aware, They are 
simply killed and restarted. Research is needed for the development of algorithms that 
can run through failure, including a mathematically rigorous analysis of what errors can 
be tolerated. Such schemes have been demonstrated for (dense) linear algebra 
[Dongarra09, Boley95], where the system matrix can be augmented with new rows that 
are linearly dependent on the other rows. A related research area is understanding where 
reliable storage and execution regions can improve the fault management capabilities of 
algorithms running on unreliable machines. Such schemes have been demonstrated for a 
few iterative methods – for example, extrapolating lost state from state at neighbor points 
[Bosilca07, Rodriguez07] and using reliable storage to create a fault tolerant GMRES 
[Heroux11]. Research is needed to figure out how general such techniques can be. 
 
Functional programming, or any programming model that uses “write-once” variables, 
provides another view of “checkpoint-less” recovery. Such languages use garbage 
collection to recycle storage once variables have been consumed (read) by all their 
consumers. Suppose that old values are not garbage-collected; then one can always restart 
a computation and recompute lost values, from old preserved values. Checkpointing, 
namely the copying of current state can be replaced by a progressive “hardening” of old 
state, concurrent with progress in the computation; this hardening delays garbage 
collection, but does not impeded progress (as long as storage is available). Recovery from 
failures can be more localized [Jagannathan91]. While a functional programming style 
may not be appropriate for large-scale computations, it may be possible to use such 
“functional techniques” to support more efficient checkpoint and restart schemes. More 
research will be needed. 
 
6.0 Roadmap 

Section 5 presents a number of important activities that DOE needs to invest in to meet 
mission critical resilience requirements for future systems. This section takes those 
activities and identifies long lead-time items and when they need to start, what activities 
are needed in the next couple years and thus must start immediately, and what timeframe 
the DOE community and DOE mission needs will require solutions to the longer-term 
resilience issues, such that full applications that can tolerate permanent, transient, and 
even silent errors, while still getting the correct result. The latter requires support from 
the hardware, runtime, OS, scheduler, and algorithms inside the applications themselves, 
thus it will take some time for this resilience infrastructure to be in place. 
 
In the near-term, the Resilience Technical Council first needs to be formed to be able to 
help define and coordinate the fault management research activities. Also near-term are 



the activities specified in Section 5.1 Address Immediate Needs. These activities are 
primarily focused on improving the performance and efficiency of checkpoint and restart 
techniques, including improving performance and access to checkpoint/restart storage 
and asynchronous checkpointing. 
 
Also of high priority is understanding the actual types and rates of faults that occur on 
today’s systems, and more importantly what faults are expected on the future extreme-
scale systems that DOE will likely procure. Because of the long lead-time and the 
dependence many other activities have on these results, activities 2-4 in Figure 1 should 
be started in the near-term. Figures 1 and 2 show the priorities and rough cost estimates 
for the early start research areas and research areas that can start later. The cost estimates 
($, $$, $$$) come from the earlier Catonsville workshop and are translated here. 
 

 
Figure 1. Early start research needed for DOE resilience needs 

The better understanding of the resilience problem will allow the creation of a standard 
fault model and test suite that will allow application developers to begin developing 
portable, fault tolerant codes. The development of a fault model will allow programming 
tools to be built that understand transient faults. It will describe services that operating 
systems, runtimes, and file systems must be modified to supply in order to meet the 
expectations of the fault model. The fault model will also set expectations for the vendors 
developing hardware for extreme-scale systems. 
 
Workshop participants identified gaps to the creation of revolutionary resiliency 
solutions. For example, providing fault management in programming models such as 
MPI and PGAS, and creation of a fault management framework that spans all layers of 
the software stack. 
 



 
Figure 2. DOE resilience research that is a high priority but can start later 

 
7.0 Conclusions  

Unique to this workshop the attendees identified several critical DOE missions in both, 
the NNSA and Office of Science that will be impacted if computer resilience is not 
improved beyond what is available today. Also unique was an enumeration of all the fault 
management research projects going on at each of the DOE national laboratories. The 
workshop also discussed the risks and barriers to fault management solutions on future 
systems. The recommended plans going forward included the formation of a resilience 
technical council, research needed to address the immediate resilience needs of DOE 
applications, research needed to better understand the types and rates of faults that occur 
at the hardware, system software, and application levels, and what work is needed to 
eliminate the barriers to future fault management solutions. A roadmap was constructed 
to define where long lead-time items need to start, what needs to be addressed 
immediately and what timeframe the DOE community and DOE mission needs will 
require solutions to different resilience issues. 
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