Fault M anagement Workshop Final Report August 13, 2012

U.S. Department of Energy
Fault Management Wor kshop

BWI Airport Marriott, Maryland

June 6, 2012
Participants

Al Geist (ORNL) Bob Lucas (ISI)
Marc Snir (ANL) Shekhar Borkar (Intel)
Eric Roman (LBNL) Mootaz Elnozahy (IBM)
Bert Still (LLNL) Andrew Chien (ANL)
Robert Clay (SNL) John Wu (LBNL)
Christian Engelmann (ORNL) Nathan DeBardeleben (LANL)
Rob Ross (ANL) Larry Kaplan (Cray)
Martin Schulz (LLNL) Mike Heroux (SNL)

Sriram Krishnamoorthy (PNNL) Lucy Nowell (DOE)
Abhinav Vishnu (PNNL) Lee-Ann Talley

Executive Summary

A Department of Energy (DOE) Fault Management Workshiap held on June 6, 2012
at the BWI Airport Marriot hotel in Maryland. The goalsthis workshop were to:

1. Describe the required HPC resilience for critical DOBswin needs

2. Detail what HPC resilience research is already beingedat the DOE national
laboratories and is expected to be done by industry or gtbaps

3. Determine what fault management research is a pritmit{pOE’s Office of Science
and National Nuclear Security Administration (NNSAeothe next five years

4. Develop a roadmap for getting the necessary reseacdmplished in the timeframe
when it will be needed by the large computing facilitie®as DOE

The workshop was attended by representatives from the iDé&nal laboratories: Oak
Ridge National Laboratory (ORNL), Argonne National Laiory (ANL), Los Alamos
National Laboratory (LANL), Lawrence Berkley Natidriaaboratory (LBNL), Lawrence
Livermore National Laboratory (LLNL), Pacific Nortlest National Laboratory (PNNL),
and Sandia National Laboratories (SNL). It alsoluded vendor representation from
IBM, Intel, and Cray.

The resilience requirements for national nuclear sgcapplications, advanced reactor
simulations, simulations of materials in extreme cbos, and climate simulations were
discussed and it was found that they require differgréstyof resilience. Some require
run times of weeks to months. Some require extremeuracg and bit-wise
reproducibility; and most require resilience that worksxéteme scale.

Unique at this workshop was a discussion of the many faalhagement research
projects that are already being done at the DOE ratimoratories. These efforts
include making checkpoint/restart more efficient, fault dpgon and avoidance,
incorporating resilience into programming models, and #dlgorbased fault tolerance.
This discussion identified an existing deficiency in ustinding the types and rates of
faults in current and future HPC systems.

The workshop’s recommendations for high priority DOBEvées and investments are:

(1) the formation of a Resilience Technical Council wigpresentation from each DOE
laboratory and responsible for: identifying research gajssaope of efforts required,

and coordinating the research to ensure integration andatimiity of the solutions.

(2) research and development into fast global and &esckpointing to address DOE'’s
immediate resilience needs and provide an evolutionaryfpatégacy applications;

(3) research to characterize and quantifying the resdigmoblem, which includes

identifying the types, rates, and causes of faults in fUlH€ systems and developing a
fault model that specifies detection, notificatiomdarecovery options for HW/SW

solutions.

Once the problem is characterized, research is neededintmate the barriers to
resilience solutions including: integrating fault detecama containment throughout the
software stack, providing resiliency features and suppgetagramming environments,
failure avoidance, and developing resilient algorithms ématble applications to adapt
and recover from faults and even silent errors.

1.0 Introduction

Fault management has been identified as a critical feeduture HPC systems
[Kogge08]. The 1000-fold increase in computational capabilitiescte@eover the next
decade, along with incorporation of techniques for reducingggnssnsumption, are
predicted to increase the error rate of the larggstems to a point where present
checkpoint/restart methods will no longer be viable. Withgesearch into new fault
management techniques and the development of supporting nesiltechnologies,
DOE’s mission critical applications may not be aldeun to completion, or worse, will
complete but get the wrong result due to undetected erforsletermine the DOE
mission needs in resilience, and the gaps in presezdrods a DOE Fault Management
Workshop was held June 6, 2012 at the BWI Airport MarrinttMiaryland. It was
attended by representatives from the DOE National Ladnaea: ORNL, ANL, LANL,
LBNL, LLNL, PNNL, and SNL. The workshop also included vendepresentation from
IBM, Intel, and Cray. All attendees are experiencedaresers in fault tolerance and
resilience, and most of the attendees had also atteadeuilti-Agency Resilience
Workshop held in Catonsville, Maryland in February 2012.

The intention of this one day follow-up workshop was tddban the work done at the
Multi-Agency workshop [Daly12] (which covered the broad rseefimultiple agencies)
and focus specifically on what are DOE'’s critical o needs that will be impacted by
resilience, what is the resilience research alreamhducted by other groups, and what
research will need to be done by DOE. The goals of tiut Fenagement Workshop
were to:

1. Describe the required HPC resilience for critical DOBswin needs

2. Detail what HPC resilience research is already beingedat the DOE national
laboratories and is expected to be done by industry or gtbaps

3. Determine what fault management research is a pritmit{pOE’s Office of Science
and NNSA over the next five years

4. Develop a roadmap for getting the necessary reseacdmplished in the timeframe
when it will be needed by the large computing facilitieas DOE

The next two sections detail the DOE mission need ésilience and the present
resilience research across the DOE complex. Sedtidiscusses the risks, uncertainties,
and barriers to more effective fault management. &ecth describes research
opportunities and priorities to address immediate needsquiantify the resilience
problem, and to eliminate barriers to resilience soluti@ection 6 presents a roadmap
for resilience over the next decade.

2.0 DOE Mission Need for Resilience

DOE'’s Office of Science and NNSA have several critin@sion deliverables, including

annual stockpile certification and safety assurance fOISAl and future energy

generation technologies for Office of Science. Compsitaulations are key to meeting
these deliverables and must be resilient enough to cteripléime and correctly to meet
the respective critical mission need. A number of repragive mission needs and their
resilience requirements are given in the following exiem

Reslience Needsin Materials Aging Simulations

Understanding the aging of materials in extreme environmewt#ical to the design of
future nuclear reactors as well as assuring the safetlyeohation’s nuclear stockpile.
Material simulation under extremes of temperaturesstrs, and radiation require very
complex multi-physics codes that often run for dayswaedks on the largest computing
systems in the nation. They exhibit a tight coupling leetwthe different parts of the
simulation code as it is necessary to capture the leommteractions, like temperature of
the material affecting the behavior of the matewiader stress. Thus faults, if undetected
or not contained, can quickly propagate throughout the isnluThe scale of these
simulations requires hundreds of thousands of processprevide a solution in a timely
fashion. At these scales resilience to permanent mrgiént faults in hardware and
software, as well as resilience to undetected erdoespmes a serious issue. The
resilience requirements for materials aging requires tulti-week simulations be able
to complete (perhaps with restart) and not have ther@sailt corrupted by faults during
the run.

Resilience Needsin Simulations for National Security

National nuclear security applications enable simulatitiat allow the NNSA to assess
and certify the safety, security, and reliability ofethation’s nuclear stockpile.
Calculations needed to support the mission include manyttigpaimulations requiring
high resolution and/or high physics or engineering figeliThese capability simulations
generally require days to weeks to complete, well beéyihve expected mean-time-to-
interrupt for future computer architectures. Thus, inclusibrfault management and
mitigation strategies will be required in the hardwarel at all levels of the software
stack. In addition, unlike ensembles of calculations mctv the general trend of a
distribution is the focus, high resolution and high figedimulations specifically target
understanding the impact of small features and detdits: this reason, accuracy and
reliability are of paramount importance in these sitioifss. Small errors can be very
significant. Thus, in high fidelity simulations, resilice of the computations and
reliability of the answers produced are critically impottaThis drives a requirement for
resilience, reliability, and robustness.

Resilience Needsin Advanced Reactor Simulation

Advanced Reactor simulations involve very large catauta to be solved in
“reasonable” times to solution. The requirement farfectness” is extreme. Codes are
validated on the basis of bit-level reproducibility of slation runs. Validation is
required for the results to be trusted for both regweadmd public policy. The pressure
for bit-level correctness and for accuracy in the tssid extreme. As with many
engineering simulations, reactor design simulations reghigh levels of structural
complexity that arise from complex geometries, compheiclear interactions, and
complex materials compositions - the wealth of specstructure that typifies an
engineering simulation. This complexity means that algms and data structures are
less likely to be “naturally resilient”, so the softeesystem/machine will need provide
the needed resilience.

In contrast to science where characterizing a trendctstte or identifying a new
phenomenon might require only approximate modeling or sifplendary conditions,
engineering simulations try to characterize specificstanmts and exact values using
precisely measured or constrained geometries and boundagtifi@ns. As such, even
seemingly small errors can be of great significance.

Resilience Needsin Climate Simulation

The climate community has traditionally had some efldngest running simulations in
HPC. It is not unusual for climate simulations to run foeonths in order to predict
changes in climate over the next century or morke ladvanced reactor simulations,
climate simulation codes are validated on the badmt-dével reproducibility, and hence
there is a requirement for bit-level correctness ewmelong running simulations. This
resilience requirement is already a problem today onspafa systems. We have
observed weather simulations that produce bit-wise repi@ducesults 49 out of 50
times, but in a small but significant fraction of the siations the results are different.
We attribute this to the growing probability of getting silerrors on these large systems.
With future systems having 100X more memory and at least 1dX¥ nodes, the climate
community will be seriously compromised by the growingnsiksror rates.

Today climate simulation codes use global checkpestiart to survive weekly system
maintenance and the occasional hardware failure. Adutesilience requirement for

climate simulations is that very long (months) simiolass must be supported and the
overhead of the fault management technique (be it chedkppior something else)

cannot take up a significant fraction of the time tiitson.

Difference from Data Center Resilience Needs

The resilience requirements for DOE's large-scalepctimg facilities differ in key ways
from those of large-scale commercial data center$y asdGoogle and Amazon. These
differences arise largely from the workload theseilifes support. Commercial
workloads tend to be composed of a large number of indepemnalekd; each task
requires little or no data from any other task. In st a typical workload for a DOE
computer is comprised of a large number of highly-dependesits tthat frequently
exchange large amounts data with many other tasks. ighisdata dependency requires
different approaches to fault management. An errardalculation on one processor can
quickly lead to errors on other processors and totalr&aibf a processor can stop the
progress of the entire running application. The standardoapipes used by Google
applications, such as ignoring the lost information edundantly calculating the
information do not scale for tightly coupled DOE probderand hence are not sufficient
by themselves to manage faults occurring on systems runn@g Bpplications.
Another characteristic of DOE's scientific applicaip again resulting from their tight
data dependencies, is their sensitivity to small fluctoat(@tter) in the execution time of
any given task. Due to this sensitivity, most applicationkioads are run on dedicated
processors. Commercial workloads, on the other handpfee run on time-shared
processors. When DOE applications are run on such tiareglprocessors, they exhibit
much poorer performance.

3.0 Present DOE Resilience Research

This section enumerates the many resilience reseaogbcts already going on in the
DOE labs and those projects funded by DOE outside the Taesprojects are grouped
by topic. There is a particularly large amount of exgion around programming models
and fast checkpointing techniques.

Holistic frameworks. The Coordinated and Improved Fault Tolerance for High
Performance Computing Systems (CIFTS) project at Argodadonal Laboratory,
Lawrence Berkeley National Laboratory, Oak Ridge NwtioLaboratory, Indiana
University, the Ohio State University, and the UniversityTennessee, Knoxuville, (1)
created a fault tolerance backplane specification alatvs all levels of the software
stack, including libraries, run-time systems, and apptioati to exchange fault
information and conduct fault management in a coordinatadner [Gupta09], (2)
developed a prototype reference implementation of thie dawareness and notification
interface specification [Gupta09], and (3) improved fauleramce capabilities in key
libraries and applications [Bouteiller12, Hursey09, Ouyan§hetll, Zheng09].

Programming models. Greg Bronevetsky from Lawrence Livermore National
Laboratory received a 2011 Presidential Early Career Avaair8cientists and Engineers
and a 2010 DOE Early Career Award for his research in stgdghe impact and
propagation of hard and soft faults in HPC systems. avlairez from University of
Texas, Austin, received a 2012 DOE Early Career Award fordsearch in resilience-
specific programming constructs (Containment Domains) that at providing
programming model support for fault isolation and statekingc during recovery
[Sullivanl1l]. Containment domains are programming construdgte twansactional
semantics, which enable the scalable, efficient, andicapipih-aware protection of
programs against many types of faults. At its core,rdaboment domain indicates that
all data generated within the domain must be checked foeatoess before being
communicated outside of the domain. Containment domamaested and hierarchical,
and provide a means to preserve and restore state iptiamabway within the storage
hierarchy. In addition, containment domains also provide ham@sms for allowing
various forms of error detection to be used, which entdddeapplication-aware, need
proportional hardening of programs. This allows algorithmiccidigeverification to be
used in concert with containment domains, in addition todst@ hardware based error
detection. There is also an ASCR-funded effort involving University of Chicago,
ANL, and HP called Global View Resilience, which shamesny of the key ideas of
containment domains, but exploits global naming and an, dipeary-based view. These
elements combine flexible programmer control and managewigntompatibility with
irregular, dynamic computational structures.

SNL has developed a programming model concept of selecthabitity and an
algorithmic strategy to produce new classes of algorithiatsdan run through soft errors.
The first working algorithm is a fault-tolerant GMRESTGMRES) linear solver, which
can converge in the presence of soft errors. FTGMRE3W®-level algorithm such that
the outer level keeps data and performs computation ghRhreliable” mode and the

inner level works in low-reliable mode where failures inaigdiocal process failure and
soft errors can occur. The majority of computatioouns in the inner level, keeping cost
in line, while the outer level assures correct answedsranovers from any failures.
Although this approach has been demonstrated for onecydartialgorithm, much
additional work is required to extend it to other algoritdomains, and to develop
programming model, runtime system and operating system su@pattto determine
proper hardware configurations that could support selectliability.

ANL has explored the use of MPI collectives for theegation of error correcting data
under ASCR base funding. In this work [Gropp04] it was shtlat MPI collectives
(i.e., MPI_Reduce_Scatter) could be used as an efficiethhad of generating RAID5
style parity layout for synchronized I/O. This approachiglates many of the overheads
associated with client-driven parity calculation, as#g that well-defined
synchronization points are available for the computdtarccur.

Recent DOE-sponsored efforts at Oak Ridge National laady, Argonne National
Laboratory, and the University of Tennessee, Knoxvillsp d@cused on a standardized
fault-tolerant MPI specification and implementatidufitinas12, Hurseyll, Hurseyl2,
MPI-FT].

LBNL has pursued system-level checkpoint/restart on nmmodplatforms, by
implementing checkpoint/restart for Linux in a packageleda Berkeley Lab
Checkpoint/Restart (BLCR). BLCR provides saves and resttire state of processes
running on a Linux system. BLCR cooperates, via callbackk,axcoordination scheme
implemented by an MPI library to create coordinated checkpavhen processes span
several nodes. Since most existing MPI libraries guagform global coordination, in
production BLCR is limited to perform only global checkpsjrite. every process must
write a checkpoint. This global checkpoint limitationnst an inherent limitation of
system-level checkpoints, but rather a result of thenipvie sync-and-stop methods
adopted by existing production MPI implementations. Séveisearch projects have
demonstrated non-blocking or asynchronous checkpoints pedomith BLCR, but
these techniques have not yet been adopted by the productibiibkéiPies used on
DOE's high-end computers. Similarly, the limitationM&I is not a BLCR limitation.
LBNL and UT Austin, as part of DOE's Degas effort, amdlaborating (using the
Containment Domains model) to develop small-scale logatdination schemes, and to
demonstrate a PGAS-based scheme for resilient executioch uses checkpoint/restart
as part of the recovery scheme.

Pacific Northwest National Lab (PPNL) has explored tlesign of scalable checkpoint-
restart mechanisms for PGAS programming models, spebifiGddbal Arrays. Gioiosa
et al. [Gioiosa05] designed efficient kernel-level dpnting in the Linux kernel that
supports triggering of checkpoints through interrupts in ag lad 2.5 microseconds.
Checkpoints taken as frequently as once per minute wevendiooincur overheads less
than 6%. Tipparaju et al. [Tipparaju07] augmented Global Arvath checkpoint-restart
support. Subsequent work [Scarpazza07,Villa09] studied autonakidification of
global recovery lines in PGAS models using system-lewalalization technologies, to

enable low-overhead virtualization and communication andpeitation and to provide
seamless migration capabilities.

PNNL explored the design of flexible checksum mechaniEmgeneralized Cartesian
distributed multi-dimensional matrices that can catecthe checksums with the data,
while tolerating correlated failures [Alil1CF,Alil2]. Thelgarithms designed to
determine the checksums were shown to be scalable supleorting a variety of fault
and distribution constraints. More broadly, PNNL exetbthe design of fault tolerant
data stores. The appropriate choice of redundancy for ssttataure depends on its use
in a specific context. Ali et al. [Alill] systematicakexplored the use of matrix data
structures in the key modules NWChem to infer the pedooa of various fault
tolerance schemes. The study showed that a given ap@hicmodule might need
different fault tolerance treatment depending on the irppe, whether it is used
standalone or as part of a another module's calcnjatimd whether it is capability run or
a medium-size run focused on time to solution.

PNNL has designed a fault tolerant communicationimatsystem for PGAS models
using the "continued execution" recovery methodologye Pploposed infrastructure is
used to design selective replication methodology using-oefdand read-write data
attributes in PGAS models using Global Arrays as thearelBevehicle. The proposed
interface is being used to design a fault tolerant N&fthThe measured overhead in
presence of faults is less than 10%, and less than 5%sémed on faults. Vishnu et al.
have recently focused on designing soft error resillmachanisms for Global array
applications such as NWChem and started by performing dktaialysis of the
importance of critical data structures, their assodiafts and the result of bit flips to the
program execution.

Recovering from failures involves detection of gloledavery lines and restoring overall
execution to a globally consistent state. Pacific Meest National Lab has explored
mechanisms to recover applications to a globally cagigtate without rolling back all
processes. Ali et al. [Ali11PDP] demonstrated that meimg redundant application
state kept synchronized through duplicated communicationffisieat when the
application is compute-bound and the communication caeffeetively overlapped. The
work demonstrated negligible overhead for this approachgu&ey modules in
NWChem.

Work stealing is a promising technique to dynamically toéevatiations in the execution
environment, including faults, system noise, and energystcaints. Dinan et al.

[Dinanl10] presented an algorithm for selective restargusilightweight, distributed task
completion tracking mechanism. Compared with conventiocleckpoint/restart

techniques, this system offers a recovery penalty thptaportional to the degree of
failure rather than the system size. Ma and KrishnathgdMal2] presented the first
algorithms for fault tolerant work stealing for task cciiens operating on global data.
The work demonstrated that the overheads (space and ¢ifmndje fault tolerance

mechanisms are low, the costs incurred due to failuressiamall, and the overheads
decrease with per-process work at scale.

The SciDAC Sustained Performance, Energy and Resligi®tJPER) Institute is
pursuing multiple research directions including an integrapglication-level approach
to resilience. The approach includes design, developrardt application of fault
injection tools to identify the wvulnerability of specificode regions, design and
implementation of targeted techniques to reduce that rabiigy as well as language-
level extensions to allow the autotuning of the trade-effwben performance and
resilience. The project has demonstrated that algelbnaitigrid (AMG) is naturally
resilient and that relatively inexpensive triplicatiohselected pointers greatly improves
its time-to-solution for fault probabilities that angpected in future systems. Further, the
project is investigating programming models for resiliencexateme scale as well as
compiler techniques to automatically add redundant compnsatio

Compiler support. In the ESoftCheck project [Yu09], compiler techniques were
explored to remove redundant checking for transient affidesoors in executables,
assuming that memory and caches are sufficiently protéctethat paths in the CPU are
not. The approach keeps two copies of each register satliexecutes operations twice
(on different copies), with errors detected by compariOptimizations are applied
taking into account cases where registers are alslwheg protected, where a later check
will cover the register directly or indirectly (by atleng a different register whose value
depends on the first), and where checks inside loopsomayoved out of the loop.

Fault prediction, avoidance, and recovery. The RAS for Petascale High-End
Computing and Beyond project at ORNL, North Carolina Stitieersity, and Louisiana
Tech University performed research and development in (1gbilgly analysis for
identifying pre-fault indicators, predicting failures, modelaxgd monitoring component
and system reliability, and fault injection tools to stirdpact and propagation within the
operating system and runtime environment [Boehm10, GottumukkalBd€rat09,
Naughton09], (2) proactive fault tolerance technology dbase prediction-triggered
migration away from components that are about to farigelmann09, Nagarajan07,
Wang12a], (3) reactive fault tolerance enhancementg, asiitncremental checkpointing
support [Wangl0, Naksinehaboonl0] and checkpoint interval/pEderdaption to
actual and predicted system health threats [NassarO8](4nholistic fault tolerance
through combination of adaptive proactive and reactive faldrance [TikotekarQ7].

Soft error susceptability. LANL is studying the soft error susceptibility of ASC
applications through fault injection. Some of this womkolves construction of new
fault injectors [DeBardelebenl1l] while other portions invodwgmenting existing ones
from other sources. Regardless, the goal of theseriexpnts is to identify regions of
codes that are particularly vulnerable (or even retista data corruption. One study that
has been ongoing for over a year involves running a suappications on idle nodes to
look for silent data corruption. This is done to baelhe rate of soft errors seen on
supercomputers. A newer code project at LANL has begunviesaewriting a legacy
ASC code into modern software engineering techniques ti@tides writing the
application from the ground up to be aware of faults. TWosk has had some early
successes and demonstrated that for portions of the cotdencfwult tolerant MPI
techniques are beneficial.

In collaboration with the University of lllinois atrbana-Champaign, LANL has been
studying ECC chipkill in an effort to predict when single symtdoipkill will not be
sufficient and instead necessitate double symbol chiplilh analytical model with a
detailed reliability analysis has been created which lools towards an exascale
supercomputer and has been verified with a Monte Carlolaion.

Fast checkpoint techniques. ORNL'’s Soft-Error Resilience for Future-Generatitigh-
Performance Computing Systems project is doing researdtdevelopment in (1) HPC
checkpoint storage virtualization to improve checkpointaregfficiency by aggregating
a variety of resources, such as memory, Solid StatksPand disks [Li10, Wang12b],
(2) MPI process-level software redundancy using statéxmageplication to eliminate
fault handling through rollback/recovery in HPC [Elliott Ehgelmannl1l], (3) software-
based ECC to enhance memory protection from soft ®fféiala], and (4) soft-error
injection tools to study the vulnerability of science &agilons and of CMOS logic in
processors and memory.

ANL and LLNL are further investigating the use of solidtet storage as part of the
NoLoSS project, also funded as part of ASCR Advanced tactuires. The goal of this
project is to explore potential roles and benefitsnegystem storage in extreme-scale
computational science. This project is exploring twonaes related to resilience. First,
the team is developing enhancements to the Scalabl&k@hettRestart Library (SCR)
[Moody10], a tool for the management of checkpoint filasiresystem resources (e.g.,
solid state). These enhancements include compressmeokpoints and techniques for
coordination of asynchronous writes to external stor&geond, the team has extended
the I/O Forwarding Scalability Layer (IOFSL) [Ali09] todlude a write-behind buffering
capability. This is one possible approach for incorporatingstbbuffers into future
systems, with the advantage of not requiring modificatmhe existing parallel file
system software.

Reliable storage. An important component of resilience is the detectiberrors in data
on persistent storage. University of Connecticut and Akiblazed the cost of detecting
silent data corruption in storage systems [Narayan09] lyulesing and storing CRC
data alongside each data block in a PVFS [Carns00] storagersyExperiments found
that for aligned accesses (i.e., those that modifgleviblocks) the overhead of CRC
storage and checking was approximately 5% for writing and 22%eading, while for
unaligned access the read-verify-write process redjuirevriting accounted for as much
as a 75% overhead over writing without this data security.

4.0 Risks and Resilience Concerns

The strategic risk is not meeting the DOE missionaaitneeds. The specific risk is that
insufficient resilience will lead to application chasang, delay, or wrong answer. The
attendees expressed concern about the short-term wnsmouach of the present research,
particularly the research involving the improvementtedakpointing techniques. But this
evolutionary path is seen as the only way to addressrtimediate resilience needs of the
DOE mission critical applications and the most effiti@ay to provide a path for legacy

applications. In taking the next steps beyond checkpointiiegge was concern that the
revolutionary techniques will require an understanding o&titeal errors seen on DOE'’s
HPC systems, the rate of these errors, and idebh#y most common cause. This
knowledge is presently unknown and needs to be researgi@ away so that some
confidence can be applied to extrapolations of erros ratduture systems. Attendees
pointed out that even when the knowledge of actual eisdasown; the lack of a holistic

framework or standard APIs for detection, notificataomd recovery will cause a barrier
to the creation of portable fault tolerant applicatiode=

Providing resiliency features and support in programming enveeotsns a significant
barrier to enabling revolutionary application resiliereyd fault management. For
example, the MPI-3 FT working group is attempting to defihe semantics and
interfaces required for MPI to survive node failures.hil/this has led to a concrete
proposal that is being actively discussed in the MPI foritirhas not, yet, reached the
necessary consensus to make it part of the MPI-3 standartther, this addition only
focuses on the ability for MPI to continue operaticerahode failure; it does not address
other failure types or recovery and node re-attachmergegwes, which would be
needed to provide a comprehensive solution. Making falgtaioce features part of the
MPI standard is still far from adoption.

Outside of MPI, even less progress has been made in prnogrgnmodel visible fault
management capabilities. While some work has been doARNMCI/GA, in general
that model does not see widespread use. The somewhatcaromeon global address
space (GAS) languages of Unified Parallel C (UPC) antt&owith Co-arrays have not
at all considered how events like node failures couldepessented and communicated.
In addition, while MPI resilience to network failureashbeen demonstrated on some
current machines, such resilience for the above GAgukeges has additional issues such
as how to provide resilient atomic memory operatiGhb10s) and how to provide
efficient and resilient fine grained communication. Fyyadlome newer languages such
as Chapel also are effectively GAS languages and havarsaoncerns and need for the
definition of interfaces and semantics.

In the future, there is also some expectation that nock failures should also be
recoverable, which means that even languages and made|sroviding local execution
and parallelism will also need well defined interfacesd asemantics for fault
management. OpenMP is a good example of a programmidgl meeding additional
work in this area. How effective the handling of nod=mldailures can be will depend in
large part on the ability of the HW to isolate thduias. Without such functionality,
many (though possibly not all) node local failures wilhtinto full node failures.

Besides fail-stop behavior, another particularly chall@pgnd concerning area is in the
integrity of calculations. Industry trends are indimg that it will become increasingly
difficult to be confident in calculations — both frotomputational elements and data
storage elements. The reasons for these trendsaaes \but effects from terrestrial
neutrons, naturally occurring alpha particles, electroneag interference, temperature,
and voltage fluctuations are seen today and expected in gieagés in the future.

Usually these faults are transient in nature but permafaelts from these sources are
not unheard of.

Today, most DOE applications do not employ sophisticated wédyshecking the

integrity of their results. Generally a subject reatéxpert is involved in verifying
application outputs but obviously this is challenging andhligignpractical. Advances in
naturally resilient algorithms, automatic checking appbee, algorithm-based fault-
tolerance, and tools (particularly source-level language @mpiler tools) are badly
needed moving forward. Similarly, there is a great neecah understanding of how
these faults manifest, propagate, and can be preventet i ltatrdware and software.

Current parallel file systems are seen as both ubtelend a performance bottleneck for
many applications [Bent09, Lofstead08]. Parallel file systeare a major cause of
application interrupts on current-generation systemd, tha expected growth in node
counts is likely to exacerbate this problem. While paréilelystems can deliver a great
majority of the underlying hardware bandwidth for cargfwititten synthetic
benchmarks, rarely do applications approach hardware spmsgigurrent parallel file
systems rely on expensive, enterprise storage. New deaigneeeded that leverage
lower-cost components, that better tolerate compdiadates, and that provide integrity
guarantees that can be used to support application end-tatnohtegrity.

5.0 Research Plan

The workshop attendees identified a number of research rtopg@s in fault
management. The attendees also discussed and enda@dedmhation of a “Resilience
Technical Council” to facilitate the coordination and ingggm of different fault
management efforts. The technical council would haveesgmtation from each of the
DOE labs and would be responsible for:

» ldentifying the research gaps that need to be addressed,
» Accessing the scope of effort required, and
* Ensuring integration and compatibility of the various sohsi

The rest of this section lays out the opportunities timaline fashion. First, we address
immediate needs in resilience that require minimal chabhgepplications. Second, we
present the research efforts needed to character@ewantify the resilience problem.
Then once characterized, we describe the opportunitienbinate barriers to resilient
solutions.

5.1 Address | mmediate Needs

Currently, global synchronous checkpointing is the stahdary of dealing with fail-stop

interruptions for most DOE applications. Simply put, @dlsws applications to rollback

state and resume from an earlier application savegstiot. When considering how
viable this approach is there are a few issues to loqk)athe amount of time it takes to
save application state, (2) the expected amount ofuseéul work can occur before the
application faults and needs to recover, (3) and theuabof time it takes to restart from
a failure. Historically the rates of failure have bdew enough that the amount of work

accomplished between failures was high. However, refiDely06] indicate that due to
the high component counts of extreme-scale systems ageé lapplication states,
applications will be unable to perform much useful work dukeiog in a near-constant
state of recovery.

Advances are desperately needed in drastically reduciegkpbint and restart times,
drastically increasing expected system MTBF, and breakirg néed on global
synchronicity of DOE applications. Evolutionary approacimight be viable if all

aspects were tackled together. Otherwise, revolutiosalytions will be required.

Without these improvements it is highly unlikely that dt@ointing will be viable on

expected exascale systems. Additionally, advancesdhi@tely remove the need to
rollback and recover global system state when smaluats of components fail would
be highly beneficial and could be achieved by breaking ¢leel on global synchronicity
of checkpointing.

To first approximation, the optimal checkpoint intervaL/i%- MTBF - Ce kpt, where
MTBF is the mean time between failures ablkpt is the time to take a checkpoint
[Young74]. Thus, the fraction of system time lost due hec&points and restarts is,
approximately\/C- kpt/(2- MTBF). In order to maintain the same efficiency, the
checkpoint time has to be reduced in proportion to the riesuct MTBF. A variety of
techniques are currently being developed to do so:

1. In memory checkpointing, using RAID techniques [Moody10]. Ming is simplest,
but leads to a significant increase in memory consumpitl@her RAID levels imply
more communication and more computation.

2. Checkpointing using non-volatie RAM (NVRAM). Memory camsption using
mirroring is less of an issue. This technique is promisimggngthe evolution of
NVRAM technologies, but NVRAM wear-out is a concetrh@gh checkpoint rates.

3. Asynchronous checkpointing. Coordinated checkpointing cdugssy 10, which is
bad for IO performance. Various 10 buffering techniques paifliate the 10
burstiness. More radically, checkpointing can be combinéld message logging, to
avoid the need for coordinated checkpointing altogetheoiaiy 02].

The use of these techniques could reduce checkpoint time drganof magnitude; and
hence accommodate systems with an MTBF of lessdhamour as long as undetected
errors do not corrupt the result over the courseeétitire simulation.

Further research is required to develop these technioedsiing:

* Research into hierarchical checkpointing schemes, whereemory checkpoints are
consolidated on local memory (perhaps nonvolatileagi@y.

* Research into architecture support for remote access \RAM of a failed node.
This would greatly facilitate the use of local nonvo&atiemory for checkpointing.

* As checkpointing frequency increases, the chance thatran will propagate and
corrupt the backup before the error is noticed gets muaie tikely. Research into
better detection and containment are needed.

* With very frequent checkpointing, the probability of esraluring checkpointing
cannot be ignored, and schemes that can recover fnomesrors are needed. An
alternative would be to be able to trade-off reliapidind time-to-solution or energy
consumption (e.g., using redundant computations), and exdmutsheckpoint logic
in a reliable mode.

Recovery time, which is ignored in a first order aniglypecomes significant when the
checkpoint time is reduced by the above techniques [DalyO6].ekample, with an
MTBF of 30 minutes, and a checkpoint time of 2 minutes, woeld checkpoint every
10 minutes or so, and restart, on average, after thregpmiats. Recovery time includes
the time to diagnose the cause of failure, and to akocesources to replace failed
resources. Research is needed to develop faster (ancscadable) approaches for error
diagnostics and for dynamic resource management. eéxample, the OS could
continuously provision the runtime with spare nodes. N#wrfaces between the system
monitoring infrastructure and application runtime will tieeded to ensure that the run-
time is quickly made aware of node failures. The owadhdor updating the
communication infrastructure (routing tables maintained e tsystem and
communication structures maintained by the MPI libravy) need to be significantly
reduced.

Avoiding the need for a global restart can reduce faathwery time. Error containment
becomes much more critical in this case to preveneth@ from propagating to other
nodes. If the state of other nodes is known to beecgrthen one only needs to restart the
failed node and replay the lost messages from a mekgadgeuch a scheme significantly
reduces the overall volume of IO and/or communicatioh,may not reduce restart time
if all processes wait for the failed process to recolgmamic load balancing becomes
important for such a scheme to work. An additional probigrthat, as programming
models change, the fixed association between a hardwatainer (node) and a software
container (process) may be lost. More dynamic proghiagmmodels will require more
complex recovery schemes.

5.2 Understand the Resilience Problem

One major issue that makes developing effective, praéaadt management difficult is
the lack of quantitative data describing the types and oditiesilts that occur on present
systems, and are expected to occur on future systemiss Ean be permanent (hard),
meaning a hardware or software component has faileanaistl be replaced or rebooted
to continue. Faults can be transient (soft), meaniognaponent may perform incorrectly
for an instant then go back to working fine. The least wwtded are undetected faults,
also called silent errors. These can be either permamdransient. The characteristic is
that they are not detected. It is known that tod&PC systems have all three types of
errors, but their frequency, root causes, and interdepeiegaare not well understood.

Most existing analyses address only permanent (hard) eammsassume that (1)
components fail at fixed rates often set based on coomheff-the-shelf failures-in-
time (FIT) rates and (2) component failures are indepand@rge-scale measurements
publishing failure time distributions and component corratatior fault-tree models) for

HPC systems are scarce. We require empirical studiesisting systems, as well as
estimates and models of error rates in future systamsprder to design fault
management approaches. In addition to the rate of dajlut is also important to
understand the failure modes involvéterforming these measurements on systems in
situ requires coordinating the various DOE centerspksitiing consistent measurement
procedures and definitions, and careful audits to make batestich site performs the
measurements correctly.

Today, the cost/benefit trade-off between the key systesign factors of performance,
resilience, and power consumption is not very well ustded. The only existing model
incorporating resilience and performance, targets glopallsonous checkpoint/restart.
Models for other approaches, such as combining local chetkpstart with message
logging, algorithm-based fault tolerance, and selectiveqasitask or data redundancy,
are missing, including metrics to compare these resdienethods fairly. In addition,
there are currently no models and no evaluation metfovdslentifying the impact on
power consumption for any resilience solution, espec@lycerning the expected high
cost of data movement in future HPC architectures. Modealim simulation tools are
needed to understand the tradeoffs and facilitate hartheéiveare performance,
resilience, and power consumption co-design.

Five key fault management research areas must be asffitesky to have impact in the
long run include: First, faults must be detected, eitiyehardware, the operating system
software, or the application. Second, a notificatiorastfucture must be in place to send
fault information to the necessary components (e .afhplication, job scheduler, and
error log). Third, a standard fault model needs to be dewlspehat fault notification
and recovery can be handled uniformly. Although the dedefaults may vary widely
across systems, many faults (e.g. processor timeaet€pamon across a wide class of
systems. Fourth, it is also important that we haadistic expectations of how faults
may be handled. What are the recovery options? \Wilesother level of the software
stack take care of the recovery? When will it do soanahat efficiency? For example,
many fault notifications occur well after the pointdtich it is simple to deal with them.
A simple example is a fault experienced during wriekoto main memory; an error
experienced during write-back would only occur once thexe sufficient cache pressure
to evict the line, and the code that wrote the data ligittaay not have the ability to
recalculate it. Forcing all data to be flushed out imhiately is one possible answer, but
it comes at a tremendous performance cost. We cannottexgers to program around
all possible faults, but we should provide a taxonompasisible solutions for the set of
most likely faults. Fifth, DOE researchers neeavtwk together to create a standard fault
test suite based on the knowledge gained from activiteecribed in this Section.
Scientists could then use such a suite to evaluatereiiff fault management solutions to
measure their effectiveness, performance, and robgstnes

5.3 Eliminate Barriersto Reslient Solutions

Faults on extreme-scale systems are expected to ¢roughout the entire system stack
from the hardware all the way up to the applicatioom8& responsibility for detecting
faults resides in each of these layers. A major éata creating resilience solutions is

that there is no communication or coordination betwéenlayers of the stack in fault
detection and management, nor coordination for preventivwective actions. The
elimination of this barrier requires crosscutting soljoin particular, a holistic fault
tolerance framework to build standardized solutions witfiihe April 2012 exascale
planning workshop [ERC12] began a process of listing possiblkenes interfaces
between all the different layers of stack. This dftmuld be leveraged to start the design
of a holistic fault tolerance framework.

Future systems may provide complex hardware trade-offeevdre can dial the trade-
off between the frequency of errors and the efficiemiche computation (in time and
energy). This trade-off could be achieved in many diffeveays, for example:

* High power, high resilience cores, together with lowvpn low resilience cores on
the same chip

» Cores that can run multiple independent threads, or caa pair of threads with
comparison logic

» Cores that can run with higher voltage threshold fohdrgeliability or lower
threshold, for lower power consumption

Similar performance, resilience, and power consumptaaebffs may be available for
parts of the storage infrastructure, for example usindCRAIRAID-1, ..., RAID-6.

Today’s system software has limited fault toleranod &ault awareness. The OS and
runtime systems, besides needing to survive faults theesselneed to provide
notification and recovery capabilities to affected apions. To facilitate fault recovery,
system software needs to be designed to confines#aolts, to avoid or limit their
propagation, and to recover from them when possible.

Fault avoidance techniques aim to predict the imminenir&aibf components so as to
avoid application failures. For example, if node fatuocan be predicted ahead of time,
then a process, task, or thread can be migrated awayafroode or core ahead of its
failure, avoiding its impact and the need for restanthSa scheme effectively increases
the MTBF. More research is needed to assess the iedieess of fault avoidance. In
addition, one will need efficient support for process/thsk#id migration and for the
dynamic adaptation of the communication infrastructure.

As discussed in section 4.0, providing appropriate programmoudg! support for fault
management is an important step for any applicatiohengsy solution, especially when
considering ease of use. Fault management researseasto work with runtime and
programming environment developers to incorporate faultevess into their respective
environments and tools. The efforts of the MPI-3 Faulefgemce Working Group should
be supported and adopted, possibly before full ratificabibthe standard if that gets
mired in concerns, such as ubiquity. Standards discussionkl stiso be started as soon
as possible on the interfaces and semantics requireglotmal address space (GAS)
programming models, such as Unified Parallel C (UPC) antrafowith Co-arrays.
Support for resilience to network failures for GAS modets leagely be hidden from the
programmer (except possibly for some performance conceflogjever research is still

needed on appropriate methods, likely via a combinatidraafware and software, for
the most efficient implementation of resilient commcation including vanilla transfers,
atomic memory operations, and other higher-level comeoation features, such as active
messages. This requires interactions with appropriatdasi@ds bodies that govern these
languages. OpenMP is another candidate programming modelisimrssion of fault
management interfaces for handling node local faults.

A more revolutionary approach to recovery is to avoltbgether the need for
checkpoints. Present DOE applications are neither taleftant nor fault aware, They are
simply killed and restarted. Research is needed fodéwelopment of algorithms that
can run through failure, including a mathematically rigoranalysis of what errors can
be tolerated. Such schemes have been demonstrated fose)(dimear algebra
[Dongarra09, Boley95], where the system matrix can benaated with new rows that
are linearly dependent on the other rows. A relatedcareBerea is understanding where
reliable storage and execution regions can improve therfaaragement capabilities of
algorithms running on unreliable machines. Such schemes hamedbenonstrated for a
few iterative methods — for example, extrapolatg} ktate from state at neighbor points
[Bosilca07, Rodriguez07] and using reliable storage to credmlatolerant GMRES
[Heroux11]. Research is needed to figure out how generaltesabhiques can be.

Functional programming, or any programming model that usete*@nce” variables,
provides another view of “checkpoint-less” recovery. Suahgliages use garbage
collection to recycle storage once variables have lwesmisumed (read) by all their
consumers. Suppose that old values are not garbagetedjldzen one can always restart
a computation and recompute lost values, from old predevakies. Checkpointing,
namely the copying of current state can be replaceddrggressive “hardening” of old
state, concurrent with progress in the computation; thislemang delays garbage
collection, but does not impeded progress (as long as sterageailable). Recovery from
failures can be more localized [Jagannathan91]. Whilenetiitnal programming style
may not be appropriate for large-scale computations,ay be possible to use such
“functional techniques” to support more efficient checkp@ind restart schemes. More
research will be needed.

6.0 Roadmap

Section 5 presents a number of important activitiess M2E needs to invest in to meet
mission critical resilience requirements for futuresteyns. This section takes those
activities and identifies long lead-time items and whey theed to start, what activities
are needed in the next couple years and thus must stagdiately, and what timeframe
the DOE community and DOE mission needs will requalkait®ns to the longer-term
resilience issues, such that full applications that todgrate permanent, transient, and
even silent errors, while still getting the correctuiesThe latter requires support from
the hardware, runtime, OS, scheduler, and algorithmseinb&l applications themselves,
thus it will take some time for this resilience infrasture to be in place.

In the near-term, the Resilience Technical Councit fieeds to be formed to be able to
help define and coordinate the fault management resaatidities. Also near-term are

the activities specified in Section 5Address Immediate Needs. These activities are
primarily focused on improving the performance and efficy of checkpoint and restart
techniques, including improving performance and access to chetkestart storage
and asynchronous checkpointing.

Also of high priority is understanding the actual typed eates of faults that occur on
today’'s systems, and more importantly what faults ape@ed on the future extreme-
scale systems that DOE will likely procure. Becausehef long lead-time and the
dependence many other activities have on these resciitgties 2-4 in Figure 1 should
be started in the near-term. Figures 1 and 2 show thatipscand rough cost estimates
for the early start research areas and research dnr&acan start later. The cost estimates
($, $$, $$%$) come from the earlier Catonsville workshapae translated here.

Priorities

| Address immediate needs |
| 1. Fast checkpoint techniques for saving and restoring both local
and global state need to be developed, minimizing application

changes in the near-term (§)

| Understand the problem |
2. Errors types, rates, fault root causes, and propagation need to
be understood and characterized, including understanding the rate
and types of silent errors on future systems ($35)
3. There is a need for an application fault model, that identifies:
* What types of faults or degradations will be detected
* What and how the components will be notified
* What supported actions will be available to the components to
recover or adapt to degradations of different types ($3)
N4 4. Need standard fault test suite or metrics to stress resilience
solutions and compare them fairly (3%)

Early Start Research

Figure 1. Early start resear ch needed for DOE resilience needs

The better understanding of the resilience problem Waivathe creation of a standard
fault model and test suite that will allow applicatidavelopers to begin developing
portable, fault tolerant codes. The development otilh faodel will allow programming
tools to be built that understand transient faultsvilt describe services that operating
systems, runtimes, and file systems must be modibedupply in order to meet the
expectations of the fault model. The fault model wdbaset expectations for the vendors
developing hardware for extreme-scale systems.

Workshop participants identified gaps to the creation ofoltgionary resiliency
solutions. For example, providing fault management in progring models such as
MPI and PGAS, and creation of a fault management fnariethat spans all layers of
the software stack.

Prioritics

Later Start Research

N

9.

Gaps preventing resilience solutions
These need to be addressed to create extreme-scale system solutions

No resilience in the programming models P! and PGAS do not
offer a paradigm for resilient programming. ($$%)

There is no communication or coordination across the stack in
error/fault detection and management, nor coordination for
preventive or corrective actions. (35)

Present Applications are not fault tolerant nor fault aware ($5)
System software is not designed to confine errorsi/faults, to avoid or
limit their propagation, or to recover from them when possible. ($5)
No effective fault prediction due to lack of knowledge of errors,
root cause, or volume of data to develop statistical models (35)

Figure 2. DOE resilience research that isa high priority but can start later

7.0 Conclusions

Unique to this workshop the attendees identified sever@adalrDOE missions in both,
the NNSA and Office of Science that will be impactédamputer resilience is not
improved beyond what is available today. Also unique wanameration of all the fault
management research projects going on at each of the ria@onal laboratories. The
workshop also discussed the risks and barriers to faultgearent solutions on future
systems. The recommended plans going forward included theation of a resilience
technical council, research needed to address the irateedisilience needs of DOE
applications, research needed to better understand tleagdeates of faults that occur
at the hardware, system software, and applicationsleamd what work is needed to
eliminate the barriers to future fault management golat A roadmap was constructed
to define where long lead-time items need to start, wiegds to be addressed
immediately and what timeframe the DOE community ar@EDmission needs will

require solutions to different resilience issues.

References

[AlI09] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimp&am Lang, Robert Latham,
Robert Ross, Lee Ward, and P. Sadayappan. Scalable tiargang Framework for
High-Performance Computing Systems. Proceedings of the [EEE International
Conference on Cluster Computing (CLUSTER'09). Tsukuba, J&agtember, 2009.

[AliI11CF] N. Ali, S. Krishnamoorthy, M. Halappanavar, add Daily. Tolerating
Correlated Failures for Generalized Cartesian Distiobst via Bipartite Matching.
Proceedings of the ACM International Conference om@ding Frontiers. May 2011.

[Ali12] N. Ali, S. Krishnamoorthy, M. Halappanavar, andDaily. Multi-fault Tolerance

for Cartesian Data Distributions. International Jalirrof Parallel Programming,

Computing Frontiers special issue (In Press). 2012.

[Alil1l] N. Ali, S. Krishnamoorthy, N. Govind, K. Kowalskiand P. Sadayappan.
Application-Specific Fault Tolerance via Data Accesa@bterization. Proceedings of
Euro-Par. August 2011

[Ali11PDP] N. Ali, S. Krishnamoorthy, N. Govind, and B. P&r. A Redundant
Communication Approach to Scalable Fault Tolerance in #®fogramming Models.
Proceedings of the Euromicro International ConferemeParallel, Distributed and
Network-Based Computing. February 2011.

[Boehm10] S. Boehm, C. Engelmann, and S.L. Scott. AggregatioReal-Time
System Monitoring Data for Analyzing Large-Scale Pataihd Distributed Computing
Environments. In Proceedings of the 12th IEEE Internati®@@nference on High
Performance Computing and Communications (HPCC) 2010, pp. 7Ei&®purne,
Australia, Sep. 1-3, 2010.

[Boley95] Boley, D.; Golub, G.H. ; Makar, S.; Saaem.; McCluskey, E.J. Floating
point fault tolerance with backward error assertidBEE Transactions on Computers
44(2), Feb 1995, 302-311.

[Bosilica07] Bosilca, G.; Chen, Z.; Dongarra, J.; Langdu,Recovery patterns for
iterative methods in a parallel unstable environment. 2007.

[Bouteiller12] A. Bouteiller, T. Herault, G. Bosilcan@ J. Dongarra. Correlated Set
Coordination in Fault Tolerant Message Logging Protodots Many-core Clusters.
Journal of Concurrency and Computation: Practice and Eexue, 2012. To appear.

[Buntinas12] D. Buntinas. Scalable Distributed ConsensusSapport MPI Fault
Tolerance. In Proceedings of the 26th IEEE Internatidtexallel and Distributed
Processing Symposium (IPDPS) 2012, Shanghai, China, May 21-25, 2012.

[Carns00] Philip H. Carns, Walter B. Ligon Ill, RobertBoss, Rajeev Thakur.

PVES: A Parallel File System for Linux Clusters. égedings of the 4th Annual Linux
Showcase and Conference. USENIX Association. Atlaaga,October, 2000.

[Daly06] J.T. Daly “A higher order estimate of the omiim checkpoint interval for
restart dumps”, Future Generation Computer Systems 22 (2006) 303—-312.

[Daly12] J. Daly et al.. Inter-Agency Workshop on HPCsiRence at Extreme Scale.
2012.

[DeBardeleben1l] Nathan DeBardeleben, Sean Blanchardg @aan, Ziming Zhang,
Song Fu, “Experimental Framework for Injecting Logic Esran a Virtual Machine to
Profile Applications for Soft Error”, Resilience Prad.Resilience, the 17th International
European Conference on Parallel and Distributed Computimg{Ear), September 2011

[Dinan10] J. Dinan, A. Singri, P. Sadayappan, and S. Krishoaimy. Selective
Recovery From Failures In A Task Parallel Programmingd®&l. Proceedings of the
Resilience workshop. May 2010

[Dongarra09] J. Dongarra, George Bosilca, Remi Delmas| awmlien Langou,,
Algorithmic Based Fault Tolerance Applied to High Perforoea@omputing, Journal of
Parallel and Distributed Computing, Volume 69, pp 410-416, 2009.

[Elliott12] J. Elliott, K. Kharbas, D. Fiala, F. Muell, K. Ferreira, and C. Engelmann.
Combining Partial Redundancy and Checkpointing for HPC. ded@dings of the 32nd
International Conference on Distributed Computing Systé@GBCS) 2012, pp. 615-626,
Macau, SAR, China, Jun. 18-21, 2012.

[EInozahy02] E.N. Elnozahy, L. Alvisi, Y.M. Wangand D.Bohnson, A survey of
rollback-recovery protocols in message-passing systems. @@Mwputing Surveys 34, 3,
375—408, 2002.

[Engelmann09] C. Engelmann, G. VallZe, T. Naughton, and Scbit. Proactive

Fault Tolerance Using Preemptive Migration. In Procegslinf the 17th Euromicro

International Conference on Parallel, Distributed, andvork-based Processing (PDP)
2009, pp. 252-257, Weimar, Germany, Feb. 18-20, 2009.

[Engelmannll] C. Engelmann and S. Boehm. Redundant ExecutidAPGf
Applications with MR-MPI. In Proceedings of the 10th SRED International
Conference on Parallel and Distributed Computing and Netw®REN) 2011, pp. 31-
38, Innsbruck, Austria, Feb. 15-17, 2011.

[ERC12] Exascale Research Conference in Portland OR.| At18, 2012
http://exascaleresearch.labworks.org/apr2012/conference

[Fiala] D. Fiala, K. Ferreira, F. Mueller, and C.detmann. A Tunable, Software-based
DRAM Error Detection and Correction Library for HPQ@. lLecture Notes in Computer
Science: Proceedings of the 17th European Conference afiePand Distributed
Computing (Euro-Par) 2011 Workshops, Part 1l: 4th Workshop auili&ecy in High
Performance Computing (Resilience) in Clusters, Clows] Grids, pp. 251-261,
Bordeaux, France, Aug. 29 - Sep. 2, 2011.

[Gioiosa05] Roberto Gioiosa, JosZ Carlos Sancho, Sbang, and Fabrizio Petrini.
Transparent, Incremental Checkpointing at Kernel LewelFoundation for Fault
Tolerance for Parallel Computers. Proceedings of SC. 2005.

[Gottumukkalal0] N.R. Gottumukkala, R. Nassar, M. Paun, C. lsed&sgn, and S.L.
Scott. Reliability of a System of k Nodes for High Pemrfance Computing Applications.
IEEE Transactions on Reliability, 59(1):162-169, Mar. 2010.

[Gropp04] William Gropp, Robert B. Ross, Neill Miller. ddding Efficient 1/0O
Redundancy in MPI Environments. Proceedings of EuroPVM/EIBO4. September,
2004.

[Gupta09] R. Gupta, P. Beckman, H. Park, E. Lusk, P. Haegrdk. Geist, D.K.
Panda, A. Lumsdaine and J. Dongarra. CIFTS: A Coordinafemstructure for Fault-
Tolerant Systems. In Proceedings of the InternatiGoaference on Parallel Processing
(ICPP) 2009, pp. 237-245, Vienna, Austria, Sep. 22-25, 2009.

[Hursey09] J. Hursey, T. Mattox, and A. Lumsdaine. Imenect Agnostic
Checkpoint/Restart in Open MPI. In Proceedings of the 188M international
symposium on High Performance Distributed Computing (HRRQ09.

[Hurseyll] J. Hursey, T. Naughton, G. Vallee, and Rhé&ma A Log-Scaling Fault
Tolerant Agreement Algorithm for a Fault Tolerant MPh Proceedings of 18th

European Parallel Virtual Machine and Message PassingfdceeConference (Euro
PVM/MPI) 2011, LCNS vol. 6960, pp. 255-263, Santorini, Greece, Sep1,18011.

[Hurseyl?] J. Hursey and R. Graham. Analyzing Fault AwakeCtive Performance
in a Process Fault Tolerant MPI. Parallel Computiag.,J2012.

[Jagannathan91]_Jagannathan, Rnd Ashcroft, E.AFault tolerance in parallel
implementations of functional languageBwenty-First International Symposiumn
Fault-Tolerant Computinglune 1991, 256 — 263.

[Kogge08] P. Kogge et al.. ExaScale Computing Study: Techpo®igallenges in
Achieving Exascale Systems, 2008.

[Li10] M. Li, S. Vazhkudai, A. Butt, F. Meng, X. Ma, Y. Ki, C. Engelmann, and G.
Shipman. Functional Partitioning to Optimize End-to-Endfd?mance on Many-Core
Architectures. In Proceedings of the 23rd IEEE/ACM Inagional Conference on High
Performance Computing, Networking, Storage and Analysig &80, pp. 1-12, New
Orleans, LA, USA, Nov. 13-19, 2010.

[Mal2] W. Ma and S. Krishnamoorthy. Data-driven Faultefahce for Work Stealing
Computations. Proceedings of the International Conferemc Supercomputing (ICS).
June 2012.

[Moody10] A. Moody, G. Bronevetsky, K. Mohror, and B. de fBsgki. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkfing System. Proceedings
of the International Conference for High Performa@menputing, Networking, Storage
and Analysis (SC'10). New Orleans, LA. November, 2010.

[MPI-FT] MPI 3.0 Fault Tolerance Working Group at httméetings.mpi-
forum.org/mpi3.0_ft.php.

[Nagarajan07] A.B. Nagarajan, F. Mueller, C. Engelmand,&h. Scott. Proactive Fault
Tolerance for HPC with Xen Virtualization. In Procews of the 21st ACM
International Conference on Supercomputing (ICS) 2007, pp. 23e3#|e5 WA, USA,
Jun. 16-20, 2007.

[Narayan09] Sumit Narayan, John Chandy, Samuel LangpRarns, and Robert Ross.
Uncovering Errors: The Cost of Detecting Silent Datar@ation. Proceedings of the
Petascale Data Storage Workshop. November, 2009.

[Naksinehaboon10] N. Naksinehaboon, M. Paun, R. Nassat,e@ngsuksun, S.L.
Scott, and N. Taerat. Incremental Checkpoint Schemew/@lpull Failure Distribution.
International Journal of Foundations of Computer Scie2itg):329-344, 2010.

[Nassar08] R. Nassar, C. Leangsuksun, N. NaksinehabooRatvh, and S.L. Scott.
An optimal checkpoint/restart model for a large scale Ipghformance computing
system. In Proceedings of the 22nd IEEE Internatioraalel and Distributed
Processing Symposium (IPDPS) 2008, pp. 1-9, Miami, Florida WpA,14-18, 2008.

[Naughton09] T. Naughton, W. Bland, G. VallZe, C. Engelmamd S. L. Scott. Fault
Injection Framework for System Resilience EvaluaibRake Faults for Finding Future
Failures. In Proceedings of the 18th International Sympossn High Performance

Distributed Computing (HPDC) 2009: 2nd Workshop on Resiliendyigh Performance
Computing (Resilience) 2009, pp. 23-28, Munich, Germany, June 9, 2009.

[Ouyangll] X. Ouyang, R. Rajachandrasekar, X. BesseronDaKd Panda. High
Performance Pipelined Process Migration with RDMA. lodeedings of the 11th
IEEE/ACM International Symposium on Cluster, Cloud andd @omputing (CCGrid)
2011, pp. 314-323, Los Angeles (Newport Beach), CA, USA May 224!

[Rodriguez07] Rodriguez, G.; Gonzalez, P.; Martin, M.; TioayiJ. Enhancing fault-
tolerance of large-scale MPI scientific applicatioRarallel Computing Technologies,
153--161, 2007, Springer.

[Scarpazza07] Daniele Paolo Scarpazza, Patrick Mullam@gt©Villa, Fabrizio Petrini,

Vinod Tipparaju, D. M. L. Brown, and Jarek Nieplochaafsparent system-level
migration of PGAS applications using Xen on InfiniBand. Peoloays of CLUSTER.

December 2007.

[Shet11l] A. Shet, W. Elwasif, S. Foley, B-H. Park, Bernholdt and R. Bramley.
Strategies for Fault Tolerance in Multicomponent Appiaas. In Proceedings of the
International Conference on Computational Science ()CESl1l, pp. 2287-2296,
Singapore, Jun. 1-3, 2011.

[Sullivan1l] M. Sullivan, D.H. Yoon, and M. Erez. Contaimhébomains: A Full-
System Approach to Computational Resiliency. TechnicgabnteTR-LPH-2011D001,
The University of Texas at Austin, January, 2011.

[Taerat0O9] N. Taerat, N. Naksinehaboon, C. ChandleEllibtt, C. Leangsuksun, G.
Ostrouchov, S.L. Scott, and C. Engelmann. Blue Gene/t Aoalysis and Time to
Interrupt Estimation. In Proceedings of the 4th Indéiomal Conference on Availability,
Reliability and Security (ARES) 2009, pp. 173-180, Fukuoka, Japan,1d&9, 2009.

[Tikotekar07] A. Tikotekar, G. VallZe, T. Naughton, S.L.of¢ and C. Leangsuksun.
Evaluation of fault-tolerant policies using simulatidn Proceedings of the 9th IEEE
International Conference on Cluster Computing (Clusz@€)7, pp. 303-311, Austin, TX,
USA, Sep. 17-20, 2007

[Tipparaju07] Vinod Tipparaju, Manojkumar Krishnan, Bruce Pajmk@brizio Petrini,
and Jarek Nieplocha. Towards Fault Resilient Globahysr PARCO. 2007.

[Varma06] J. Varma, C. Wang, F. Mueller, C. Engelmanm &rL. Scott. Scalable,
Fault-Tolerant Membership for MPI Tasks on HPC Systdm&roceedings of the 20th
ACM International Conference on Supercomputing (ICS) 2006, pp. 219a8;s,
Australia, Jun. 28-30, 2006.

[Villa09] O. Villa, S. Krishnamoorthy, J. Nieplocha, amlM. Brown Jr. Scalable
transparent checkpoint-restart of global address spadeamms on virtual machines
over infiniband. Proceedings of the ACM Internationabn@rence on Computing
Frontiers. April 2009.

[Wang10] C. Wang, F. Mueller, C. Engelmann, and S.L. SElgtirid Checkpointing for
MPI Jobs in HPC Environments. In Proceedings of the 16#BEIHnternational
Conference on Parallel and Distributed Systems (ICPAID3P, pp. 524-533, Shanghai,
China, Dec. 8-10, 2010.

[Wang12] C. Wang, F. Mueller, C. Engelmann, and S.L. S&tiactive Process-Level
Live Migration and Back Migration in HPC Environments. Jourof Parallel and
Distributed Computing (JPDC), 72(2):254-267, 2012.

[Wangl2b] C. Wang, S. Vazhkudai, X. Ma, F. Meng, Y. KimmdaC. Engelmann.
NVMalloc: Exposing an Aggregate SSD Store as a Memoriitiarin Extreme-Scale
Machines. In Proceedings of the 26th IEEE Internatioretallel and Distributed
Processing Symposium (IPDPS) 2012, pp. 957-968, Shanghai, Chin21Meb, 2012.

[Yu09] Jing Yu, Maria Jesus Garzaran, and Marc Snir. EBeftk: Removal of Non-
vital Checks for Fault Tolerance. Proceedings of theafinual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO 20@3itl§ WA. March,
20009.

[Zheng09] Z. Zheng, Z. Lan, B. Park, and A. Geist. Systeg Pre-processing to
Improve Failure Prediction. In Proceedings of the 39tHEHHEFIP International
Conference on Dependable Systems and Networks (DSN), pp. 57Rig¥ah, Portugal,
June 29 - July 2, 2009.

