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1 Introduction 

The push toward exascale computing (1) and beyond is torn between contradictory and 
possibly incompatible goals.  On the one hand, one wants a system that will be available 
within a short span of time, on a relatively small development budget, and with the least 
changes possible to the current software stack.  On the other hand, one wants a system that 
is orders of magnitude more efficient in its energy consumption.  An exascale system could 
be as different from current systems as scalable parallel systems were from vector 
machines at the time of the last major transition in the field, but the amount of application 
software developed at DOE in the last decades makes it undesirable to take a “clean sheet 
of paper” approach, if at all possible. 

Furthermore, one wishes to explore and develop distinct exascale architectures to reduce 
risk while maintaining some unity so that application codes easily port among them.  
Finally, the design of an exascale system may involve a large number of vendors, some of 
which have limited experience in the field of High-Performance Computing (HPC).  A 
proper integration of these multiple contributions requires a proper definition of many 
new interfaces, as well as consistent design principles for the handling of cross-cutting 
issues such as resilience, performance, and power management. 

While DOE will not control the design of most of the components of an exascale system, it 
can influence their design and it can have a large impact on the overall system organization 
— both hardware and software1.  Thus DOE Research and Development involvement can 
focus on these system level design issues and some degree of customization.   One key area 
of this research is in modeling.  The complexity of future exascale systems and the lack of 
practical experience with many of the technologies that may be required at exascale may 
well require a more formal approach to the definition of exascale system organization, 
departing from the ad-hoc evolution of supercomputer architectures in the last decades.   

We believe that abstract machine models are key to supporting the Department of Energy's 
(DOE's) goals in exascale computing. 

 They should define the general system organization principles: the key 
abstractions, their layering and interaction, key feedback loops, and the general 
philosophy for handling performance (computation time), energy consumption, 
and resilience.   

 They should define layers that are compatible across systems.  If, as some believe, 
exascale systems have to be treated as aleatory systems, then this definition 
becomes more complex and much harder to define and verify.  The abstract 
machine model should provide a precise definition for what it means to “produce 
the same result,” including a possibly aleatory computation outcome, 
characterization of errors and, last but not least, common performance model. 

 They should provide a mechanism for exploring different implementation 
approaches to the same common model.  The abstract machine model defines the 
exploration domain. 

                                                        

1 This is the custom-commodity approach.  
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 They should facilitate verification and validation of complex exascale systems, 
providing a top-down approach to V&V that is a necessary complement to the 
bottom-up approach normally used in testing. 

 They provide a framework for handling global trade-offs on the energy budget, 
reliability, and software vs.  hardware support. 

This report will do the following: 

 Explain in more detail what we mean by “Abstract Machine Models”; how have 
such models been used in the past; and how they could be used in the future, for 
exascale, 

 Explain how abstract machine models can be used to achieve the goals listed 
above, 

 Outline the main roadblocks to the use of AMMs in achieving these goals, 
 Propose research directions to overcome these roadblocks, 
 Prioritize research in the use of AMMs for exascale 

2 Abstract Machine Models 

An abstract machine model (AMM) (or just “abstract machine”) is a representation of a class 
of computing systems that facilitates design, experimentation, performance and cost 
projection, and refinement and optimization without having to develop a complete detailed 
design of a single particular system.  An AMM serves as a conceptual interface between the 
low-level (bottom-up) implementation details, including hardware technology, architecture 
(organization and ISA), and operating system, and the high-level (top-down) semantic and 
policy details, including the overall execution model, application characterization, and 
possible programming interfaces.   

An abstract machine model is defined over a set of dimensions to expose critical 
operational parameters over specific ranges in order to explore design properties, their 
functionality, and their optimality.  An AMM may be manifest as a set of analytical 
relationships among system-independent variables (e.g., number of nodes) and the 
operational consequents such as performance or energy consumption.  More complex 
abstract machine models may be captured as a numerical representation (e.g., a queuing 
model) or as a simulation.  Depending on the development methodology, more than one 
abstract machine model, or equivalently refinements in the level of abstraction, may be 
employed to reflect different aspects of a single target system to be ultimately delivered.  
As a design interface, such a model can provide simultaneous access by different users of a 
given model.  The result can be a rapid and well-informed sequence of design cycles 
exhibiting convergent optimality through iterative refinement.   

An important use case for machine modeling is performance prediction.  Performance 
prediction plays multiple roles both in R&D and in operation, enabling exascale systems.  
Most notably, performance prediction will be required for the following: 
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 Platform Design Space Exploration: during the design of a new computing system, 
estimation of the performance of that platform on applications of interest as a 
function of available design choices. 

 Application Design Space Exploration: during the design of an application, 
estimation of the performance of the application on computing platforms of 
interest as a function of available application design choices. 

 Compilation and Optimization: during the translation of the application from 
human-readable task descriptions to machine-executable instruction streams, 
estimation of the performance of the application on specific platforms of interest 
as a function of possible mapping variations such as algorithmic forms, temporal 
and spatial placement of instructions and data required to achieve the computing 
task. 

 Runtime: during the execution of an application on a particular platform, 
estimation of the performance consequence of available adjustments to the 
platform and instruction stream.  These adjustments might include such elements 
as voltage and clock frequency supplies to individual processors, configuration of 
memory topologies, placement of instruction streams and data onto specific 
execution units, and alternative organization of instruction streams. 

These models of performance may include relating the resilience consequences with 
various adjustments such as describing the relationship between the rates of failures and 
the settings of power supply voltages on cores. 

In all cases, the abstract machine model is a key component to the performance estimation.  
The purpose of the abstract machine model is to represent a physical computing platform 
in a form that can allow reasoning about aspects of the platform more quickly and cheaply 
than by direct observation.  The required reasoning determines the aspects of the model 
that are required.  In order to maximize the benefits of using a model rather than a physical 
system, it is useful to make the model as simple as possible while still enabling the needed 
reasoning.  As a result, an abstract machine model is desirable, and selection of the 
appropriate level of abstraction is critical to the success of exascale system development 
and deployment. 

An abstract machine model consists of the following:  

 Some form of representation of program demands 
 System component capacities 
 System component functional properties 
 Policies for orchestrating computation 
 Costs associated with each instance of functionality 
 A schema of composition that permits a system description comprising a 

multiplicity of functional elements 
 Behavior metrics 
 Objective functions 

Different facets of a design process and/or team can contribute distinct elements within 
this composite abstract model.  Individual modules of the model may initially be simplistic 
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with only one or a few parameters and their interrelationships.  These may later be 
replaced with higher fidelity descriptions to achieve superior resolution and confidence 
through advanced complexity of design and modeling.   

There is a wealth of experience with simulation and emulation modeling tools and these 
should be applied wherever practical in realizing the new abstract machine model strategy 
of advanced machine design and system usage policies.  Yet the existing state of the art in 
machine modeling is not sufficient for exascale.   Certainly current methods are unlikely to 
scale to the large number of components and tasks needed for exascale.   But more 
challenging is the number of machine attributes (such as aleatory) and the way that 
exascale systems will involve “vertical” execution models, making it difficult to reason 
about exascale at just one level of abstraction at a time while capturing cross-layer 
interactions. This report will highlight areas where new research and development is 
needed.   

3 Definitions 

Abstract Machine Modeling Language (AMML): An abstract machine modeling language 
is the formalization of a particular parametric model for a class of machines (a design 
space).  This defines the space of machines that software tools for exascale must address, 
and informs programmers as they design algorithms and software that should utilize the 
machine and be portable across the space.  It enables programmers to reason about what 
aspects of the machine are relevant for performance as they design their algorithms/apps 
and decide how to map them onto a family of machine architectures.  It provides a 
substrate for developing strong evidence to influence vendors and understand trade-offs 
during the codesign process, by expressing what the valuable aspects of a machine are.   

Abstract Machine Model (AMM): is a representation of a particular machine within the 
AMML.  This can be used as the referent for mapping processes (automatic as in a compiler,  
manually by a programmer, or by a runtime process) to optimize software to that 
particular machine.  The model may express ranges or sets of values for groups of 
parameters – expressing a range of values or configurations that might be used by runtime 
adaptive systems or co-design processes to choose an ideal configuration.   

Execution Model: A set of governing principles guiding the co-design and interoperability 
of system component layers in performing a specified computation. It defines a family (or 
class, category, etc.) of machine types for which many distinct specific implementations are 
possible depending on requirements and constraints applied. It establishes the state 
objects, their naming conventions and hierarchy, sets of actions to be performed on them, 
semantics and control of parallelism, composability and interoperability of context and 
action domains, and other ancillary properties shared across machines within the genre 
(e.g., reliability, performance models, etc.). An execution model is motivated by new 
opportunities or challenges to be addressed, often as a result of technology advances or 
application demands. An execution model informs a system ‘decision chain’ that establishes 
the contribution of each layer in determining where, when, and what actions are to be 
performed optimally. 
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"Horizontal" Execution Model: An inadequate consideration of the execution model as 
being described by an interface or abstraction layer. 

"Vertical" Execution Model: In order to reach the performance goals for exascale, 
particularly with power, optimization and new approaches must be taken in the design of 
execution models that cut through multiple traditional layers.   For example, the use of 
futures and other novel synchronization mechanisms affect hardware, runtime, operation 
system, and programming interface.   Execution model issues are cross-cutting. 

Application Surrogate: A minimal representation of a larger application.  E.g., a Compact 
App, Mini-App, Skeleton App, Proxy App, Mini-driver, or kernel. 

Compact app: Small application, having fewer features and simplified boundary conditions 
relative to full applications. 

Mini-app: Small, self-contained program that embodies essential performance 
characteristics of key applications. 

Skeleton app: Captures control flow and communication patter of an application.  Can only 
be run in a simulator. 

Proxy app: General term for all the above “app” approaches. 

Mini-driver: Small programs that act as drivers of performance-impacting library 
packages. 

Kernel: This represents the core computation of an algorithm.  Scheduling functions could 
map it to a single computational node in the machine, or spread it in a complex schedule 
across the machine. 

Joe: An archetypal application program who is more concerned about basic functionality 
than with optimal performance.  Has no desire to understand the machine in anything 
more than a basic level as relies on the compiler, libraries, and other tools to achieve 
performance. 

Stephanie: An archetypal application program who seeks the highest levels of 
performance for her code.  Is willing to delve into the details of the machine, such as 
understanding memory hierarchies, optimizing communication patterns, and pursuing 
performance at the sake of (some) portability. 

Aaron: An archetypal hardware designer, who seeks to architect the exascale machine.  
Requires a high-level understanding of applications, but does not require (or want) to 
understand all applications in great depth.  Is very concerned over the low-level hardware 
of the machine. 

Exascale Machine Model: A system used to simulate or estimate the performance of a 
future exascale system.  Its goal is to produce useful information that can impact decisions.  
The model will include a specification which describes the machine at some level of detail.  
The machine model can include multiple levels of abstraction to address different 
audiences (e.g., Joe, Stephanie, Aaron), or different uses (compiler target, simulation 
vehicle, verification referent).  The machine model may include details on relative timings 
of operations, speeds and feeds, presence or absence of vector instructions, network (both 
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on-chip and system) parameters, power/energy consumption, and reliability.  The machine 
model addresses the performance of the whole machine (e.g.,  processor, network, 
memory, IO).  Examples of partial machine models or machine specifications would include 
processor or memory specification sheets and ISA manuals. 

4 Design Space Exploration for Exascale Machines with Abstract 
Machine Models 

We propose the use of Abstract Machine Models (AMMs) to enable systematic engagement 
and co-design of exascale machines and software (applications and system).  We expect 
this approach will allow tangible and focused interaction between the designers of exascale 
software and the designers of exascale hardware, allowing both optimization of the 
realization of a particular AMM in a physical machine architecture and associated runtime.  
An AMM can serve as a static or dynamic interface for software tools, such as compilers, 
debuggers, verifiers, runtimes, and control systems, for reasoning about and even changing 
the configuration of the machine (hardware plus software), in introspective and adaptive 
modes.  An AMM can be used as an object for simulation, supporting varying levels of 
abstraction and definition, trading precision for speed.  An AMM also defines the range (the 
multidimensional space and multidimensional time) of program mapping schedules 
(implicit, parametric, dynamic functions that map from the domain, software operations in 
the application, to the range, where and when they operate in the hardware). 

Ultimately, a successful research and development program, supported by sophisticated 
simulation and modeling tools (applied to the AMM, system software, and application 
software) will enable a rigorous quantitative comparison of distinct AMMs, allowing 
assessment of distinct system organizational approaches based on deep insights from 
applications and systems software.   

It is important to make the distinction between a specific AMM, and the language or logic in 
which that AMM is described.  For the latter, we use the term Abstract Machine Modeling 
Language (AMML). 

Ideally, the research into machine modeling for exascale would be undertaken by several 
distinct teams, each with a charter to explore distinct AMMs (or more ambitiously >1 AMM 
per team), within a common AMML across the exascale R&D program.  Such a process of 
deep collaboration, focused by the definition of the important exascale hardware and 
software design spaces (as embodied in the evolving cross team collaborative definition of 
the AMML), the comparative quantitative evaluation of AMMs, and the co-design 
optimization within the design space defined by an AMM together represent a highly-
rigorous, robust approach to achieving usable exascale computing capability in a 2018 time 
frame, thereby enabling continued DOE leadership in computational science.   

Abstract Machine Modeling Languages (AMMLs) define design spaces, defining the 
complete fundamental structure and mechanisms for use of a computing system and 
thereby allowing the definition and exploration of system software (runtime and operating 
systems) and applications structure.  This definition and exploration can be ab initio or 
based on evolution from existing software and algorithm structures.  Having a common 
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AMML across the program allows for comparison between AMMs because they are 
expressed within the same language and in the same terms. 

Several technology studies by distinguished scientists [DARPA-HW, DARPA-SW, DOE-HW, 
DOE-applications] have found that exascale systems pose new and distinct challenges in 
scale of parallelism, dynamism of performance, and resilience (soft and hard errors and 
faults).  These challenges dictate a prudent expansion of the design space of AMMLs to 
include new dimensions: 

 Mechanisms that support advertising error rates, mechanisms to notify software 
or errors or faults, and potentially interfaces which allow software to  specify 
error rates (at some cost in energy/performance) 

 Mechanisms that support synchronous and asynchronous messaging 
 Mechanisms that support thread / task creation / termination / synchronization 

and scheduling 

Abstract Machine Models for exascale machines might also plausibly include mechanisms 
for the following:  

 Performance monitoring 
 Load balancing 
 Notification of performance change imposed by the hardware 
 Heterogeneous functional units 
 Deep hierarchy of layers and mixed types of layers 
 Global memory address, varied consistency models, and new virtualization and 

security mechanisms 
 Means for nimble dynamic regulation of voltage, clock, placement 

It is likely that different approaches to these novel exascale system issues will, in fact, 
define different AMMs (classes of machine designs) and as such determine how they are 
addressed is a critical element of the co-design process.  Further, the development of 
distinct Abstract Machine Models (AMMs) will allow the comparison of distinct capabilities 
and approaches.  This will further allow the alignment of layers/abstractions across 
different system designs, which will enable rigorous comparison for what it means to 
"compute the same results" and the related challenges of verification and validation of both 
systems and applications.  Within these AMM frameworks, system implementers can safely 
explore varied approaches and techniques, and compare results in a meaningful and 
constructive fashion, moving towards exascale systems that are robustly better.  Finally, 
AMMs will allow the instantiation of a system architecture for "self-awareness" and global 
management of complex tradeoffs involving software complexity, performance, energy, and 
reliability. 

It is important to note that while the Abstract Machine Model for an exascale machine 
needs to include these facets, a successful exascale system might in fact hide many of these 
hardware services/interfaces from the application software, successfully encapsulating 
them in runtime/firmware systems.  The modeling mechanism for such encapsulation may 
mirror the way that the AMM supports multiple levels of abstraction for different 
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simulations.  Such success would protect applications from the associated machine 
complexity, and provide a simpler application execution model. 

4.1 Applications and Metrics 

During the design of potential exascale computing platforms, it is beneficial to evaluate the 
likelihood of that platform delivering the desired execution capabilities before the time and 
expense of constructing the proposed platform are expended.  The desired capabilities may 
be expressed in several ways, but must ultimately represent an improvement in the ability 
of the platform’s users to perform the required computation.  Historically, this has been 
represented by the peak rate of floating point operations that the platform is either 
theoretically capable of, or can achieve on an idealized benchmark, such as LINPACK.  It is 
well understood that this representation does not correlate well with the performance of a 
platform on most applications.  Fundamentally, a platform’s capability requirements are 
determined by the applications that are likely to be run on it.  Since different applications 
are limited by different aspects of the computing platform, a single metric (such as peak 
FLOPs) can not suffice to predict the performance of an exascale system on applications of 
interest.   

Because peak FLOPs is not a sufficient metric for the capability of a platform to execute 
applications, the criteria for achieving exascale is often described [1] as one thousand times 
petascale (or the most capable computers as of approximately 2010).  This can be viewed 
either as a 1000x improvement in time to solution for existing problems (strong scaling), or 
a 1000x improvement in problem size that can be computed in a given period of time.  The 
design criteria, and thus, the goals of design space exploration for a DOE exascale 
computing system must be defined in terms of applications critical to DOE.  The 
deployment of exascale platforms will cause applications with new classes of computation 
to emerge in response to the available resources, but it is only possible to make statements 
of relative capability in comparison to applications that currently exist.  Therefore, to 
evaluate the suitability of a proposed design, it is necessary to estimate whether that 
design can deliver a 1000x improvement in existing applications critical to DOE. 

The combination of an abstract representation of application needs and an abstract 
machine model that represents sufficient information about the platform may allow 
prediction of performance with acceptable accuracy.  Recent success [2] in isolating the 
aspects of applications that most critically map system capabilities to achieved 
performance give reason for optimism that such performance predictions may be 
successful.  A key goal for early phases of exascale systems research will be to find the 
appropriate abstractions that allow sufficiently accurate performance estimation of known 
applications on designed architectures.   

In existing petascale systems, both energy consumption and execution time are driven 
mostly by communication [3].  Since total energy consumption is a constraint on exascale 
system design, it is likely that this situation continue or become even more pronounced in 
exascale systems [1].  Therefore, a machine model abstraction that facilitates estimation of 
the total communication cost of an application is likely to be an absolute requirement for 
performance prediction. 
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The communication required by an application is a property of both the application and the 
platform.  For example, the size of first-level cache will affect how many loads from more 
remote memory must be made.  Furthermore, the cost of communications is, on many 
platforms, at least partially determined by the temporal and spatial properties of the 
sequence of communications.  In most applications, the sequence of communications has 
some bounded degree of flexibility which can be exploited at compile- or run-time.   

For the purposes of design space exploration, it is necessary to construct the model of a 
particular machine in terms of a relatively small number of simple metrics that can easily 
be extracted or found by inspection.  Empirical models of complex subsystem behaviors of 
a full system will not be available during the design phase.  Benchmarks may be run on 
simulators only if they are extremely simple.  Existing modeling approaches for 
communication complexity consider alternatively traffic between cache and main memory, 
the cost of communication between nodes in a message passing cluster, and the impact of 
network topology on communication costs, but are not integrated and each considers only 
specific execution models [3]. 

A unification of the disparate communication cost models may yield a manageable number 
of metrics which could be found by microbenchmarks run on simulators.  These metrics 
could include latencies and bandwidths between all possible connected nodes on the 
communication network of a system, and quantity of storage available at each node; each of 
which as observed in the context of various communication sequence types that constitute 
the bulk of current DOE applications.   

The work in study of patterns of computation, memory access, and parallelism has shown 
that most applications can be categorized into one of a handful of computational patterns, 
which contain varying proportions of a handful of memory access patterns, and are 
parallelized in only a handful of patterns.  Analytic and empirical techniques may be 
employed to find the quantity and proportion of each of the patterns and, for weak scaling, 
predict them at the desired problem size.  A fairly small number of microbenchmarks have 
been developed to quantify the cost of existing communication patterns on current 
systems.  These metrics and their corresponding microbenchmarks may be extended to 
account for the heterogeneity and more complex communication hierarchies that are likely 
to be present in exascale systems.  Likewise, the communication models of applications 
may be extended to account for arbitrarily deep hierarchies, and heterogeneity within the 
platform.   

With such extensions, it is feasible that a lower bound of communication cost for an 
application on a particular platform may be found by manual or automated analysis.  Since 
it is likely that communication costs will dominate both time and energy for exascale 
computing, such analysis of the intersection between application and proposed 
architecture may yield feasible bounds on performance. 
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5 Verification, Computational Reproducibility and Uncertainty 
Quantification 

As an example of the benefits of having formalizations of machines available as abstract 
machine models, consider verification of exascale systems.  The software of an exascale 
system provides a formalization of the application; with the addition of a model of exascale 
machines we can pose (and answer) through rigorous automated methods, questions about 
performance and correctness that are vital.  Once enabled by formal models of the machine, 
we can reach for new heights in program specification with concurrent benefits in 
performance and in reduced software life cycle costs for scientific applications, as 
applications expressed at a high level provide properties and semantics for more 
parallelism and more performance. 

A focus on verification is important for exascale abstract machine modeling for two 
reasons.  First, pragmatically, verification of a model forces rigor in definitions of models 
and helps resist the temptation to throw undefined or unsound concepts into the machine 
model.  Second, and more importantly, the anticipated complexity of exascale machines will 
demand more emphasis on automatic verification than has been the case in current HPC 
efforts.  This complexity stems from the scale of the machine (number of devices), the 
expansion of the set of machine attributes (new voltage controls, synchronization, 
mechanisms, heterogeneity, etc.), and the nondeterministic, or aleatory, behavior (from 
faults or other probabilistic mechanisms).  Further, it is possible in modern VLSI to 
provision machines with far more transistors that can be simultaneously powered; the 
result is that regulation systems must be in place to assure the machine operates within 
limits, maintains integrity, and is safe.  With such complexity and risk, verification 
approaches are needed and thus can provide confidence that the behaviors that emerge at 
runtime are within expectations, that the results of computations are meaningful, and that 
the exascale hardware will not e.g., melt.  

The exascale project has a breadth of established verification techniques from other areas 
of computer science to draw on.  In the field of hardware design, there is a rich set of 
advanced technologies and off the shelf commercial tools for writing specifications and 
checking them.  The field of embedded systems provides verification technologies for 
modeling at multiple levels of abstraction, combining those models in hybrids (cf. Pnueli, 
Lee/Ptolemy), reasoning about faults, and for assuring the correctness of real time.  In 
systems software, there are techniques involving higher order logics for expressing 
knowledge ontologies and behavior of complex concurrent and nondeterministic software, 
and for finding, expressing, and checking proofs of correctness.   

These formalizations can assist with component development.   Specifications of the 
expected hardware behavior can be the referent for verification processes in hardware 
design, e.g., formal verification of chips before they tape out.  Providing specifications to 
hardware vendors that come from the system level modeling is vital to prevent “dropping 
the ball” with uncommunicated requirements, particularly in the case where the 
components are breaking from the standard improvement curves on  conventional 
processors and system design. 
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Formalization can also assist with production.    When machines are being assembled, 
tested, and running acceptance tests, these abstract models can provide the vital referent 
for determining if the system is operating to spec, and for isolating any faults or defects in 
construction.   Note how this checking for production flows naturally into processes for 
operation, defecting defects in operation or rapidly isolating failed components in the 
machine.   Specification intended for operation, that are driving resilience and fault 
recovery processes in operation through aleatory behaviors, can be used in production and 
testing to determine if machines are correctly built.   Consider – if the nature and scale of 
exascale means that devices will run closer to margins and will occasionally fail, how does 
the customer for an extreme scale machine determine whether a delivered machine passes 
acceptance tests?   How does the vendor assure that the machine will pass tests before 
shipping?   Models may be useful up front even in the procurement process to specify 
requirements for vendors producing the hardware and software of the machine, and for 
vendors to communicate requirements to subcontractors providing devices, compilers, 
runtimes, etc. 

While these established technologies are the foundations upon which a science of 
verification of computational scientific codes and exascale hardware can be built, there are 
many pragmatic challenges in applying them, and expanding the scope of these 
technologies to exascale.   

We note some additional benefits of a verification-oriented approach to abstract machine 
modeling.    

This focus on formalization of the machine will spill over into more rigors in the 
engineering of the programming approaches and the program mapping approaches.  In 
particular, high-semantic-content specifications of the software and the scientific system 
under study will be needed for combined verification of the correctness of applications and 
their implementation on exascale systems.  Exascale research and development should 
strive for the goal of developing systems rigorously specified to allow joint expression and 
checking of proofs of correctness for the combined application + mapping + system 
software + hardware combination, even in the face of nondeterministic and aleatory 
hardware behavior.    

Furthermore, this rigorous specification will have benefits in terms of providing for 
performance and productivity.  Specifications of information not normally found in 
typically HPC programs, such as formalizations of properties of commutativity, provide 
additional degrees of mapping freedom for compilers to exploit in order to find new 
dimensions of parallelism, for the massive increase in required concurrency for exascale 
hardware.  Furthermore, specifications of the applications, including information needed to 
verify systems with aleatory properties, such as required precision in values, provides for 
productivity and reduced life-cycle costs, as this information documents the system and 
provides information that allows for rapid and correct porting and scaling of software to 
future systems.   

One major benefit of taking a verification orientation in writing HPC software, by moving to 
formal documentation in high-level specification of the algorithm, science, and assumptions 
in the source code, is that it provides a sensible approach to the process of moving the DOE 
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software base forward to the new exascale era.   This can address the barrier found with 
some existing DOE codes, that are so old that the original software designers are long gone, 
and the risk of breaking them is so high, that they become “untouchable.”  With an 
emphasis on verification we can move to a new domain of system productivity by 
producing longer- lived and richer software.    This may be the solution to the dilemma 
where the massive DOE software base makes it costly or undesirable to take a clean sheet 
approach to exascale software.   Rather than further embellishing the DOE software base 
with additional pragmas, unrolling, and platform-specific tuning that obfuscate the 
semantics and frustrate forward (manual AND automatic) portability, the software could 
instead be simplified and clarified with specification information that aids in the forward 
porting and translation of code, through automated means.   If and as one takes on the task 
of updating and rewriting the DOE software base, the high-level approach offers the best 
long-term way to control life cycle costs. 

5.1 Features of scientific code to exploit in verification 

Scientific code has some unique features that facilitate validation.  Scientific codes are 
based on strong mathematical theories, such as linear algebra, numerical algorithms, group 
theory, and linear systems.  These features, available at many levels of scientific modeling, 
provide a rigorous basis for formulating and checking properties and invariants that can 
build confidence in an implementation of an algorithm on a particular computer instance, 
or to help build assurance into the quality of a code base.   

Also, scientific code is based on the underlying scientific theories.  In physics codes, there 
are properties such as energy conservation, reversibility, and symmetries that can be used 
in static and dynamic checks to gain confidence in the fidelity of a system.   For QCD codes, 
for example, these symmetries provide the basis for checking the results of scientific 
computation, whether the results are in fact invariant under the symmetries required by 
the physics.  If they are not invariant, there is a bug, somewhere – in an ALU, memory, bus, 
compiler, algorithm, etc.  Such techniques are currently used manually to check QCD codes 
prior to and during long and expensive computing results to assure that the results are 
meaningful. 

As another example, the DE Shaw DESMOND molecular dynamics simulation software 
implements molecular dynamics models in a perfectly reversible form, to the bit level using 
synthetic fixed point representations of values.  It is possible to detect bugs in DESMOND 
by changing the sign of time, and running the simulation a few steps.  The full reversibility 
of the underlying classical physical models, and the bit-perfect simulation, indicates that if 
the model does not reproduce its initial conditions when reversed, there is a bug 
somewhere.  This property was invaluable in the coding of DESMOND, allowing it to be 
developed very rapidly. 

A final aspect of scientific code is that the solution or simulation of a system can often be 
performed at multiple levels of abstraction, or with different kinds of models or algorithms, 
with reasonably well defined relationships between the bounds achieved by one level 
compared to another level.  Thus simulations can be repeated or co-simulated at these 
varying levels of abstraction, or with related but different models, in order to detect 
variances and deviations that result from errors in the system or implementation. 
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Typically, currently, the validation of codes and scientific computations is done in an ad-
hoc, application-specific manner.  There is an opportunity for DOE R&D investment to 
develop technology, and culture of common and powerful tools and software engineering 
methodologies for scientific computing based on validation.   

One should keep in mind the distinction between verification and validation.  In embedded 
systems, verification is typically used to describe the checking of the correctness of a 
particular artifact with respect to the given specification of correctness.  This is the sense 
that the question above seems to be focusing on when it asks about validation, but 
according to the common nomenclature it really should be using the term verification to be 
consistent with its intent.  The term validation is used to refer to the process of 
determining whether the specification itself is sufficient for the application; does this 
application really prove anything about the scientific system that is under tests?   (Stated 
another way, in the context of aerospace engineering, verification proves that the aircraft 
meets the specification of what it should do; validation checks the specification against the 
intended mission to assess if it will be useful when it works). 

For both cases, verification and validation, the implication for software engineering is that 
the programming methodology for scientific computing must move strongly toward high-
level, semantics-rich expressions.  These expressions provide the referent – the formal 
expression of the specification, the symmetries, the invariants, and so forth, for automated 
and interactive tools to formally pose and answer questions about the correctness of 
exascale computing systems. 

There is also a need for the software engineering methodologies to formalize the ad-hoc 
and seat-of-the-pants knowledge of the underlying mathematics and physics.  This would 
be an ontology for enabling moving the knowledge and the prose in math and science 
domain papers and the even more fragile human know how into formalized bases that 
could be applied in automated tools across many applications and systems. 

In making this recommendation, toward higher semantic expression of algorithm, scientific 
and mathematical knowledge, and the automation of verification tasks in scientific 
computing, we acknowledge that this is not necessarily easy.  This is hard, but the payoff is 
incredibly large.  We note that there will always be gaps in the ability to formalize this 
knowledge.  In some cases the theories will be incomplete.  For example, there is no 
universal theory (yet) on the right choice of the messy business of preconditioning systems 
for particular problem instances.  But even in this case where the knowledge is heuristic, 
formalization of the knowledge will be useful.  We can envision capturing the knowledge, 
such as it is, into expert systems associated with preconditioner design that increase the 
productivity of scientific computing experts and novices, speeding more rapidly to good 
results and eliminating time and energy consuming experimentation.  The project of 
encapsulating mathematical knowledge in formalisms, developing the metalogical 
frameworks for integrating these logics, will require significant expertise.  But recent work 
and successes in building proof based systems, integrating theories and logics, in the 
foundational proof carrying code area, is a promising foundation for application of these 
techniques in the scientific computing area. 
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5.2 Aleatory behavior and verification  

An area in which demands for modeling for exascale exceeds current capabilities, and new 
technologies are needed, is in modeling the random or aleatory behavior of exascale 
machines that is expected to emerge as devices move closer to scaling limits, as circuits run 
closer to noise and power margins, and as tradeoffs such as power vs.  unreliability 
reliability move in the direction of unreliability, with system level mechanisms providing 
for a reliable machine built of unreliable components.  The underlying nondeterminism in 
exascale applications will also stem from unreliable components, and from “don’t care 
nondeterminism” as in the Pingali University of Texas Galois system.   

Transforming the unreliable system into a reliable one burns more power.  Making the 
unreliable transistors into reliable transistors requires increasing the power supply 
voltage, which increases power dissipation per switching event, which might require clock 
frequency to diminish in order to meet operational constraints such as machine room 
power (and this will overall be at lower efficiency).  Similarly, removing the opportunity for 
don’t care nondeterminism in the software may reduce the concurrency of the system and 
limit the degree to which static power dissipation can be amortized and diminished by 
getting the result more quickly.   Power and reliability will be linked for exascale.   Research 
is needed in developing was of modeling this linkage. 

Typically application programmers are willing to accept some performance overhead in 
development mode; they run in debugging mode or with thread checking on to detect 
latent bugs, race conditions and hazards.  So in debugging mode we can envision a high 
tolerance for higher power, because the runs will be shorter and the priority is on software 
development productivity. 

In production mode, there are probably ranges of tolerance for performance overhead in 
order to get bit reproducibility.  In other words, it depends. 

Fundamentally nondeterminism in the results (bit errors) makes programmers worry 
because it is hard to distinguish a bit error that is within the bounds of “don’t care.”   No 
application really can be asked to tolerate outright bugs and violations of their application 
semantics.  Therefore there should be low tolerance when the bit errors are signals of bugs 
or are undetected, or in violation of the specification of what degree of error will be 
allowed (this raises the question of how the specification is formally expressed to the 
system, or how a result could be checked for being within specification or not). 

In some applications, such as optical proximity correction (an inverse computation to 
design a mask that compensates for diffraction in lithography in order to achieve a target 
physical pattern, in VLSI manufacturing), there is very low user tolerance for 
nondeterminism and error because a defect in the computation could lead to defective 
chips, costing millions of dollars.  This was behind early resistance to using GPUs for OPC 
before GPUs had ECC.  In contrast, OPC companies were willing to use IBM Cell chips 
because they did have ECC.  This highlights the distinction between bit errors that are due 
to bugs (which are unacceptable), and bit errors that are due to something else, and thus 
acceptable.  Because the underlying manufacturing process for masks has its own tolerance 
– masks are not being fabricated to more than a certain level of precision (1 in a million) so 
there is some level at which it truly doesn’t matter whether the answer deviates by a 
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smaller amount than this tolerance.  It is just that the user has to have confidence 
(somehow) that this deviance is not due to a bug. 

So in production mode, in principle, as long as the bit-level nondeterminism is somehow 
guaranteed to be within a certain level of tolerance based on the application, it seems like 
there should be a high willingness to accept this in order to get greater performance or 
computational efficiency.  The engineering challenge is in designing the system to 
guarantee the conformance to a tolerance specification for bit-level nondeterminism.  A 
starting point is the ability to express or write down the tolerance specification, in order to 
check and implement (by the programmer, compiler) the system to achieve it, and to verify 
that the implementation is correct. 

This suggests that the modeling technology for exascale for describing resilience is related, 
somehow, to other facilities for reasoning about and proving properties related to the 
precision and accuracy of numerical computations.  Such features may also be useful for 
reasoning and optimizing with respect to the representations, e.g., utilizing mixed precision 
in certain computations, which has recently been shown to be valuable by several library 
specialists, e.g., Dongarra.  This is further related to uncertainty quantification and relates 
deeply to the properties of numerical algorithms themselves, e.g., in inverse problems 
where techniques such as regularization are needed to damp the sensitivity to small errors.  
Thus, there is a significant research and development challenge involved in providing 
assurance that bit-level variation in results is not an error but within some specified 
bounds. 

5.3 Formal verification technologies relevant to DOE exascale 

It is well established in the field of model checking for hardware design that system 
symmetries can be exploited to reduce the size of models.  The early work in model 
checking of cache coherence protocols worked to reduce state explosions using 
symmetries.  (See McMillin’s 1992 thesis.)  This does result in some loss of model fidelity 
(creating some false positives/negatives), but the resulting scalability may enable 
verification toward large parallel computers.   

Certainly the foundation of formal verification can start with existing techniques used for 
verifying sequential and concurrent systems; model checking, temporal logics, SAT solvers, 
and more advanced technologies such as higher order logics, foundational proof carrying 
code, and proof assistants.  These techniques can be applied directly to the verification of 
the envisioned exascale nondeterministic, asynchronous subsystems, e.g., new versions of 
MPI, dataflow-based systems such as ParalleX, or systems for irregular problems such as 
Galois.  They can be used to verify buffer properties, active message protocols, resilience 
against message ordering variation, flow control, and other system mechanisms.  Even 
though these are asynchronous and nondeterministic, potentially, in exascale, powerful 
applicable proof technologies exist.  For example, foundational proof carrying codes 
provide methods for reasoning about asynchrony in complex forms; it is currently having 
success for reasoning about locking code implementations and uses for example, in 
operating systems. 

The exascale programming language should provide for the specification of proofs to allow 
for the application of proof checkers/proof assistance in proof carrying code techniques.  
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Existing techniques in foundational proof carrying code provide ways to inject proofs, 
within the existing programming language syntax, into the advanced type system of the 
compiler, for generation to the proof objects that drive the small proof checkers.  While 
these proofs would be constructed as part of the design process, they would ensure that 
forward generations using the software would have formalized explanations of the 
underlying theories of correctness and operation of the code to assist in having confidence 
(certification) in the correctness of the system in future compositions, ports, etc. 

Reasoning about performance requires modeling, and model evaluations at other 
complementary levels to functional models (used for correctness).  For example, reasoning 
about performance requires network models, processor models, and also algorithmic 
analysis to understand how those hardware elements affect performance.  Ideally 
performance models would be expressed in a common framework with functional models, 
to share the schema for naming elements and for describing their relationship, aka machine 
models.  Thus, while performance models seem to be something of a layer above the 
abstract machine, in a way this collapsing of layers occurs.   

This may be related to Sterling’s conception that the exascale execution model must be 
“vertical.”   That is the performance model, the machine model (which describes 
connectivity) and the functional model (which defines the behavior of the machine, e.g., and 
abstract machine) should be expressed in a common framework. 

(Performance models also need means for describing their domain for correct application; 
e.g., a simple linear model of a network may be appropriate at nominal loads, but not 
accurate for predicting behavior under congestion.) 

Other aspects of the machine model and abstraction machine that can aid with verification 
include exploring how the machine model can be dynamic (expressing changing conditions 
in the machine) or writeable (allowing for some forms of reconfiguration) and empirical 
(supporting implicit models based on performance profiling).  

Working with such formalizations from systems software provides a degree of rigor in the 
design of AMMs and AMMLs.  It helps move the definition of AMMs away from hand waving 
and prose into true formalizations with well defined underlying logics and semantics.   

6 Reasoning about Architectures and Methods of Simulation 

6.1 Reasoning about Architecture 

Our ultimate goal is to design and build exascale hardware and software in order to solve 
significant problems that are important to our user communities.  Abstract models are the 
spaces in which these designs live.  Simulation uses these models to produce results that 
allow us to make design decisions. 

It is impractical to attempt to evaluate every possible design in the entire design space.  
Instead any design process (including both hardware and software design) explores the 
design space in a tree-like manner starting out with designs at low levels of detail using 
very abstract models and progressing to successively more complex and less abstract 
models until ultimately the design is sufficiently detailed to allow the system to be built. 
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Each of these iterations involves major design decisions that need to be evaluated against 
our requirements.  These are not only functional requirements (the system should be able 
to perform its intended task) but also a large number of generic performance 
requirements.  Here we include not only the traditional concept of performance (time to 
solution of the calculation) but also any requirement on any aspect of the system that needs 
to be measured/estimated such as: 

 Power 
 Cost to manufacture 
 Maintenance cost 
 Cost of the remaining design effort 
 Risk  

This ability to evaluate our abstract designs and reason about their applicability is of vital 
importance to the whole design process.  If we can identify a bad design during the early 
abstract phases then we can quickly eliminate large volumes of the design space from 
consideration.  If the same problem is only identified much later in the process it will be 
necessary to back-track to an earlier and simpler version of the design (discarding much of 
the intermediate work) and start again down a different branch of the design tree.  
Therefore our abstract models need to contain models of the quantities of interest (power, 
cost, execution time etc.).  This will naturally result in parameterised models where the 
parameters represent as-yet undetermined aspects of the design.  For example at a 
particular level of abstraction we might choose to represent the power cost of a 
communication as some linear function of the rate bytes are being transferred and the 
distance of the communication.  In the same model the corresponding hardware cost might 
be represented as being proportional to the wires or optical fibres being used.  However 
the value of the constants of proportionality will not be known until further design 
decisions are made, such as the choice of optical or copper interconnects.  As a result of this 
much of our design reasoning will have to take place using sets or ranges of possible 
parameter values or educated guesses that will need to be validated later in the process. 

Though in some cases it will be possible to reason directly about the relative merits of 
different design choices, the scale and complexity of the systems we are trying to design 
mean that many of our design choices will be made based on simulation of the abstract 
models. 

It should not be necessary to develop models for all parts of the design space.  For example 
if we can, at an early stage, eliminate from consideration a class of hardware architectures 
using a very simple and abstract hardware model  then there is no reason to go on and 
develop a more detailed and less abstract model for this class of architectures.  Our models 
and to some extent our simulators are therefore part of the design process and are refined 
over time driven by the design decisions made earlier in the process. 

Fortunately, at a sufficient abstract level the same models will be equally applicable to 
current systems as to the systems we are trying to develop.  This gives us the opportunity 
to validate our initial models before progressing to the unique challenges presented by the 
Exascale.  Unfortunately much work still needs to be done, particularly in identifying target 
application problem areas and developing abstract models that reflect their requirements. 
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6.2 Methods of Simulation 

6.2.1 Machine Models 

It is already common in hardware design for machines to be represented simultaneously or 
selectively at varying levels of abstraction.  A design expressed in a HDL can be expressed 
at the functional level, register transfer level, gate level, transistor level, and even to some 
extent the physical level.  Syntactic mechanisms and tools are common for expanding or 
flattening designs to desired degree of abstraction or multiple levels of abstraction.  There 
is no mystery in the particular syntactic mechanism used to express the design; among 
Verilog, HDML, UML, EDIF, or XML, none is semantically that much more powerful than 
saying that the design is expressed in ASCII.  What powers the modeling of architectures is 
the underlying logic that these models refer to.  For simulation, this could be declarative, or 
imperative (event driven etc.) 

Machine models for exascale computers will encompass a wide range of representations.  
This diversity is a product of the number of audiences that require models and the variety 
of design decisions they must address.  However, all machine models will share one 
common feature – that they can be used to reason about the machine and produce useful 
decisions.   

More than a single, static representation, “machine modeling” for the exascale is a 
multilevel, holistic, and iterative process.  High-level abstract models will be used to 
develop low-level models, and as the community discovers new problems and bottlenecks, 
the models themselves will have to change.  Due to our limited experience in designing and 
reasoning about exascale machines, the models cannot be created before we start 
reasoning about the system, but must be created and refined once we have some ideas 
about what the key and useful parameters are.  This is true for any model, but for the 
exascale project, this concept of evolution and reinvention is critical.  We face multiple 
moving targets – from the applications to the architectures and even the fundamental 
fabrication processes which construct the machines.   

6.2.2 Standard Models 

If machine model specifications were standardized at some level it would benefit 
simulation tasks by providing a uniform format to build simulators around and by making 
“apples-to-apples” comparisons of different machine models easier.  Already, there are 
close to de facto standards for some computer components at some levels of simulation.  
For example, the processor core specifications used in the SimpleScalar or M5 simulators 
are generally accepted in the architecture community, and used in a variety of experiments.  
However, even these two standards are not interoperable and only describe one system 
component at one level of detail (processor cores at a cycle-approximate level).   

When constructing exascale machine models and simulation tools, some level of 
standardization is desirable to achieve commonality and interoperability, but this must be 
balanced against the need for flexibility and evolution.  These conflicting needs would rule 
out traditional standardization bodies (IEEE, JEDEC, etc…) as they are too slow to produce 
a standard in time. 
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6.2.3 Compiler Machine Models (Q3) 

Most compilers contain different machine models to assist in optimizing code for different 
processor architectures.  These machine models, like the GNU Compiler Machine 
Description, contain descriptions of the instructions available for a machine and how to 
convert a program’s internal program representation into these instructions.  This may 
include timing and performance details on these instructions to allow better optimization 
of the produced code.  This is a low-level compiler machine model. 

Though a useful example or starting point for a machine model in action, these low-level 
compiler machine models are incomplete.  These models are very processor-centric, and 
ignore the network, IO, and memory aspects of the system.  Additionally, they are very tied 
to a particular compiler, and to the needs of compilers (translating an intermediate 
representation into machine code) rather than a general model of machine performance or 
behavior.   

The DARPA PCA program is one example of an effort to produce higher level machine 
models that include the higher level information.  The Morphware Machine Model [4] has 
been used in advanced research and commercial software such as the R-Stream compiler.  
This machine model is expressed in an XML syntax with a schema that can express 
arbitrary levels of hierarchy, network parameters, heterogeneous complexes, “vertical” 
dimensions as referents for vertical placement through the hierarchy and horizontal 
dimensions across processing elements for horizontal placement in scheduling.  
Synchronization operations including hierarchical barriers can be expressed.  The model 
also indicates varying execution models, e.g., allowing the expression of concurrency 
control as in OpenMP or as in CUDA, and also the combination of the two.  Scratchpad 
memories and high-level DMA operations can be described, including the modes of 
concurrency and synchronization between processors and DMA engines. 

While such existing models are not yet complete for exascale, using such a machine model 
as a starting point for exascale has the benefits of an existing scheme onto which new levels 
of abstraction and detail needed for exascale can be added. 

6.2.4 Program Models 

Since we require simulation with multiple levels of detail, it is necessary to represent 
programs at multiple levels of detail.  That is, we need to build “program models” or 
“program representations” other than the compiled code of a program itself.  This program 
model needs to “fit” with one or more machine models to be used in driving a simulation.  
Some examples of high-level models of programs would be “dynamic” scalable traces (such 
as Aspen), state machines (such as the SST/Macro skeleton apps), application statistics 
(such as the NMSU Stochastic Models), and generalized dependence graph (such as R-
Stream).   

Some key characteristics of these program models: 

 Adaptive: The representations must be adaptive; static traces are insufficient 
because they cannot capture the causal relationships between system events.  For 
example, a static network trace (when sends occurred) will miss the causal 
relationships between messages (e.g.  request/response). 
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 Scalable: Many effects (congestion in networks, load imbalance between ranks, 
system noise) only become apparent at hundreds or thousands of nodes.   

 Comprehensive: Local interactions can have global performance implications, so 
a program model should address as much of the system as possible.  For example, 
changes in local memory access can have impact on global communication 
performance due to contention at the memory controller. 

 Reflective: Program models should reflect aspects of the implementation, like the 
execution model.  Decisions about how and where computation occurs will need to 
be represented, and ideally allowed to vary.  This will require multiple models per 
problem to define the space of possible implementations. 

The range of application surrogates (minimal representations of a larger application), such 
as Compact Apps, Mini-Apps, Skeleton Apps, and Proxy Apps, are good examples of high-
level program models which may be easier for a simulator to use than a full application. 

6.3 The Hardware/Software Interface 

The overall behaviour of the system is a complex interaction between hardware, operating 
system, application code and the run-time.  These therefore all need to be co-designed and 
evaluated together.  It is worth noting however that software is inherently more flexible 
than hardware.  In particular once the hardware has been built or is close to being built it is 
generally too expensive to redesign and rebuild this part of the system so any unforeseen 
problems or changes to requirements that occur after this stage would need to be 
accounted for in software.  A key part of the design process will therefore be an iterative 
design of the interface between hardware and software. 

To illustrate the problems in this area let us consider the vitally important communication 
sub-system.  The basic set of functional requirements for the communication sub-system 
can be extracted from the set of operations needed to support our desired set of parallel 
programming models.  A parallel programming model represents an aspect of the design 
space for a parallel application and the choice of parallel programming model is generally a 
very early design decision made during the development of an application.  This set of 
required operations becomes an abstract run-time model and would contain operations 
such as the following: 

 Point-to-point communications 
 Collective reductions 
 Barriers 
 RDMA operations 
 Active-message communications 
 Etc. 

In the early design stages it is important to keep this run-time model abstract and to resist 
the temptation to define a common run-time API too early.  Adding detail to a design too 
early constrains the possible implementations of the operations.  For example the tag and 
rank matching syntax in MPI is more specific than, and constrains the possible 
implementations of, the more abstract point-to-point operation.   



23 
 

In a more detailed design the communication sub-system would be implemented by a 
combination of hardware operations and a software run-time.  This still leaves a large 
possible design space that needs exploring.  For example point-to-point communications 
can be implemented using RDMA operations or active-messages.  It is also possible to 
implement RDMA and active-messaging using a combination of point-to-point and 
threading though the performance behaviour would be totally different in this case. 

Many of the programming models that are expected to be important for exascale machines 
rely on the concept of communication driven scheduling where the arrival of data can 
either cause the creation of a new thread of execution or a change to the runnable state of a 
suspended thread.  This represents a potential performance problem as on current 
systems, thread scheduling is a concern of the operating system and entails relatively high 
delays and overheads.  The impacts of these overheads needs to be explored with some 
urgency as implementing message driven scheduling in hardware would impact the design 
of both the communication hardware and the processor. 

6.4 Methods of Simulation 

Simulation will need multiple levels of detail to address the multiple audiences and classes 
of design decisions that exascale codesign will require.  Most likely, there is close to a 
continuum of simulation methods and design experiments, ranging from back of the 
envelope estimation to hardware prototyping.  A few useful simulation methods are in 
common use and are presented below. 

Most likely, an exascale design project will use several of these models, with considerable 
feedback between high and low-level models and continual validation and evolution of the 
models themselves.  The sheer scale of exascale systems mean that highly detailed 
simulations will only be able to simulate a small fraction of the total system, so any issues 
related to the global scale of the problem will have to be simulated at a lower level of detail. 

6.4.1 Abstract Models 

Abstract analytical models represent the machine in a closed form equation that takes 
gross machine characteristics (e.g., network bandwidth and latency, FLOPs) and 
application performance (number of operations) to determine performance.  Examples 
would include the LogP or Postal models and even more abstract models such as the PRAM 
model.   

These models benefit from simplicity and can provide quick results, allowing very fast 
exploration of a large design space.  However, they can obscure important machine details.   

6.4.2 High-level Simulation 

High-level simulations represent the machine as an abstract automata or queuing model to 
simulate the machine’s function.  These abstract automata may be coupled with abstract 
equation based models to determine performance.  For example, the SST/Macro simulator 
can represent node-level behavior as a state machine, and use a simple queuing model or 
LogP-like equation to model network performance. 
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These models provide more complexity than abstract models while still maintaining high 
performance.  Additionally, they allow a mechanism for application or algorithm writers to 
explore different high-level organizations of their program and see the effects on a given 
architecture.  For example, changing the state machine could allow quick exploration of the 
effects of different communication patterns.  These models can reveal more detail of the 
machine, but still run the risk of obscuring important aspects of the architecture. 

6.4.3 Medium Level Simulation 

Medium level simulations combine detailed low-level (cycle accurate or cycle approximate) 
simulation of some components with more abstracted simulation of other components.  For 
example the SST simulator can perform simulation with the detailed M5 processor 
simulator connected to a simple network and memory simulator, or detailed network 
simulation with the Red Storm Router model connected to a simplified state-machine node 
model. 

This method of simulation allows the designer to focus in on one aspect of the machine 
design while avoiding paying the performance cost of fully detailed simulation.  However, 
this may neglect feedback effects (e.g., memory and network interactions) and leads to 
uncertainty in how simulation errors are computed.   

6.4.4 Low-level Simulation 

Low-level simulation involves detailed models of all major components in the system 
(usually the processor, network, memory, and IO system).  Each of these models is 
generally cycle-accurate or cycle-approximate. 

These simulations have the benefit of detail, but often require lengthy simulation runs and 
considerable complexity to build and validate detailed simulation models.   

6.4.5 Mixed Simulation 

Mixed simulation combines software simulation with extremely detailed hardware 
simulation, such as on an FPGA.  The FAST project is an example of this technique. 

This simulation method potentially combines the flexibility of software simulation with the 
speed and detail of hardware prototyping.  However, it can also combine the inflexibility of 
hardware simulation with the inaccuracy and slowness of software simulation. 

6.4.6 Prototyping 

Hardware prototyping can be used to run experiments of systems at less than full scale, or 
to explore a new component technology.  This can be used for architectural exploration 
(e.g., exploring the capabilities of a new network card) or to explore lower level fabrication 
issues (e.g., a new packaging technique).  Hardware prototyping can use FPGAs, custom 
boards, or the full design and production of a custom ASIC.   

This level of simulation provides extremely detailed information on component 
performance, but has the drawbacks of high cost and low flexibility. 
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7 What Needs To Be Done 

Creating a series of machine models and simulation tools which can address the novel 
requirements of exascale, have some level of standardization and interoperability, and are 
still flexible and can be evolved will require an intensive research program and later, for 
adoption coordinated community effort. 

7.1 Fundamental Research and Development  

The sections above have detailed several areas in which there is a gap between current 
practice for HPC machine modeling, and what is needed for exascale, exist.   This gap 
should be addressed by the following: 

 Best Known Practices: There are several areas where there are new technologies 
emerging from other areas of computer science that should be adopted 
immediately.   For modeling, there are techniques for formal verification and 
hybrid modeling, that can be adopted to increase the rigor and power of modeling 
efforts., for modeling complex dynamic nondeterministic and asynchronous 
processes. The DARPA PCA program, and subsequent follow on development, 
provides languages and schema for modeling large heterogeneous, hierarchical, 
accelerated, computing devices.   The field of embedded computing provides tools 
for modeling and verifying real time and other hard performance constraints in 
complex distributed systems with adaptive control, which may be useful in 
assuring the operation of even safety of exascale computing systems. 

 Focused Modeling Research: The report above has identified several areas 
where existing practice may not be sufficient to meet the needs of extreme scale.     
These include areas addressing the scale of extreme scale and modeling new 
considerations such as aleatory behavior and greater precision of communications.   
Co-simulation and modeling of multiple levels of abstraction to address the cross 
cutting nature of execution models across all levels of the system will be required.   
New techniques for exploiting symmetries and other acceleration as well as non-
simulation automatic evaluation of large models will be required.   Understanding 
of the degree to which emergent behaviors will occur and can be controlled, in 
network, processors, and in network-processor-software complexes at extreme 
scale, are needed. 

 Formalize Existing Ad-Hoc practice: techniques that are already used within the 
HPC field, but in informal, ad-hoc, or in prosaic manners, should be formalized and 
incorporated into modeling approaches.    These include efforts to formalize the 
science and mathematics of high-performance computing into knowledge 
ontologies that can be used by automated tools for verification and optimization of 
systems.   These knowledge ontologies can provide leverage to the practice of HPC 
software development to increase productivity, scalability, and generality of 
software and to reduce overall DOE software lifecycle costs.   

 Build Cross Cutting Communities: the technologies of extreme scale architecture 
modeling relate to efforts in extreme component design, system design, software 
design, system verification, and operation.   Communities must be formed that can 
exploit synergies across these communities through new modes and types of 
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sharing of models.   New linkages, such as e.g., exporting models and specifications 
from application programs and required precision to the verification of VLSI chips 
and novel floating point representations, should be formed.   These communities 
should span multiple institution types, including DOE laboratories, commercial 
software and hardware vendors, and academics.   The community for sharing 
these models may well span international boundaries.    

7.2 Developing Standards 

A plan for building standard machine models requires substantial community involvement 
and an ongoing effort to refine and evolve the standards.  This effort must build on existing 
knowledge and experience without limiting the design space.  Possible steps in this plan: 

 Identify Audiences: The consumers of machine models and simulations must be 
clearly identified and their needs/requirements (the questions they will ask) 
understood.  Already, highly divergent audiences (Aarons, Stephanies, Joes, 
others?) are known to exist. 

 Survey: A survey of existing simulators to identify commonalities and 
opportunities for interoperation must be performed.  This will allow a gap analysis 
as well as an understanding of existing standards.   

 Standardize: Creation of an initial standard format.  Initially, this will tend to 
represent a “most common denominator” of existing simulation models, but 
should be constructed to not overly constrain the models.  Additionally, there will 
be multiple levels of detail in these machine models.   

 Evolve: The standard will be allowed to evolve as needed.  This will be required to 
capture specialized capabilities and to encompass new issues, technologies, and 
opportunities as they arise.  During this evolution process we must be aware that 
we are guided by what we think we can use today, and care must be taken to avoid 
ignoring other ideas due to lack of existing tools.   

 Validate: In parallel with the evolution of the standard, we must constantly 
validate models against current systems and against other levels of model to 
ensure our results can be trusted. 

7.3 Standard representation 

Some degree of standardization of our models is highly desirable: 

 A common way of representing application models will allow many different user 
communities to develop models that can be evaluated against different machine 
models using common simulation infrastructures. 

 Common ways of representing machine models will allow the results of the same 
models to be compared using different simulation environments. 

As the basic requirement is for portability of models the same benefits could be achieved 
by implementing tools to translate between formats.  However as the models become more 
detailed the syntax needed to describe a design will quickly become very complex and 
automatic translation a very difficult problem in its own right.  For example even a fairly 
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abstract application model will need something not dissimilar to a programming model to 
describe it.   

Significant questions exist about the nature of these models.  Some level of consensus will 
need to be formed within the community, or at least within the tool and simulation 
builders: 

 Format: Should the standard model specification be a detailed file format (e.g., an 
XML schema) or simply a list of key parameters that must be specified for a given 
level of simulation. 

 Trust: How do we trust the models, and what level of trust do we need?  The 
answers to these questions will be time and audience dependent.  Transparency 
about how the models are constructed and what they contain will help build trust.  
Similarly, the use of formal verification methods will also help acceptance of the 
models’ results.  However, we must also recognize, and be comfortable with, 
substantial error bars in the simulations, especially with high-level abstract 
simulation.   

 Validation: What HW/SW mechanisms do we need to validate the models?  How 
can we design systems today which can be more efficiently validated for 
performance?  Should we be limited future systems to ones which we can clearly 
understand and predict performance?  For example, the real-time embedded 
community has consistently chosen predictability over raw performance to be 
able to make performance guarantees.   

7.4 How to encourage adoption 

Creating standards is useless without adoption.  There are many things that can be used to 
encourage adoption of standards and promote interoperability: 

 Build Trust: Standard models and simulation frameworks will only be adopted if 
the community trusts them.  This includes validation and also a clear 
understanding of the limits of different simulation methods. 

 Identify clear needs/benefits: Unless the standards have a clearly identified 
benefit, they will be viewed as simply another distraction and an unwanted 
bureaucratic mandate.  The benefits of interoperability must be clearly shown, and 
we must recognize that different audiences will place different priority on 
interoperability.  Adoption of the standards and interoperability should be 
encouraged where there is need, not simply for its own sake. 

 Funding: Even if standards are trusted and a need is identified, adoption can be 
slow due to organizational factors, effort required to adopt, and “not invented here” 
syndrome.  In these cases, a “big stick” approach could be considered, where 
interoperability is made a prerequisite for receiving funding. 

8 Conclusion 

The scale and complexity of exascale computing systems, the requirements of managing 
power and resilience, and the development and porting of software, present many 
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challenges that cut across all levels of exascale design.  Abstract modeling of machines is 
identified as a key enabling and operational tool for achieving extreme scale computing, 
from device development up to applications programming, and from design through 
production through operation.     This report has described the role of modeling, and in 
particular how modeling for exascale must move beyond being a tool for just simulating 
new architectures, but one for communicating among all participants in the extreme scale 
development – the hardware, systems software, and applications developers and vendors.  
Modeling has been identified as a tool for managing, reducing, and controlling exascale life 
cycle costs, in particular by rationalizing and formalizing the software development 
methodology.    

To achieve these high-payoff and program risk reduction goals, new exascale abstract 
modeling research and development is required to fill gaps from adopted existing best 
practices.   These research goals are identified in this report.    There may also be cultural 
changes needed within the HPC community to make modeling a first class citizen in HPC 
design, given its critical role.   These considerations – the need to fill gaps in technology, 
and cultural changes to build new channels for exploiting the benefits of modeling, suggest 
that a standalone and concerted research program be established in exascale modeling that 
can nurture the academics, commercial and laboratory community in this area. 
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