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EXECUTIVE SUMMARY 

Achieving a thousand-fold increase in supercomputing technology to reach exascale computing 
(1018 operations per second) in this decade will revolutionize the way supercomputers are used.  
Predictive computer simulations will play a critical role in achieving energy security, developing 
climate change mitigation strategies, lowering CO2 emissions, and ensuring a safe and reliable 
21st century nuclear stockpile. Scientific discovery, national competitiveness, homeland security 
and quality of life issues will also greatly benefit from the next leap in supercomputing 
technology. 
 This dramatic increase in computing power will be driven by a rapid escalation in the 
parallelism incorporated in microprocessors. The transition from massively parallel architectures 
to hierarchical systems (hundreds of processor cores per central processing unit [CPU] chip) will 
be as profound and challenging as the change from vector architectures to massively parallel 
computers that occurred in the early 1990s. Without U.S. Department of Energy (DOE) 
leadership, the chasm between peak speed and sustained performance will grow exponentially, 
and the societal benefits of advances in component technologies will be delayed and greatly 
diminished. With DOE leadership of a collaborative effort among the national laboratories and 
key university and industrial partners, the architectural bottlenecks that limit supercomputer 
scalability and performance can be overcome. In addition, this effort will help make petascale 
computing pervasive by lowering the costs for these systems and dramatically improving their 
power efficiency. 
 The DOE’s strategy for reaching exascale includes: 1.) Ensuring that a broad spectrum of 
DOE mission critical applications are full partners in the initiative; 2.) Collaborations with the 
computer industry to identify gaps; 3.) Prioritizing research based on return on investment and 
risk assessment; 4.) Leveraging existing industry and government investments and extending 
technology in strategic technology focus areas; 5.) Building sustainable infrastructure with broad 
market support i.e., extending beyond natural evolution of commodity hardware to create new 
markets, and creating system building blocks that offer superior price, performance, and 
programmability at all scales (exascale, departmental, and embedded); and 6.) Co-designing the 
hardware, system software and applications. 
 The last element, co-design, is a particularly important area of emphasis. Applications and 
system software will need to change as much as architectures over the next decade. This 
represents an unprecedented opportunity for the applications and algorithms community to 
influence future computer architectures. A new co-design methodology is needed to make sure 
that exascale applications will work effectively on exascale supercomputers. 
 The DOE’s Exascale Initiative Steering Committee met with computer companies on three 
separate occasions. These meetings led to the identification of the following areas for emphasis. 
 
Node architectures and power 
Reducing power requirements and increasing energy efficiency is a critical issue. Some power 
projections for exascale supercomputers are over 100 megawatts (MW), making such a system 
impractical (typical energy costs are $1 million per MW). Throughout this discussion, 20 MW is 
taken as an upper limit on system power for an exascale system. 

Node architectures are expected to change dramatically in the next decade, becoming more 
hierarchical and heterogeneous. Here a node is a compute node, an end point of the interconnect 
network. For simplicity, all compute nodes are assumed to be the same. Power and cooling 
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constraints are limiting increases in microprocessor clock speeds. Consequently computer 
companies are dramatically increasing on-chip parallelism to improve performance. The 
traditional doubling of clock speeds every 18 to 24 months is being replaced by a doubling of 
cores or other parallelism mechanisms. During the next decade the amount of parallelism on a 
single microprocessor will rival the number of nodes in the first massively parallel 
supercomputers that were built in the 1980s. In addition to reducing power requirements, there 
needs to be much tighter integration between the microprocessor, the memory, and the 
interconnect. 

Our discussion of the possibilities for nodes diverged into two “swim lanes.” Swim lane 1 has a 
node consisting of lightweight cores with 1,000 floating-point units (FPUs) and a nominal 
performance of 1 TF/s in the 2018 time frame. Thus, this swim lane would require more than one 
million nodes to achieve an exaflop/s. Swim lane 2 has a node consisting of aggressive cores 
with 10,000 FPUs and a nominal performance of 10 TF/s in the 2018 time frame. Thus, this 
swim lane would require more than one hundred thousand nodes to achieve an exaflop/s. 
 
Scalability 
The scalability of systems, systems software, and applications is a significant issue for exascale 
computing. Exascale systems will pose unprecedented challenges in parallelism. Systems will 
consist of one hundred thousand to one million nodes and perhaps as many as a billion cores.  
Managing and servicing a system of this size will be a challenge. Highly reliable and scalable 
operating systems and systems software will be needed. Applications must manage at least a 
thousand-fold increase in the available parallelism, which is certainly a challenge, but also an 
opportunity for new models and algorithms. 
 
Reliability 
Reliability is a significant concern as the number of processors increases and nodes become more 
complex. Other factors driving up the rate of faults include smaller circuits running at lower 
voltages, increased likelihood of low probability events, and the increasing use of heterogeneity.  
The exascale system reliability target is a system with one day between applications level 
interrupts. This will require development of a fault model, which will in turn enable co-designed 
advances in hardware and software reliability as well as new methods for application resilience. 
It is anticipated that there will be an additional layer of memory in future systems, non-volatile 
RAM (NVRAM). Data transfer speeds to NVRAM will be much higher than traditional disk 
systems. This NVRAM will provide the potential for input/output (I/O) caching and local 
recovery. In addition, methods for application migration are needed and research into fault-
oblivious algorithms is recommended. 

In what follows, we will classify errors as permanent or transient. Permanent errors, also referred 
to as hard errors, are repetitive, but not necessarily frequent, and require repair or replacement of 
hardware or software to return the system to normal operation. Transient errors, also referred to 
as soft errors, are not repetitive and do not require replacement or repair to return to normal 
operation, however their effect may be the same as a permanent error, e.g., node crash. 
Errors are detected or undetected, also referred to as silent, errors. The effects and frequency of 
silent errors is a subject of considerable discussion in the community. Detected errors may be 
handled by hardware (e.g., ECC), by software (e.g., retry) and by applications (e.g., 
checkpoint/restart). 
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Programming Models 
The principal programming environment challenges will be on the exascale node: concurrency, 
hierarchy and heterogeneity. The effects of these challenges will include a focus on 
asynchronous algorithms and moving away from a bulk synchronous programming model, a 
reliance on multi-threading and moving away from out-of-order execution to hide latency, a 
requirement for managing vertical, on node, data locality moving away from hardware managed 
caches, and more than a billion-way parallelism to fully utilize an exascale system. Thus, 
applications will need to change to achieve high performance, and to manage locality and 
resiliency on exascale systems. Portability will be a significant concern. Experience has show 
that application groups will not develop software for next-generation’s supercomputers unless 
there is some assurance that the new software will run on multiple generations of multiple 
systems. In order to improve productivity a programming model that abstracts some of the 
architectural details from software developers is highly desirable. 
 

 
 

Summary Priority Research Directions 
Detailed recommendations and research directions are presented in the individual chapters.  
However, there are four overarching priorities that this workshop believes that an exascale 
initiative must address. 
 
1. Collaboration and co-design. For the past two decades applications have used the same 

execution model, communicating sequential processes. This period of stability is at an end 
and co-design among applications, algorithms, programming models, software tools and 
hardware architecture is essential to effectively develop the next generation of 
computational capabilities. This includes system level simulation and emulation tools and 
prototypes and testbeds to enable co-design. 

 

2. Focus on node software and hardware architecture. This is where most of the action will 
be – greater than 1,000-way, power management, new abstract machine model and 
programming models, resiliency, memory bandwidth and memory capacity, and data 
locality. 

 

3. Managing greater than one billion-way parallelism. The shear size of the compute 
partition of an exascale machine will drive different behavior. Jitter will have a significant 
impact on system-wide synchronization and applications will be moving, as possible, to 
asynchronous models of computation. An effective exascale system interconnect (10-
100x the extent of today’s interconnects) will be a perfect opportunity for co-design given 
algorithmic, power, and cost constraints. 

 

4. Managing errors. Existing fault tolerance techniques (global checkpoint/global restart) 
will be unpractical at exascale. Local, distributed checkpoint techniques for saving and 
restoring state need to be developed into practical solutions. A new fault model and new 
hardware detection and recovery mechanisms will be necessary to achieve a 24 hour mean 
time before application interrupt. 
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Chapter 1. Fault Management and Resiliency 

 Resilience is a measure of the ability of a computing system and its applications to continue 
working in the presence of system degradations and failures. Such degradations and failures 
increase as the scale and complexity of the applications increase to the point that at exascale, if 
the hardware and software are not fault tolerant, then even relatively short-lived applications are 
unlikely to finish; or worse, the applications may complete with incorrect results. New 
paradigms must be developed for handling faults within both the system software and user 
applications. Equally important are new approaches for integrating detection algorithms in both 
the hardware and software and new techniques to help simulations adapt to faults. 
 Studies have shown that failures are systemic so improving resilience at the exascale will 
require a more holistic approach to the detection and recovery from faults, allowing all the parts 
of the system to adapt to constant changes. The co-design of the hardware, system software, and 
applications is critical in order to create resilience at all levels. It will be increasingly important 
to validate that new extreme scale algorithms are solving the right problem and to verify that the 
answer produced is correct and not corrupted by numerical stability or errors from transient non-
fatal faults. 
 Two constraints in the design goal for an exascale system are (1) a Mean Time Before 
Application Interrupt (MTBAI) of 24 hours and (2) a power consumption of no more than 20 
MW. The resilience constraint is based on a level of reliability that (1) is “tolerable” to scientists 
using a supercomputer and (2) allows efficient machine utilization, i.e., most of the simulation 
time is used to accomplish useful work. Scientists tolerate today’s systems, which are typically 
up for a few days, and they find a system unusable if their application terminates several times a 
day.   
 Today’s applications obtain resilience by globally checkpointing their state periodically and 
then restarting from the last checkpoint if a fault terminates the application. Several recent efforts 
to analyze this approach have shown that the amount of data to be checkpointed and today’s 
average fault rate of five years MTTI/proc will render traditional checkpoint/restart techniques 
ineffective on million node systems1. 
 Switching to local checkpoint approaches where state is written to non-volatile memory 
would reduce checkpoint overhead by an order of magnitude and extend the time for which 
checkpointing can be used by a few years, but eventually the systems get so large that 
checkpointing is no longer effective. See Figure 1.1. 
                                                
1 Daly, J.T., A higher order estimate of the optimum checkpoint interval for restart dumps, Future 
Generation Computer Systems, volume 22, issue 3, pages 303-312, February 2006. 
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Figure 1.1 As the number of nodes increases, the time between faults decreases; hence, the 
frequency of checkpointing must also increase. The graph shows how the time spent doing 
checkpointing decreases the percentage of time doing productive work (assuming different 
hardware resilience targets). 
 
1.1 Key Co-Design Areas 

Co-design is critical to achieving the required exascale resilience because it is the only way to 
achieve integrated and coordinated detection, localization, notification, and recovery from the 
stream of faults expected at an exascale. Without it, one layer of the stack could interfere with or 
prevent recovery efforts by the other layers of the stack. Three key co-design areas where the 
resilience research should include representatives from different levels of the stack are: 
  
• Behavior. Discussion of what kind of faults arise from different layers of the stack and where 

the error is most likely to be detected, how propagation could affect other layers, and which 
layer(s) would be responsible for fixing or recovering from the fault. An important 
opportunity in this area is to understand the effects of silent (undetected) errors on 
application codes, quantify the cost of detecting more of them, and to co-design an approach 
to handling silent errors. 

 
• API and Protocol. Develop and agree upon an API and protocol for how the software layers 

can interact with each other regarding faults. 
 
• Communication. Agree upon the types of two-way communication between layers for 

improved fault awareness and coordinated recovery. For example, between the system 
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software and the application here are examples of knowledge, coordination, and awareness 
communications (three of many possible classes of communication):  

 
- Don’t kill me if a fault occurs (knowledge) 
- I am a component that will fix all problems of type X (coordination) 
- Tell me what fault is detected (awareness) 

An exascale system with a million processors will be handling faults continuously; this produces 
new challenges for system software. Efficient scheduling and resource management become 
significantly harder with a dynamically changing configuration as does upgrading and 
monitoring. Several application performance issues are impacted by resilience; load balancing – 
the most important of these issues – is required to manage the performance of a system that 
continuously manages faults. Tools are needed to detect load imbalance problems and to assist 
the dynamic load balancing of applications. 
 
1.2 Defining a Standard Fault Model 
 Before application developers and runtime software developers can begin to think about 
creating software that is capable of dynamically adapting to faults in an exascale system, they 
will need to understand the types of errors that are likely to occur, the methods of notification 
about faults, and the features available to enable dynamic adaptation and recovery. The answers 
to these questions would form a “fault model.”  
 As soon as possible the community needs to meet to define a “Standard Fault Model” that 
formally spells out exactly what detection, notification, and recovery features will be portably 
supported across exascale systems as shown in Figure 1.2. The adoption of a Standard Fault 
Model will provide assurance to application developers that changes to make their codes more 
fault tolerant will be portable and supported into the future.  
 Further, development of a fault suite or metrics based on this Standard Fault Model would 
allow software developers to stress resilience solutions and compare them fairly. The testing 
environment would have the capability to inject faults into a running application to study its 
response. Since the types of faults depend on the fault model, the specification of the fault model 
must occur first. 
 Also needed is a standard “publish/subscribe” interface to increase awareness and response 
across the entire stack. To avoid being overwhelmed by constant notifications, components in 
each layer of the stack could “subscribe” to only those notifications that it wants to be aware of, 
and each component, whether application, system software, or hardware, has the option of 
“publishing” the errors that it has detected.  
 Specifying which notifications to get is just one of many kinds of specifications a fault model 
must support. Another is for an application to be able to specify “don’t kill me” if a certain fault 
occurs, and more generally, for any component to be able to specify its reliability needs, e.g., “I 
can recover from a failure of type X but not from failures of type Y and Z.” 
      Formal specification of a Standard Fault Model including available features for dynamic 
adaption and recovery will require an MPI-like process of regular meetings that should begin as 
soon as possible because progress on several gaps in the resilience roadmap depend on having a 
fault model. 
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System Area Essential Lower Priority 

 

Node 

 

Detect/Notify complete failure 

Notify degraded mode 
(property) where node may 
be running at slower speed or 
have some memory or core 
failure 

Memory Specify data that MUST be reliable; how 
reliability is implemented is up to vendors 

Notify the different types of 
memory available on system 

Interconnect Notify of failures to deliver data (like MPI 
does today) 

Specify QOS,  
Notify degraded bandwidth 

System Services Specify “don’t kill me” 
Request a replacement node 

Specify how to manage app 
in case of failure 

File System Request QOS status Specify QOS 

Miscellaneous Specify app reliability needs Specify dependence 
constraints 

 
Figure 1.2 Possible detection, notification and specifications in a Standard Fault Model 
 
1.3. Factors Driving Up Fault Rates 

 To date, most projections of increased fault rates at the exascale are based on the failure rate 
projections of the increased number of parts needed to build such a system, which on average is 
about five years-- and even that lifetime is probably optimistic because of the 20MW constraint. 
This wattage constraint leads to several additional factors, besides part count, that will drive the 
rate of faults up. These are:  
• Number of components. Both memory and processors will increase by at least an order of 

magnitude, which will increase both permanent and transient errors in the system in an 
equivalent amount. 
 

• Power management cycling. This factor significantly decreases the components’ lifetimes 
due to the thermal and mechanical stresses on the connectors as found by a recent study of 
the effects of reducing power consumption by turning unused components off when not used. 

 
• Smaller circuit sizes, lower voltages to reduce power consumption. This increases the 

probability of switches flipping spontaneously due to several factors including thermal and 
voltage variations as well as cosmic radiation. As the voltage approaches the band gap of 
CMOS (0.5V), the transient error rate increases exponentially, requiring additional circuits 
on the chips to detect and correct errors. 

 
• Heterogeneous systems and more complex node architectures. These factors make error 

detection and recovery even harder, for example, detecting and recovering from an error in a 
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GPU can involve hundreds of threads simultaneously on the GPU and hundreds of cycles in 
drain pipelines to begin recovery. The effective failure rate is increased because an error in 
one thread can cause many other threads to be recovered as though they also had errors.  

 
1.4 Major Risk Factors in Exascale Resilience 
The workshop identified the top ten gaps in exascale resilience and established the investment 
priority of these gaps. These priorities correlate to two primary factors: The impending 
breakdown of global checkpoint/restart as an effective fault tolerance technique and the 
understandable reluctance of scientists to change their applications. The existing fault tolerance 
technique of periodically taking a global checkpoint and restarting the entire job from the most 
recent checkpoint is rapidly becoming obsolete. As shown in Figure 1.1, the productive time of a 
system will be consumed doing the checkpointing and backtracking. Scientists are reluctant to 
change their codes until forced to do so, which is understandable given the years of effort and 
millions of lines of programming in the present version. Moreover, even if they were willing to 
change their codes, resilience researchers have not defined a set of standard failure modes (a 
fault model) that the applications should be redesigned to tolerate. The third and fourth items in 
the top priorities are to understand the types of errors and their behavior in today’s petascale 
systems, because this is needed to define a useful fault model. 
 
 Major risk factors and strategies for mitigation: 

1. Existing fault tolerance techniques (global checkpoint/global restart) will be unpractical at 
exascale. Local checkpointing and caching techniques for saving and restoring state need to 
be developed into practical solutions. Local checkpoint techniques have the potential to 
extend application resilience through 2015 with minimal code changes. 

2. There is no standard fault model, nor standard fault test suite or metrics to stress resilience 
solutions and compare them fairly. A fault model is needed to allow co-design of exascale 
resilience across the entire stack from the application down through the hardware. 

3. Errors, fault root causes, and propagation are not well understood. Both hardware and 
software collection and analysis are needed to enable the development of a realistic fault 
model.  

4. Understand rate and type of undetected errors so that hardware and software solutions can be 
developed to detect them and so that applications can improve verification and validation of 
the remaining undetected errors.  

5. The most common programming model, MPI, does not offer a paradigm for resilient 
programming. A failure of a single task often leads to the killing of the entire application. A 
fault tolerant programming model and runtime must be developed for the software 
developers to use. 

6. System software is not fault tolerant nor fault aware and is not designed to confine faults to 
limit their propagation. Resilient system software needs to be developed to be aware of faults 
and support recovery from them when possible. 

7. There is no communication or coordination between the layers of the software stack in fault 
detection and management, nor coordination for preventive or corrective actions. Such an 
infrastructure is needed to support the co-design of fault tolerance throughout the stack. 

8. Present applications are neither fault tolerant nor fault aware. Once a fault model is defined 
applications can begin thinking about approaches to fault tolerance and when a supporting 
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infrastructure exists they can be rewritten to continuously manage the stream of faults 
expected at the exascale. 

9. There is no effective fault prediction capability. Research in fault prediction can proceed in 
parallel with understanding petascale system faults and behavior. It provides the potential to 
avoid faults by migration of parts of a job from suspect resources. 

10. Resistance to adding additional detection and recovery logic right on the chips to detect 
previously undetected errors, because it will increase the chip design costs, lower overall 
performance and increase power consumption by an estimated 15%. Further, the consumer 
market does not need the additional circuits nor wants the increased cost. 

 
1.5 Research Priorities 
 The following lists of near-term and longer-term research priorities are recommended: 
 
Near-term 

1. Develop local checkpoint techniques for saving and restoring state and begin 
incorporating these solutions into filesystems, system software, and science codes. 

2. Develop a standard fault model and complementary standard fault test suite or metrics to 
allow hardware, software, and application teams to stress resilience solutions and 
compare them fairly.  

3. Study and characterize errors, fault root causes, and propagation in existing petascale 
systems.  

4. Understand the rate and type of undetected errors in existing systems and develop 
methods to reduce undetected errors. 

 
Longer-term 

1. The most common programming model, MPI, does not offer a paradigm for resilient 
programming. A fault tolerant programming model needs to be developed to support the 
failure modes defined in the standard fault model.  

2. Develop system software that is fault tolerant, fault aware, and a designed to limit fault 
propagation. Where possible support recovery from faults. 

3. Develop a communication and coordination infrastructure between the layers of the 
software stack for fault detection, management, and corrective actions.  

4. Work with application teams to modify their codes to adapt to faults rather than fail or 
restart.  

5. Research in fault prediction and methods to mitigate failures through dynamic task 
migration 

6. Research into methods to allow the continuous repair of hardware and software in a 
running exascale system.  
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Chapter 2: Programming Models and Environments  
 
 Much of the programming models discussion centered on how to make use of existing 
language models as it was universally agreed that for the 2015 system, new programming model 
efforts are not feasible. There was also general agreement that the abstract machine model, which 
forms the foundation of programing models, is changing. Finally, there was discussion on current 
“points-of-pain” by the application and tool developers.  
 The group felt that the main programming environment challenges would be within the new 
node rather than across nodes, since that is where the biggest changes appear to be headed. The 
total number of nodes is not changing dramatically, so current practices of MPI between nodes to 
this scale provides one option of utilizing the exascale systems. Another option is to utilize 
unified programming models at the global level (UPC, Co-Array Fortran, Chapel, X10, etc.). In 
this case it would be helpful that the hardware have the capability to support global addressing.  
Finally, interactions between the programming model and RAS offer the potential for 
applications to handle errors and recover versus today's environment, which aborts the 
application. There was further discussion of enabling performance tools from within applications 
with extensions enabling more inline collection of data. 

2.1 Approach and Priority  

 Past experience indicates that programming model activities are multi-year ventures; starting 
now to hit a 2015 target is unrealistic for a brand new language. The group chose to focus on 
existing language efforts, targeting support of the 2015 system. With a changing abstract 
machine model for the compute node, the biggest issue is the target architecture both in 
definition and availability of runtime libraries supporting communication and remote task 
initiation. It is strongly recommended that a professionally developed open source RT be 
provided to advance all funded (and non-funded) language efforts. 
 The node model changes are only thinly understood and based on the report from the node 
architecture group. Until the main components of the architecture definition of this activity settle 
down, the programming model efforts are preparatory at best. Given the expectation of a 
fundamental shift in architecture, it is advisable to involve members of the programming models 
community in the co-design efforts.  
 We felt that with candidate abstract machine models in hand (and published), the 
programming models community could work concurrently with other efforts. In addition to 
funding the open source runtime (RT), the exascale initiative needs to fund a number of 
competing programming models efforts targeted at this. The programming models efforts should 
further invite and support application and performance experts who can help define the metrics 
by which the efforts will be measured in anticipation of a narrowing-down of the programming 
model funding to focus on the most promising efforts. 
 Once the leading models are identified, the exascale initiative activity could place more 
emphasis on the application efforts to assist moving to the new platform/models. It is critical that 
support be sustained and that the community band together to deter preliminary judgment of 
results. 
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2010-2011  Node / abstract machine model development  

2010-2012 Investment in multiple hierarchical programming model 
development/research efforts  

2012-2013  Professional open source RT implementation + simulation platform  

2012 Early demonstration of programming models + motifs on simulation 
systems and clusters  

2013  Re-prioritize programming model investments based on results  

2014 Integrate debuggers / performance tools into programming model efforts  

2013-2015  Larger application efforts (utilizing chosen programming models)  

2015  Deployment on 100 petaflop systems  
 

Figure 2.1 Notional schedule for programming models and runtime system 
 

2.2 New Opportunities for Co-Design 

The discussion with the node architecture group led us to believe that our current abstract 
machine model will have to evolve to describe additional hierarchy and heterogeneity within 
each node. This model is a key abstraction upon which modern languages are designed and 
programing models are implemented. It is important to have programming models expertise in 
the design of the node model and runtime definition.   

2.3 Weaknesses in the Roadmap and Suggested Changes  

Productivity is in the roadmap under the title of "Technical Gap" with a suggestion that the 
productivity will increase 10X. The term "productivity" has been overused in the past decade and 
its definition and measurement is difficult to assess. We recommend that the goal be measured as 
the number of applications able to make effective use of the exascale system relative to the target 
set of applications. We further suggest that application efficiency should be measured in terms of 
how well the application makes use of the resources on the system that are most critical to the 
application. For example, if an application is limited by memory performance, it should be 
measured against how well it can make use of the memory system. Rating applications by flops 
is becoming less meaningful in a broad sense. We are learning that the expensive parts of these 
systems will be the energy expended in moving data, not use of arithmetic units.   

2.4 Major Risk Factors and Strategies for Mitigation  

Programming models are the long pole in the tent with respect to the future of HPC. They are the 
mechanism by which users interact with and perceive the systems that we are trying to architect.  
Changes, even necessary ones, from the current de facto standards are likely to be met with 
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resistance from those with substantial investment in applications under the current model. In 
addition, industry is marching forward, in part due to the arrival of multi-core everywhere and 
highly capable GPU technologies and languages to harness them. The HPC programming models 
activity may be destined to follow rather than lead in this department, however all efforts need to 
be made in order to enable exascale computing to meet the needs expressed in the exascale 
initiative. 
 The “Killer Micro” transition of the early 1990s yielded the arrival of the greatest common 
denominator of architectural-driven programming models-- MPI. The experience taught the 
programming models community that without sustained efforts (technical, as well as political 
and social) new paths to productivity and performance on next-generation systems is 
impossible. It is likely the case that the same issues and more will be faced in this transition.  
This is especially true given that clusters are here for the foreseeable future and mainstream 
industry is working on the programming issue for multi-core and GPU accelerated computing.  
 One underlying theme from the workshop was the sense that applications need to migrate 
away from the current popular "bulk synchronous" approach. The new model, a focus on 
asynchronous design, will enable applications to be more resilient, latency tolerant, and less 
impacted by jitter in the large systems. This approach is compatible with and beneficial for 
current systems (although considered more difficult due to being less well-understood at this 
point). 
 The following is a brief list of the risk factors and mitigation strategies discussed: 

Risk Mitigation 
 

Architectures fail to converge and a common 
runtime is not possible (incompatible swim 
lanes).  

 

Co-design between the architects and pmodels 
teams including vendors is necessary to ensure 
the abstract machine model is appropriately 
targeted. 

 
Programming models and common runtime are 
not available for pre-exascale applications and 
systems. 

 

Early analysis of MPI + existing on-node 
programming models and narrowing the field is 
necessary to provide suitable pre-exascale 
environment. 

 

Programming models and common runtime are 
overly restrictive and limit innovation of the 
architectures and applications. 

 

Early experience with the runtime and interaction 
with vendors should help. 

 

Lack of consensus - in design, vendor buy-in, 
and use by applications. 

 

Difficult. While we are taking the task of paying 
close attention to memory movement with a 
node, we hope to provide an alternative to 
explicit messaging to accomplish this.  
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Premature dismissal by application 
programmers, a group notably resistant to 
change if it necessitates rewriting of their code.  

 

Be as upward compatible as possible and 
emphasize incremental editing in the 
applications, where application programmers can 
port and run on the new systems as is, but then 
take advantage of portable code modifications 
that open node architecture features to enhance 
the performance. 

 
 
 
 

Competing technologies win popularity – 
especially those that exist today with hardware 
acceleration (OpenCL, CUDA). 

 

Compatibility with emerging models and open 
interfaces so those models can align themselves 
with the high-end systems. Additionally, support 
for cluster implementations for these models to 
ensure portability of applications. 

 
2.5 Need for Testbeds, Prototypes, and Simulators  
Once the abstract machine model is defined, the programming models community will have a 
critical need for a runtime/simulator to bootstrap language efforts. While compatibility with 
current systems is key, it is very important to have access to the new architectural model in order 
to study/understand and optimize for future systems. Much can be learned with testbed and 
prototype hardware that is able to mimic the features of the new model. 
 
2.6 Programming Models Discussion  

We believe that the following characteristics will be important for exascale programming 
models:  
• Post-SPMD execution models, including increasingly dynamic and/or nested models of 

parallelism: to address the heterogeneity and hierarchy in the target architecture; and to 
tolerate the expected increase in execution time variations in the system. 

  

• Control over locality with an increased focus on 'vertical' or intra-node locality issues: to 
control affinity given the increased heterogeneity and hierarchy in the architecture. 

  

• Multi-resolution design: high-level abstractions to help manage the system complexity while 
supporting the ability to drop to lower, more manual levels within the same programming 
model. 

  

• Portability: ability to easily port existing codes, with the understanding that it may require 
tuning or the use of new features to optimally map to the exascale architecture. We anticipate 
that this will be more challenging than during the past decade due to the variety of node 
architectures being pursued and the lack of familiar abstract models for targeting these node 
designs.  

 
We also believe that it makes sense to invest in a number of programming models as a risk 
mitigation strategy by supporting a combination of more incremental and aggressive approaches.  

Models to Monitor. Programming models in this category are expected to continue evolving and 
receiving considerable investment independently of the exascale community. Examples include 
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CUDA, OpenCL, pthreads, and TBB (Matlab was suggested in the final brief). We believe that 
such models should be tracked to evaluate their role in exascale programming, yet we do not 
anticipate that they will require significant input or funding from the program. These 
technologies may play a role in our broader solution, either as part of a hybrid-programming 
model (e.g., MPI+CUDA), or as building blocks for higher-level software.  
Evolving Established Hybrid Models. This category consists of well-established HPC 
programming models that ought to be evolved to maintain legacy codes and to better support 
exascale architectures. MPI and OpenMP are the two main examples here. For hybrid 
MPI+OpenMP programming (or MPI+OpenCL, MPI+CUDA, MPI+pthreads) where the scale of 
MPI ranks is roughly equivalent to today’s largest runs, it was our sense was that MPI was 
unlikely to require major changes, since current MPI implementations are likely to scale to order 
1M ranks. In order to support effective MPI-only programming on exascale architectures (where 
the MPI ranks would be >> 1M), we believe that extensions will need to be explored. Examples 
might include hierarchical notions of MPI ranks and communicators. We were also generally 
supportive of exploring single-sided communication and active message capabilities within MPI-
3 to support more dynamic and loosely coupled execution models.  
 Our group was skeptical that OpenMP as currently defined would be a natural match for the 
emerging node architectures due to the heroic compiler efforts that we believe would be required 
to partition work across hierarchical or heterogeneous node resources. We also cited the lack of 
ability to control locality within OpenMP as a drawback. We were supportive of directions to 
extend OpenMP with new directives that would better address exascale node architectures while 
retaining its current division of labor philosophy between user and compiler. The PGI and CAPS 
notations for accelerator programming should serve as good input for possible directions to 
pursue.  

New Hybrid Models. Given our anticipated need for increased locality control within a node, 
one option that was discussed was to using a hybrid MPI+PGAS model in which MPI would be 
used for the inter-node communication and parallelism along with a PGAS language such as 
UPC, CAF, X10, or Chapel for expressing computation within the node. It is expected that the 
PGAS language in question would need to be extended to reflect the hierarchy within the node 
architecture, but that such models may be a better fit than OpenMP due to their support for 
locality/affinity. Other novel hybrid models could use some other inter-node technology like 
SHMEM, Global Arrays, UPC, or CAF in combination with an intra-node technology like 
CUDA, OpenCL, or an extension of OpenMP.  
Holistic Models. This category involves standalone programming models designed to address 
both inter- and intra-node concerns such as the HPCS languages (Chapel and X10) or traditional 
PGAS languages (CAF and UPC). The HPCS languages have the advantage of being designed 
with most of our desiderata in mind including dynamic/nested execution models, locality/affinity 
control, and multi-resolution design, yet their disadvantage is that they are not yet mature or 
widespread technologies. They may require work to map to exascale nodes due to the increased 
hierarchy/heterogeneity. Other dynamically parallel models that should be considered include 
Charm++ and ParalleX, though these were not well represented within the group.  
 While the traditional PGAS languages are better established and also support locality control, 
they would likely require modification to serve as a standalone programming model for exascale 
due to their use of the SPMD programming/execution model.  
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Domain-Specific Languages. We touched on domain-specific languages, but did not consider 
them to be a major part of the program effort because (1) we believed they should be built upon 
one of the general programming models above; and (2) their inherent narrowness limits the 
breadth of their applicability.  

More Aggressive Models. We do not believe that there is necessarily a need for more 
revolutionary programming models in the exascale program for the following reasons: (1) due to 
the extreme changes in the architecture, fitting existing models to the architecture will be 
sufficiently challenging without taking on new languages; (2) the HPCS languages are still under 
development and evaluation and were intended to be applicable beyond the petascale; (3) the 
timeframe: it is currently thought that the programming models will need to be available on the 
early side of the program to support evaluation and the 2015 machine; (4) a lack of hot ideas or 
enthusiasm to develop some within the group.  

Evaluation/Adoption of Programming Models. We discussed barriers to the adoption of new 
programming models by the application community, particularly as they become more exotic.  
There seems to be a tension between the “we want new, more productive alternatives to 
MPI+OpenMP” attitude and the understandable unwillingness to change technologies. We also 
discussed the inherent tension between more innovative programming models and backwards 
compatibility, as well as the role that good interoperability support can play in helping with 
this. We discussed the danger of prematurely dismissing new programming models based on 
early hands-on evaluations rather than a measured evaluation of the language's potential and 
optimizability. Finally, we discussed the challenge of scaling programming models from small 
benchmarks and kernels to full-size applications due to the perceived lack of existing 
intermediate-sized applications. In all these areas, we believed that increased involvement and 
investment from the applications community would help make new programming models more 
effective and adoptable.  
 To this end, we discussed funding models in which application groups would be given 
nontrivial amounts of money to work alongside programming models groups to help develop 
mini-applications, study and use new languages, provide feedback, and generally increase the 
chances that the resulting language would be useful to them. It was generally believed that this 
money should be closely monitored to ensure that it was not diverted to support other activities 
(e.g., development of the base MPI implementation) or to fund people that were not deeply 
embedded in the application groups.  

Exascale Runtime  
The second major component of our discussion was support for a runtime library that could serve 
as an implementation layer for several of the language-based programming models described 
above. The main goal of the runtime library would be to abstract away architectural details such 
as the speeds and feeds and topological details of a compute node in order to support portability 
across distinct points in the exascale architectural design space. The runtime's purpose would be 
to support the communication required to map data and tasks to hardware resources, and to 
access remote data. The runtime could also have a role in tasking and/or memory management, 
depending on requirements. We thought of the runtime as supporting inter- and intra-node 
capabilities, with the option of disabling one of those modes at configuration time.  
 We imagined that the design of the runtime library would be a cooperative effort between 
language implementers, the runtime team, and the hardware architects. We discussed both top-
down designs, such as specifying the runtime as a proposed MPI extension, as well as bottom-up 
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approaches more similar to what has been done in the past with SHMEM, GASNet, and 
ARMCI. Given the novel aspects of exascale architectures, our sense was that the bottom-up 
approach might be more appropriate due to the lack of experience with exascale architectures 
and our sense that it was a lighter-weight process. We proposed that the runtime should be 
developed by a dedicated professional team in order to ensure a stable code foundation for the 
other programming models.  

Tools and Libraries  
We spent the least amount of time discussing tools and libraries, due primarily to the 
composition of our team. We believe that tools, particularly debuggers and performance analysis 
tools, as well as libraries will continue to play an important role in the exascale timeframe. The 
general theme we discussed was tools that do a good job of synthesizing massive amounts of 
data such that potential issues could be easily identified without work proportional to the number 
of nodes, tasks, or threads. Once a correctness or performance issue is identified, however, we 
discussed the importance of being able to (a) associate it back to the code at a level (and in 
terms) that naturally suits the programming model, and (b) to be able to dive down as close to the 
architecture as the programmer requires/desires. There was a general sense that we need 
alternatives to vendor-supplied tools as a risk mitigation strategy for shipping delays. 
 We did not discuss libraries in depth other than to acknowledge their value and mention the 
need for lower-level programming models that support tuning right down to the hardware. 
2.7 Conclusions 

The current view of exascale architectures presents the following challenges: 
• Increased heterogeneity and hierarchy in the node architectures, constituting the first 

significant departure from the abstract node model that has served our community well for 
the past 15-20 years.  

• The need for identifying and managing massive degrees of parallelism.  
• Increased complexity in the memory hierarchy and memory types, particularly the inclusion 

of explicitly controlled (scratchpad) memories.  
• Interaction with hardware power throttling features.  
• Increased need for application interaction with resiliency features due to the increased 

number of parts and consequent likelihood of failure.  
• Increased desire for applications to interact with the system-performance-monitoring 

infrastructure so as to be self-aware of performance issues. 
The consensus of the group was to favor pursuing three technologies: 
1. A well-defined abstract machine model and an open source (professionally developed) 

runtime layer to serve as a compiler target for programming model implementations and to 
initiate new topics such as application ←→ RAS system interactions and application 
visibility into runtime performance metrics.  

2. Multiple diverse programming models: a multi-layered approach with MPI between nodes 
and an on-node model made up of one or more existing languages, a unified/global-view 
model, or other approaches such as domain specific models. 

3. Tools (debugger, performance) that help the user grapple with the massive amount of 
parallelism that exascale applications will need to use. 
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Chapter 3. Node Architecture and Power Reduction 
 
 Node architectures are expected to change dramatically in the next decade as power and 
cooling constraints are limiting increases in microprocessor clock speeds. Consequently 
computer companies are dramatically increasing on-chip parallelism to improve performance. 
The traditional doubling of clock speeds every 18-24 months is being replaced by a doubling of 
cores or other parallelism mechanisms. During the next decade the amount of parallelism on a 
single microprocessor will rival the number of nodes in the first massively parallel 
supercomputers that were built in the 1980s. Applications and algorithms will need to change 
and adapt as node architectures evolve. In particular, they will need to manage locality to achieve 
performance. There is an unprecedented opportunity for application and algorithm developers to 
influence the direction of future architectures so that they meet DOE mission needs. 
 In order to capture areas of agreement and to document areas of disagreement among the 
participants, we adopted the concept of “swim lanes” to describe two different viable approaches 
in the design space. The first swim lane describes the manycore design point, which extrapolates 
trends involving large numbers of simple processor cores each with a few hardware threads. The 
second swim lane extrapolates trends in GPU architecture characterized by an order of 
magnitude more threads over many core designs modestly different design parameters and 
substantially different semantics for programming models (OpenCL/CUDA/Streaming). 
3.1 Areas of Substantial Agreement 

The most prominent areas of agreement in the workshop are as follows: 
• The primary design constraint for future HPC systems will be power consumption. 
• The biggest energy cost is in data movement, especially moving data on and off chip. 

o Data movement will be a bigger factor for system energy consumption and cost than 
FLOP/s. 

o The high cost of data movement places very strong constraints on memory and 
interconnect bandwidth.  

o The cost of data movement also increases importance of both vertical and horizontal 
locality management techniques -- both hardware mechanisms and the programming 
models and abstractions to elegantly expose locality management control. 

• Primary growth in explicit parallelism is on-chip 
o 100x growth in parallelism on-chip 
o 10x growth in parallelism off-chip 

• Energy and performance costs should be reflected in abstract machine model 
o Current abstract machine model has flat or 2-level costs, which do not match the 

above specified technology trends 
• Clock rates will remain nearly the same as today’s chips (we will assume 1 GHz for 

simplicity) 
• Cost considerations may limit an exascale system to a memory capacity that improves only 

by a factor of 100x in comparison to the system peak floating point rate, which will improve 
by 1000x. 

• Power and complexity costs make it clear that we cannot depend on out-of-order instruction 
streams to hide latency and improve performance. 

• Off-chip latencies are unlikely to improve substantially over existing systems. 
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• By 2015 it will be feasible from a market standpoint to integrate scalar cores with an 
accelerator. 

• SoC (System on a Chip) level integration would play an increasingly important role in future 
HPC node designs 

• Could we create a non-profit model for sustaining a processor design team focused on high 
performance computing over several processor design cycles? There was agreement that this 
would only succeed if the design effort were heavily leveraged from other multi-billion 
dollar markets. 

• There will likely be 2-4-levels of on-chip memory hierarchy that can be managed explicitly 
or flipped to implicit state.  

3.2 Areas of Substantial Disagreement 

The most prominent areas of substantial disagreement in the workshop are as follows: 
• Whether 1 or 10 Teraflops per node/chip would be achievable in the 2018 timeframe. We 

have two design points to represent this divergence. 
o Swim lane 1: ~1K FPUs per chip 
o Swim lane 2: ~10k FPUs per chip 

• How many address bits will be supported in mainstream implementation of PGAS languages 
to support noncoherent global addressing. 

• Although there was agreement that globally addressable memory is generally good for 
lowering the cost of explicit data movement, there was disagreement on whether PGAS 
models are inherently better at locality management. 

• There was disagreement about the extent to which aggressive investments in optical/photonic 
technology will be necessary or effective in mitigating the energy cost of data movement. 

3.3 Cost and Power Constraints  

In an ideal world, we would design systems that would never subject applications to any 
performance constraints. However, power and cost of different components of an HPC system 
force system architects to consider difficult trade-offs that balance the actual cost of system 
components against their effect on application performance. For example, if doubling floating 
point execution rate nets a 10% gain in overall application performance, but only increases 
system costs by 5%, then it is a net benefit despite the counter-intuitive effect on system balance. 
Co-design is important here to fully understand the cost impacts of key design choices so that 
they can be evaluated against their benefit to the application space. 
 For the purpose of this evaluation, we adopt a limit of $200M for the capital cost of 
procuring a system and 20MW as the feasible design limit for the power consumed by an 
exascale system in 2018. 
  
The cost of power: Even with the least expensive power available in the U.S., the cost of 
electricity to power supercomputing systems is a substantial part of the Total Cost of Ownership 
(TCO). When burdened with cooling and power distribution overheads, even the least expensive 
power in the U.S. (< 5cents/KWH) ultimately costs $1M per Megawatt per year to operate a 
system. To keep the TCO less than the capital cost of procuring a system and based on the limits 
of reasonable power densities for a feasible system design, we have generally adopted 20MW as 
the upper limit for reasonable system design. This figure is movable, but at great cost and design 
risk.  
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The cost of a FLOP: Floating point used to be the most costly component of a system both in 
terms of design cost and power. However, today, FPUs consume a very small fraction of the area 
of a modern chip design and a much smaller fraction of the power consumption. On modern 
systems, a double-precision FMA (fused multiply add) consumes 100picojoules. Reading the 
double precision operands from DRAM costs about 2000pJ by contrast. By 2018 it will consume 
about ~10.6pJ/op on 11nm lithography technology, and the cost of reading from DRAM will 
only improve modestly to 1000pJ unless more energy-efficient memory technology is developed.   
 With these figures of merit, it would only consume 100W to put 10 Teraflops on a chip, 
which is easily achievable. However, the 2000 watts of power required to supply memory 
bandwidth to those floating point units at a modest memory bandwidth to floating point ratio of 
0.2. The consequence is that we can engineer far more floating point capability onto a chip than 
can reasonably be used by an application. Engineering FLOP/s is not a design constraint – data 
movement presents the most daunting engineering and computer architecture challenges.  
The cost of moving data: Memory interfaces and communication links on modern computing 
systems are currently dominated by electrical/copper technology. However, wires are rapidly 
being subsumed by optical technology. To understand why this transition is occurring, it is best 
to look at Miller and Ozaktas’ journal article2 that relates the energy-cost of moving data on a 
copper wire to the Telegraph Equation, which says 
 Energy_to_move_data = bitrate * length2 / cross_section_area_of_wire 

Ozaktas and Miller point out that the Telegraph Equation has the following consequences to 
system design: 
• The energy consumed increases proportionally to the bit-rate, so as we move to ultra-high-

bandwidth links, the power requirements will become an increasing concern. 
• The energy consumption is highly distance-dependent (the square of the length term), so 

bandwidth is likely to become increasingly localized as power becomes a more difficult 
problem. 

• Improvements in chip lithography (making smaller wires) will not improve the energy 
efficiency or data carrying capacity of electrical wires. 

 In contrast, optical technology does not have significant distance-dependent energy 
consumption. It costs nearly the same amount of energy to transmit an optical signal one inch as 
it does to transmit it to the other end of the room. Also, signaling rate does not strongly affect the 
energy required for optical data transmission. Rather, the fixed cost of the laser package for 
optical systems and the absorption of light to receive a signal are the dominant power costs for 
optical solutions. 
 As the cost and complexity of moving data over copper will become more difficult over time, 
so the cross-over point where optical technology becomes more cost-effective than electrical 
signaling has been edging closer to the board and chip package at a steady pace for the past two 
decades. Contemporary short-distance copper links consume about 10-20picojoules/bit, but 
could be improved to 2pJ/bit by 2018. However, the efficiency and/or data carrying capacity of 
the copper links will fall off rapidly with distance (as per Telegraph Equation) forcing a 

                                                
2 D. A. B. Miller and H. M. Ozaktas, “Limit to the Bit-Rate Capacity of Electrical Interconnects from the 
Aspect Ratio of the System Architecture,” Journal of Parallel and Distributed Computing, vol. 41, pp. 42-
52 (1997) article number PC961285. 
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movement to optical links. Contemporary optical links consume about 30-60pJ/bit, but solutions 
that consume as little as 2.5pJ/bit have been reported in the lab. There was general agreement 
that in the 2018 timeframe optical links are likely to operate at 10pJ/bit efficiency.  
 The consequence of the power consumption of these links is that it will not be feasible to 
support a globally flat bandwidth across a system due to power limits. Therefore, we should 
expect is highly localized bandwidth in an attempt to exploit locality in scientific computations.  
Therefore, algorithms, system software, and applications will need to aware of data locality. The 
programming environment must enable algorithm designers to be able to express and control 
data locality more carefully. The system must have sufficient information and control to make 
decisions that maximally exploit information about communication topology and locality. Flat 
models of parallelism (e.g. flat MPI or shared memory/PRAM models) will not map well to 
future node architectures. 

Consequences for locality management 
 The energy cost of moving data to different levels of the system is large relative to the cost of 
a floating-point operation. See Figure 3.1. The cost of data movement will not improve 
substantially whereas the cost of performing a floating -point operation will likely improve 
between 5x to 10x. The effect on chip architecture is similar to the effect of the rising cost of 
gasoline relative to the cost of a new automobile where rising gasoline costs. Imagine the effect 
if gasoline cost 10x more than it did today? You would pay much more attention to optimizing 
your use of an automobile to minimize gas usage. Likewise, the increased cost of moving data 
relative to the power consumed by the FPUs has dramatically shifted attention away from 
FLOP/s and more towards locality management. 
 There are two primary categories of locality management – vertical locality management and 
horizontal locality management. Vertical locality management is management of data locality for 
data that moves up and down the memory hierarchy to a processor core whereas horizontal 
locality management refers to managing data movement and communications between peer 
processors. 
 Controlling vertical locality management involves use of data prefetch instructions, large 
register sets, and other forms of software managed memory. Caches are the most convenient to 
program, but they virtualize the notion of on-chip vs. off-chip memory, which complicates 
vertical locality management as users must reverse-engineer the behavior of the cache hierarchy.  
Software managed memory, such as the Cell processor “local store” offers the most user control 
over vertical locality, but they can be very difficult to program because there are few good 
programming abstractions for managing them. The GPU swim lane makes use of very large 
explicitly managed register sets to carefully control data locality, but requires a substantially 
different programming semantics (CUDA and streams) to manage those resources. There is 
increased interest in caches that can be dynamically switched between automatic management 
and software management, such as the programmable cache on NVIDIA’s most recent Fermi.  
There was agreement that we may see more use of software-managed memory on future systems 
if the programming model/abstraction problem can be overcome. 
  



 21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Energy cost of data movement relative to the cost of a flop for now and for 2018 
systems, without further investment. The biggest delta in energy cost is movement of data off-
chip. Therefore, future programming-environments must support the ability of algorithms and 
applications to exploit locality, which will, in turn, be necessary to achieve performance and 
energy efficiency. 
 
 Horizontal locality management primarily involves managing horizontal data movement.  
Cache-coherent systems already use snoop filters (such as AMD’s latest Opteron chips) to 
reduce redundant or non-useful cache coherence traffic between chips that comprise an SMP.  
Scaling up cache-coherence will require even more sophisticated methods in the future, but non-
uniform bandwidth and latencies between cores require more explicit control over data and 
process placement to mitigate what are termed “NUMA effects.” There was general agreement 
that lightweight explicit data movement protocols (such as Global Address Space) further 
improve our ability to control horizontal data locality, but there was disagreement as to whether 
PGAS (Partitioned Global Address Space) programming models improve horizontal locality 
management in practice. 
 There is substantial agreement that both vertical and horizontal locality management will be 
of penultimate concern for both swim lanes. Past attempts to exploit intra-node parallelism did 
not show significant benefits primarily because the cost of moving data within a node was not 
substantially lower than the cost of moving data across the interconnect because the cost of 
moving data off-chip dominated the energy costs. However, modern chip multiprocessors have 
CPU’s co-located on the same chip. Consequently, there is a huge opportunity to capture energy-
efficiency and performance benefits by directly taking advantage of intra-chip communication 
pathways. 
3.4 Memory Subsystem 

 Ultimately, memory performance is primarily constrained by the dynamics of the commodity 
market. One key finding of the workshop was that memory bandwidth is primarily constrained 
by power and efficiency of the memory interface protocols, whereas memory capacity is 
primarily constrained by cost. Early investments in improving the efficiency of DRAM 
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interfaces and packaging technology may result in substantially improved balance between 
memory bandwidth and floating point rate. Investments in packaging (mainly chip-stacking 
technology) can also provide some benefit in the memory capacity of nodes, but it is unclear how 
much the price of the components can be affected by these investments given commodity market 
forces. 
Memory Bandwidth: The power consumed by data movement will dominate the power 
consumption profile of future systems. Chief among these concerns is the power consumed by 
memory technology, which would easily dominate the overall power consumption of future 
systems if we attempt to maintain historical bandwidth/performance ratios of 1 byte/flop. A limit 
of 20 MW as the limit for feasible designs, it will force us to very difficult trade-offs regarding 
power consumption and breadth of applications that can run effectively on the system. 
For example, today’s DDR-3 memory interface technology consumes about 70picoJoules/bit – 
which comes to approximately 5000 pJ to load a double-precision operand (accounting for ECC 
overhead).  If we extrapolate the energy-efficiency of memory interfaces to DDR-5 in 2018, the 
efficiency of the memory could be improved to 30pJ/bit. A system with merely 0.2 bytes/flop of 
memory bandwidth would consume > 70 MW of power, which is not considered a feasible 
design point. Keeping under the 20 MW limit would force the memory system to < 0.02 
bytes/flop, which would severely constrain the number of applications that could run efficiently 
on the system. See Figure 3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. If we follow standard JEDEC memory technology roadmaps, the power consumption 
of a feasible exascale system design (using 0.2 bytes/flop memory bandwidth balance) will be 
>70 MW due to memory power consumption, which is an impractical design point. Keeping 
memory power under control will either require substantial investments in more efficient 
memory interface protocols, or substantial compromises on memory bandwidth and floating 
point performance (< 0.02 bytes/flop).  
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Figure 3.3 This figure illustrates the trade-offs between memory power consumption and the 
desire for a more broadly applicable exascale system design under different assumptions about 
investment in advanced memory technology. 
 

We cannot reach reasonable memory energy efficiency by following the JEDEC roadmap. 
Getting to reasonable energy efficiency requires development of new, more efficient interface 
designs and memory protocols. Advanced memory technology can get to about 7pJ/bit with 
investments to bring the technology to market. The upper limit of this new technology is 
estimated to be 4pJ/bit (excluding memory queues and controller logic). Therefore, in order to 
maintain 0.2 byte/flop system balance and stay under a 20 MW design limit for power requires 
either substantial investments in advanced memory technology, or a substantial degradation in 
system memory balance. See Figure 3.3. As always, these ratios are movable. For example, the 
power limit could be relaxed, but would put the feasibility of field siting such a system in 
jeopardy.   

Memory Capacity: One figure of merit for improvements to HPC systems is the total memory 
capacity. More aggregate memory enables systems to solve problems that have either 
proportionally higher resolution, or more physics fidelity/complexity – or both. However, there 
was consensus at the meeting that cost considerations may limit an exascale system to a memory 
capacity that improves only by a factor of 100x in comparison to the system peak floating point 
rate which will improve by 1000x. This is a movable parameter in the design space of the 
machine, but the consequence of moving this parameter is increased cost for the memory 
subsystem. 
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Figure 3.4 The rate of improvement in memory technology improving at slower rates. Images 
courtesy of International Business Machines, © International Business Machines Corporation. 
 

The DRAM capacity of a system is primarily limited by cost, which is defined by the dynamics 
of a broad-based high-volume commodity market. The commodity market for memory makes 
pricing of the components highly volatile, but the centroid of the market is approximately 
$1.80/chip. Figure 3.4 illustrates that the rate of memory density improvement has gone from a 
4x improvement every three years to a 2x improvement every three years (a 30% annual rate of 
improvement). Consequently the cost of memory technology is not improving as rapidly as the 
cost of floating point capability. Given the new rate of technology improvement, eight gigabit 
memory parts will be widely available in the commodity market in the 2018 timeframe and 16 
gigabit parts will also have been introduced. It is unclear which density will be the most cost-
effective in that timeframe. 

 
Figure 3.5 There are two different potential memory chip densities are possible in the 2018 
timeframe. It is less certain which option will be at the apex of the commodity cost scaling. 
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If we assume that memory should not exceed 50% of the cost of a computer system, and that the 
anticipated capital cost of an exascale system is $200 million, then Figure 3.5 shows the 
approximate memory capacity that we could afford assuming either eight gigabit chips or 16 
gigabit chips lies somewhere between 50 and 100Petabytes. Again, these are not hard limits on 
capacity, but do have a substantial effect on the cost of the system, so the trade-off of memory 
capacity against other system components must be considered carefully given a finite budget. 

3.5 Strawman Node Architecture for 2018 
There are many opportunities for major reorganization of our model-of-computation to take 
better advantage of future hardware design constraints. However, as a general design principle, it 
is better to take a bunch of pre-proposed ideas and synthesize them into something productive 
rather than to come up with something completely off-the-wall. Therefore, much of the 
discussion of inter-processor communication semantics and node organization focused on 
evolutionary rather than revolutionary features. However, much of what we term evolutionary 
here is revolutionary from the perspective of an application implements wholly in MPI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Schematic of future node architecture. The number of functional units on the chip 
will need to scale out in a 2D planar geometry where locality of communication between the 
functional units will be increasingly important for efficient computation. 
 

What range of clock rates: There was general agreement that the clock-rates for 2018 chip 
designs will remain nearly the same as today’s chips. For the sake of clarity, we will assume the 
clock to be 1 GHz. This sets clear design constraints for the number of floating point functional 
units will be present on a future chip design. In order to keep the component counts for future 
systems within practical limits (< 100k nodes), a node must perform between 1-10 Teraflops. At 
1 GHz, that means there will be between 1000 and 10,000 discrete FPUs on the chip. 
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Figure 3.7 Due to the stall in clock frequency improvements, future performance improvements 
will be derived from increased explicit parallelism. 2018 systems may have as many as 1-billion-
way parallelism. 
 
Instruction Level Parallelism: Until recently, microprocessors depended on Instruction Level 
Parallelism and out-of-order execution to make implicit parallelism available to a programmer 
and to hide latency. There was general agreement that power and complexity costs make it clear 
that we cannot depend on out-of-order instruction streams to hide latency and improve 
performance. Instead, we must move to more explicit forms of exposing parallelism such as 
SIMD units and chips with many independent CPUs. 

Instruction Bundling (SIMD and VLIW): One way to organize floating-point functional units 
to get implicit parallelism is to depend on bundling multiple operations together into SIMD or 
VLIW bundles. The benefit of such bundling is that they enable finer-grained sharing of data 
among the instructions, which lowers energy costs and control complexity. Although SIMD is 
the most popular approach to organizing FPUs today, there may be movement towards more of a 
VLIW organization because it is more flexible in the mixing of instructions. 
 Recently, SIMD units on x86 chips have doubled in recent years, but the ability to fully 
exploit wider SIMD is more questionable. GPUs also depend on very wide SIMD units, but the 
semantics of the GPU programming model (CUDA for example) make it easier to automatically 
use SIMD or VLIW lanes. Currently, NVIDIA uses 32-wide SIMD lanes, but there is a pressure 
to shrink this down to 4-8. Current CPU designs have a SIMD width of 4 slots, but will likely 
move up to 8 slots. Overall, this indicates a convergence in the design space towards 4-8 wide 
instruction bundles (whether it be SIMD or VLIW). 
Latency 

It was generally agreed that off-chip latencies are unlikely to improve substantially over existing 
systems. With a fixed clock rate of 1 GHz, the distance to off-chip memory on modern systems 
is approximately 100ns (100 clock cycles away), and will potentially improve to 40-50ns (40-50 
clock cycles away from memory) in the 2018 timeframe. A modern interconnect has a messaging 

How much parallelism must be handled by the program? 
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges 

at the Exascale Frontier”, June 20, 2008 
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latency of 1 microsecond. Most of that latency is on the end-points for the message (message 
overhead of assembling a message and interrupt handling to receive it). By 2018, this could 
improve to as little as 200-500ns for message latency, which is at that point limited by the speed 
of light (0.75c in optical fiber comes to about 5ns latency per meter of cable). 
 Lastly, the message injection rates of modern systems (an indirect measure of the overhead 
of sending messages) are millions of messages/second per network port on a leading-edge 
design. If the interconnect NIC is moved on-chip for an SoC design, it may be feasible to support 
message injection rates of up to billions of messages per second for lightweight messaging such 
as one-sided messages for PGAS languages. 
 With no substantial improvements to latency off-chip and cross-system, the bandwidth-
latency product for future systems (which determines the number of bytes that must be in flight 
to fully saturate bandwidth) will be large. This means there must be considerable attention to 
latency hiding support in both algorithms and in hardware designs. The approach to latency 
hiding was a source of substantial disagreement.  

Multithreading to Hide Latency: Little’s Law3 is derived from general information theory, but 
has important application to understanding the performance of memory hierarchies. Little’s Law 
states: 
 #outstanding_memory_requests = bandwidth * latency  

In order to fully utilize available bandwidth of a memory interface, this equation must be 
balanced. If you have a high bandwidth memory interface, the bandwidth will be underutilized if 
there are an insufficient number of outstanding memory requests to hide the latency term of this 
equation (latency limited). Since we will no longer be depending on complex out-of-order 
instruction processors to hide latency in the memory hierarchy, there will be increased 
dependence on hardware multithreading to achieve latency hiding (i.e., existing superscalar 
CPUs have latency to local memory of order 100ns, but don’t have to hide all of the time due to 
cache reuse).  
In swim lane 1, the manycore chip architectures currently support 2-4-way multithreading, and 
may increase that to 4-8 way multithreading in future architectures, depending on the energy 
cost. GPUs currently depend on 48-64-way hardware multithreading and will likely stay there.  
While this was an area of substantial disagreement, the notion of two “swim lanes” was 
enthusiastically adopted at the workshop. 
 The consequence for programming models is that the baseline expression of parallelism will 
require 1 billion-way parallelism to achieve an exaflop if a 1 GHz clock-rate is used. The 
additional hardware threading required to hide latency will increase the amount of parallelism by 
a factor of 10-100x, depending on which swim lane you follow! 
FPU Organization: Floating point used to be the most costly component of a system both in 
terms of design cost and power. However, today, FPUs consume a very small fraction of the area 
of a modern chip design and a much smaller fraction of the power consumption. On modern 
systems, a double-precision FMA (fused multiply add) consumes 100picojoules. An FPU is 0.02 
square mm/FMA (400square mm chip). By 2018 it will consume about ~10.6pJ/op on 11nm 
lithography technology.  

                                                
3 Proof that in equilibrium the number of tasks in a system is equal to the arrival rate x the response time. 
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 In order to reduce failure rates and component counts, it is desirable to build a system that 
reduces the total number of nodes by maximizing the performance of each node. Putting 10,000 
FPUs on a chip would only cost 100 watts in this timeframe, and is entirely reasonable in terms 
of area and power consumption. However supplying memory bandwidth and capacity to a 10 
Teraflop chip is the primary barrier to this design point. Without advanced packaging technology 
and substantial improvements in DRAM interface energy efficiency, the upper limit for per-chip 
performance will likely be 1-2 Teraflops/chip.  
 There was disagreement on whether 1 or 10 Teraflops would be achievable in the 2018 
timeframe. So we have two design points to represent this divergence. 

swim lane 1: 1k FPUs per chip 
 swim lane 2: 10k FPUs per chip 
To support full floating point performance, the on-chip register file bandwidth would need to 
supply 24 bytes per op. Therefore, for a 10 Teraflops/chip * 24   640TB/s of register file 
bandwidth and 64TB/s register file bandwidth for a 1TF chip. The upper limit of feasible off-
chip memory bandwidth will be 4TB/s. Therefore, the design point for swim lane 2 would 
require O(100) data reuse on chip and the design point for swim lane 1 would require O(10) data 
reuse on chip if a 4TB/s memory interface was used. In both cases, the assumed quantity of on-
chip memory is on the order of 0.5-1GB/chip, so all temporal recurrences necessary to achieve 
on-chip data reuse would need to be captured within this memory footprint. 
 For node organizations that use more than one chip for a node, the bandwidth would likely be 
more on the order of 0.5 to 1TB/s to remote DRAM (1/4 to 1/8 of local DRAM BW). Therefore, 
NUMA effects on a multi-chip node will have a substantial performance impact. 

System on Chip (SoC) Integration: To reduce power, and improve reliability it is useful to 
minimize off-chip I/O by integrating peripheral functions, such as network interfaces and 
memory controllers, directly onto the chip that contains the CPUs. There are fringe benefits, such 
as having the communication adaptor be TLB-coherent with the processing elements, which 
eliminates the need for expensive memory pinning or replicated page tables that is required for 
current high-performance messaging layers. It also reduces exposure to hard-errors caused by 
mechanical failure of solder joints. From a packaging standpoint, the node design can be reduced 
to a single chip surrounded by stacked memory packages, which increases system density. There 
was broad agreement that SoC integration would play an increasingly important role in future 
HPC node designs. 

Other Functional Unit (FU) organizations:  
Accelerators and Heterogenous Multicore Processors: Accelerators and heterogeneous 
processing offer some opportunity to greatly increase computational performance within a fixed 
power budget, while still retaining conventional processors to manage more general-purpose 
components of the computation such as OS services. Currently, such accelerators have disjoint 
memory spaces that are at the other end of a PCIe interface, which makes programming them 
very difficult. 
 There is a desire to have these accelerators fully integrated with the host processors memory 
space. At low end, accelerators already are integrated in a unified memory space, but at high end 
they are not because of differences in the memory technology used for the accelerator and the 
host processor. There was general agreement that by 2015 it will be feasible from a market 
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standpoint to integrate scalar cores with accelerator (and not copy data around). This was true for 
NVIDIA GPU solutions and possibly for heterogeneous manycore architectures like Larrabee. 

FPGAs and Application-Specific Accelerators: Application specific functional unit 
organizations may need to be considered in order to tailor computation and power utilization 
profiles to more closely match application requirements. However, the scope of such systems 
may be limited and therefore impact the cost-effectiveness of the resulting system design.  
FPGAs enable application-tailored logic to be created on the fly, but are currently too expensive.  
Otherwise, FPGA’s could be used to implement application-specific primitives were this not the 
case. So the barriers to using FPGAs as a solution are primarily limited by the cost of the 
technology. 
 One view at the workshop was that there is some evidence that power considerations will 
force system architects to rely on application-tailored processor designs in the 2020 timeframe. 
One example of such design specialization can be found in the GPU, which derives some of its 
original performance benefit from tailoring to graphic requirements. The same is true from the 
embedded/handheld electronics space that is built around the concept of design specialization.  
However, the fixed (NRE) costs of design and verification for specialization remain high for full 
custom design, so specialization would need to be targeted judiciously. Economics will likely 
constrain the number of application tailored processor designs to a small number and the high 
performance computing marketplace may not be of sufficient size to warrant its own application-
tailored processor. There was also discussion of whether we could we create a non-profit model 
for sustaining a processor design team focused on high performance computing over several 
processor design cycles? There was agreement that this would only succeed if the design effort 
were heavily leveraged from other multi-billion dollar markets. 

On-Chip Memory/Cache Hierarchy 

Levels of Cache Hierarchy: There was general agreement that there will be 2-4-levels of on-chip 
hierarchy that can be managed explicitly or flipped to implicit state. The reason for a multi-level 
hierarchy is mostly governed by the cost of data movement across the chip. Moving data 1mm 
across the chip costs far less than a floating-point operation, but movement of 20mm (to the 
other end of the chip) cost substantially more than a floating-point operation. So the computation 
and memory hierarchy on the chip will likely be grouped into clusters or hierarchies of some 
form to try to exploit spatial locality of data accesses.  
 There will need to be more effort to create Hardware Block Transfer support to copy things 
between levels of the memory hierarchy with gather/scatter (multi-level DMA). 

 
Figure 3.8 
Processor cores or 
functional units 
will likely be 
organized into 
groups or a 
hierarchy in order 
to exploit spatial 
locality of data 
accesses. 
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Private vs. shared caches: Most codes make no use of cache coherence and thus it is an 
overhead. So it is likely the cache hierarchy will be organized to put most of the on-chip memory 
into private cache. Performance analysis says less sharing is best (i.e., code written in threads to 
look like MPI or shared generally performs better).   

Explicitly managed caches vs. conventional caches: Automatically managed caches virtualize 
the notion of on-chip and off-chip memory, and are therefore invisible to current programming 
models.  However, the cost of moving data off-chip is so substantial, that virtualizing data 
location in this manner wastes energy and substantially reduces performance. Therefore, there 
has been increasing interest in explicit software management of memory, such as the Local-
stores used by the STI Cell processor and by GPUs. Over the next decade, explicitly managed 
on-chip memory will become mainstream in conventional CPU designs as well. 
 However, we have not found the right abstraction for exposing software-controlled memories 
in our existing programming models. To support an incremental porting path for existing 
applications, these explicitly managed memory hierarchies will need to exist side-by-side with 
conventional automatically managed caches. These software-managed caches may depend on 
being able to switch dynamically from automatically managed caches to software-managed 
caches (convert ways in set associative cache). Switchable caches are already demonstrated in 
the Fermi GPUs, but will likely be seen in conventional multicore architectures as well. 
 When data is placed into an explicitly controlled cache, it can be globally visible to other 
processors on the chip, but cannot be visible to the cache-coherence protocol.  Therefore, if the 
path to higher performance involves keeping more data in these explicitly managed caches, then 
it means cache-coherence (and the notion of an SMP with it) cannot be part of the high-
performance path. Programming language designers must consider how to enable expression of 
on-chip parallelism without SMP/cache-coherent model. 

Intra-node Communication 
The primary area of growth in parallelism is explicit parallelism on-chip. Whereas the number of 
nodes in an exascale system is expected to grow by a factor of 10x over the next decade, the 
parallelism on-chip is expected to grow by a factor of 100x. This requires reconsideration of on-
chip organization of CPU cores, and the semantics of inter-processor communication. 
Cache Coherence (or lack thereof): It is likely that cache-coherence strategies can scale to 
dozens of processing elements, but the cost and latency of data movement on chip would make 
cache-coherence an inefficient method for interprocessor communication for future chip designs.  
In all likelihood cache-coherence could be used effectively in clusters or sub-domains of the 
chip, but is unlikely be effective if extended across a chip containing thousands of cores. See 
Figure 3.8. It is more likely that global memory addressing without cache-coherence will be 
supported with synchronization primitives to explicitly manage memory consistency. 
Global addressing: PGAS programming models, including the HPCS programming languages 
benefit from Global Addressing to ensure a compact way to reference remote memory. PGAS 
models are willing to accept global addressing without SMP cache-coherence on the node. 
Therefore, there will likely be support for incoherent global addressing for small-scale systems, 
but will require hardware investment to scale this to larger systems. There was substantial 
disagreement on how many address bits will be supported in mainstream implementation.  From 
a technology standpoint, it is entirely feasible to support global addressing within context of 
Exascale. However, larger scale global addressing schemes will not naturally occur without 



 31 

investment. Global addressing only makes sense with hardware support for sync, which is also 
investment dependent.  

Fine Grained Synchronization Features: The programming models group requested much 
finer-grained synchronization features that could directly map to programming language 
primitives. These features could greatly improve the efficiency of fine-grained on-chip 
parallelism. 
 One option discussed involved moving atomic memory operations (Amos) to memory 
controllers and full empty bits on-chip.  Moving atomics as close to memory as makes sense 
from a power and performance standpoint, but would force us to give up some temporal 
recurrences since the data operated on by the atomics would not pass through the cache 
hierarchy.   
 An alternative approach to supporting these atomics is to use an intermediate level of the 
memory hierarchy where synchronization constructs get enforced/resolved. For example, you 
could imagine an L2 cache on-chip that is specifically dedicated to fine-grained inter-processor 
synchronization and atomic memory operations. This approach would potentially encode 
synchronization state information or other coordinating state using the ECC words of the 
memory system, because cannot hold it in proc. All of these options seemed feasible, but would 
require close interaction with application developers and programming model design to 
determine which approach would be most effective. 
Hardware Support for Fault Tolerance 

The terminology for describing error sources and mitigations is described in more detail in the 
Resilience section of this document. Here we will focus on what can be done in the node 
architecture to assist with keeping error rates under control and to support practical strategies for 
error recovery. The described features are not sufficient to solve all resilience issues, but provide 
some notion of what techniques hardware architects can bring to the table to mitigate these 
errors. 

Redundancy and SoC to mitigate Permanent Errors: Permanent (hard) errors depend on a 
different mitigation strategy than transient errors. Permanent hardware errors might be partly 
accommodated by incorporating redundant or spare components. For example, it is 
straightforward for system architects to build extra cores into a processor chip that can be 
pressed into service to replace any failed processors on chip. This is already done for the 188-
core Cisco Metro chip, which contains eight additional cores for redundancy. Likewise, the 
consumer version of the Cell chip only exposes seven cores, and keeps the eighth core as a spare 
to tolerate manufacturing defects that result in permanent errors.  
 System on Chip designs, described in the Node Architecture section above, can greatly 
reduce the hard-error rate by reducing the number of discrete chips in the system. Both sockets 
and solder-joints are a large source of hard-failures – both of which are minimized if all 
peripheral components are integrated onto a single chip. This approach has been employed 
successfully on IBM Blue Gene systems to achieve a 10-15x lower hard-error rate than 
conventional clusters. 

Node Localized Checkpointing for Tolerance of Transient Errors: It is clear that current 
checkpointing approaches that save the complete memory image of a job to the shared filesystem 
are not going to scale to exascale. This led to consideration of localized/buddy-system 
checkpointing approaches, such as LLNL’s Scalable Checkpoint Restart (SCR), that checkpoint 
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state to local nonvolatile storage and to the storage of a neighboring node to enable fault 
recovery. Localized checkpointing to node-integrated non-volatile storage can accommodate a 
2.5-hour mean time before application failure (ATBAF), but failure characteristics of nonvolatile 
node-localized storage must be far better than current commodity parts would support. Using 
increased redundancy and extensions to Reed-Solomon error correction encodings could make 
high-volume commodity NVRAM components suitable for node-localized checkpointing.   

3.6 Power Management Strategies 
 Thermally limited designs forces compromises that lead to highly imbalanced computing 
systems (such as reduced global system bandwidth). The design compromises required for 
power-limited logic will reduce system bandwidth and consequently reduce delivered application 
performance and greatly limit the scope and effectiveness of such systems.  
 From an applications perspective, active power management techniques improve application 
performance on systems with a limited power budget by dynamically direct power usage only to 
the portions of the system that require it. For example, a system without power management 
would melt if it operated memory interfaces at full performance while also operating the floating 
point unit at full performance -- forcing design compromises that limit the memory bandwidth to 
0.01 bytes/flop according to the DARPA projections. However, in this thermally limited case 
you can deliver higher memory bandwidth to the application for the short periods of time by 
shifting power away from other components. Whereas the projected bandwidth ratio for a 
machine would be limited to 0.01 bytes/flop without power management, the delivered 
bandwidth could be increased to 1 byte/flop for the period of time where the application is 
bandwidth limited by shifting the power away from floating point (or other components that are 
underutilized in the bandwidth-limited phase of an algorithm). Therefore, power management is 
an important part of enabling better delivered application performance through dynamic 
adjustment of system balance to fit within a fixed power budget.  
 Currently, changes between power modes take many clock-cycles to take effect. In a 
practical application code that contains many solvers, the power modes cannot switch fast 
enough to be of use. Vendors present at the meeting felt that technology that would enable power 
management systems to switch to low-power modes within a single clock cycle. However, there 
is still a lot of work required to coordinate switching across a large-scale HPC system. 
 Current power management features are primarily derived from consumer technology, where 
the power savings decisions are all made locally. For a large parallel system, locally optimal 
solutions can be tremendously non-optimal at the system scale. When nodes go into low-power 
modes opportunistically based on local decisions, it creates a jitter that can substantially reduce 
system-scale performance. For this reason, localized automatic power management features are 
often turned off on production HPC systems. Moreover, the decision to change system balance 
dynamically to conserve power requires advance notice because there is the latency for changing 
between different power modes. So the control loop for such a capability requires a predictive 
capability to make optimal control decisions. Therefore, new mechanisms that can coordinate 
these power savings technologies at system scale will be required to realize an energy-efficiency 
benefit without a corresponding loss in delivered performance. 
 A complete adaptive control system requires a method for sensing current resource 
requirements, making a control decision based on an accurate model for how the system will 
respond to the control decision, and then distributing that control decision in a coordinated 
fashion. Currently the control loop for accomplishing this kind of optimal control for power 
management is fundamentally broken. Predictive models for response to control decisions are 
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generally handcrafted (a time-consuming process) for the few examples that currently exist.  
There is no common expression of policy or objective. There is no comprehensive monitoring or 
data aggregation. More importantly, there is almost NO tool support for integration of power 
management into libraries and application codes. Without substantial investments to create 
system-wide control systems for power management, standards to enable vertical and horizontal 
integration of these capabilities, and the tools to facilitate easier integration of power 
management features into application codes, there is little chance that effective global power 
management technologies will emerge. The consequence will be systems that must compromise 
system balance (and hence delivered application performance) to fit within fixed power 
constraints, or systems that have impractical power requirements. 

Node-scale Power Management: Operating systems must support Quality-of-Service (QOS) 
management for node-level access to very limited/shared resources. For example, the OS must 
enabled coordinated/fair sharing of the memory interface and network adaptor by hundreds or 
even thousands of processors on the same node. Support for local and global control decisions 
require standardized monitoring interfaces for energy and resource utilization (PAPI for energy 
counters). Standard control and monitoring interfaces enable adaptable software to handle 
diversity of hardware features/designs. Future OS’s must also manage heterogeneous computing 
resources, and manage data movement and locality in memory hierarchy.   

System-Scale Power Management: We need to develop power Performance monitoring and 
aggregation that scales to 1B+ core system. System management services require standard 
interfaces to enable coordination across subsystems and international collaboration on 
component development. Many power management decisions must be executed too rapidly for a 
software implementation, so must be expressed as a declarative policy rather than a procedural 
description of actions.  Therefore, policy descriptions must be standardized to do fine-grained 
management on chip. This requires standards for specifying reduced models of hardware power 
impact and algorithm performance to make logistical decisions about when and where to move 
computation as well as the response to adaptations. This includes analytical power models of 
system response and empirical models based on advanced learning theory. We must also develop 
scalable control algorithms to bridge gap between global and local models. Systems to aggregate 
sensor data from across the system (scalable data assimilation and reduction), make control 
decisions and distribute those control decisions in a coordinated fashion across large-scale 
systems hardware. Both online and offline tuning options based on advanced search pruning 
heuristics should be considered. 
Energy Aware Algorithms: There was an observation that algorithms must base order of 
complexity on energy cost of operations rather than temporal cost of operations. A good example 
of this approach is communication-avoiding algorithms, which trade-off FLOPS for 
communication to save energy. Modifying complexity theory to accommodate the cost of data 
movement presents its own set of challenges because FLOP/s are relatively invariant whereas 
modeling of distance dependent data movement is very dependent on ephemeral system 
architectural and physical characteristics.  
 Incorporating data movement cost into complexity theory would require a substantially more 
sophisticated framework. The optimal trade-off is very context specific, so we must enable 
libraries to be annotated for parameterized model of energy to articulate a policy to manage those 
trade-offs on different system architectures. Standardizing the approach to specifying lightweight 
models to predict response to resource adjustment will be important to this effort.  There is much 
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opportunity to develop energy-aware algorithms, but the mathematics for expressing these costs 
has a long way to go. 

Library Integration with Power Management Systems: Library designers need to use their 
domain-specific knowledge of the algorithm to provide power management and policy hints to 
the power management infrastructure. This research agenda requires performance/energy 
efficiency models and power management interfaces in software libraries to be standardized.  
This ensures compatibility of the management interfaces and policy coordination across different 
libraries as well as supporting portability across different machines. 

Compiler Assisted Power Management: Compilers and code generators must be able to 
automatically instrument code for power management sensors and control interfaces to improve 
the programmability of such systems.  Compiler technology can be augmented to automatically 
expose “knobs for control” and “sensors” for monitoring of non-library code.  A more advanced 
research topic would be to find ways to automatically generate reduced performance and energy 
consumption models to predict response to resource adaptation. 

Application-Directed Power Management: Applications require more effective declarative 
annotations for policy objectives and interfaces to coordinate with advanced power-aware 
libraries and power management subsystems. 
System “Aging”: Today’s systems operate with clock rates and voltages in guard bands to 
account for chip “wear-out.” By employing slight clock speed reduction over the lifetime of the 
system, can achieve 5% power savings instead of using guard bands to account for silicon aging 
effects. 
Voltage Conversion and Cooling Management: Another key area for power reduction is to 
design hardware to minimize the losses in voltage regulation and power conversion components.  
For example, the D.E. Shaw system had 30% efficiency loss just from the power conversion 
stages going from 480V to lowest voltage level delivered to chips. 
 There are opportunities to use smart-grid strategies to reduce energy consumption. Improve 
data center efficiencies (5-10% savings in total power consumption) have been demonstrated 
using this approach. The smart grid technology can rapidly shift power distribution to balance 
power utilization across the system. 
 Exascale systems should be water cooled (some may be warm water cooled) because it is 
substantially more efficient that air-cooling.   
3.7 Priority Technology Investments for Next Decade 

Addressing the technology challenges discussed in this report and accelerating the pace of 
technology development will require focused investments to achieve an exascale system by 
2018. Areas requiring early investments (long-lead times) are identified. 
Architecture  

Node software/hardware architecture (Long-lead time). Support for hierarchical memory 
structure, active messages, sync primitives, requires close interaction with software architects. 
Architectural emulators will be needed support language development. 
System Level Simulation and Emulation Capability to enable Hardware/Software Co-
Design (Long-lead time): Evaluating different hardware architecture options requires a robust 
and credible hardware/architectural simulation platform.  Without such a platform, it will be 
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difficult to integrate application science groups into the design process for future node 
architectures without some way for them to run their codes to assess the benefits (and costs) 
of various architecture trade-offs. Verification and validation of these capabilities will be a 
critical issue.  
Interprocessor Communication Primitives: We need to rigorously define the new 
architectural semantics for inter-processor communication to support future programming 
models. There is no hope of coming up with a common multi-platform programming 
environment if there is no agreement on the hardware-level support for a common set of 
semantic primitives. 
 Mechanisms for Dealing with 109 FPUs: Simply enumerating the communication with 109 
partners would likely exhaust local memory on future node designs. Either hardware 
mechanisms that enable compact addressing (global address space) or some other compact 
approach to referencing remote communication partners will be required.  
Tools for Application-Driven Hardware Design: The physical design constraints that lead to 
million-processor systems and constrained bandwidth constrain the space of viable system 
characteristics (speeds and feeds), but there are still many viable options in terms of computer 
architecture and organization to make these systems more usable. Given the exceeding 
complexity of any viable hardware solution in the future, the architecture of future systems 
must be co-designed from programmers’ point of view as well as from the hardware point of 
view.   

Hardware 
Architectural and Chip Level Circuitry Mechanisms for Dealing with Resiliency: The 
ability to detect errors is as important as the ability to recover from them. Novel software 
mechanisms for detecting silent errors and recovering from transient failures will not emerge 
without some hardware interfaces for software to exploit. 
New checkpointing mechanisms (Long-lead time): Node-localized non-volatile memory will 
be essential to enable continued scaling of application-based checkpointing out to exascale 
class systems. Checkpointing directly to a shared disk is out of the question. It is viable to 
checkpoint to non-volatile memory (FLASH or its replacement) on node and to a partner node 
to enable rapid state preservation and restart. However, the NVRAM technology packaging, 
durability, and cost must be improved substantially to make this approach feasible.  Software 
technology to manage node-local NVRAM will also be a requirement. Another area of 
interest is hierarchical checkpointing. Developing new checkpointing mechanisms is a long-
lead time investment and will be essential to the success of the 2015 systems as well.  
Advanced Low-Power Memory Technology (Long-lead time): Investment in new memory 
interface protocols could achieve a 5x power reduction from JEDEC memory roadmap by 
2018. The biggest show-stopper for an exascale computing system is the power consumption 
of the memory subsystem, so advanced memory technology can enable much better balance 
between floating point performance and memory bandwidth, which in turn expands the scope 
and applicability of exascale-class systems. This is a long-lead time investment that requires 
tens of millions of dollars to get below 5 PJ/bit. 
Optical Transceivers (Long-lead time): Interconnect architecture, signaling, optical (e.g., low 
cost lasers/modulators) are currently used for long-haul connections, but will be increasingly 
important for node-level and rack-level connections. Without investment the technology may 
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not be available at an appropriate cost-point or packaging to be useful for an exascale-class 
system. This is a long-lead time investment that requires tens of millions of dollars. Ring 
resonators and low power lasers are areas of interest. 
Hardware/software mechanisms for power management (Long-lead time): One area of 
interest is over-provisioning FPUs and bandwidth (both at same time would not be possible 
due to other constraints so we need to quickly switch between the two). Another area is to use 
rapid power/performance changes to change the power-state within a single clock cycle. 
 

3.8 Major Risk Factors and Strategies for Mitigation 	
  
The following is a brief list of the risk factors and mitigation strategies discussed: 

• Will applications be able to expose sufficient concurrency to exploit an exascale system? 
• Will resilience challenges limit effective use of an exascale system? 
• Will the 2018 exascale systems have broad-enough market base to be commercially 

viable? 
• Will the required optical technology be broadly available (affordable)? 
• Applications need a stable abstract machine model (execution model) before they will 

begin to move. Applications won’t develop exclusively for exascale machine. If an 
exascale node architecture diverges substantially from mainstream, it will have very 
limited impact and few applications. 

• Failing to design to sufficiently large scale may result in systems that work well in the 
midrange, but are impractical to integrate and scale-up to target scale.  

• Final system does not any meet science objectives due to overly constrained bandwidth 
or overly complicated programming environment. 

• Inadequate time for applications to adapt to changes in programming models because 
early prototypes will not be available in time. 

• Can’t afford system in 2018 if > $200-300M/system. 
• If we don’t make the investment, we will run the risk of stagnating simulation based 

science development in the US.
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Systems 2009 2018 swim lane 1 2018 swim lane 2 

System peak 2 Peta ≥1 Exa 

Power 6 MW ≤20 MW 

System memory 0.3 PB 50 PB 

Node performance 125 GF 1TF 10TF 

Interconnect Latency (for 
longest path) 

1-5usec 
 

0.5usec (speed of light) 

Memory Latency 150-250 
clock cycles  
(~70-100ns) 

100 clock cycles (~50ns) 

Node memory BW 
(consistent with 0.4 B/F) 

25 GB/s 400 GB/s 4TB/s 

Node concurrency (FPUs) 12 1.000 10,000 

Node Interconnect BW 
(consistent with 0.1 B/F) 

3.5 GB/s 100 GB/s 
 

1 TB/s 

System size (nodes) 18,700 1,000,000 100,000 

Total concurrency 225,000 1B*10 
for latency hiding 

1B *100 
for latency hiding 

Storage 15 PB 1000 PB 
(>10x system memory is min) 

IO 0.2 TB 60 TB/s 

MTBAI (mean time 
between application 
interrupt) 

Days 24 Hours 

Figure 3.8 Overview of technology scaling for exascale systems. Swim lane 1 represents an 
extrapolation of manycore system design point whereas swim lane 2 represents scaling of a GPU 
design point. 
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Chapter 4: Scalability and Concurrency 
 
 The discussions here are centered on scalability and concurrency driven by characteristics 
within the node as well as scalability and concurrency driven by the interconnect. There was 
general agreement on what two types of nodes might be available in this timeframe, their 
scalability ramifications, and programming approaches that would maximize their utilization. 
There was also general agreement on what the interconnect characteristics would be in this 
timeframe and the associated ramifications to code scalability. We discuss the need for co-design 
to address application scalability from both I/O and OS perspectives, and identify the need for 
testbeds, early prototypes, simulators and other resources that will help the community make 
sustained progress. Finally, we identify major risk factors associated with scalability and 
concurrency and risk mitigation strategies; these include where major investments could be 
prioritized and where long lead-time R&D could be identified to reduce risk.   
 A compute node is the end point of the interconnect network (with a NIC) and smallest 
replicable unit on that network. It is assumed here that all compute nodes (per job step) are the 
same, that a node will most likely have persistent storage such as FLASH or storage class 
memory, and that compute nodes are likely to be heterogeneous (e.g., CPUs and GPUs). Also 
assumed here is that I/O nodes can be different, that is, direct connections to I/O infrastructure 
and some have more memory; and Login and Service nodes can be different, that is, some have 
differences in OS. 
Our application view of the memory system inside the node includes stacked memory and non-
volatile memory. Options here are: 

• All CPU/GPUs have separate memory that is explicitly managed 
• Current model: cache hierarchy 
• Private local scratchpad 
• Future: shared memory space for the node (non-coherent) 

 
Our application view of the memory system from inside the node looking out includes a view to 
the global (off-node) address space. Options here are: 

• MPI view with one sided communications 
• PGAS options: e.g., UPC, CAF, Global Arrays 
• RDMA 
• Coherence Model – answered by the programming models group, informed by the 

scalability and concurrency group 
 
4.1 Node Concurrency 

Inside a node there will be arithmetic logic units (ALU), a modest number of compute thread 
slots, a massive number of data parallel thread slots and that these slots will be schedulable. The 
OS image for the node must also be understood (discussed later). It is unclear whether there will 
be multiple coherence domains in the node versus only one. Data parallel concurrency seems to 
imply that we need to think about differences in thread definitions and their characteristics: 
compute threads versus data threads. Concurrency per node will be driven by the number of 
FPUs per chip, the number of threads per ALU, and the instruction bundle size. Total system 
concurrency will be driven by the number of nodes needed to reach an exaflop running at the 
expected frequency times the concurrency per node. Two example paradigms (or “swim lanes”) 
emerged. See Figure 3.8. 
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4.2 Interconnect Scalability 
If we assume 0.1 B/F in each direction, then aggregate network requirement at the node 

boundaries has been set to 100 PB/s for the exascale machine in 2018. For a direct network this 
will be 100GB/s in each direction for a 1M node configuration. For the purposes of this 
discussion it is assumed that half of the bandwidth will be carried in optics and the other half is 
carried in copper. To first order it really doesn’t matter how this bandwidth is divided in terms of 
node count. 1M nodes with 100 GB/s or 100K nodes with 1000 GB/s are likely to have the same 
amount of overall optics cost if there is a fixed bandwidth per optical connection. (If some multi-
stage network is assumed for this size system the amount of optics will grow by O(N) for N 
stages.) Given today’s projections of the cost of optics in 2018 of $.65-.85/Gb/s just the 50PB/s 
(plus encoding and 20% redundancy for reliability) would cost $400-500M. It is this 
overwhelming cost that drives the conclusion that extensive long-term investment in optics 
technology is required. The requirements for intra-machine optics are likely to be different 
enough from the telecommunications industry requirements that we cannot count solely on the 
industry growth and we must augment it with HPC specific investment.  

The exact topology of the interconnection is an excellent topic for co-design since 
communications patterns depend on algorithmic decisions. There are classes of communications 
that are nearest neighbors and classes of communications that are more global. Given the 
increased scale of the system the balances in the system may change how the various algorithmic 
structures are actually coded. Some of these balance changes were topics of the workgroup as 
discussed below. 

It appears that the single thread performance is not likely to be very different than today, so if 
nothing dramatic is done to the software communication paths the latency in the network is 
likely to be the same as today. Given the O(1000) increase in threads global synchronization 
costs will grow substantially, and will limit the overall scalability of algorithms structured the 
way they are today. These scalability concerns, among other things, lead us to recommend a shift 
to more asynchronous algorithm structuring in another section.  

It is obvious that there will be usages of systems of this scale that do not dedicate the entire 
machine to one job, but will involve several independent jobs running concurrently. For this 
usage pattern it is very beneficial to have the capability to partition the network and the traffic 
such that interference is avoided. This applies not just to the algorithm communications but also 
to I/O, and to a lesser extent control information.  

With the extreme number of endpoints in the system, and the massive amount of 
communications traffic, it is clear that some form of end-to-end reliability must be included. This 
can be a combination of hardware and software but should not require the application software 
itself to be the source of the reliability. Part of the investment in the optics recommended in the 
first paragraph should be to reduce as much as practical the raw bit error rates in the network 
itself.  

4.3 Co-Design Opportunities 
For most of the last two decades, the high-end computing platforms used by computational 

scientists presented them with the same model of execution, communicating sequential 
processes. Standard programming languages and libraries provided stability and portability.  
While exceptions abound, the principal strategy scientists used for exploiting the ever larger and 
more powerful systems was scaled-speedup. That is, as the machines got larger, so did the 
problems they were asked to solve. However, aspects of the execution model such as the balance 
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of operations and memory per process remained largely unchanged, and this enabled an 
increasingly broad set of high-end parallel applications to come into being. 
 The end of Dennard scaling4 at the turn of the century has brought this period of stability to 
an end. Clock rates have stopped increasing, which implies that increased performance can only 
be achieved through increased concurrency or specialized architecture. The mainstream 
microprocessors that are leveraged to create most of today’s high-end systems have multiple 
processor cores per die, and the number of such cores is expected to increase exponentially.  
New architectures are being developed for other niches such as gaming and graphics. These are 
being incorporated into high-end systems, creating heterogeneous processing nodes. The rate of 
change in DRAM density is falling off of Moore’s Law, and it soon may stop altogether. As the 
number of compute cores continues to increase, this will cause a dramatic change in the 
traditional balance between operations and memory density. NAND Flash development now 
paces commercial solid-state memory technology, and these devices are beginning to appear in 
systems, both as solid-state disk (SSD) and non-volatile memory. It’s not at all clear how 
systems and applications will exploit them. 
 The changes touched on above and elaborated on elsewhere in this document will make it 
increasingly difficult for a broad range of computational scientists to use the most powerful 
computing systems. This is not a new phenomenon. Many applications have had difficulty 
adapting to the distributed memory, messaging passing systems that predominate HPC today.  
This will only get worse as the rate of growth in concurrency will be greater in the next decade 
than it was in the last two. By the time we reach exascale, applications may have to have 
O(10^10) independent threads to fully exploit the largest systems. Amdahl’s Law teaches us that 
even the smallest unnecessary overhead, be it in our algorithms or in the systems, will have 
devastating consequences for the throughput of these codes and hence the pace of discovery in 
their respective fields. The sluggish growth in memory volume will also be troublesome. Scaled-
speedup will be increasingly difficult to achieve, and familiar techniques like ghost cells to 
buffer data exchange between processors may no longer be feasible for many problems. 
 All of the above emphasizes the risk that high-end systems may be less and less general 
purpose in the future, that such systems may be tailored to meet the needs of one or more related 
scientific disciplines. On the other hand, it is also clear that the exascale node will in large part 
be the same technology as that in transport container-scale systems, in rack-scale systems, in 
desktop systems, in laptops and hand-held devices. 
 Therefore, it is quite likely that a decade from now, high-end systems will have evolved 
significantly from today’s systems, and applications will have to follow suit. For example, we 
may have to redesign or abandon Krylov-space iterative methods, such as conjugate gradients, 
since they involve inner-products that introduce a logarithmic computational bottleneck.  
Scientists and mathematicians must know this as soon as possible, as developing new algorithms 
can be a high risk and time consuming endeavor. Conversely, where new algorithms are not 
anticipated, systems will have to accommodate them, perhaps with specialized combining 
networks to process inner-products. This suggests that computational scientists and computer 
architects must sit down together to understand the complete range of tradeoffs possible for each 
of them, and then co-design their codes and systems to maximize scientific throughput. 
 The co-design of future systems and applications will be an expensive process. To manage 
this, system designers will minimize unique designs, and wherever possible leverage components 

                                                
4 The realization that as transistors get smaller, they can switch faster and use less energy (1974) 
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produced for other purposes. Therefore, even if the integrated circuit dies are unique to a family 
of HEC systems, they will be integrated from off the shelf IP modules. Software development is 
also a time consuming and labor intensive process. To the extent possible, it is critical for 
exascale systems to be backward compatible, allowing existing software to be reused where 
possible. New features of HEC systems, such as global address spaces must evolve into the 
execution model with as little disruption as possible. A new generation of tools (compilers, 
performance analysis, etc.) must be provided to help users generate many orders-of-magnitude 
more concurrency than in today’s calculations, and to express this t the system so it can exploit 
them. 
 As DOE charts its path from today to exascale, it should do so in concert with other 
organizations, both foreign and domestic, that are trying to do the same. The best such example 
will likely be DARPA’s Ubiquitous High Performance Computing (UHPC) program, which will 
focus on many of the same core technology issues such as power density, memory hierarchy, 
communication latency and bandwidth, resiliency, etc. DOE should manage its investments so as 
leverage DARPA’s and those of other organizations that also have HEC research activities. 

In this vein we discuss two areas where we believe co-design will play an important role, 
application scalability with file system support and application scalability with operating system 
support. 

4.4 Application Scalability with File System Support 
Traditionally, parallel file systems play a critical role in leadership class machines for 

simulation science because these machines protect computation progress in the face of frequent 
machine component failure by periodically recording computation state in disk-based checkpoint 
files. After a failed component is isolated out of the machine a computation can be restarted from 
the stored checkpoint file. For the machine to effectively advance science, rather than simply 
defend itself against failures, the fraction of time spent capturing checkpoints should be keep 
low, typically at or under 10%. 

The size of a checkpoint file scales with machine memory, so each will be up to O(PB). Our 
target is 24 hours mean time to application failure. Thus, a parallel file system must capture 
checkpoints very fast, estimated at on the order of 60 TB/sec, or far too much of the machine’s 
valuable time will be spent taking these checkpoints. This is an increase in parallel file system 
data rate of O(300X). But magnetic disk bandwidth grows slowly and is only expected to 
increase by 4X in the time until Exascale machines appear, so exascale systems would need 
O(80X) increase in the number of disks. Disk prices are not expected to drop significantly, 
although their capacity is expected to increase by O(16X), so meeting exascale bandwidth 
demands might increase storage system costs by O(80X), an unacceptable growth in cost.   

Finding a cost effective fault tolerance strategy is a critical challenge for exascale systems.  
The size of checkpoint storage should be at least 30X main memory size to accommodate a 
sufficient number of checkpoints. This makes use of main memory technology like DRAM 
unacceptable for checkpoint storage, because even a single copy of main memory is expected to 
cost about half of the total cost of the system. Solid state memory technologies such as NAND 
flash will be perhaps an order of magnitude less expensive per byte than DRAM, but even this 
will be far too expensive to provide a checkpoint storage 30X the size of main memory. 

Solid state memory, however, is expected to be cost effective for bandwidth, and for one 
copy of main memory. And disk is expected to remain cost effective for capacity. So the leading 
proposal for fault tolerance in exascale systems is to evolve parallel file systems to include a tier 
of solid state storage; checkpoints would be written at exascale speeds out of the compute system 
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into the solid state storage tier and during the time before the next checkpoint is taken, copied 
into the disk storage. Because the time between checkpoints is at least 10X the time to take a 
checkpoint, the checkpoint bandwidth to disk storage can be 10X lower than that into solid state 
disk, or O(6 TB/s).  

This group is cautiously optimistic that this hybrid model for secondary storage will have 
appropriate cost structure, and that parallel file systems software can be evolved to integrate this 
double copy mechanism for checkpoint/restart. Because of the criticality of checkpoint/restart to 
effective use of exascale systems, however, we recommend aggressive exploration of hybrid 
secondary storage and the file system software changes needed to exploit it. 

This fault tolerance strategy applies only to applications running on the exascale computer.  
It is not a solution to faults in the storage system, because it relies on the storage system to be 
constantly available and reliable. However, the storage system component count is expected to 
rise by at least O(10X), and with disk capacity rising by about 4X, the failed disk rebuild work 
will grow by O(40X), so the internal fault tolerance of the storage system, today dependent on 
RAID hardware in the components, will have to be revised.  

I/O stream concurrency, today on O(10K), could increase to a stream per core, or O(1B), 
with Exascale systems. Synchronization and concurrency management in the parallel file system 
is likely to strangle bandwidth scaling. Systems that coalesce streams will greatly reduce the 
stress on parallel file system concurrency control. Coalescing at the level of the node might limit 
stream concurrency to O(1M), however even that is very challenging for parallel file systems.  
System call forwarding, with I/O nodes integrating streams from multiple compute nodes, has 
the potential to bring parallel file system concurrency down to current levels. This technology is 
being pursued today, and its timely success is important to exascale systems.   

Coalescing can deal with stream management; however, if all nodes are concurrently writing 
small strided ranges to shared files, even coalescing will not overcome the false sharing 
collisions of O(1M) streams on file blocking structures. Various current projects are exploring 
delayed integration of concurrent write structures, such as log-structuring, to minimize 
synchronization bottlenecks. Techniques such as these must be tested and deployed at petascale 
in order to avoid aggravating these concurrency challenges at exascale. 

Beyond the critical defensive I/O workload, exascale systems will be increasingly applying 
new workload patterns to parallel storage systems.   

First, data analysis will increasingly be in-situ, or co-located with simulation. Data analysis 
gathers subsets of information from the simulation results or a single or a series of time steps, 
inducing either a very large read bandwidth load, comparable to defensive I/O bandwidths, if all 
output is read to find the subset of data, or apparently random read access patterns, if only the 
needed data is fetched. Parallel file systems on exascale systems will increasingly be required to 
support significantly heavier read and random read workloads. One especially challenging 
format for data analysis will be data capture workloads generating large numbers of small files.  
Estimates put the number of small files in exascale storage systems at O(1B) to O(1T), with 
corresponding high random access workloads. Current parallel file systems have been designed 
for high bandwidth on large objects, often at the expensive of small file and random access 
performance. This design simplification is going away as we approach exascale, and parallel file 
systems software structures will need to be revised extensively. 

Second, the increasingly importance of uncertainty quantification (UQ), both through 
ensemble and imbedded model simulations, will place special emphasis on the data analysis 
implicit in UQ’s response model generation. Concurrent analysis of simulation output, model 



 43 

generation and adaptive generation of additional simulation runs will cause the parallel file 
system workload to see concurrent read and write accesses to an array of files. Concurrent read 
and write at high bandwidth and high concurrency has been a relatively non-critical workload in 
pre-petascale systems, and parallel file systems will need to be improved for this workload. 
Metadata embedded in stored objects may become a workload of importance as well, as 
persistent memory structures has been put forward as a tool for UQ systems. 

4.5 Application Scalability with Operating System Support 
Functional partitions, e.g., a compute partition, a login partition, and an I/O partition have 

been used since the earliest MPP systems and we believe that this partitioned strategy will 
continue to be used for the foreseeable future. We anticipate that an Exascale system will have at 
least four partitions: 1) a compute partition with approximately one million nodes, 2) a service 
and I/O partition with 500 to 5000 nodes, 3) a login partition (used to launch applications) with 
about 10 nodes, and 4) a system management partition that provides access to the RAS sub-
system and has about 10 nodes. With the exception of the compute partition, all of the partitions 
will run full-featured operating systems (e.g., Linux). Even though these partitions will run the 
same basic OS, the OS will likely be configured and tuned to the specific needs of the partition.  
The nodes in the compute partition will run a "lightweight" OS which provides the minimal 
functionality needed to support computation. 

Because of its size (~one million nodes), support for the compute partition will require the 
development of hierarchical infrastructure that provides support for collective OS operations 
involving all of the nodes in the compute partition, e.g., job launch, dynamic loading of libraries, 
performance monitoring and debugging.  It is apparent that future runtime systems will want to 
take advantage of the information that is being collected by the RAS sub-system (e.g., 
availability of other compute nodes or availability of communication links).  Moreover, runtime 
systems would likely benefit from an integration of the RAS sub-system and the hierarchical 
infrastructure. 

The lightweight OS running on the compute nodes must include mechanisms that facilitate 
access to the extended functionality provided by other partitions. System call forwarding and/or 
proxy processes running on another partition can be used to provide the needed functionality 
while minimizing the additional OS state that needs to be maintained on the computes nodes.  
The compute node OS needs to support the aggregation of I/O streams in the compute partition 
based on packages like IOFSL (I/O Forwarding Scalability Layer). The compute node OS also 
needs to provide hooks for the hierarchical infrastructure used to manage the compute partition 
with an emphasis on the hooks needed to support scalable debuggers and performance 
monitoring tools. 

Given the size of the compute partition, hardware and software jitter will have a significant 
impact on the time needed for system wide synchronization. This implies that block-synchronous 
programming models will not perform well on the entire system and programmers will opt for 
asynchronous programming models whenever possible. The compute node OS needs to provide 
good support for asynchronous programming models. 

In the context f communication, the compute node OS needs to support programming models 
that require a communication endpoint for every other compute node in the system (~one million 
endpoints). This will require scalable support for communication startup, endpoint management, 
resource provisioning, and teardown. Beyond providing support for explicit programming 
models, the compute node OS needs to provide support for programming models that require 
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implicit communication between nodes, e.g., loads and stores over a (noncoherent) global 
address space. 
 

The following resources will aid the community in making sustained progress: 
1. Network simulators and network models for topology, routing and resiliency 
2. Extended I/O testbeds 
3. Early access to high-level system characteristics 
4. Early access to high-level system models to explore trade-offs in the design space 

a. Advanced designs for node (with prototypes) for non-volatile memory  
b. S/W development 

5. Early delivered machines to address asynchronous algorithm development and scalability 

4.6. Major Risk Factors and Strategies for Risk Mitigation 
The identified risks and risk mitigations (Risk/Risk Mitigation) are listed in priority order: 

1. Cost of optics & transducers/investments 
2. Communications latency/new paradigms 
3. Numerical algorithms/co-development 
4. HW & SW jitter/ asynchronous algorithms and communications 
5. Interconnect BER/more BW to support higher order error correction 
6. New storage paradigm/align with cloud computing community and testbeds 
7. Random system characteristics impacts current validation techniques/statistical validation 
8. Maintaining the pyramid investment model (trained workforce, S&T base)/education and 

outreach 
 
Top priority should be emphasized with investment associated with scalability and concurrency.  
The top priority investments along with approximate level of investment are listed below in 
priority order: 
1. Optics and transducers  
2. Asynchronous communications and algorithms  
3. Low overhead communication and latency HW/SW stack (combined with (1) above) 
4. New non-volatile storage paradigm  
5. New hierarchal system HW/SW architecture  

 
Long lead time items requiring R&D investment: 

• Optics and transducers 
• Scalable numerical algorithms 

o Asynchronous, load-imbalance and fault tolerant 
o Larger surface/volume ratio 

• New storage paradigm 
o Application defined objects, non-volatile, robust, reliable efficient 
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APPENDIX A: Workshop Agenda 
 

 
 
 
 
 

Architectures and Technology for Extreme Scale Computing 
  December 8th - 10th, 2009 · San Diego, CA 

Monday, December 7th, 2009 

Time Session Lead Room 

6:30 - 
8:00pm Pre-Workshop Dinner (Organizers, Panel Leads, & Speakers) Synergy 

8:00pm Adjourn 
 
Tuesday, December 8th, 2009 

1:15-
3:30pm Breakout Sessions 

 Node Architecture and Power Reduction 
Strategies 

John Morrison, John 
Shalf, & Horst 
Simon 

Synergy 

 Programming models and environments Gorda & Yelick Convene 3 

 Fault management and resiliency Dosanjh & Geist Convene 4 

 Scalability and concurrency Nichols & Seager Convene 5 

3:30pm General Discussion Foyer 

3:45-
6:00pm Continue Breakout Sessions (return to breakout rooms) 

6:30 - 
8:00pm Working Dinner: Organizational meetings Synergy 

8:00pm Adjourn 

 
 
 

Time Session Lead Room 

7:30-
8:30am Working Breakfast: Registration Foyer 

Welcome and Plenary Talks: 

8:30- 
8:45am Welcome, Logistics Rick Stevens & 

Andrew White,  

Inspire 
Ballroom 

8:45 - 
9:00am Opening remarks from ASCR 

9:00 - 
9:15am Opening remarks from ASC 

9:15 - 
10:15am Overview of Scientific & Technical Applications Rick Stevens & 

Andrew White 

10:15 am General Discussion Foyer 

10:30 - 
11:45am  Roadmap Presentation & Q&A session Horst Simon or 

Sudip Dosanj 

Inspire 
Ballroom 

11:45 - 
12:00pm 

Stage setting: Purpose of panel sessions, 
review of agenda, plans for report 

Rick Stevens & 
Andrew White 

12:00 - 
1:15pm Working Lunch: Preparation for breakout sessions 
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Architectures and Technology for Extreme Scale Computing 
  December 8th - 10th, 2009 · San Diego, CA 

 
Wednesday, December 9th, 2009 

Time Session Lead Room 

7:30-
8:30am Working Breakfast: Preparation for breakouts Foyer 

8:30am-
10:00am Breakout Sessions 

 Node Architecture and Power Reduction 
Strategies 

John Morrison, John 
Shalf, & Horst Simon Synergy 

 Programming models and environments Gorda & Yelick Convene 3 

 Fault management and resiliency Dosanjh & Geist Convene 4 

 Scalability and concurrency Nichols & Seager Convene 5 

10:00am General Discussion Foyer 

10:15 - 
11:45am Continue Breakout Sessions (return to breakout rooms) 

11:45 - 
1:00pm Working lunch: Organizational meetings Foyer 

Plenary Session: 

1:00 – 
2:45pm Presentations from Breakout Session Leaders Inspire 

Ballroom 

2:45 pm General Discussion Foyer 

3:00 - 
5:30pm Continue Breakout Sessions (return to breakout rooms) 

6:00 - 
7:30pm Working Dinner: Organizational meetings Synergy 

7:30pm Adjourn 
  
Thursday, December 10th, 2009 

Time Session Lead Room 

7:30-
8:30am Working Breakfast: Preparation for Plenary Foyer 

Plenary Session: 

8:30 - 
10:00am Workshop Summary from each panel Inspire 

Ballroom 

10:00 am General Discussion Foyer 

10:20 - 
12:00pm Report Writing Session for Chairs, Panel Leads, and Writers Synergy 

12:00 - 
1:00pm Working lunch: Report Writing Session Continued Inspire 

Ballroom 

1:00 - 
4:00pm Report Writing Session Continued Inspire 

Ballroom 

4:00pm Adjourn 
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