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1 Executive Summary

The National Energy Research Scientific Computing Center (NERSC) is the primary
computing center for the DOE Office of Science, serving approximately 4,500 users working
on some 650 projects that involve nearly 600 codes in a wide variety of scientific
disciplines. In addition to large-scale computing and storage resources NERSC provides
support and expertise that help scientists make efficient use of its systems.

In March 2013, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and
DOE’s Office of Fusion Energy Sciences (FES) held a review to characterize High
Performance Computing (HPC) and storage requirements for FES research through 2017.
This review is the ninth in a series that began in 2009 and it is the second for FES. The
report from the earlier (2010) NERSC FES review is available at
http://www.nersc.gov/science/hpc-requirements-reviews/target-2014/.

The latest review revealed several key requirements, in addition to achieving its goal of
characterizing FES computing and storage needs. High-level findings are:

1. To meet Fusion Sciences research objectives, FES researchers need computing
and data storage resources in excess of those predicted by historical trends.

2. FES codes will require updated mathematical and I/0 libraries that will run
efficiently on next generation architectures.

3. FES scientists need support for both ensemble runs and large-scale jobs.

4. Teams need effective tools for managing workflows, performing data analysis,
and profiling and developing codes.

5. Code teams need help porting applications to run on next-generation
architectures.

This report expands upon these key points and adds others. The results are based upon
representative samples, called “case studies,” of the needs of science teams within FES. The
case study topics and review attendees were selected by the NERSC meeting coordinators
and FES program managers to represent the FES production computing workload.
Prepared by the FES workshop participants, the case studies contain a summary of science
goals, methods of solution, current and future computing requirements, and special
software and support needs. Also included are strategies for computing in the highly
parallel “many-core” environment that is expected to dominate HPC architectures over the
next few years.
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2 DOE Fusion Energy Sciences Mission

The mission of the Fusion Energy Sciences (FES) program is to expand the fundamental
understanding of matter at very high temperatures and densities and to build the scientific
foundation needed to develop a fusion energy source. This is accomplished by studying
plasma and its interaction with its surroundings across wide ranges of temperature and
density, developing advanced diagnostics to make detailed measurements of its properties
and dynamics, and creating theoretical and computational models to resolve the essential
physics principles.

FES has four strategic goals:

* Advance the fundamental science of magnetically confined plasmas to develop the
predictive capability needed for a sustainable fusion energy source;

* Support the development of the scientific understanding required to design and
deploy the materials needed to support a burning plasma environment;

* Pursue scientific opportunities and grand challenges in high energy density plasma
science to explore the feasibility of the inertial confinement approach as a fusion
energy source, to better understand our universe, and to enhance national security
and economic competitiveness, and;

* Increase the fundamental understanding of basic plasma science, including both
burning plasma and low temperature plasma science and engineering, to enhance
economic competiveness and to create opportunities for a broader range of science-
based applications.

From the days of the Controlled Thermonuclear Research (CTR) and the National Magnetic
Fusion Energy Computer Center (MFECC) in the mid-1970s—the predecessors of NERSC—
high performance computing and NERSC have played a significant role in fusion energy
research. Advanced simulations are critical for advancing the FES mission and achieving its
goals, especially the development of a predictive capability needed for a sustainable fusion
energy source. NERSC resources—distributed via the annual Energy Research Computing
Allocations Process (ERCAP) process and supplemented by the ASCR Leadership Computing
Challenge (ALCC) program—provide a reliable and predictable resource for meeting critical
FES mission needs.

Approximately 75% of the FES NERSC allocation is used to address the needs of the
Magnetic Fusion Energy (MFE) Theory and SciDAC programs, which are strongly focused on
ITER and burning plasmas. These programs address challenges in macroscopic stability,
confinement and transport in the core and edge regions, the interaction of radiofrequency
waves with plasmas, and energetic particle effects. A substantial fraction of these resources
supports the validation mission of fusion research at the FES major facilities. The rest of the
resources are distributed among high energy density plasma science, materials science (a
growth area following the addition of a materials science project in the FES SciDAC
portfolio), general plasma science, and small-scale experimental plasma research.

In the coming years, the increase in the fidelity and level of integration of fusion simulations
needed to resolve multiphysics and multiscale problems in ITER-grade plasmas (including
plasma-surface interaction effects), enabled by continuing advances in high performance
computing hardware and associated progress in computational algorithms, will demand a
significantly higher level of NERSC and other SC high performance computing resources.
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3 About NERSC

The National Energy Research Scientific Computing (NERSC) Center, which is supported by
the U.S. Department of Energy’s Office of Advanced Scientific Computing Research (ASCR),
serves more than 4,500 scientists working on over 650 projects of national importance.
Operated by Lawrence Berkeley National Laboratory (LBNL), NERSC is the primary high-
performance computing facility for scientists in all research programs supported by the
Department of Energy’s Office of Science. These scientists, working remotely from DOE
national laboratories; universities; other federal agencies; and industry, use NERSC
resources and services to further the research mission of the Office of Science (SC). While
focused on DOE's missions and scientific goals, research conducted at NERSC spans a range
of scientific disciplines, including physics, materials science, energy research, climate
change, and the life sciences. This large and diverse user community runs hundreds of
different application codes. Results obtained using NERSC facilities are cited in about 1,500
peer reviewed scientific papers per year. NERSC activities and scientific results are also
described in the center’s annual reports, newsletter articles, technical reports, and
extensive online documentation. In addition to providing computational support for
projects funded by the Office of Science program offices (ASCR, BER, BES, FES, HEP and NP),
NERSC directly supports the Scientific Discovery through Advanced Computing (SciDAC!)
and ASCR Leadership Computing Challenge? Programs, as well as several international
collaborations in which DOE is engaged. In short, NERSC supports the computational needs
of the entire spectrum of DOE open science research.

The DOE Office of Science supports three major High Performance Computing Centers:
NERSC and the Leadership Computing Facilities at Oak Ridge and Argonne National
Laboratories. NERSC has the unique role of being solely responsible for providing HPC
resources to all open scientific research areas sponsored by the Office of Science.

This report illustrates NERSC alignment with, and responsiveness to, DOE program office
needs; in this case, the needs of the Office of Fusion Energy Sciences. The large number of
projects supported by NERSC, the diversity of application codes, and its role as an incubator
for scalable application codes present unique challenges to the center. However, as
demonstrated its users’ scientific productivity, the combination of effectively managed
resources, and excellent user support services the NERSC Center continues its 40-year
history as a world leader in advancing computational science across a wide range of
disciplines.

For more information about NERSC visit the web site at http://www.nersc.gov.

Lhttp://www.scidac.gov

2 http://science.energy.gov/~/media/ascr/pdf/incite/docs/Allocation_process.pdf

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 7



4 Meeting Background and Structure

In support of its mission to provide world-class HPC systems and services for DOE Office of
Science research NERSC regularly gathers user requirements. In addition to requirements
reviews NERSC collects information through the Energy Research Computing Allocations
Process (ERCAP), workload analyses, an annual user survey, and discussions with DOE
program managers and scientists who use the facility.

In March 2013, ASCR (which manages NERSC), FES, and NERSC held a review to gather HPC
requirements for current and future science programs supported by FES. This report is the
result.

This document presents a number of findings, based upon a representative sample of
projects conducting research supported by FES. The case studies were chosen by the DOE
Program Office Managers and NERSC staff to provide broad coverage in both established
and incipient FES research areas. Most of the domain scientists at the review were
associated with an existing NERSC project, or “repository” (abbreviated later in this
document as “repo”).

Each case study contains a description of current and future science, a brief description of
computational methods used, and a description of current and future computing needs.
Since supercomputer architectures are trending toward systems with chip multiprocessors
containing hundreds or thousands of cores per socket and millions of cores per system,
participants were asked to describe their strategy for computing in such a highly parallel,
“many-core” environment.

Requirements presented in this document will serve as input to the NERSC planning
process for systems and services, and will help ensure that NERSC continues to provide
world-class resources for scientific discovery to scientists and their collaborators in support
of the DOE Office of Science, Office of Fusion Energy Sciences.

NERSC and ASCR have been conducting requirements workshops for each of the six DOE
Office of Sciences offices that allocate time at NERSC (ASCR, BER, BES, FES, HEP, and NP). A
first round of meetings was conducted between May 2009 and May 2011 for requirements
with a target of 2014; this included an August, 2010 FES review. A second round of
meetings, of which this is the third, will target needs for 2017. Reports from all previous
NERSC requirements reviews are available on the NERSC web site.

Specific findings from the review follow.
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5 Meeting Demographics

5.1
5.1.1 Organizers

Participants

Name Institution Area of Interest
Sudip Dosanjh NERSC NERSC Director
Richard Gerber NERSC Meeting Organizer
Dave Goodwin DOE / ASCR NERSC Program Manager
John Mandrekas DOE / FES FES Program Manager
Harvey Wasserman NERSC Meeting Organizer
5.1.2 Domain Scientists
e e NER
Name Institution Area of Interest AL
Repo(s)
Paul Bonoli MIT MFES; RF interactions with plasmas m77
m681,
MFES; gyrokinetic simulations with 1213574‘
Jeff Candy General Atomics | continuum (Eulerian) codes; Verification & 8¢,
N mp94,
Validation; Developer of GYRO
m888,
mp?2
Stephane Ethier PPPL MFES; gyrokinetic simulations with PIC mp19,
codes; code performance issues; co- m499,
developer of the GTS code m912,
gc3
Alex Friedman LLNL and LBNL | IFES / HEDLP / Heavy lon Fusion mp42
Kai University of GPS; simulations of magnetic reconnection
Germaschewski New Hampshire | and turbulence in laboratory and space m148
plasmas
Stephen Jardin PPPL MFES; MHD-fluid simulations; developer of m876,
the M3D family of codes mp288,
m912,
mé64,
mp21,
m1799
Homa U.C. San Diego Kinetic simulations of Laboratory and space
Karimabadi plasmas; data issues m1303
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Alice Koniges NERSC IFES: Heavy lon Fusion and lon Accelerator mp2,
Experiment Modeling; mp42
Arnold Kritz Lehigh Integrated modeling m649
University m876
m1043
Zhihong Lin U.C. Irvine MFES; gyrokinetic simulations with PIC m808,
codes; developer of GTC code m499,
m92
Vyacheslav Lukin | Naval Research | MFES / GPS; development and validation of
Laboratory fluid-based numerical models for
simulations of exploratory confinement & m1255,
: m489
basic laboratory plasma research; developer
of the HiFi multi-fluid modeling framework
Alexei Pankin Tech-X ELM dynamics, integrated modeling mp21,
Corporation m499,
m649,
m681,
m1043
Scott Parker U. Colorado core turbulence and transport; energetic mp118,
particles; developer of GEM PIC gc3
Chuang Ren University of IFES / HEDLP; direct-drive ICF and m792,
Rochester advanced ignition concepts mpl13,
m412
Carl Sovinec University of MFES; MHD-fluid simulations; co-developer mp2,
Wisconsin of the NIMROD two-fluid extended MHD mp200,
code mp21
Linda Sugiyama MIT MFES; MHD-fluid simulations m224,
m499,
mp19,
mp288
Frank Tsung UCLA IFES: Laser-plasma interactions; mp113,
m1157
Brian Wirth University of Materials; plasma-surface interactions m1709,
Tennessee, and m1200,
ORNL m916
Xueqiao Xu LLNL Plasma turbulence
mp2, gc3
5.1.3 Observers
Name Institution Area of Interest
Sean Finnegan DOE / FES Program Manager, HEDLP, GPS, & Theory
Wayne Joubert Oakll: l(;l(%fal‘:];;;onal Scientific Computing Group Member
Ravinder Kapoor DOE / ASCR OLCF Program Manager
Carolyn Lauzon DOE / ASCR AAAS S&T Technology Fellow
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Randall Laviolette DOE / ASCR SciDAC Application Partnerships
James W. Van Dam DOE / FES Director, Research Division
Timothy Williams ANL / OLCF Catalyst, laser-plasma interactions
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5.2

NERSC Projects Represented by Case Studies

NERSC projects represented at the review are listed in the table below, along with
computing and storage resources each used in 2012. These projects accounted for about 73
percent of computer time and 50 percent of archival storage used by FES at NERSC in 2012.
Some of the projects below have a combined contribution to the case studies that were
presented at the review.

Hours .
NERSC Used Archive | Shared
Project NERSC Review at Dataat | Data on
) NERSC Project Title - NERSC Disk
ID Project PI Speaker(s) NERSC
(Repo) 2012 2012 2013
TB TB
oy | B | (B
Turbulent Transport and ]Setif (ilaariiy’
mp19 Multiscale Gyrokinetic Wei-Li Lee D
. . Ethier, Scott
Simulation
Parker
Gyrol'(metzc Simulations of Jeff Candy,
Multiscale Electron Turbulence Chris Stephane
m1574 for Improved Predictive P 29.8 34.8 3.0
. Holland Ethier, Scott
Modeling of Tokamak Plasmas Parker
(ALCC Project)
Kzrletlc simulation z?fplgsma Yang Chen Jeff Candy,
microturbulence, kinetic MHD Stephane
mpl18 . / Scott i
phenomena and magnetic Ethier, Scott
. Parker
reconnection processes Parker
Energetic Particles: SciDAC
GSEP: Gyrokinetic Simulation of | Zhihong . .
m808 Energetic Particle Turbulence Lin Zhihong Lin 17.3 6.9 0.1
and Transport
Center for Simulation of Wave- Paul
m77 Plasma Interactions: SciDAC . Paul Bonoli 7.2 2.4 0.0
. Bonoli
Project
mp?2 LLNL MFE Supercomputing Bruce C.S. Chang
Cohen
Center for Edge Physics 833 14.9 05
1ySi
m499 Simulation: SciDAC-3 Center G5 Cimy | G G
3D Extended MHD simulation of | Stephen Stephen
mp288 . . .
fusion plasmas Jardin Jardin,
Fluid and Hybrid Modeling of Carl Stephen 9.3 30.1 5.6
mp200 Electromagnetic Activity in MFE . Jardin, Carl
Sovinec .
Plasmas Sovinec
Simulation and model validation Vvacheslav
m1255 of the Swarthmore Spheromak LZkin
Experiment (S5X)
Helicity Injected Torus Current . Vyacheslav
m172 Drive and Compact Toroid Brian Lukin 31 e 2.6
; Nelson
Studies
The Plasma Science and Brian
m489 .
Innovation Center Nelson
Center for Integrated Amitava Homa
m148 Computation and Analysis of Bhattachar . .
Reconnection and Turbulence jee Karimabadi,
H Kai 16.4 177.7 1.0
Petascale Kinetic Simulations in oma Germaschewski
m1303 Karima-
Laboratory and Space Plasmas badi
mpaz || Simulation ofintense Beams fort | Alex Alex Friedman | 0.4 0.75 0.3
Heavy-lon-Fusion Science Friedman
Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 12



Nonlinear Delta-f Particle
Simulation of Collective Effects
; . Ronald
m74 for Heavy lon Fusion Drivers and Davidson
High Intensity Particle
Accelerators
Study of laser-plasma
m792 interactions relevant to direct- Chuang Chuang Ren
. . . Ren
drive ICF implosions
Investigations of advanced
412 ignition physics and extreme Warren Chuang Ren,
m states of matter Mori Frank Tsung 19.8 79.0 3.0
Particle-in-Cell Simulations of
Laser Plasma Interactions Frank
m1157 Relevant to Inertial Fusion Tsung Frank Tsung
Energy
Ab-initio modeling of the
energetics and structure of
m916 nanoscale Y-Ti-O cluster
ipitates i itic all i
precipitates in ferritic alloys Brian Brian Wirth 2.3 0.085 0
m1200 Computational modeling of Wirth
plasma - surface interactions in
tungsten exposed to mixed He-H
plasmas
m1043 | Modeling of tokamak plasmas | Alexei Alexei Pankin 0.5 0 0
with large scale instabilities Pankin
m649 Integrated modeling simulations Arpold Arnold Kritz 01 03 0
for the plasma edge and core Kritz
Total of projects represented by case studies 196 352 16.1
All FES at NERSC 2012 269 711
Percent of NERSC FES 2012 allocation represented by case studies 73% 50%
Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 13



6 Findings

6.1 Summary of Requirements

The following is a summary of requirements derived from the case studies.

1. To meet Fusion Energy Sciences research objectives, FES researchers need
computing and data storage resources in excess of those predicted by
historical trends.

a. Research teams need more than 13 billion hours in 2017, a 50-fold
increase over hours used at NERSC in 2012.

b. Scientists will need to store more than 140 PB of archival data storage in
2017, a huge increase of nearly 200X over 2012.

c. Collaboratory teams will need 64 petabytes of shared online data in
2017, compared to almost no use of shared data space at NERSC in 2012.

2. FES codes will require updated mathematical and I/0 libraries that will run
efficiently on next-generation architectures.

a. Threaded linear solvers are needed for many-core systems. The PETSc
library is heavily used on today’s machines and must either be updated
or replaced.

b. The HDF5, ADIOS, and MPI 1/0 libraries must be supported on next-
generation platforms.

3. FES scientists need to execute both ensemble runs and large-scale jobs.

a. Some problems in FES research require massively parallel computations
at the largest possible size to capture the relevant physics over a range
of time and length scales.

b. Scientists need to make many runs of varying sizes and lengths to do
parameter studies, validate and verify codes, and perform uncertainty
quantification.

c. Strong and weak scaling are both important.

4. Teams need effective tools for managing workflows, performing data analysis,
and profiling and developing codes.

a. Many codes use Python and other software that requires dynamic
loading of modules and libraries.

b. Visualization and analysis tools are needed, including VisIt, Matlab, and
AVS-Express.

c. Optimization tools

5. Code teams need help porting applications to run well on next-generation

architectures.
a. Developers need access to training classes, documentation, and online
tutorials.

b. Access to new hardware as early as possible is needed to prepare for
future systems.

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 14



6.2

Additional Observations

Participants at the meeting made several observations that are not listed in the high-level
findings, the most significant of which are listed here.

6.3

Readiness for next-generation architectures (many-core) varies. Some groups
have working codes that make good use of GPUs, while others are just starting to
experiment with porting to many-core processors.

Some projects run at low parallel concurrency to conserve allocation. Since
parallel scaling is never perfect, some projects that can sacrifice time-to-solution
and execute using limited memory run at a lower parallel concurrency to conserve
their allocation of computational time.

It is difficult to get access to an entire machine at NERSC. Other projects that

would like, or need, to run full-configuration jobs have difficulty doing so in the
NERSC environment.

Stable systems and seamless software upgrades are highly valued.

NERSC consulting and account support are also highly valued.

Requirements Summary

The following tables list the 2017 computational hours and archival storage needed at
NERSC for research represented by the case studies in this report.  “Total Scaled
Requirement” at the end of the tables represents the hours needed by all 2012 FES NERSC
projects if increased by the same factor as that needed by the projects represented by the
case studies. The factor of 50 increase is the ratio of the "All FES at NERSC Total Scaled
Requirement” to the "All FES at NERSC" 2012 usage from the table in Section 5.2.
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6.3.1 Computing

Hours Needed in 2017
Case Study Title Repos PI Million Factor
Hours Increase
m1574,
Transport Calculation and Profile Prediction mp19, Lee, Holland, 472 16
Chen, Parker
mp118
Energetic Particles: SciDAC GSEP: Gyrokinetic
Simulation of Energetic Particle Turbulence m808 Lin 1,100 64
and Transport
Center for Simulation of Wave-Plasma .
Interactions: SciDAC Project m77 Bonoli 80 11
Center for Edge Physics Simulation: SciDAC-3 mp2, m499 Cohen, 2,200 26
Center Chang
. mp288, Jardin,
Study of the Internal Dynamics of ITER mp200 Sovinec 234 25
Small Scale Plasma Experiments: Simulations 1211127525’ Lukin, 200 65
and Model Validation ’ Nelson
m489
Petascale Kinetic Simulations in Laboratory m148, Karimabadi, 4147 253
and Space Plasmas m1303 Bhattacharjee ’
Simulation of Intense Beams for Heavy-lon- mp4d2 m74 Friedman, 40 100
Fusion Science pAe, Davidson
Study of laser-plasma interactions relevant to 1211411527’ Ren, Mori, 550 28
direct-drive ICF implosions ’ Tsung
m792
m916,
Plasma Materials Interactions m1200, Wirth 450 200
m1709
Integrated Whole-Device Modeling Studies n;116():§, Pankin, Kritz 260 430
Total Represented by Case Studies 9,773 50
Percent of NERSC FES Represented by Case Studies 73%
All FES at NERSC Total Scaled Requirement 13,332 50

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

16



6.3.2 Storage

Archival Data Shared Online
Storage Needed in Data Storage
Case Study Title Repos PI 2017 Needed in 2017
Factor Factor
TB TB
Increase Increase
m1574, Lee,
Transport Calculation and mp19, Holland,
Profile Prediction mpl118 Chen, 610 18 60 20
Parker
Energetic Particles: SciDAC
GSEP: G).lrokme.tzc Simulation of m808 Lin 150 22 100 1,000
Energetic Particle Turbulence
and Transport
Center for Simulation of Wave-
Plasma Interactions: SciDAC m77 Bonoli 10 4.1 10 N/A
Project
Center for Edge Physics mp2, Cohen,
Simulation: SciDAC-3 Center m499 Chang 3,000 202 10 20
Study of the Internal Dynamics mp288, Jardin,
of ITER mp200 Sovinec 360 12 20 3.6
Small Scale Plasma m1255, Lukin
Experiments: Simulations and m172, Nelsor’l 200 38 26 10
Model Validation m489
PP : . 148 Karimabadi
Petascale Kinetic Simulations in m ’ -
Laboratory and Space Plasmas m1303 Bhattaechar]e 64,000 360 64,000 | 64,000
Simulation of Intense Beams for mp42, Friedman, 40 53 1 33
Heavy-lon-Fusion Science m74 Davidson )
Study of]aser-plasma ' m1157, Ren, Mori,
interactions relevant to direct- m412, Teun 1,400 18 20 6.7
drive ICF implosions m792 g
moI16,
Plasma Materials Interactions m1200, Wirth 300 3,500 100 -
m1709
Total Represented by Case Studies 70,070 199 64,347 3,997
Percent of NERSC FES Represented by Case Studies 50 unknown unknown
All FES at NERSC Total Scaled Requirement 140,715 199 unknown unknown
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7 FES and NERSC Trends

NERSC and FES Computational Hours Used
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8 Magnetic Fusion Energy Science (MFES) Case Studies

8.1 Transport Calculation and Profile Prediction

Principal Investigators: C. Holland* Wei-li Lee3

Case Study Authors: Jeff Candy?, Y. Chen, S. Ethier3, C. Holland, S. Parker?, W.X. Wang3
NERSC Repositories: m1574 (C. Holland, PI); mp19 (Wei-li Lee, PPPL, PI); mp118 (Yang
Chen, University of Colorado, PI)

8.1.1 Project Description

8.1.1.1 Overview and Context

The overall objective of this research is to better understand the fundamental physics of
transport (collisional and turbulent) in tokamaks using a theoretical framework that
approximates the solution of the 6D Fokker-Planck-Landau equation. An approximate
separation of these equations into collisional (neoclassical) and turbulent (gyrokinetic)
components forms the basis of the current approach. Most of the computer time is required
by the turbulent component via massively parallel gyrokinetic simulations. The goal is to
translate this level of understanding into a predictive modeling capability — which includes
design, optimization, and interpretation of future experiments and reactors.

In this report, we cover work based on the codes GTS (PPPL) and TGYRO (General Atomics),
but in the final tabulation we also include data for GEM (Univ. of Colorado).

8.1.1.2 Scientific Objectives for 2017

GTS: Experimental validation for NSTX and DIII-D data is our main objective so that we can
predict the transport levels in upcoming NSTX-U (upgrade of the NSTX experiment
currently underway) and ITER experiments.

TGYRO: Having completed years of validation exercises, and identified regimes where
gyrokinetic theory succeeds and fails (so-called L-mode shortfall), we wish to continue
development of “sufficiently accurate” models of turbulent transport that can profitably be
used in integrated whole-device modeling frameworks. These in turn will be used to design
and optimize future experiments. An important point is that agreement isn’t perfect, but
good enough to provide actual guidance, especially with respect to uncertainty
quantification. Specifically, we will continue with detailed validation of gyrokinetic (and
reduced gyrofluid) model predictions against experimental observations in U.S. tokamaks
(DIII-D, C-Mod, NSTX) to better qualify where current models perform well, and identify
parameter regimes where they must be improved. Some attempts to understand aspects of
the (near-marginal) core turbulence in ITER are also expected.

1 General Atomics

2 University of Colorado
3 PPPL

4 University of San Diego
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8.1.2 Computational Strategies (now and in 2017)

8.1.2.1 Approach

GTS: An important goal right now is the development of a robust algorithm for electro-
magnetic, finite-beta physics in the GTS code. The more complex field equations greatly
increases the time spent in the solver, which is currently implanted with PETSc library
routines, which are currently not multi-threaded. Since the rest of GTS is multi-threaded, we
are looking at other possible numerical solvers.

TGYRO: We have all the tools for solving the full model hierarchy described in Sec. 1.1: first-
principles nonlinear electromagnetic gyrokinetic calculations (GYRO), neoclassical
transport (NEO), and a reduced quasi-linear model (TGLF) of the turbulent fluxes. This suite
of capabilities is managed by TGYRO to supply the coupling and feedback for production
predictive modeling.

8.1.2.2 Codes and Algorithms

GTS: The Gyrokinetic Tokamak Simulation code, GTS, is a global, gyrokinetic particle-in-cell
application in general toroidal geometry. There is also an associated neoclassical com-
ponent, GTC-NEO, that solves a time-dependent form of the neoclassical kinetic equations
using a &f particle method.

TGYRO: This application combines GYRO (to solve the nonlinear electromagnetic gyroki-
netic equations using Eulerian spectral and finite-difference methods), NEO (to solve for the
neoclassical distribution and fluxes/flows with exact linearized Landau collision operator
using a spectral expansion scheme in velocity space), and TGLF (as a proxy to GYRO using a
fast quasi-linear model that approximates the turbulent transport coefficients). TGYRO
itself is a transport manager that couples the above modules to give steady-state profile
prediction, as a function of input heating power, for existing devices and future devices.

8.1.3 HPC Resources Used Today

8.1.3.1 Computational Hours

Computational hours used in 2012 include repo m1574 (14M hours used), mp19 (14.6M
hours used), and mp118 (1.2M hours used). Several other repositories (gc3, m499, m681,
m912) also reported using GEM, totaling about 4.3M hours. The mp118 repository will
represent GEM usage in this report. Therefore, the total 2012 usage for this case study is 30
M hours.

8.1.3.2 Parallelism

GTS: We typically use 16,512 cores (2,752 MPI tasks with 6 OpenMP threads/task) for a
single run, which allows us to get the most out of our allocation. To code can scale to a
larger number of cores but the efficiency of the solver goes down due to the lack of
multithreading in PETSc. Weak scaling is more important in order to simulate ITER
plasmas.

TGYRO: Typical TGYRO ensemble run with synthetic diagnostics uses 42,240 cores (11
GYRO instances each using 1,280 MPI tasks and 3 OpenMP threads, run for 12 hours, or
506,880 MPP-hours).
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8.1.3.3 Dataandl/O

NOTE: a single TGYRO ensemble run for m1574 created 55 GB of data. When carrying out
many ensemble runs, not all data from each ensemble must be archived. This means that,
realistically, less than 1TB of storage will be required per user per year.

Scratch (temporary) space:

5 TB/user (GTS), < 500 GB/user (GYRO)

Permanent (can be shared, NERSC project Global File system):
20 TB / 4 TB (GTS), < 1 TB/user (GYRO)

HPSS permanent archival storage:

60 TB (GTS), <1 TB (GYRO)

There is nothing out of the ordinary in our usage of these three spaces: the scratch file
system is where we run all of our simulations. The project area has greatly facilitated data
sharing. We share codes and data with the other members of our project through the
project space. We archive important simulation data in HPSS. We sometimes need to share
data between Hopper, Carver, Edison, and the DTN systems. Here is how our codes perform
1/0:

GTS: Some parallel /0 with ADIOS library calls for large data sets and checkpoint-restart, as
well as single-core FORTRAN ASCII 1/0.

TGYRO: Large restart files are written via MPI-10, simulation data written in ASCII, option
for HDF5 output, but not generally favored by users.

8.1.4 HPC Requirements in 2017

8.1.4.1 Computational Hours Needed

TGYRO: We will identify the range of scales needed for modeling burning plasma conditions.
A very important question: Is ITG-scale physics enough, or is multiscale required? This and
other key questions to be answered in near term will impact our future HPC requirements.
Also, will we want to move towards production level simulations and ensemble UQ; how big
will each ensemble element need to be? Plausible 2017 predictive workflow: improved
version of TGLF or some other model as workhorse, with GYRO “spot checks” at periodic
and critical points.

GTS: We expect our project to need between 200 M to 300 M core-hours during CY 2017
for ITER simulations with finite-beta physics.

TGYRO: Probably about 100M core hours. Number of Compute Cores

8.1.4.2 Parallelism

GTS: We have already demonstrated with another gyrokinetic PIC code, GTCP, that we can
achieve very high scalability (> 700,000 cores) by adding a radial domain decomposition
along with optimized multi-threading and data layout. The same optimizations can be
implemented in GTS in order to improve efficiency and scalability.

TGYRO: We expect to be using GPUs in 2017, and effort is underway now to develop this
capability on Titan at ORNL. We believe that the GYRO/TGYRO framework is now maximally
parallelized using MPI and OpenMP, with scalability beyond 100K cores if required. By 2017
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we expect to also solving more complex 6D equations, and we cannot make projections
about that for 2017.

8.1.4.3 Datal/O

GTS: ITER data sets will be much larger so the I/0 numbers should increase by about an
order of magnitude.

TGYRO: We do not expect data needs to increase significantly per user - perhaps by a factor
of 2 or 3. However, in the future we envision an increasing number of TGYRO users.

8.1.4.4 Memory Required

GTS: 16 Gbytes per node is a reasonable number although more is better. 320 Tbytes of
memory in total will be needed for large ITER simulations.

TGYRO: 16 Gb/node is acceptable. Probably less than 100TB aggregate.

8.1.4.5 Many-Core and/or GPU Architectures

Our codes use OpenMP multi-threading and we are actively working on a GPU port of key
routines to take advantage of this specialized architecture for both GTS and GYRO.

8.1.4.6 Software Applications and Tools

GTS: Unless we find something better we will still use the PETSc library to implement our
solvers, as well as a random number generator (SPRNG) and spline routines (PSPLINE). Our
[/0 is implemented with ADIOS.

TGYRO: netCDF, multithreaded fftw3, BLAS, LAPACK, mumps/superlu, HDF5.

8.1.4.7 HPC Services

We will need everything that NERSC provides, including consulting or account support, data
analytics and visualization, training, collaboration tools, web interfaces, federated
authentication services, gateways, etc.

8.1.4.8 Scientific Achievements with 32X Current Resources

One could probably achieve as much by reducing bureaucracy and barriers to resource
usage as could be by adding more computational resources. The ease-of-access to NERSC
resources is a current strength in this author’s opinion and should be maintained.
Moreover, true scientific advances require improvements on 2 fronts: (1) better coupling
and workflow for predictive simulations of the type achievable today, (2) an improved
theoretical formulation that can treat the pedestal and separatrix correctly - using perhaps
the original 6D FPL equation. This is a new area that goes beyond traditional gyrokinetics.
There is no accepted approach and no codes to solve this problem. By 2017, we suspect
there will be. To reiterate, progress in (2) is a matter of progress in theoretical physics
much apart from access to resources.

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 22



8.1.4.9 Requirements Summary

GTS (mp19) Used at NERSC Needed at NERSC
in2012 in2017
Computational Hours (Million) 14.6 300
Scratch storage 100 TB
Shared global storage (project) 1.3 TB
Archival storage (HPSS) 32TB 600 TB
Number of cores used for prod. runs 16,512 160,512
Memory per node 32GB 32GB
Aggregate memory 22 TB 220TB
TGyro (m1574) Used at NERSC Needed at NERSC
in2012 in2017
Computational Hours (Million) 14 M 150 M
Scratch storage 10 TB
Shared global storage (project) 1.7 TB 10 TB
Archival storage (HPSS) 0.9TB 10 TB
Number of cores used for prod. runs 20K 100K
Memory per node 16 GB 16 GB
Aggregate memory 10 TB 100 TB
GEM (mp118) Used at NERSC Needed at NERSC
in2012 in2017
Computational Hours (Million) 1.24 22M
Scratch storage
Shared global storage (project) 0 50TB
Archival storage (HPSS) 1.2TB
Archival bandwidth 0.1-1 Gbit/s 1-10 Gbit/s
Number of cores used for prod. runs 10K 100K
Memory per node 16 GB 16 GB
Aggregate memory 10 TB 100 TB
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8.2 Energetic Particles and the SciDAC Gyrokinetic Simulation
of Energetic Particle Turbulence and Transport Project

Principal Investigator: Zhihong Lin (University of California, Irvine)
NERSC Repository: m808
Case Study Coauthor: Scott Parker (University of Colorado)

8.2.1 Project Description

8.2.1.1 Overview and Context

Energetic particles produced by fusion reactions and auxiliary heating can excite various
instabilities in fusion experiments such as ITER. Associated nonlinear wave-particle
interactions can generate significantly enhanced levels of energetic particle transport that
would degrade overall plasma confinement and damage fusion devices.

The fully self-consistent simulation of energetic particle turbulence and transport must
incorporate three physics elements: kinetic effects of thermal particles at the microscale,
nonlinear interactions of a large number of meso-scale energetic particle instabilities, and
cross-scale couplings of macro-meso-micro turbulence. The large dynamical ranges of
spatial-temporal processes further require global simulation codes that are efficient in
utilizing massively parallel computers at the petascale level and beyond.

In the current efforts, we develop gyrokinetic turbulence simulation as a new paradigm for
a predictive capability of the energetic particle confinement in strongly self-heated burning
plasmas such as ITER, and propose to extend the capability of highly scalable gyrokinetic
turbulence codes based on the complementary particle-in-cell (PIC) and continuum codes to
study the energetic particle driven instabilities and their interaction with background
thermal plasmas. This case study focuses on the PIC codes GTC and GEM.

8.2.1.2 Scientific Objectives for 2017

Confinement and stability properties of fusion plasmas depend on nonlinear interaction of
multiple physical processes covering disparate spatial and temporal scales. The current
effort is to initiate the development of the capability for a first-principles simulation
providing long time scale macroscopic dynamics with the fidelity of a microscopic kinetic
simulation.

Our ultimate goal is to build the predictive capability for energetic particle turbulence and
transport in the ITER burning plasmas, which requires understanding nonlinear physics of
energetic particle instability, predicting energetic particle transport given a fixed energetic
particle drive, and self-consistent gyrokinetic simulations of a full burst cycle of energetic
particle turbulence.

8.2.2 Computational Strategies

8.2.2.1 Approach

In the gyrokinetic simulation, the phase attribute of the fast gyration (or cyclotron) motion
of the charged particles around the magnetic field lines is averaged away, reducing the
dimensionality of the system from 6D to 5D phase space. This method removes the fast
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cyclotron motion, which has a much higher frequency than the characteristic waves of
plasma microturbulence.

The particle-in-cell method consists of moving particles along the characteristics of the
gyrokinetic equation. The electromagnetic fields are obtained by solving the Poisson
equation and Ampere’s law on a spatial mesh after gathering the charge density on the
grids. The electromagnetic forces are subsequently scattered back to the particle positions
for advancing the particle orbits. The use of spatial grids and the procedure of
gyroaveraging reduce the intensity of small-scale fluctuations (particle noise). Particle
collisions can be recovered as a “subgrid” phenomenon via Monte Carlo methods. Using a
perturbative method, where only the perturbed distribution function is calculated in the
simulation, further reduces the particle noise.

8.2.2.2 Codes and Algorithms

The global gyrokinetic toroidal code (GTC) is a massively parallel particle-in-cell code for
first-principles, integrated simulations of the burning plasma experiments such as ITER.
GTC is the key production code for the U.S. DOE SciDAC project, GSEP Center, and the
National Special Research Program of China for ITER. A single version of GTC is currently
capable of both full-f and &f simulations, gyrokinetic or fully kinetic ions, kinetic electrons
and electromagnetic fluctuations, general toroidal geometry with shaped, up-down
asymmetric equilibrium and experimental plasma profiles, equilibrium current for kink
drive, multiple ion species, neoclassical effects with Fokker-Planck collision operators
conserving particle, momentum and energy, equilibrium radial electric field with toroidal
and poloidal rotations, and sources/sinks and external antenna. GTC webpage:
http://phoenix.ps.uci.edu/GTC/

GEM is a comprehensive electromagnetic gyrokinetic 6f particle code that includes the full
dynamics of gyrokinetic ions and drift-kinetic electrons. The simulation is useful for
studying well-magnetized plasma physics and is especially powerful because it is accurate
at very-low fluctuation levels. Electron-ion collisions are included as well as the full-
capability to model general axisymmetric toroidal equilibria. The effects of impurity ions
and the equilibrium radial electric field are included in GEM. GEM is also used to model
energetic particle driven MHD instabilities using a slowing down distribution for the
energetic component. GEM webpages:

http://en.wikipedia.org/wiki/Gyrokinetic_ElectroMagnetic
http://cips.colorado.edu/Group/Simulation/Gem.php

8.2.3 HPC Resources Used Today

8.2.3.1 Computational Hours

In 2012, GTC used about 25M hours on Hopper at NERSC, 20M hours on Jaguar and Titan at
ORNL, and 5M hours of Tianhe-1A at the National Supercomputing Center in Tianjin, China.

8.2.3.2 Parallelism

GTC is a platform-independent program using standard FORTRAN, message passing
interface, and OpenMP, and achieves nearly perfect scalability on massively parallel
computers, including the world fastest computer with more than 105 cores and graphic
processing unit (GPU) acceleration. It has recently been ported and optimized for the new
fastest supercomputer using the many integrated core (MIC) architecture.
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8.2.3.3 Dataandl/O

Scratch space used for restart data of active simulations: 10TB. Permanent space used for
analysis of data from finished simulations: 10TB. HPSS, if used, for data from selected
simulations that may be analyzed again in the future: 7 TB

8.2.4 HPC Requirements in 2017

8.2.4.1 Computational Hours Needed

GTC needs 1 billion hours in 2017 for longer time scale simulations with higher resolutions
(e.g., large number of grids and particles).

GEM needs 100 million hoursin 2017.

8.2.4.2 Parallelism
GTC could use 1,000,000 cores in 2017.

8.2.4.3 Dataandl/O

Data size increases with core numbers.

8.2.4.4 Scientific Achievements with 32X Current Resources

With access to 2X more resources each year we could do first-principles, integrated
simulation of cross-scale interaction between multiple physics processes, e.g., coupling
between microturbulence, energetic particle, magnetohydrodynamics (MHD), and/or
neoclassical transport. These couplings play a key role in the excitation and evolution of the
performance-limiting and integrity-threatening MHD instabilities in the burning plasmas,
e.g., neoclassical tearing mode, resistive wall mode, sawtooth, etc..

8.2.4.5 Memory

Memory stays unchanged per core, and increases with cores per node globally.

8.2.4.6 Many-Core and/or GPU Architectures
GTC has been ported and optimized for GPU and MIC, respectively.
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8.2.4.7 Software Applications and Tools

GTC needs linear solvers (e.g., PETSc), /0 (e.g., ADIOS)

We need help in consulting and account support, training, and collaboration tools from

8.2.4.8 HPC Services
NERSC.
8.2.4.9 Time to Solution and Throughput

Fast turnaround time for small jobs would be very helpful.

8.2.4.10 Data Intensive Needs

The biggest dataset from GTC is the restart data.

8.2.4.11 Requirements Summary

Requirements for GTC Used at Needed at
NERSCin 2012 NERSCin 2017
Computational Hours (million) 11.6 1000
Scratch storage 10 TB 100 TB
Shared global storage (/project) 0.1TB 100 TB
Archival storage (HPSS) 49TB 100 TB
Number of cores* used for production runs 10,000 1,000,000
Memory per node 10 GB 100 GB
Aggregate memory 10 TB 1000 TB
Requirements for GEM Used at Needed at
NERSCin 2012 NERSCin 2017
Computational Hours (million) 5.6 100
Scratch storage 5-10 GB 500 GB
Shared global storage (/project)
Archival storage (HPSS) 2TB 50TB
Number of cores* used for production runs 10k 100k (+GPU)
Memory per core 1GB 1GB
Memory per GPU 16 GB!

1 Total GPU memory ideally should equal total node memory, multi-GPU per node is advantageous.
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8.3 Center for Simulation of Wave-Plasma Interactions
(CSWPI)

Principal Investigator: Paul Bonoli (MIT)
NERSC Repository: m77

8.3.1 Project Description

8.3.1.1 Overview and Context

The over-arching goal of the project is to quantitatively understand how high power (tens of
MW) radio frequency (RF) power in the ion cyclotron frequency range of frequencies (ICRF)
and in the lower hybrid range of frequencies (LHRF) propagates from an external antenna
and how it is subsequently absorbed in a tokamak plasma. This capability is needed to
understand how to optimally use this power to heat, drive current, control plasma profiles,
control plasma stability, and avoid parasitic losses in magnetically confined fusion plasmas
including ITER. This problem is computationally intensive because of the non-linear, 3D,
multi-scale characteristics of the problem. Present three-dimensional (3-D) runs for linear
and quasi-linear models of the plasma core can take 100-200 K processor hours on today’s
machines. Three-dimensional non-linear runs that couple the core and edge (including the
antenna) are expected to take 10-1000 times more cycles.

8.3.1.2  Scientific Objectives for 2017

Research carried out by the SciDAC Center for Simulation of Wave-Plasma Interactions
(CSWPI) has the goal of developing the first-ever integrated edge-to-core simulation
capability for the coupling, propagation, and absorption of RF waves. The Center’s research
is organized into four major thrusts:

(1) Coupled core-to-edge simulations that will lead to an increased understanding of
parasitic losses of the applied RF power in the boundary plasma between the RF
antenna and the core plasma. In existing experiments with modest power levels and
short time durations, 10% or more of the applied RF power can be lost in the edge
regions or in the launcher. At the power levels and pulse lengths anticipated for
ITER, this level of losses would be especially problematic.

(2) Development of models for core interactions of RF waves with energetic
electrons and ions that include a more accurate representation of the particle
dynamics in the combined equilibrium and wave fields, thus providing an
understanding of how these energetic species affect power flow in the confined
plasma.

(3) High-resolution simulations of RF effects on fast-particle driven instabilities
driven by fusion alpha particles or NBI ions that will quantify if these interactions
increase (decrease) the instability drive that can lead to reduced fusion power.

(4) Development of improved algorithms that will take advantage of massively
parallel computing platforms up to the multi petascale level and beyond to exascale,
in order to achieve the needed physics, resolution, and/or statistics to address these
issues. This research requires an extensive program of code verification and
validation to insure that critical wave-plasma interactions are accurately
reproduced in the simulations.
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The development of a core-to-edge integrated simulation code that will be capable of
predicting the absolute amount of power absorbed in both the edge and good confinements
regions of the discharge will provide essential support for the ongoing experiments on
NSTX, DIII-D and Alcator C-Mod, and will have a critical impact on the design of the ICRF
system and operational scenarios for ITER. It will also provide a foundation for computing
the macroscopic and microscopic source information needed by MHD and transport codes
in fully integrated modeling activities such as the Proto-type Fusion Simulation Projects and
the Fusion Simulation Project (FSP) itself.

These objectives reflect the five-year goals of the CSWPI, which would include the last 2.5
years of the project’s current funding phase, which ends in 2015, and assumes the project
receives continuation funding for years beyond 2015.

8.3.2 Computational Strategies (now and in 2017)

8.3.2.1 Approach

The computational problem consists of solving the wave equation in the ICRF and LHRF
regimes, subject to boundary conditions that represent RF fields imposed by either an ICRF
antenna structure or a LHRF waveguide launching structure. Modification of the electron
and ion distribution functions by the RF power is calculated by solving a Fokker Planck
equation, where the effect of the RF power is quantified through either a quasi-linear
diffusion operator or an RF “kick” operator. RF-induced changes in the distribution function
are incorporated in the full-wave solvers by evaluating the plasma response in the solvers
using the modified particle distribution. The interaction between the wave solvers and
Fokker Planck codes is carried out in time through an explicit iteration strategy. The self-
consistent effect of the ICRF antenna launching structure is now being included in this
problem by iterating an antenna code with the wave solver. Coupling between the wave
solver and antenna code is iterative (see next section).

8.3.2.2 Codes and Algorithms

Three classes of codes are used for addressing the CSWPI physics objectives. First, full-
wave codes solve the integral-differential Maxwell’s equations with a non-local, linear RF
plasma conductively to calculate the RF electric fields that are driven by external power
sources. The All Orders Spectral Algorithm (AORSA) and the Toroidal Ion Cyclotron Code
(TORIC) are the principal codes used by the project. The AORSA solver is fully spectral and
employs a Cartesian coordinate system while the TORIC code is semi-spectral with Fourier
modes in the poloidal and toroidal directions and finite element in the radial direction. The
number of spectral modes required to achieve numerical convergence in these solvers is
dictated by the shortest wavelength in the system that must be resolved. The plasma
response can either be for thermal plasma components with a Maxwellian distribution
function or non-thermal components with a specified distribution function.  Typical
problems require solving for 105 to 106 unknowns for a single toroidal mode coupled by an
ICRF launching structure. For lower hybrid heating and current drive calculations using
TORLH, ~10 times more resolution is required, with an approximate 100 fold increase in
the number of unknowns.

The RF fields can in turn modify the distribution function. The second class of code models
the evolution in time and phase space (velocity and configuration) of the distribution
function as determined by quasi-linear RF interactions. Explicit code coupling is valid for
this problem because the RF time scale, nanoseconds, is much shorter that the distribution
function evolution that takes place on transport/collisional time scales, 10s of ms to

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 29



fractions of a second. Both continuum (CQL3D) and Monte Carlo (ORBIT-RF and sMC()
techniques are employed. Although the interaction between the wave solvers and Fokker
Planck / Monte Carlo codes is highly nonlinear, the problem is solved stably by iterating
between the physics modules as time is evolved on the quasi-linear time scale.

The RF fields coupled by the ICRF launching structure or LHRF waveguide are simulated
using the massively parallel, multi-physics, kinetic electromagnetics code VORPAL,
developed by the Tech-X Corporation. Only the finite-difference-time-domain (FDTD)
capabilities in VORPAL are utilized for these simulations, which includes a cold plasma,
accurate antenna geometry representation and a nonlinear RF sheath boundary condition.

Thus five different physical models are iteratively coupled: (1) the plasma conductivity for
non-Maxwellian distribution functions, (2) a wave solver incorporating this non-Maxwellian
conductivity, (3) the quasi-linear operator for the non-thermal distribution, (4) a Fokker-
Planck solver or Monte Carlo code, and (5) an antenna coupling code to simulate the RF
fields in vacuum.

For the full wave AORSA solver, a completely dense matrix results from the integral plasma
conductivity relation and spectral basis set used in that code. A block tri-diagonal system
with completely dense blocks results from the algebraic conductivity (finite ion Larmor
radius expansion) and spectral basis set used in the TORIC solver. Factoring these matrices
is often the dominant computational effort, and we rely on dense solvers (ScaLAPACK or
HPL) and either Thomas or cyclic reduction techniques for AORSA and TORIC/TORLH
respectively. Filling the matrices and post processing can take a significant fraction of the
total computational time, especially for non-thermal distributions. Efficient
integration/quadrature techniques and special function evaluations are critical for these
steps. Both of the full wave codes solve for one toroidal mode at a time, and must be run
once for each of the 50-100 significant toroidal modes of the antenna. The final plasma
response is computed by linear superposition of the electric field solutions of the individual
toroidal modes. Recently we have successfully used a computational framework capability
(the Integrated Plasma Simulator - IPS) developed through the SWIM Proto-typo Fusion
Simulation Project in order to simultaneously simulate individual toroidal modes through
multiple instantiations of the TORIC ICRF solver. This capability is expected in the future to
make 3-D time dependent simulations of ICRF heating routine.

The Fokker-Planck solvers both rely on particle-based techniques (for generating the
quasilinear operator for CQL3D) and for determining a Monte-Carlo solution for ORBIT-RF
and sMC. In order to evaluate the conductivity operator in the full-wave solvers using the
statistical particle lists from the Monte Carlo codes, we have developed an algorithm that
transforms these particle lists into continuum distribution functions - a code named “p2f”.

The FDTD algorithm employed in the VORPAL code is known to scale well due to only
requiring the communication of local domain boundaries to neighboring nodes. However,
the work required scales as N4 for 3 (spatial) + 1 (time) dimensions, with the memory
required being 30 double precision variables at each spatial cell, with ~ 96 million (M) cells
per current strap for an ICH antenna giving ~ 23 GB per strap and requiring ~ 16,000 CPU
hours. An algorithm for coupling between the full-wave solver and antenna code is now
being developed based on the classic Alternating Schwarz method of domain decomposition
and MPE (Minimum Polynomial Extrapolation) vector extrapolation iterative technique.
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8.3.3 HPC Resources Used Today

8.3.3.1 Computational Hours

During 2012 the CSWPI used 7,717,153 MPP hours through an ERCAP Request at NERSC.
Dr. David Green in our project also received a 2012 Discretionary Award of 3,200,000 hours
on the CRAY XK6 at ORNL for preparation of an INCITE Proposal.

In addition to our ERCAP allocation at NERSC for 2013, Dr. David Green in the CSWPI has
been awarded 2,000,000 hours on the TITAN supercomputer at the Oak Ridge Leadership
Class Facility (OLCF). The allocation will be used to demonstrate coupled core to edge ICRF
simulations using the AORSA wave solver and VORPAL antenna code, taking advantage of
the combined CPU/GPU architecture on TITAN.

8.3.3.2 Parallelism

(1) The number of compute cores used in production runs depends on the physics problem
that is being simulated. The typical number of cores that we use in production runs is:

ICRF minority heating (single toroidal mode): TORIC (64 cores), AORSA (512 cores)

ICRF Mode conversion (single toroidal mode): TORIC (255-512 cores), AORSA (10,000-
50,000 cores)

LHRF Simulations (single toroidal mode) : TORLH (1000-8000 cores)
Fokker Planck Simulations: CQL3D (24-48 cores), ORBIT RF, sMC (~10,000 cores)
Antenna Simulations: VORPAL (4000-30,000 cores)

(2) Weak scaling is important to us: Recently we have started to take advantage of the fact
that each toroidal mode simulation is independent, so it is possible to carry out the toroidal
mode simulations concurrently. We are using a lightweight python framework called the
Integrated Plasma Simulator (IPS) to prepare, perform, and process the concurrent toroidal
mode simulations. In these simulations for example, we could perform 40 simulations
simultaneously using 256 cores per toroidal mode simulation (assuming TORIC and ICRF
mode conversion), requiring a total allocation of 10,240 cores. We could also perform 40
toroidal mode simulations using 2048 cores per toroidal mode (assuming AORSA and ICRF
mode conversion), requiring a total of 81,920 cores. In either case, both TORIC and AORSA
achieve close to perfect weak scaling.

(3) Strong scaling is also important to us: Simulations of LHRF waves and ICRF mode
conversion requires more cores because very short wavelength modes must be resolved,
requiring higher mode resolution, resulting in a larger problem size. In these cases it is
necessary to distribute the problem across more nodes and cores in order to be able to fit
the problem in machine memory, while at the same time maintaining scalability with
increasing processor count.

8.3.3.3 Dataandl/O

Scratch (temporary) space: 5 TB. Used to run large simulations and temporarily store
results until they can be transferred to HPSS or to local computers.
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Permanent (can be shared, NERSC Global Filesystem /project): None. =~ NERSC Global
Filesystem is used by project members for code development and for low demand archiving
of project codes and simulation results. The CSWPI SciDAC Center does not use /project
space but it is our intention to utilize this resource in the future because our project does
rely on sharing codes and results among members of the Center.

HPSS permanent archival storage: 5 TB. Used by some project members. Most simulation
results are transferred back to local computers via scp and several of our codes (such as the
TORIC and CQL3D codes) are under SVN control.

We do not usually share data between machines at NERSC, however during 2013 we
anticipate needing to do some minimal data sharing between Hopper and Edison.

Typically input is done using small (in size) ASCII data files. Wave field solutions, RF
absorption profiles, and 4-D quasilinear diffusion coefficients and RF kick operators are
stored in NetCDF files.

At times we have experienced code failures because of problems with the NFS File System
(for example “Stale NFS file”).

8.3.4 HPC Requirements in 2017

8.3.4.1 Computational Hours Needed

We will require about 60M core-hours in CY2017 to achieve goals in Section 8.3.1.2. The
primary factor driving the requirement is the need to use 3-D fields from the AORSA wave
solver when coupling to the VORPAL antenna code in the coupled core to edge simulations
of ICRF heating.

8.3.4.2 Parallelism

(1) In 2017 the number of conventional compute cores that we expect to be using for single
toroidal mode simulations is a bit higher than the upper limits that were given in Section
8.3.2.5:

ICRF minority heating (single toroidal mode): TORIC (128 cores), AORSA (1024
cores)

ICRF Mode conversion (single toroidal mode): TORIC (512-1024 cores), AORSA
(10,000-50,000 cores)

LHRF Simulations (single toroidal mode): TORLH (4000-8000 cores)
Fokker Planck Simulations: CQL3D (24-128 cores), ORBIT RF, sMC (~10,000 cores)
Antenna Simulations: VORPAL (4000-30,000 cores)

The increased number of cores for CQL3D assumes that an implicit matrix solve will have
been implemented in the code for 3-D (v, v, r) simulations.

(2) In 2017 we expect to be doing 3-D simulations of ICRF minority heating and mode

conversion, and simulations of LHRF waves where each toroidal mode is run concurrently.
These types of simulations might typically use:
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ICRF minority heating with TORIC: (40 toroidal modes) x (128 cores / mode) =
5120 cores.

ICRF minority heating with AORSA: (40 toroidal modes) x (512 cores / mode) =
20480 cores.

ICRF mode conversion with TORIC: (40 toroidal modes) x (512 cores / mode) =
20,480 cores.

ICRF mode conversion with AORSA: (40 toroidal modes) x (2048 cores / mode) =
81,920 cores.

ICRF mode conversion with AORSA: (40 toroidal modes) x (

LHRF simulations with TORLH: (60 toroidal modes) x (1024 cores / mode) = 61440
cores.

ICRF coupling simulations with AORSA + VORPAL will require 300-2000 toroidal
modes using CPU + GPU architectures (see Section 1.3.6).

8.3.4.3 Dataandl/O

Our project will have only small data storage requirements. The AORSA-VORPAL coupling
represents the single largest storage requirement generated by our project. We estimate ~
100 GBytes per 3-D AORSA-VORPAL run, giving ~ 500 GBytes that can easily be transferred
off site. Consequently our data storage requirements in 2017 will not change drastically
from 2012, with the exception of a new /project area:

Scratch space: ~ 10 TBytes
Permanent: ~ 5 TBytes for /project area
HPSS permanent archival storage: 10 TB

8.3.4.4 Scientific Achievements with 32X Current Resources

The 60M core-hours needed by our project in 2017 is approximately 8X our 2012 usage of
~8M hours. This estimate was based on only a limited set of five production runs consisting
of three validation scenario production runs for NSTX-U, DIII-D, and ITER, and ideally two
further productions to investigate possible parasitic loss mitigation strategies. If we had
access to 2X more resources each year, this would enable us to perform double the number
of validation scenario production runs and to perform 2-3 x more production runs that
would investigate parasitic loss mitigation strategies for ITER.

8.3.4.5 Memory

The largest memory requirements come from our coupled core to edge simulations using
AORSA+VORPAL. We plan to do production type simulations for three devices (NSTX, DIII-
D, and ITER). Below are the memory requirements for each of these problems:

NSTX: 257 x 513 (R, Z) grid

301 toroidal modes
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Aggregate memory requirement (all toroidal modes): 692 Tbyte

Per node memory requirement: 27 GB / node, assuming 2040 cores per toroidal
mode with 24 cores per compute node.

DIII-D: 257 x 513 (R, Z) grid
601 toroidal modes
Aggregate memory requirement: 1,382 Tbyte

Per node memory requirement: 27 GB / nodes, assuming 2040 cores per toroidal
mode with 24 cores per compute node.

ITER: 513 x 513 (R, Z) grid
2001 toroidal modes
Aggregate memory requirement: 18,209 Tbyte

Per node memory requirement: 23 GB / nodes assuming 10,200 cores per toroidal
mode with 24 cores per node.

8.3.4.6 Many-Core and/or GPU Architectures

We currently have a focused effort in the CSWPI SciDAC Center to take advantage of the
hybrid CPU/GPU architecture on the TITAN supercomputer at OLCF in order to carry out
our coupled core to edge ICRF simulations using the AORSA solver and the VORPAL antenna
code. Drs. David Green and David Smithe in our Center have submitted a detailed proposal
to acquire resources on TITAN to the ASCR Leadership Computing Challenge (ALCC)
Program. The proposal is titled “Unraveling the Coupling of Radio Frequency Power to
Fusion Plasmas”. The core to edge coupling problem with AORSA + VORPAL is not even
possible unless one uses a platform with a CPU/GPU architecture.

We have begun development on the Titan GPU based architecture for the matrix
factorization in the AORSA solver, based on recent development work on an out-of-core
(00C) LU factorization. The OOCLU library implements a parallel LU factorization
algorithm for large dense complex matrices that takes advantage of GPU acceleration. The
library is designed to be compatible with the ScaLAPACK LU factorization routine PxGETRF.
An external memory (or out-of-core) left-looking algorithm allows significant problems that
are larger than available GPU device memory to be factored.

VORPAL has also been ported to take advantage of GPU acceleration. The GPU architecture
is particularly well suited to the FDTD algorithm with strong scaling retained on the Dirac
GPU machine at NERSC. Specific challenges for porting VORPAL to a heterogeneous
architecture were the creation of dynamically generated kernels for initial/boundary
conditions supplied at runtime (using a code generator solution), and efficient hiding of the
GPU-to-CPU and CPU-to-CPU data transfer latency which required reordering the execution
steps.

The Table below has been reproduced from the ASCR Leadership Computing Challenge
(ALCC) Proposal submitted by Dr. David Green in our Center and summarizes the memory
and flop requirements that will be needed to perform the AORSA+VORPAL coupling
calculation on the TITAN CPU/GPU device. Notice the NSTX simulation can be done with
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CPUs only, the DIII-D simulation can be done with either CPUs or GPUs, and the ITER
simulation can only be done with GPUs.

Device 2-D Grid | No. Toroidal | Titan Core Hours (M) | Memory Assumed Gflops per node
Modes (TB)
0.007x301x2x |23x301= 6.7x8=53.6
NSTX | 257 x513 301
30/16=7.8 692 (CPU only with 8 MPI tasks)
0.009 x 301 x 30/16 = 4.7x16=752
5.4 (CPU only with 16 MPI tasks)
= = 75.2
DD || 2575515 a0 0.009 x 601 x 30/16 = | 2.3 x 601 |
10.7 1,382 (CPU only with 16 MPI tasks)
8.0x16=128.0
0.005 x 601 x 30/16 = )
6.0 (CPU complex*8 PGESVR with 16
MPI tasks)
0.0038 x 601 x 30/14 = 155
5.0 (GPU only complex*16 pzgetrf_ooc2)
0.0024 x 601 x 30/14 = 250
3.0 (GPU only complex*8 PGESVR)
= 155
mer | s13x513 2001 0.03 x 2001 x 30/14 = | 9.1 x 2001
131.8 = 18,209 (GPU only complex*16 pzgetrf_ooc2)
0.019 x 2001 x 30/14 = 250
81.6 (GPU only complex*8 PGESVR)

8.3.4.7 Software Applications and Tools

Our project makes use of IDL, MATLAB, pgplot, python, and ViSiT for post-processing and
data visualization. We also use python for code management, especially when we are
performing time dependent integrated simulations with our wave solvers and Fokker
Planck codes.

We employ netCDF and HDF5 for 1/0.

8.3.4.8 HPC Services

I expect the CSWPI SciDAC Center will continue to need both consulting services and
account support.

8.3.4.9 Time to Solution and Throughput

In 2017 we will continue to need fast turnaround several times a year coinciding with the 4-
6 weeks before major meetings in Fusion Energy Sciences:

APS-Division of Plasma Physics Meeting (held in early to mid-November, yearly)
Sherwood Theory Conference (held in mid-April, yearly)

IAEA Fusion Energy Conference (held in mid-October, every other year - 2013, 2015, and
2017)

Conference on RF Applications is Plasmas (held in May-June, every other year - 2013, 2015,
and 2017).
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8.3.4.10 Data Intensive Needs

We do not think we will have additional needs regarding data transfer. The data from our
individual codes is small enough to be transferred off-site to local computers. Data from
time dependent integrated simulations performed using the SWIM framework can be stored
efficiently in a /project area or in HPSS.

8.3.4.11 What Else?

The features of an HPC system that are most important to our Center are stability,
seamlessness in software upgrades, responsiveness from the consulting staff to problems
encountered by users, and fast turnaround times.

In this regard, one of the most pressing concerns we continue to have is the 2-3 day queue
wait that occurs on Hopper. At times we have been forced to “daisy-chain” long jobs
together in the debug queue in order to perform development work in preparation for

production type runs - a practice that is frowned upon by NERSC.

8.3.4.12 Requirements Summary

Used at NERSC Needed at NERSC
in2012 in2017
Computational Hours (million) 7.2 80
Scratch storage 4TB 10 TB
Scratch bandwidth Negligible Negligible
Shared global storage (/project) 0TB 10 TB
Archival storage (HPSS) 2.5TB 10 TB
Archival bandwidth (HPSS) Negligible Negligible
Number of cores* used for production runs 2,000-10,000 600,000-3,000,000
(no parallel (assumes ~ 300
concurrency for toroidal modes
toroidal modes) simulated
concurrently).
Memory per node 20-25 GB 20-25GB
Aggregate memory ~100-1,000 TB 1,000-20,000 TB
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8.4 Simulation of Plasma Edge Physics

Principal Investigator: C.S. Chang (Princeton Plasma Physics Laboratory)
Case Study Contributor: X. Xu (Lawrence Livermore National Laboratory)
NERSC Repositories:

m499, “Center for Edge Physics Simulation: SciDAC-3 Center (C.S. Chang, PI)
mp2, “LLNL MFE Supercomputing" (Bruce Cohen, LLNL, PI)

8.4.1 Project Description

8.4.1.1 Overview and Context
Plasma edge is defined to be the region from the top of the

pedestal, about 15% of the outer minor radius inside the ,im? > < edge >
magnetic separatrix surface, through the open-field-line I;' e— =, |
scrape-off layer to the material walls. It has been verified & | | | SEape of
experimentally that edge conditions have crucial effect on = pedestal yy Q¥

. . . £ I ik |
the core plasma pressure, and thus on the fusion efficiency. & e ght |
Specifically, as the plasma heating power into the core is @ | .
raised above a threshold value under a clean wall condition —
--thus, less influx of neutral particles, the edge plasma Ra Fag Raes Rt
makes a transition to form a plasma pressure pedestal (see Major Radius

Fig. 1a for a particle density pedestal). This transition is  FIG 1a: Plasma edge region
called the L-H transition (low- to high-confinement mode

transition). A deep well structure in the radial electric field Er is formed, with a significant
reduction in turbulence intensity, within the pedestal layer at the time of the transition. The
core ion temperature Ti then rises quickly by a similar amount to the pedestal temperature
rise amount. The ITER design requires a Ti pedestal in the range of 4-6 keV to achieve its
fusion power mission.

The buildup of sharp pedestal pressure gradients can cause the pedestal to crash from
large-scale edge-localized mode instabilities (ELMs). ELMs can rapidly erode the plasma
facing material surface via a high-power pulse of particle and energy flux - a serious issue
for the ITER program. Few suppression methods against the ELM activities exist. The most
promising method found so far is the use of external resonant magnetic perturbation (RMP)
coils in an attempt to create stochastic magnetic field structure in the edge pedestal region.

Despite its critical importance and a few decades of research, a predictive understanding of
the pedestal physics does not exist. The most severe difficulty has been in that the edge
problem is fundamentally kinetic, non-thermal, nonlinear, and multiscale with strong
overlapping of scales among various kinetic multi-physics. Extreme scale computing is
required to attack the edge problem. It is the purpose of this project to understand such
edge physics by performing comprehensive first-principles gyrokinetic simulations using
the largest HPC computers, with all the important physics interacting together in multiscale
within one code. Physics understanding from kinetic simulation can also improve fluid
equations and reduced simulations.

This case study will contain material from the XGC family of kinetic codes that are based on
the particle-in-cell (ODE) method, the TEMPEST/COGENT kinetic code suite that is based on
the continuum (PDE) method, and the BOUT++ gyro-Landau-fluid code.

8.4.1.2 Scientific Objectives for 2017
XGC Family of Kinetic Particle Codes
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The scientific objectives for 2017 in this large-scale edge simulation project is to study all
the important edge physics in a single executable XGC1 from the one set of gyrokinetic
equations: electromagnetic turbulence, neoclassical physics, neutral particles, impurity
particles, wall recycling, wall sputtering, and 3D physics. Simulation will be extended to
experimental edge time scale (~50 ms) using a multiscale technique. The electromagnetic
XGC1 will have a capability to simulate the MHD-like edge localized mode instabilities
(ELMs). However, XGC will also be coupled to BOUT++ and M3D-C1 for MHD/two-fluid
simulation of ELMs, in order to approach the ELM problem from two different angles.

Specifically, the physics goals will include 1) L-mode and H-mode edge physics, 2) L-H
transition and H-L back-transition physics, 3) pedestal growth and structure physics, 4)
edge effect on core plasma confinement, 5) neutral particle and atomic physics, 6) scrape-
off layer physics, 7) control of edge localized modes using 3D external perturbation and
other means, and 8) heat load distribution on divertor plate.

TEMPEST/COGENT Kinetic Code Suite and BOUT++ Gyro-Landau-Fluid Code

We will conduct the integrated simulations with multi-scale dynamics. The focus will be
studies of the slow, self-consistent interaction of magnetic islands with turbulence, and
plasma-wall interactions using the state of the art gyrokinetic and gyro-fluid codes for
multiple Edge-Localized-Mode (ELM) cycles.

8.4.2 Computational Strategies (now and in 2017)

8.4.2.1 Approach
XGC Family of Kinetic Particle Codes

Our computational challenge is to solve the 5D gyrokinetic equations in realistic diverted
tokamak geometry, with the magnetic field structure and plasma profiles imported from the
actual experimental data. Since the edge is fundamentally in a non-thermal equilibrium
state with all the sources and sinks in action, the conventional perturbation method based
on a thermal equilibrium background (the so called “conventional delta-f” method) cannot
be used. Our approach in the past was to solve the 5D gyrokinetic equations solely using
the particle-in-cell (PIC) method, which has a substantial advantage in utilizing extreme

Our advance approach now is to use a hybrid approach, in which we combine some
favorable features of the 6f and the continuum methods into our PIC method. We extend
the operator-splitting scheme, solve the large-spatial slow-time scale background evolution
in 5D continuum space, and use the delta-f PIC method to solve other scale physics -mostly
turbulence physics. This approach is found to be highly effective in handling the kinetic
electron physics.

Presently, we focus our study to the electrostatic turbulence, aiming for understanding the
L-mode physics and the L-H transition physics. The study includes the “ion temperature
gradient modes (ITGs),” “trapped electron modes (TEMs),” “resistive ballooning modes,”
and other low frequency electrostatic drift modes.

» o«

In 2017, our computational problem will be extended to include most important edge
physics phenomena. Three major extensions shall be in place: 1) electromagnetic
turbulence solution for a more complete study of the steep pedestal physics, 2) multiscale
simulation for extension of the gyrokinetic study to experimental edge time scale (~50 ms),
3) inclusion of more realistic plasma-wall interaction data. All these advances require
strong interaction with the SciDAC math (FASTMath), data management (SDAV),
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performance engineering (SUPER), and uncertainty quantification (QUEST) Institutes. In
particular, the third extension will be performed in collaboration with the SciDAC Plasma
Surface Interactions (PSI) project.

In mathematical structures, the electromagnetic gyrokinetic equations are not too different
from the electrostatic equations. Numerically, however, there is a challenge in getting the
low odd-parity mode number solutions due to the notorious numerical “cancellation
problem” or “ballooning formalism.” Thus, past gyrokinetic electromagnetic solutions have
been limited to the study of micro tearing modes when it comes to the odd-parity
instabilities. Fortunately, there are already on-going efforts in the world gyrokinetic
simulation community to resolve this issue, with some published record of success. In this
project, our 2017 aim is to have a fully resolved simulation of the electromagnetic
turbulence physics including the low-n numbers, in close collaboration with the applied
mathematicians and computational scientists.

TEMPEST/COGENT Kinetic Code Suite

The purpose of the TEMPEST/COGENT project is to bring to bear a coordinated effort,
utilizing modern computing resources, advanced algorithms, and ongoing theoretical
development to progress toward a fundamental, quantitative and predictive understanding
of the edge plasma. A key component of TEMPEST/COGENT is the development, verification
and validation of kinetic simulations, employing Eulerian methods and associated modern
numerical techniques to the solution of the drift- and gyro-kinetic equations, in the complex
geometry of the edge plasma, complete with sophisticated collision operators required to
accurately treat the broad range of collisionality across the edge region. The Eulerian
approach has a strong record of success for core plasma turbulence and transport.

A software infrastructure supports the TEMPEST gyrokinetic edge plasma code. A collection
of data structures addresses the specialized parallel distribution and communication
functions required to perform mathematical operations on non-simply connected tokamak
edge geometries. These structures facilitate the creation of data fields on a union of logically
distinct regions (core, scrape-off and private flux) as well as the ability to decompose each
region into subdomains for distribution across multiple processors. The data structures are
implemented as C++ class objects templated on the configuration or phase space dimension
and the data type. Class members include communication functions to perform data
exchanges at domain boundaries. These data structures are implemented on top of SAMRAI
(Structured Adaptive Mesh Refinement Application Infrastructure) and Chombo (Software
for Adaptive Solutions of Partial Differential Equations).

A Python interface provides a scripting front end, allowing the data structures described
above to be imported from a module implemented as a shared object library. The data
objects can be created and manipulated directly from Python (e.g., for use with a Python-
based visualization package), but with all substantial computations and communication
tasks performed in compiled code. The data objects can also be passed into C++-compiled
physics packages implemented as Python modules, including the GK module that integrates
our system of gyrokinetic equations. Because a Python interface also exists for the fluid
edge code UEDGE, this approach provides a mechanism for coupling fluid and kinetic edge
simulations.

BOUT++ Gyro-Landau-Fluid Code

BOUT++ comes from collaboration between Lawrence Livermore National Laboratory
(LLNL), University of York, and a growing number of other institutions around the world.
The goal of this project is to develop physics understanding and predictive capability for
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edge plasma turbulent transport through a Gyro-Landau Fluid extension of BOUT++ code.
This project fills a long-standing gap between the fluid descriptions currently in use (which
are intrinsically limited) and full gyrokinetic simulations TEMPEST/COGENT code suite,
which are fundamental but a long way from practical utility. This includes developing
advanced physics models to capture important kinetic effects in fluid description, and novel
numeric techniques to solve a set of fluid moment equations with non-local coefficients in
massive parallel computational framework, and validating the simulation models on two
largest super-conducting tokamaks (EAST and KSTAR) and the largest US tokamak DIII-D.
So-called gyro-Landau fluid (GLF) models can offer significant computational savings (up to
1000 times) by using a moment approach to reduce the phase-space dimensionality from
(3d, 2v) or (3d, 3v) to (3d), where “d” and “v” refer to real- and velocity-space dimensions,
respectively. These methods use non-local transport coefficients, expressed by integral
operators, to describe important kinetic processes such as wave-particle resonances
(Landau damping) and the gyration of charged particles around magnetic field lines, and
compare favorably to full gyro-kinetic models.

BOUT++ is a modular and flexible fluid plasma code so that the equations to be solved can
be easily changed to study various physical effects. This makes BOUT++ a powerful tool that
can be benchmarked against existing codes with reduced plasma models, and then extended
to understand basic plasma physics in more complete, complicated models. To date
BOUT++ has been applied successfully to the study of plasma eruptions from the tokamak
plasma edge, showing similarities with experimental results, and to turbulence in the Large
Plasma Device (LAPD). Fluid simulations using BOUT++ (and its predecessor, BOUT) have
shown good agreement with experimentally observed fluctuation properties in LAPD.

8.4.2.2 Codes and Algorithms
XGC Family of Kinetic Particle Codes

We have three XGC family codes for large-scale simulations of edge physics on NERSC
computers: XGC1, XGCO, and XGCa. All three codes include kinetic ions, kinetic electrons,
and Monte Carlo neutral particles in realistic diverted tokamak geometry. Guiding center
motions of ions and electrons obey common Lagrangian equation of motion in the XGC
family codes.

XGC1 is a gyrokinetic code and is the largest of the XGC code family codes. The most recent
version XGC1 solves the gyrokinetic Vlasov-Maxwell system of equations in the ODE form
using a 3D particle-in-cell algorithm for fast and smaller scale physics, while handling the
slow and larger scale physics in the 5D grid space. Mathematically, solving this operator
split system is equal to solving the original system in one PIC solver. The fully nonlinear
collision operation is then performed using finite difference technique on the velocity grid,
with the resulting collision information being mapped back to the particle space. Linear,
but conservative, Monte-Carlo collision operator is also included in the code as an option.
XGC1 solves for neoclassical, turbulence, neutral and impurity physics all together in
realistic diverted tokamak geometry. The sheath at the material wall boundary is described
by a “logical sheath” method.

XGCO is a neoclassical guiding center kinetic code, reduced from XGC1 for a faster
evaluation of the background plasma and neutral particle evolution. Even though the
particle motion is 3D, the code solves for flux-function electrostatic potential only. Thus, the
electrostatic potential is symmetric in both toroidal and poloidal directions.

XGCa is a new axisymmetric gyrokinetic neoclassical code. Unlike XGCO, the electrostatic
potential is not symmetric in the poloidal direction and the gyro-averaging operation is
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performed to model the steep pedestal at higher fidelity. Since the poloidal electric field
may be an important ingredient of the scrape-off physics, XGCa can model the scrape-off
region more accurately.

TEMPEST/COGENT continuum kinetic code suite

TEMPEST is an edge gyro-kinetic continuum simulation code for kinetic simulation
boundary plasma turbulent transport in a general geometry for magnetic fusion devices.
TEMPEST is a full-f gyrokinetic code, to simulate H-mode edge plasmas. This five-
dimensional (y,6,{,Eou) continuum code represents velocity space via a grid in equilibrium
energy (Eo) and magnetic moment (u) variables and configuration space via a grid in
poloidal magnetic flux (), poloidal angle (6) and toroidal angle (¢ ). The geometry can be a
circular annulus or that of a diverted tokamak and so includes boundary conditions for both
closed magnetic flux surfaces and open field lines. The same set of gyrokinetic equations is
discretized for both geometries. The equations are solved via a method-of-lines approach
and an implicit backward-differencing scheme using a Newton-Krylov iteration to advance
the system in time. The spatial derivatives are discretized with finite differences while a
high order finite-volume method is used in velocity space (Eou). A fourth-order upwinding
algorithm is used for parallel streaming, and a fifth-order WENO scheme is used for particle
cross-field drifts. Boundary conditions at conducting material surfaces are implemented on
the plasma side of the sheath. The code includes a range of options for collisions: simple
Krook, finite-volume Lorentz, a two-dimensional finite-volume package that can work in
second or fourth order and evaluate Rosenbluth potentials either from an assigned
background Maxwellian or via callouts to an external Fokker-Planck package that calculates
Rosenbluth potentials from the gyrokinetic code’s distribution function, or a callout to the
Fokker-Planck code to calculate the entire collision operator, with interpolations between
the gyrokinetic code’s Ey - p variables and the Fokker-Planck code’s speed/pitch-angle
variables. The gyrokinetic Poisson (GKP) equation is solved self-consistently with the
gyrokinetic equations as a differential-algebraic system involving a nonlinear system solve
via a Newton-Krylov iteration using a multigrid preconditioned conjugate gradient (PCG)
solver for the Poisson equation.

BOUT++ Gyro-Landau-Fluid Code suite

BOUT++ is a C++ framework for 3D plasma fluid simulation in real geometry, including both
open and closed field lines, developed in part from the original fluid edge code BOUT.
BOUT++ uses the PVODE package, which employs the Newton Krylov BDF implicit method,
and a range of finite difference schemes, including 2nd and 4th order central difference, 2nd
and 4th order upwinding and 3rd order WENO. Several different algorithms are
implemented for Laplacian inversion of vorticity to get potential, such as a tridiagonal
solver (Thomas algorithm) and a band-solver (allowing 4t order differencing), and the
Parallel Diagonal Dominant (PDD) algorithm by neglecting some cross processor terms. The
code has been parallelized with 2D domain decomposition using MPI and with good parallel
efficiency up to 10,000 processors. BOUT++ employs an object-oriented approach which
separates the complicated (and error-prone) details such as differential geometry, parallel
communication, and file input/output from the user-specified equations to be solved. Thus
the equations being solved are made clear, and can be easily changed, allowing highly
flexible studies of a range of extended fluid, and potentially gyro-fluid, equations.
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8.4.3 HPC Resources Used Today

8.4.3.1 Computational Hours

XGC: NERSC was the main source of large scale computing in 2012.

BOUT++: BOUT++ users are around the globe. We used around 4.5 million core hours in
2012 all together.

8.4.3.2 Parallelism
XGC-family kinetic particle codes

We typically use 73,728 Hopper cores to run XGC1, which is approximately half of the total
Hopper cores. On the other hand, XGCO ion runs are typically performed on 1,000 Hopper
cores. XGCO electron physics runs typically use 50,000 Hopper cores. Our XGC family codes
could use all the Hopper cores with almost linear efficiency. We use only half of the Hopper
capability because of the prohibitively long queue wait time. For multi-petaflop simulation
of larger scale XGC1 science, we are forced to use Titan at OLCF.

We try not to run large-scale XGC1 jobs concurrently on Hopper. All XGC1 jobs are
independent from each other. However, for smaller size XGCO jobs that require parameter
search, we often submit multiple jobs in the queue. What is important for the XGC codes is
the weak scaling in number of nodes. The strong OpenMP scaling applies to the intra-node
cores.

BOUT++

In BOUT++, strong scaling experiments are carried out by keeping the total number of grid
points in the radial, poloidal and toroidal directions constant. BOUT++ is evaluated in the
strong scaling regime, as that is how the developers typically use it. The experiments are
conducted on up to 65,536 processor cores. Since the domain decomposition is in the
toroidal and poloidal directions (2D), the size of each MPI subdomain becomes smaller with
increased concurrency, resulting in more boxes with a fewer number of grid points per MPI
box. This results in an increase of the surface to volume ratio (at the highest concurrency of
65,536 there are only two grid points in the poloidal direction). Clearly it may be inefficient
to run at this regime, but nonetheless provides an interesting insight into performance
trends at high concurrency.

We observe good strong scaling behavior to about 8,192 cores and slight performance
degradation at higher levels of concurrency. More detailed analysis shows that BOUT++
performs more calculations than expected for a perfectly strong-scaled experiment.
Examining BOUT++ communication overhead shows that computation time scales well to
about 16K cores, while communication time begins to plateau at around 4K cores. In fact,
the fraction of time spent in communication rapidly increases beyond 2K cores.
Interestingly, it saturates at about 20% of the runtime at 16K cores and beyond. As the
parallelization scheme reaches its limits, we believe the communication overhead is likely
an artifact of the asymptotic limits to the surface to volume ratio.

Due to allocation constraints, we typically use 512 to 1,024 cores for a single job for 4 to 8
hours and then investigate the outputs to see if the results are good. If the results are good,
the job would be continued for multiple times and the outputs are investigated each time to
determine if the job needs to be continued.
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The good strong scale is preferred as it shorten the wall clock time by increasing the
number of cores, so developers can quickly get the computational results without long
waiting period of time.

XGC family kinetic codes
For scratch we currently use about 20 TB/project. One person uses 7TB of scratch space.
We use about 1 TB/project for NGF and have about 300TB stored on HPSS.

We have a large amount of turbulence data to store and analyze. The analysis data on
scratch space can be up to 7TB at a time for one designated user.

Scratch space is used for check pointing, data outputting, as well as job submissions. Some
times, multiple jobs are submitted for different physics study, multiplying the size of data in
scratch space. The amount of data from source and input files in the scratch space
is negligible compared to other files.

Permanent storage space is used mainly for storage of the source files, input files, analysis
scripts, important output data that needs to be analyzed and accessed often, and important
analysis results such as figures and movies.

HPSS is used for storage of complete file directories for all the meaningful runs. This
includes all the source codes, all the input files, all the checkpoint data, all the output files,
and all the analysis and movie results.

We need to share data between Hopper and Carver. Most of the large-scale jobs are
executed on Hopper, but most of the large-scale data analyses are performed on Carver. .
We used Carver for data analysis mainly because of the larger memory capability for
MATLAB analysis. For large-scale runs, we normally need to load up a pretty large size data
in the node for the MATLAB analysis. With the recent installation of MATLAB on Hopper
and Edison, we no longer require Carver for this analysis.

We use ADIOS. Other traditional methods slow down our large-scale runs. Periodic update
of Adios libraries on all the future large-scale machines will be helpful.

XGC-family kinetic particle codes

Our current estimate is that we will need 2B Hopper equivalent hours for CY 2017 to reach
all the scientific goals listed in Sec. 1.2 at high fidelity. @ We expect to receive some
allocations from Titan, mainly for jobs requiring 100-PF range computing. The primary
factor for driving the need for this amount of computing time is the electromagnetic
electron turbulence physics for realistic edge time scale (~50 ms), using the real electron
mass in 3D magnetic perturbations. Real mass electrons require 60 times smaller time step
than deuteron. Currently, we use electron mass of 100 times lighter than deuteron, thus
requiring only 10 times smaller time step than deuteron. Also, current simulation is for a
few ms physics time scale only that is adequate for turbulence saturation.

TEMPEST/COGENT continuum kinetic and BOUT++ gyro-Landau-Fluid code suites

The 5D codes are computationally very demanding and require up to ~512°128°256»107
grid points in configuration space and 30730 in their 2-D velocity space. TEMPEST typically
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requires 2048 processors for a single predictive ITER simulation. The time per TEMPEST
simulation should be about 24 hours (a few times greater than a traditional fixed-gradient
run), implying a total predictive simulation time of 24 x 2048 = 49,152 CPU-hours for a
steady state turbulence.

BOUT++ typically uses over 4,096 processors for a single simulation leading to filament
formation and eruption for 96 hours with a resolution 516x256x128 in single-null divertor
geometry for a single ELM crash.

We plan to conduct integrated simulations with multi-scale dynamics with multiple ELM
cycles.

Our plan will also leverage international resources and international tokamak data for
validation of the models to investigate the characteristics of ELM deposition patterns for
long-pulse discharges.

Therefore, these two code suites will add up to a total computing resource allocation is
50,000,000 CPU-hours in 2017.

8.4.3.3 Parallelism
XGC-family kinetic particle codes

We expect to use as many Hopper equivalent cores as are available in 2017, assuming the
2017 system has approximately the same number of nodes as existing systems. Our codes
are proven to scale efficiently to the maximal number of Jaguar nodes and cores. We do not
anticipate running more than one large job concurrently.

8.4.3.4 Dataandl/O
XGC-family kinetic particle codes

Scratch space: 600 TB. 32X higher capability means roughly 32X more scratch space,
mainly due to the proportional increase of the checkpoint data in our PIC code XGC1.

Permanent: 10TB. The output data size and the analysis results will not grow as fast as the
computing capability or checkpoint data. 10X increase between now and 2017 is estimated
to be 10TB.

HPSS: 3 PB. Since many of the non-essential checkpoint files can be discarded, we
anticipate that 10X more HPSS is required from 32X higher computing capability.

8.4.3.5 Memory
XGC-family kinetic particle codes

Assuming that a 32X NERSC machine in 2017 will have 10,000 nodes, the minimal memory
requirement of our XGC code can be anticipated to be 50 GB per node with 500 TB of
aggregate memory. A large-scale, full-function PIC code is fundamentally a low memory-
per-node code.

8.4.3.6 Many-Core and/or GPU Architectures
XGC-family kinetic particle codes
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XGC1 has already been ported to heterogeneous GPU-CPU computers (Todi in Switzerland
and Titan at OLCF). Unlike in other GPU codes, XGC uses CUDA-Fortran. Our codes will be
adapted to any other futuristic type of “lightweight” cores and accelerators in collaboration
with the SciDAC SUPER Institute, if necessary.

8.4.3.7 Software Applications and Tools
XGC-family kinetic particle codes

This is not an easy question to answer since new HPC software will be developed quickly.
We will need Adios, PETSc, GPU performance analysis tools, and the compilers for
FORTRAN codes. We anticipate continuing the MATLAB library usage in 2017.

8.4.3.8 HPC Services

We will require consulting and account support, training, web interfaces and others.

8.4.3.9 Time to Solution and Throughput
XGC-family kinetic particle codes

Our aim is to get the answer within 24 wall-clock hours of simulation from our large jobs.

Larger scale problems will be submitted to proportionally larger number of nodes. A queue
policy to favor large-scale jobs will be important.

8.4.3.10 What Else?
XGC-family Kkinetic particle codes

Improving the inter-node communication speed will be the most important HPC feature.

8.4.3.11 Requirements Summary

XGC1 Kinetic Particle Code Summary Used at NERSC Needed at NERSC
in2012 in 2017
Computational Hours (million) 78 2,200
20 TB 600TB
Scratch storage and bandwidth
35GB/sec 350GB/sec
Shared global storage and bandwidth 0.5TB 10TB
(/project) 15GB/sec 150GB/sec
15 TB 3,000 TB
Archival storage and bandwidth (HPSS)
1GB/sec 10GB/sec
Number of cores* used for production runs 73,728 3,000,000
Memory per node 5GB Minimum of 50GB
Aggregate memory 30TB Minimum of 500TB
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8.5 Study of the Internal Dynamics of ITER

Principal Investigators: Stephen C. Jardin (PPPL), Carl Sovinec (University of Wisconsin),
Linda Sugiyama (MIT)

NERSC Repositories Represented: mp288, m876, mp21, mp200, m455, m908

8.5.1 Project Description

8.5.1.1 Overview and Context

The ITER device, now being constructed in Cadarache, France, is a monumental step
towards the realization of fusion power. The $20B experiment, being financed by 7
international governments including the U.S,, is the same scale as a follow-on fusion power
plant. Success in this endeavor will be a turning point in the quest for a sustainable, carbon
free, and safe source of energy for the planet.

There are several aspects of the control and operation of a magnetically confined fusion
device like ITER that can benefit from high-end computation. We are concerned with
studying the internal global dynamics of the high-temperature ionized gas (plasma) in ITER,
primarily with two world-class extended magnetohydrodynamics (MHD) codes, NIMROD
and M3D-(I, that have been developed by us through our SciDAC grants over the last
decade, but also using newer exploratory techniques involving Finite Time Lyapunov
Exponents (FTLE) that will be further developed during this time period. We are presently
making extensive use of NIMROD and M3D-(? to perform similar studies in existing fusion
devices for further verification and validation.

A comprehensive and reliable simulation capability for the MHD phenomena that will occur
in ITER will be invaluable in a number of ways. It will provide insights into the different
modes of operation that are possible with the device. It will also allow us to test
optimization and control strategies. It will certainly give the U.S. a competitive edge over
our international partners in developing proposals for run time once ITER becomes
operational.

8.5.1.2  Scientific Objectives for 2017

The primary research objective is to extend the studies performed on existing fusion
devices by using plasma parameters (i.e. temperatures and magnetic fields) much higher
and hence closer to those expected in ITER. Higher temperature implies lower plasma
resistivity, which implies that the magnetic Lundquist number S will be higher. This, in
turn, necessitates a finer mesh as there are localized reconnection layers that need to be
resolved that scale in size as S+ with a ~ 1/3 - 1/2. It will also increase the importance of
two-fluid (separate electron and ion dynamics) and kinetic effects that are outside the scope
of the basic resistive-MHD model. The reconnection layers that will develop in these studies
are localized around a few rational surfaces or at the plasma edge and so the adaptive
meshing capability of the codes will be very useful in distributing the mesh points where
they will be most effective. Present nonlinear studies performed with these codes used
high-order finite elements with typical (normalized) element dimension of 0.01 with 32-64
toroidal planes (or toroidal Fourier modes) and this restricted us to values of S=106.
Through a combination of better mesh adaptation and more processors, we plan to have an
effective element size of 0.0025 or less at the reconnection layers and to include 128-256
planes or toroidal Fourier modes. This should allow computations with S=107 or 108 or
higher, which is well within the range of existing tokamaks. This will allow detailed
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validation of our results and give us increased confidence to scaling these results to ITER
parameters.

We now have close collaborations with several experimental teams that are performing
detailed diagnostic measurements of internal reconnection events (sawtooth), edge
localized modes (ELMs), and tearing-mode phenomena in the DIII-D and KSTAR tokamaks.
A new 2D electron cyclotron imaging diagnostic on both these machines allows one to
obtain unprecedented time dependent images of the evolution of the electron temperature
during an internal reconnection event or ELM crash, or the growth of a magnetic island.
For example, the diagnostic measurements show that there can be a wide variety of types
sawtooth behavior, with crash times ranging from 100 us to 10 ms in KSTAR, depending on
plasma parameters and modes of operation. We also see a wide range of sawtooth behavior
in our simulations, although the simulations are presently at lower values of plasma
temperature than the experiments and so cannot directly be compared. With the expected
growth of computer resources in the next few years, it should be possible to run a number
of simulation cases with realistic parameters (temperature and Lundquist number) so that
results can directly be compared with these experiments.

We expect this close interaction between new state-of-the art diagnostics with new state-of-
the-art simulations to enable a much deeper understanding of the stability and magnetic
reconnections processes occurring in high-temperature tokamak plasma. This
understanding and simulation capability can directly be applied to ITER. Extensions of this
work in future years will be aimed at simulating several sawtooth, ELM, and tearing mode
control techniques that have been demonstrated experimentally and projecting these to
ITER.

8.5.2 Computational Strategies

8.5.2.1 Approach

To put our studies into context, we note that there are 4 classes of simulation codes used by
fusion researchers to simulate and study phenomena in magnetic confinement devices: (a)
The RF codes such as TORIC and AORSA address the interaction of externally imposed
electromagnetic radiation with the plasma as a heating method; (b) The micro-turbulence
codes (or gyrokinetic codes) such as GYRO, GTS, and XGC1 study the fine-scale turbulence
that leads to increased heat and particle transport; (c) The extended MHD codes being
used in the present study, NIMROD and M3D-C? and exploratory projects such as FTLE,
which study the nonlinear evolution of global instabilities and magnetic reconnection
events; and (d) The transport codes which study the evolution of an assumed stable
discharge over very long timescales, assuming the transport coefficients are known.

The NIMROD and M3D-(? simulation codes, addressing class (c) phenomena in the above,
are capable of solving the nonlinear extended MHD equations for initial-value
computations. Despite stiffness associated with multiple time-scales, the codes efficiently
advance the physical fields in three spatial dimensions using implicit algorithms that can
take very large time steps compared to the Courant condition based on the MHD wave
velocities. Once the appropriate transport coefficients, boundary conditions, and sources
and sinks are specified, we can compute the slow (transport time scale) evolution of the
pressures, densities, and current density and determine when the system evolves into an
unstable state. The codes can then calculate the nonlinear consequence of that instability
and study proposed control techniques.
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8.5.2.2 Codes and Algorithms

The NIMROD and M3D-C! codes are similar in many respects but differ in many
implementation details. Both codes solve the extended MHD equations using a split-
implicit algorithm and high-order finite elements. The M3D-C! code uses finite elements in
all three dimensions whereas the NIMROD code uses a Fourier expansion in the toroidal
direction. The codes differ in the internal representation of the vector fields representing
the velocity and the magnetic field and in the way that the divergence constraint on the
magnetic field is implemented.

With both codes, each time-step involves several computation- and communication-
intensive operations. Projections of the time-differenced equations onto finite-element
test/basis functions are computed with numerical spatial integration and partially gathered
into algebraic vectors and matrices. With its 1D Fourier expansion, NIMROD also performs
FFTs as part of this step using all-to-all communication within processor groups formed by
2D decomposition of the perpendicular plane. The algebraic systems are solved with
preconditioned Krylov-space methods. Both codes use block-based preconditioning with
large diagonal blocks solved by direct methods for sparse matrices (typically
SuperLU_DIST). This general approach is dictated by the ill conditioning of the matrices,
which results from the stiffness of the problems. M3D-C1 and NIMROD differ somewhat in
terms of the decomposition that defines the blocks, and M3D-C1 has real algebraic systems,
whereas NIMROD has complex systems.

8.5.3 HPC Resources Used Today

8.5.3.1 Computational Hours

Our primary computational resource is NERSC. In 2012 repo mp288 used 7.9 million hours
at NERSC and repo mp200 used 1.4 million hours. The total for this case study was 9.3
million.

8.5.3.2 Parallelism

M3D-C1: Typical runs today use 1,000-3,000 cores, but we have demonstrated in weak
scaling studies that the algorithm scales acceptably to over 12,000 processors for
sufficiently large numbers of finite elements (or mesh points). We do not have enough
computer time allocation to routinely use the finest mesh is the reason that we use fewer
cores (and a coarser mesh) than the maximum. Our group typically has 4-5 projects in the
job queues at one time, each of which requires 5-10 restarts to perform a complete
simulation. = Weak scaling is important to us, as we want to run with higher resolution
using more processors.

NIMROD: Most production computations with NIMROD use several hundred to one or two
thousand cores. NIMROD has also demonstrated weak scaling to more than 10,000 cores
using MPI alone and to more than 50,000 cores using MPI combined with OpenMP.
However, before investing a significant fraction of resources in a large computation, we find
it essential to perform many smaller computations to understand linear spectra, to assess
the potential significance of different physics contributions, and to estimate resolution
requirements. Having multiple jobs running concurrently is common, but the computations
often represent different applications, so they may be of different size or duration. Like
computations with M3D-C?, weak scaling is most important for achieving realistic
parameters, but improved strong scaling would also be welcome for better throughput of
small to medium-sized computations. At present, generating data that comprise our
algebraic systems scales well in a weak-scaling sense and in a strong-scaling sense (to a
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reasonable degree). Solving the algebraic systems with parallel scaling is more challenging.
The matrices differ significantly from those generated by standard parabolic and elliptical
PDEs, and efforts to apply multi-grid methods have not shown clear benefits. The sparse
direct solves for our block-based preconditioning are communication-intensive, and parallel
solution of the algebraic systems is the most limiting aspect of the algorithm.

8.5.3.3 Dataandl/O

M3D-C1 I/0: The initial input to this code is minimal. =~ Normally we need only a short
namelist, a grid definition file, and optionally a small file of a standard type that specifies the
2D initial conditions (equilibrium file). In the interest of scalability, we have one process
that reads and broadcasts the input. The output files are of two types: restart and graphics.
The restart file (or checkpoint file) is written using ADIOS and contains all the information
required to restart. The graphics files are hdf5. There is a separate hdf5 file with all the
DOF at each specified time point, but also a single hdf5 file with all the time-dependent
scalar information (such as the kinetic energy in each toroidal mode). The output accounts
for only a small fraction of the run time. We have several post-processing programs that
can read these hdf5 files for processing, including Vislt.

NIMROD I/0: A "dump" (checkpoint) file containing the entire system state at a given time
is read at startup and written periodically, usually with hundreds of time-steps between
these 1/0 operations. In the past, the requirements for NIMROD have also been modest,
with each dump file being smaller than 100 MB. The data is communicated to a single
processor that performs a binary write operation. In recent large computations, the files
can exceed 0.5 GB. We have experience with hdf5 files and intend to convert to parallel
read and write operations in this format when [/0 becomes a performance concern.

M3D-C? Data Storage: The data that is stored is in the form of the hdf5 files. Each time
slice now produces about 1 GB of data. We typically keep 100 time slices per run, which
would be about 0.1 TB per run. However, in some time periods we need more frequent
output, so that 0.2-0.5 TB per run would be a safe estimate. We perform on the order of 10
major runs per year, so this would be an upper bound of about 5 TB of data that needs to be
stored each year. We typically keep this in the project space for the order of 1 month and
then move it to HPSS. We do not use extra scratch disk space except to store the output
files during the run or to store the restart files between run segments. We do not normally
share data between NERSC systems.

NIMROD Data Storage: The permanent storage requirements for NIMROD are similar to
those for M3D-(C?, approximately 5 TB per year. The present temporary-space and user
home space are adequate. Having a number of code users who are not developers, the
NIMROD project takes advantage of /project space and sharing between systems. It
facilitates collaboration and helps users access executables and data. The size of our
present /project space is on the order of 1 TB, and needs will likely increase by
approximately 0.5 TB per year. Data sharing is primarily between the large
supercomputers, Hopper, Carver, and now Edison.

8.5.4 HPC Requirements in 2017

8.5.4.1 Computational Hours Needed

M3D-C1: We need to increase our spatial resolution by a factor of 4 in each of 2 dimensions
and a factor of 2 in the third dimension which implies at least 32 times more compute
power assuming our implicit algorithms exhibit perfect weak scaling.  Scaling from 2012
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usage, this would be in the order of 100-200 Million CPU hours. In addition to the increase
in compute time coming from using more spatial resolution, we are increasing the fidelity of
our physics model (with more two-fluid and kinetic effects), which also results in increased
run time for the same zone size. Some of this time may come from successful INCITE
proposals, but we have no guarantee of this. Editor's Note: the value of 200M in the table
below represents scaling to the entire repository based on AY 2012 usage.

NIMROD: Increased spatial resolution is also a priority for NIMROD computations.
Another priority is applying more realistic modeling. Computations with the two-fluid
model address plasma drift and fast-reconnection effects that are not considered by
resistive-MHD. Per time-step, the computational cost increases by a factor of 2-3 relative to
resistive-MHD, resulting from the magnetic-field advance having a more ill conditioned
matrix. Drift effects in this model can lead to the presence of faster oscillations that need to
be resolved temporally. This will force us to use greater temporal resolution, possibly by as
much as a factor of 10. Thus, relative to our present allocation of approximately 4 million
CPU hours per year (divided among 4 repositories), our needs will be as large as 100 million
hours per year, assuming successful scaling on new hardware.

8.5.4.2 Dataandl/O

M3D-C? and NIMROD: All of our storage requirements scale linearly with the number of
mesh points (or finite elements) and so we expect these to increase by a factor of 32. We
are not presently /0 limited, and so do not expect to require increased 1/0 rates.

8.5.4.3 Scientific Achievements with 32X Current Resources

M3D-C? and NIMROD: The numbers listed above are 32 times our present resources.

8.5.4.4 Parallelism

M3D-C1: Our goal is to use between 20,000 and 100,000 processors per job in 2017.
NIMROD: By using threading together with MPI, we expect to run large computations on
100,000 cores by 2017.

For all codes: We expect to have several simultaneous submissions in the job queues at
any one time, but each submission would be only a single job. Many more computations at
the 1000-core scale will still be required, however. In some cases, it may be efficient to
bundle smaller computations into a single job, but we do not expect this to be standard
procedure.

8.5.4.5 Memory

M3D-C?: Our jobs now on Hopper are typically memory limited. For a given number of
degrees of freedom (DOF) (which is the number of finite elements times the DOF per
element), we have to keep increasing the number of nodes on Hopper until we have
sufficient memory to run the job. Having more memory per core for a given number of
DOF would allow us to use fewer cores and achieve better scaling. @ The memory
requirement scales slightly worse than the total number of DOF because we use a block-
Jacobi preconditioner based on SuperLU_dist which has a large fill-in factor. We think that
a memory/core ratio of about 4GB (such as in Edison) would be close to optimal in the next
3-4 years.

NIMROD: Memory also limits resolution in large NIMROD computations. The recent work
on threading and development to obtain sparsity patterns for SuperLU_DIST without
duplicating integer-array storage have been motivated by memory considerations. Each of
these efforts represents significant progress, but greater memory per core would increase
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flexibility. On a shared-memory workstation, for example, we benefit by having more than
4 GB per core.

8.5.4.6 Many-Core and/or GPU Architectures

M3D-C1: Our implicit time-step has 3 major parts to it: (1) define the matrix elements by
performing 3D integrations, (2) apply the pre-conditioners, and (3) solve the linear system.
We think that part (1) will benefit greatly from GPUs and have started exploratory studies.
For parts (2) and (3), we use the PETSc SuperLU_dist based block Jacobi preconditioner and
GMRES Krylov solver, so that we would need developments by the PETSc group to take
advantage of GPUs in these solver areas.

NIMROD: Our efforts at threading address the generation of information for algebraic
systems, which does not require global communication. Other parts of the algorithm may
also benefit, but solving algebraic systems will be the bottleneck. New approaches and
development from the computer science community are welcome. However, it is worth
emphasizing that global propagation of information is associated with problem stiffness
from the application and requires frequent movement of data. (Here, we are distinguishing
"global" from the MPI "collective" definition. There are collective communication
operations among distinct communicator groups when generating algebraic systems, but
they do not cover the entire domain. Conversely, solving algebraic systems effects global
communication without collective operations.)

8.5.4.7 Software Applications and Tools

M3D-C? and NIMROD: HDF5, ADIOS, PETSc, Vislt, Fortran-90 compilers
SuperLU_DIST, OpenMP

Many of our users strongly prefer AVS-Express to VisIT for visualization.

8.5.4.8 HPC Services

M3D-C? and NIMROD: NERSC excels in this area, and the NIMROD project would benefit
from tutoring and assistance with new hardware architecture.

8.5.4.9 Time to Solution and Throughput

M3D-C1, NIMROD and FTLE: Given the scientific and computational importance of jobs at
the hundreds to 1000-processor level, increased throughput for this scale would be a
tremendous benefit. Also, many of our jobs require long wall-clock times at moderate size.

8.5.4.10 Data Intensive Needs
M3D-C? and NIMROD: No change from today.
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8.5.4.11 Requirements Summary

Repo mp288, representing M3D-C? usage Used at NERSC | Needed at NERSC
in 2012 in2017

Computational Hours (Hopper core-hour

equivalent) 7.9 Million 200 Million

Scratch storage 0.1 TB 3 TB

Maximum number of cores* that can be used

for production runs

Shared global storage (/project) 5.6 TB 16 TB

Checkpoint bandwidth

Archival storage and bandwidth (HPSS) 3.5TB 160 TB

Maximum I/0 bandwidth (excluding

checkpoint data)

Number of cores* used for production runs 700- 3,000 20,000-100,000

Memory per node 1.5 GB/core 4 GB/core

Aggregate memory 45TB 400TB

Computational Hours (Hopper core-hour

equivalent) 4 Million 100 Million

Repo mp200, representing NIMROD usage | Used at NERSC | Needed at NERSC
in 2012 in2017

Computational Hours (Hopper core-hour

equivalent) 1.4 Million 100 Million

Scratch storage 0.1TB 2TB

Shared global storage (/project) 0TB 4 TB

Archival storage (HPSS) 27 TB 200 TB

Number of cores* used for production runs 100-2000 1,000-100,000

Memory per node 1 GB/core 4 GB/core

Aggregate memory 1TB 400TB
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8.6 Small Scale Plasma Experiments: Simulations and Model
Validation

Principal Investigators: Vyacheslav S. Lukin, (Naval Research Laboratory), Brian A. Nelson
(University of Washington), Carl R. Sovinec (University of Wisconsin).

NERSC Repositories: m489, m1255, mp200, m172

8.6.1 Project Description

8.6.1.1 Overview and Context

Small-scale plasma experiments play an important and highly valuable role in the DoE
Fusion Energy Sciences research portfolio. Primarily, though not exclusively, focused on
investigating different aspects of magnetic plasma confinement with the ultimate goal of
constructing a reliable fusion energy reactor, small-scale laboratory experiments often
serve as test-beds for new ideas towards improving the design of a future reactor. An
equally important role of these experiments is their ability to study in isolation limited
subsets of plasma phenomena that are known to be of concern, and have to be better
understood and modeled, for the much more powerful and complex ITER-scale plasma
experiments to operate reliably.

Over the past decade, with increased availability of computing resources and software, as
well as the greater recognition of the intrinsic value of numerical modeling for
understanding the behavior of highly nonlinear systems, advanced simulations have
become an integral part of the research process on many of the small scale plasma
experiments. Magnetohydrodynamics (MHD) based, particle based, and/or hybrid
numerical plasma models developed by the greater computational plasma physics
community are often employed for both idealized and whole-device simulations of these
experiments. The Plasma Science and Innovation Center (PSI-Center), a multi-institution
collaboration headquartered at the University of Washington, has been serving as the
conduit to enable and support such modeling efforts for many of the small-scale plasma
experiments.

The two workhorses of the PSI-Center are NIMROD, an extended MHD code with hybrid
capability, and HiFi, a multi-fluid modeling framework for solving complex systems of
coupled partial differential equations (PDEs). The PSI-Center also employs, develops and
improves a variety of other numerical codes, such as the 3D force-free plasma equilibrium
solver on an unstructured tetrahedral mesh PSI-Tet, the DCON MHD stability code for
axisymmetric toroidal plasmas, and the particle trajectory-tracing code PUSH.

8.6.1.2  Scientific Objectives for 2017

Over the next several years, the mission of the PSI-Center will broaden from being primarily
a support center for simulations of small-scale plasma experiments, to proactively
performing systematic plasma model validation studies using the experimental data. It is
for such validation studies that the ability of the smaller laboratory experiments to focus on
a limited subset of all the plasma phenomena observed in larger and hotter machines will
become critically important.

The ability to conduct relatively simple, well-diagnosed plasma experiments with high
repetition rate at low cost allows for better quantification of the sources of uncertainty both
in the experimental data and in the corresponding simulations of the small scale
experiments. Taken together with the more detailed and more accurate simulations that
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will be enabled in the next four years by the expected improvements in the high
performance computing hardware and software, the PSI-Center's goal for 2017 is to be able
to quantitatively estimate the validity of the plasma models implemented in the NIMROD
code and the HiFi framework in the parameter regimes of these experiments.

Doing so will require substantially increased computational time allocations and much
greater throughput that allows to perform many medium-sized simulations that
complement the “one-off” biggest possible simulations by exploring the available parameter
space and performing statistical studies around the performance point of any given
experiment.

8.6.2 Computational Strategies

8.6.2.1 Approach

By far the most computationally intensive calculations presently performed and supported
by the PSI-Center are two- and three-dimensional initial value extended or multi-fluid MHD
calculation performed using the HiFi framework and the NIMROD code. (For the purposes
of this case study, the discussion of the PSI-Center's current usage and future needs will be
limited to HiFi and NIMROD from here on forward.) A typical calculation is either driven to
or is initialized in an unstable state, which in turn drives the nonlinear plasma dynamics of
the experiment being simulated; an example of a HiFi simulation of the Swarthmore
Spheromak Experiment is shown in Figure 1. If the experimental conditions allow for
discharges with sufficiently long pulse length, multiple dynamical cycles may need to be
simulated.

Figure 1. HiFi simulation of reconnection and merging of two spheromaks in the Swarthmore Spheromak
Experiment. Representative magnetic field lines illustrating the two spheromaks, are shown here. Peak in
current density is represented by the surface in the center of the volume. The top row and bottom row
both show the same point in time; the images in the bottom row are an orthogonal view to the ones in the
top row. [from Gray et al,, Physics of Plasmas 17, 102106 (2010)]

8.6.2.2 Codes and Algorithms

Both NIMROD and HiFi are implicit initial value parallel codes that employ semi-structured
meshes and use up to thousands of computing cores for two- and three-dimensional
simulations of the PSI-Center supported experiment. However, while similar in many ways,
there are several important differences between the algorithms and the implementation
approaches used in the two codes.
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Both codes use semi-structured arbitrary order finite (spectral) elements spatial
discretization in a two-dimensional plane; but while NIMROD uses the Fourier
representation in the third dimension, HiFi treats all three dimensions on equal footing. For
grid generation in complicated experimental geometries, HiFi relies on the semi-structured
grid generator package CUBIT, while NIMROD uses a homegrown grid-generation
algorithm. HiFi framework's temporal advance is fully implicit i.e., the full system of PDEs is
always advanced in a single implicit time-step, which together with the generic user
interface gives HiFi the flexibility of a general PDE solver. On the other hand, NIMROD uses
a split-implicit time advance algorithm with hard-wired PDEs, which allows it to have a
smaller memory footprint. Both codes use preconditioned Krylov-space methods for
solving the resulting large sparse algebraic systems: the NIMROD solver is customized with
an interface to SuperLU_DIST, and HiFi relies primarily on the PETSc interface for access to
a variety of preconditioning and linear solver libraries.

8.6.3 HPC Resources Used Today

8.6.3.1 Computational Hours

The PSI-Center and the collaborating small scale experimental programs included in this
case study, namely SSX, HIT-SI and Pegasus, all rely on the NERSC computational resources
to a large extent. However, local small (up to ~200 core) computing clusters also play a
very important role in the day-to-day research. Multiple surveyed scientists reported
running local 25 to 100 core jobs, both in the code testing and the production simulation
phases, on a daily basis.

8.6.3.2 Parallelism

The size of PSI-Center production runs using both HiFi and NIMROD can vary by about two
orders of magnitude, from using only 50 or so and up to about 5,000 cores, depending on
the plasma parameter regime of the particular experiment being modeled, whether the
simulation is done in two or three dimensions, and how detailed is the physical model used
in the simulation. The codes have demonstrated strong scaling up to a couple hundred
cores, and, for some applications, weak scaling up to 0(104) cores. The biggest one-time
simulations have been performed on over 50,000 cores.

There are two primary reasons for typically using fewer cores than one could:

(1) CPU hours is a limited resource and therefore we want to use them efficiently. Thus,
due to lack of strong scaling beyond a couple of hundred cores, if certain amount of
spatial resolution is sufficient and the problem fits on fewer cores and can run in
reasonable time, using fewer cores is advantageous.

(2) Much of the work we do is focused on understanding the underlying nonlinear
physical processes that are at play in the experiments we model. The typical
process for doing so usually involves many iterations with sensitivity studies to both
numerical and physical model-dependent parameter variations. When for these
purposes a smaller problem size is acceptable, due to the lack of strong scaling and
limited available resources, using fewer cores is advantageous.

To perform the parameter scans, any given user running the codes may have up to 3 jobs in

the queue at any one time. Some jobs may require one or two restart due to the NERSC job
runtime limits.

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 55



8.6.3.3 Dataandl/O

Scratch (temporary) space: We use about 700 GB for storing running simulation checkpoint
files, synthetic data analysis, and visualization.

Permanent (can be shared, NERSC Global File System /project): We use about ~2-5 GB for
storing libraries, source code and executables.

HPSS permanent archival storage: We use about 2-5TB for data backup, and archiving past
calculations for long term storage

Data are shared between Hopper and Carver for running simulations, and Euclid for post-
processing and visualization with VisIt.

In NIMROD, I/0 is performed in a serial fashion with a single processor responsible for
reading (writing) binary checkpoint files and appropriately distributing (collecting) the
information to (from) the rest of the computing cores. In HiFi, both serial and parallel hdf5,
as well as the serial binary format, are available as run-time /0 options for reading and
writing checkpoint files.

8.6.4 HPC Requirementsin 2017

8.6.4.1 Computational Hours Needed

Given the uncertainty in the future domestic DoE Fusion Energy Sciences budget as a whole,
and the funding for the small-scale plasma experiments, in particular, it is difficult to
estimate the computational hours that may be needed by PSI-Center and the collaborating
experiments in 2017. With that said, and assuming a sufficient number of research
scientists and graduate students is available to do the work, the expected need will be in the
range of 100-200 Million CPU hours. The primary reason for the increased need will be
driven by the combination of two factors:

(1) The change in the mission of the PSI-Center towards model validation, as described
above. The broader scope will require running a substantially greater number of
simulations than we do now around the performance point of any particular
experiment in order to quantify the uncertainty associated with the spatial
resolution, initial and boundary conditions used in the simulations. Similarly, the
sensitivity of the results to the specific physics model and the adjustable parameters
used in the simulations will need to be evaluated. This alone will account for up to
100-fold increase in the demand for computing time.

(2) The increased maturity and better performance of the codes will allow the PSI-
Center's personnel to devote more time to running simulations of the experiments
and validating the models, rather than developing the software. Improvements in
the codes' user interface will enable more users directly affiliated with the
experiments and without significant computational experience to run the codes
themselves. Together, these may account for another factor of two to three increase
in the demand for NERSC compute hours.

8.6.4.2 Parallelism

Continued improvements in the scalability of the software specific to HiFi and NIMROD, as
well as improvements in the external libraries the codes rely upon, are expected to yield a
factor of two to four improvement in the overall scalability of the codes. This will lead to
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users running more simulations in the 10,000 to 20,000, and up to 100,000, cores per job
range.

The increased availability of computing time and better throughput for 100-core to 1,000-
core scale jobs will also result in many more users running those jobs instead of the 50-core
jobs they run now.

The expected increase in the user base and the number of simulations of small scale plasma
experiments necessary for model validation is likely to yield O(10) jobs of varying size in
the queue at any one time.

8.6.4.3 Dataandl/O

The permanent storage capacity is expected to scale linearly with the number of users, thus
increasing by about a factor of two.

The scratch space capacity is expected to scale linearly with the number of simulations
being performed simultaneously and the size of the computational grids, thus likely
increasing by a factor of 0(10).

The HPSS archival storage is expected to increase linearly with the number of simulations
performed over the course of a year, thus likely increasing by a factor of 0(100).

No I/0 bandwidth limitations for either HiFi or NIMROD have been identified so far.

8.6.4.4 Scientific Achievements with 32X Current Resources

The expected demand for CY 2017 described above already exceeds what would be
available with the annual doubling of allocated compute hours.

8.6.4.5 Memory

The minimum memory requirement that maintains the parallel scaling’s quoted above is 2
GB per core. A more optimal memory per core ratio would be 4 GB per core.

8.6.4.6 Many-Core and/or GPU Architectures

At this time, both NIMROD and HiFi rely on MPI communication and run on homogeneous
CPU systems. Initial development and planning for using heterogeneous many-core
architectures has began, but any help from the computer science community and NERSC
will be welcome. It should be noted that a GPU-capable version of the PETSc library is now
available, however GPU-enabled versions of such linear solvers as SuperLU_DIST and
MUMPS, or similar alternatives, would have to become available for either code to be able to
take full advantage of the new heterogeneous architectures.

8.6.4.7 Software Applications and Tools
PETSc, HDF5, NetCDF, SuperLU_DIST, MUMPS, HYPER, Vislt, Fortran-90 compilers

8.6.4.8 HPC Services

Maintaining high standards in account support, timely installation of new software versions,
as well as continued training and tutoring in the use of new systems is all that is necessary.
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8.6.4.9 Time to Solution and Throughput

As indicated above, increased throughput for 100 to 5000 core size jobs, possibly also

allowing for longer runtimes for a single job, would be very helpful.

8.6.4.10 Data Intensive Needs

None.

8.6.4.11 Requirements Summary

Used at NERSC Needed at NERSC

in2012 in2017
Computational Hours (Hopper core-hour
equivalent) 3.1M 200 M
Scratch storage 1TB 10 TB
Shared global storage (/project) 2.6 TB 26 TB
Archival storage (HPSS) 5TB 200 TB
Number of cores* used for production runs 50-5000 200-100,000
Memory per core 1-2 GB/core 2-4 GB/core
Aggregate memory 10 TB 400 TB
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9 General Plasma Science Case Studies

9.1 Petascale Kinetic Simulations in Laboratory and Space
Plasmas

Principal Investigator: Homa Karimabadi (UCSD/SciberQuest, Inc.)

Worksheet Author: Homa Karimabadi (UCSD), Kai Germaschewski (UNH)

Other contributors: Y. Omelchenko (UCSD/SciberQuest, Inc.), William Daughton (LANL),
Vadim Roytershteyn (SciberQuest, Inc.), Mahidhar Tatineni (SDSC), Amitava Majumdar
(SDSC), Burlen Loring (LLBL).

NERSC Repositories: m148, m1303

9.1.1 Project Description

9.1.1.1 Overview and Context

Our research concerns the three fundamental areas in plasma physics with direct relevance
to astrophysical and laboratory plasmas: a) magnetic reconnection, b) turbulence, and c)
magnetic field generation due to the dynamo process. The proper description of these
processes often requires treatment of multi-scales ranging from micro (electron) to macro
(ion) to mesoscale and poses a major computational challenge. The reason is that the
plasma environment in many of the applications of interest such as planetary
magnetospheres or the solar wind is in the collisionless regime, where electron and
ion kinetic effects play a critical role. In addition there exists a large class of astrophysical
environments that are in the collisional regime but transition to the collisionless regime
when certain instabilities or plasma processes are triggered (e.g., solar flares).

To deal with this multi-scale challenge, most studies have either used fluid simulations,
where kinetic scales are neglected, or used small kinetic simulations restricted to two-
dimension. However, the advent of petascale supercomputers together with advances in
computational codes are enabling the first glimpse of the physics of these processes in 3D as
well as large 2D systems spanning a wide range of scales.

9.1.1.2 Scientific Objectives for 2017

The overarching scientific objectives are (a) to develop a more complete understanding of
the three fundamental plasma physics processes (reconnection, turbulence, dynamo), and
(b) use the gained knowledge to develop a more accurate forecasting of space weather. The
Earth's magnetic field shields us for the most part from the solar wind, consisting of a
magnetized plasma emanating from the Sun. Due to magnetic reconnection between the
magnetic field in the solar wind and the magnetosphere, however, a small fraction of the
solar wind penetrates the Earth's protective shield. During severe solar storms, billions of
tons of superhot plasma are unleashed and can wreak havoc on our technological systems.
It is estimated that a solar storm of the magnitude of the 1859 solar superstorm would
cause over $2 trillion in damage today. In the face of this continual threat, there is an urgent
need to develop accurate “space weather” forecasting capabilities. However, there are no
reliable forecasting models that can predict either the severity or the location of the impact
on Earth for a given solar storm. One key factor contributing to this poor performance is
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the lack of appropriate models of reconnection in the global space weather codes. The
development of such models is one of the primary objectives of our research.

9.1.2 Computational Strategies (now and in 2017)

9.1.2.1 Approach

The problems that we are working on require exascale-class computing and beyond. Thus
we are continually pushing the state-of-the-art in simulations to take full advantage of the
new computational capabilities as they become available. In order to deal with the extreme
multi-scale nature of these physical processes, we use a two-pronged approach. We use 3D
global hybrid (fluid electrons, kinetic ions) simulations to model the interaction of the solar
wind with the Earth’s magnetosphere. And we use large-scale fully kinetic simulations to
study the effects of electron kinetic effects on large scale dynamics. Our largest simulation
to date includes 10 trillion particles, more than 3 orders of magnitude larger than our
largest simulations in 2006.

9.1.2.2 Codes and Algorithms

VPIC: a highly optimized 3D fully kinetic particle-in-cell (PIC) code, which solves the
relativistic Vlasov-Maxwell equations

H3D: a petascale 3D global hybrid simulation code which treats the electrons as fluid but
retains the full ion kinetic effects

PSC: a development fully kinetic code for testing out various algorithms and architectures.
This code has been adapted to work on GPUs.

HYPERS: the first ever particle code with asynchronous updating of particles and fields
based on discrete event technology.

9.1.3 HPC Resources Used Today

9.1.3.1 Computational Hours

We have allocations on Kraken (7 million hours), Jaguar/Titan (20 million hours), Blue
Waters (30 million hours), and Pleiades (10 million hours). We used 4.5 million hours at
NERSC in 2012.

9.1.3.2 Dataandl/O

We try to manage with limited storage resources for most of our work, e.g., 2-3 TB of
scratch (temporary) space, 2-3 TB of NGF project space and ~10TB of HPSS. But some of
our cutting-edge results at NERSC (involving a 2 Trillion particle simulation in collaboration
with the ExaHDF5 team) requires ~300-400 TB of scratch space. We would like to archive a
reasonable fraction (~10s of TBs of data) from such runs.

We have been using Hopper, so we have not been sharing among NERSC systems.

The scratch and permanent space available to us are too small since even a single run can
generate over 300 TB of data. Since the total disk space for our account is fixed and we have
several people working under the same account, we have to ask for disk allocation for each
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individual researcher to be switched back and forth to the maximum allowed for the
account, depending who happens to be analyzing the data.

Our code uses a combination of custom binary output formats and HDF5 files. In
collaboration with the ExaHDF5 project, we are exploring the use of collective writes to
single, shared HDF5 files for storing our data; followed by indexing and querying. Both out
custom output function and HDF5 library make extensive use of MPI I/0. Analysis of trillion
particle datasets poses a number of challenges: we have utilized the FastQuery software for
indexing and querying the data in a reasonable amount of time.

We use MPI /0 (both via HDF5 and raw calls). Efficient /0 and MPI-I0 implementations
are critical for our simulations. Due to the large number of particles in our simulations, the
checkpointing files are very large (~60 TB per snapshot). Currently, it takes us ~1 hour to
write checkpointing files, which is too long. Disk space and 1/0 bandwidth constrains us to
write a snapshot once every ~2,000 timesteps; in an ideal world we would dump data more
frequently. We have had difficulty on Hopper at times and other machines using Lustre with
checkpointing (e.g., if there is a lot of contention on the disk). Some of our weak scaling tests
in collaboration with the ExaHDF5 team have revealed that our application can utilize all
available 1/0 bandwidth on hopper with a properly tuned stack. As NERSC upgrades its
compute horsepower in the future, we are assuming that I/0 resources will scale up
accordingly, or else it will become infeasible for us to perform checkpointing and execute
data dumps in a reasonable amount of time.

9.1.3.3 Parallelism

As mentioned, the problems that we are working on require exascale and beyond. The
number of particles that we can fit on the memory limits the size of simulations and the type
of scientific questions that we can address. As a result, most of our runs use the maximum
number of available cores on Blue Waters, Titan and Kraken. Our codes scale nearly perfect
with the number of cores. Hopper, however, does not cater to full machine jobs. The
limitations in disk storage, user queues, etc. seem more targeted towards smaller jobs
(below 50,000 cores). As a result, we have used Hopper mostly for smaller “test” runs and
analysis of data from petascale runs. We should note that the analysis of massive data sets
resulting from our runs require significant number of cores (1,000-2,000 cores) and can be
very CPU intensive.

9.1.4 HPC Requirements in 2017

9.1.4.1 Computational Hours Needed

Since we are limited by the maximum available memory on a given system, our job profiles
follow a simple formula. If we define the maximum number of cores as N, our typical job
would require 72 hours of compute time, and we need about 6-10 such runs a year for a
given research topic. As such, we plan to apply for allocations from other sources such as
BlueWaters, Kraken, Titan, and Pleiades. The primary factor driving the need for more
hours is pushing to larger simulations as the maximum number of available cores increases
in time.

9.1.4.2 Dataandl/O

Our disk/memory requirements scale up linearly with the total number of cores. Here we
provide our requirements today. The requirements for 2017 would be a factor of 32X
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larger. There are 8 arrays associated with each particle, and each takes 4 bytes. For our
largest run today, including 10 trillion particles on 300,000 cores, this translates to 0.32 PB
of data, not including the grid quantities. We typically save the particle data twice for a
given run and the grid data about 60 times. We are working on in situ visualization as a way
to save certain diagnostics at much higher time resolution. A single run of this size requires
nearly 1 PB of disk, and more than ~0.6 PB of memory. Ideally, we would like to checkpoint
data from memory to disk in ~30-45 minutes. Our disk/memory requirements would scale
up linearly with the total number of cores.

9.1.4.3 Scientific Achievements with 32X Current Resources

There are many problems that are out of our reach currently due to the limitations in the
total memory available on the largest computers available today. A factor of 32X increase in
computational power/memory would enable us to address important scientific questions
for the first time. For example, our recent study, using 2D simulations at realistic mass
ratio, has shown that the structure of the electron layers does show strong dependency on
the mass ratio. Similarly, some instabilities such as lower hybrid drift instability require
high mass ratios. We cannot currently conduct large-scale 3D fully kinetic simulations of
reconnection or turbulence at such mass ratios.

9.1.4.4 Parallelism

Our codes scale nearly perfectly with the number of cores. Thus we can use as many cores
as will be available in 2017. Since the number of GPUs is expected to be much less than the
number of cores, we expect to use GPUs for in situ visualization. Our smaller runs can run
concurrently.

9.1.4.5 Memory

As mentioned, the size of our runs is determined by how many particles we can fit in
memory. Each particle takes 32 bytes. The aggregate memory sets how many particles we
can fit (which is a measure of the size of the simulation), and the number of nodes sets the
limit on the number of time steps that we can run the code. For high mass ratio runs, this
becomes a critical factor. Currently the largest simulations we can make are about 10
trillion particles. A factor of 32X increase in memory and number of nodes would allow us
to make simulations with over 320 trillion particles. Such capability will allow us to study
many science questions that are currently out of our reach.

9.1.4.6 Many-Core and/or GPU Architectures

We have a development code (PSC) that we have used for experimenting with GPUs and
other technologies (e.g., Intel’s MIC architecture). We expect our codes to be able to make
use of hardware accelerators by 2017.

9.1.4.7 Software Applications and Tools

Fault tolerance hardware/software solutions would be quite valuable. 1/0 middleware
solutions that can automatically tune I/O parameters (e.g. optimal striping, MPI-IO
aggregators, etc.) would be quite desirable. We expect to continue our collaboration with
the ExaHDF5 team to explore HDF5 and FastQuery tools for storing and analyzing results
from our leading-edge simulations. Parallel interactive, batch, and in-situ visualization tools
such as ParaView are essential today and will be into the foreseeable future. For instance
ParaView in addition to traditional parallel interactive capability provides in-situ data
analysis and reduction capabilities that will be necessary in extremely large simulation
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runs. For post-run analysis and visualization it will be important to have a large ratio of ram
per core available. As visualization software adapts to many-core architectures this will be
important during since visualization codes have different scaling characteristics than do
simulations.

We use gridFTP and Globus online for data transfer to Hopper from other machines. Since
we are interested in bit-wise reproducibility in our simulations, we also need Intel compiler
which has a flag that helps in this regard.

9.1.4.8 HPC Services

Support in data analysis and visualization, Parallel 1/0, data sharing technologies, and
collaborative tools are critical.

9.1.4.9 Time to Solution and Throughput

Having a point of contact is critical for making full-scale runs.

9.1.4.10 Data Intensive Needs

Data sharing, archiving and retrieval, and visualization remain a challenge.

9.1.4.11 What Else?

Currently Hopper is not optimally set up for full-machine runs. This is true both in terms of
running the simulations at scale as well as storage, handling and analysis of the resulting
data. In our work with the ExaHDF5 team, we have had to request NERSC staff for
scheduling full-scale 120,000 core runs; which were rather hard to schedule and
troubleshoot. We were able to do these runs only once in a 2 or 4-week period, which
extended the science project over a period of 6-9 months. The ExaHDF5 team had to ask for
repeated extensions for a 500TB disk quota on NERSC scratch system. We believe that it is
challenging for routine NERSC users to push full-scale /0 intensive jobs through on hopper,
without hand holding from NERSC staff. We are, of course, very grateful for the support we
have received from NERSC staff in enabling our runs, but NERSC might need to consider a
different strategy for full-scale runs.
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9.1.4.12 Requirements Summary Worksheet

We have filled out this table assuming that we can make full-scale runs in repo m148 by

2017.

Used at NERSC Needed at NERSC
in 2012 in2017

Computational Hours (Hopper 4.5 Million 4.147 Billion?
core-hour equivalent)
Scratch storage 3TB 32 PB
Shared global storage (/project) 1TB 64 PB
Archival storage (HPSS) 73 TB 640 PB
Number of cores* used for < 50,000 except Maximum
production runs one run at 100,000 available
Aggregate memory 400-1000TB 32PB

132x300 000(cores)*72(hours)*6
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10 High Energy Density Laboratory Plasmas (HEDLP) &
Inertial Fusion Energy Sciences (IFES) Case Studies

10.1 Heavy lon Beams and Interactions with Plasmas and
Targets (HEDLP and IFES)

Principal Investigator: Alex Friedman, LLNL and LBNL
Case Authors: A. Friedman, R. H. Cohen, D. P. Grote, W. M. Sharp (LLNL and LBNL);

I. D. Kaganovich (PPPL); A. E. Koniges and W. Liu (LBNL/NERSC)
NERSC Repositories:
mp42 ("Simulation of intense beams for heavy-ion-fusion science,” Alex Friedman, PI)
m74 ("Nonlinear 6f Particle Simulation of Collective Effects for Heavy lon Fusion Drivers
and High Intensity Particle Accelerators,” Ronald Davidson, PPPL, PI)

10.1.1 Project Description

10.1.1.1 Overview and Context

DOE’s Fusion Energy Sciences program supports research on the science of intense heavy-
ion beams, on high-energy-density physics (HEDP) and especially Warm Dense Matter
(WDM) generated by ion beams, and on target physics for ion-beam-driven Inertial Fusion
Energy. The major participants in this endeavor are the partners in the Heavy lon Fusion
Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL,
and colleagues at universities. Ongoing experiments are focused on generating,
compressing, and focusing intense, space-charge-dominated ion beams and using them to
heat thin foils, the evolution and properties of which are then measured. To further this
work, a new accelerator facility, the Neutralized Drift Compression Experiment-II (NDCX-II),
has been built at LBNL, and is currently undergoing commissioning. Obtaining maximum
benefit from these experiments is a key near-term goal of the simulation program.

Simulation efforts in support of NDCX-II have concentrated on developing the physics and
engineering design of the accelerator, on identifying favorable operating points, and on
planning the Warm Dense Matter experiments to be done with its beam once full operations
ensue. To support machine operations and user experiments, the scope of our simulations
is evolving, with primary emphasis on detailed simulations of the actual beams as realized
and of their interactions with various targets. This includes extensive studies of the coupled
dynamics of the beam and a neutralizing plasma (which allows the beam to be compressed
into a compact volume in space and time). These studies employ the beam dynamics code
Warp and other kinetic models, run primarily at NERSC. As NDCX-II shifts emphasis toward
studies of the target response, the simulated ion beam data at the target plane will be
transferred into hydrodynamic simulations of targets using the Hydra code (run at LLNL)
and the ALE-AMR code (run at NERSC).

Intense ion beams are non-neutral plasmas and exhibit collective, nonlinear dynamics that
must be understood using the kinetic methods of plasma physics. This physics is rich and
subtle: a wide range in spatial and temporal scales is involved, and effects associated with
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instabilities and non-ideal processes must be understood. In addition, multispecies effects
must be modeled during the interaction of the beams with any stray electrons in the
accelerator and with the neutralizing plasma in the target chamber. The models must
account for the complex set of interactions among the various species, with the walls, and
with the applied and self-fields. Finally, oscillations of the beam core and “mismatches” of
the beam confinement can dilute the beam phase space and parametrically pump particles
into a low-density outlying “halo” population; this physics imposes stringent requirements
on numerical noise, requiring good particle statistics and mesh resolution. A blend of
numerical techniques, centered around the Particle-In-Cell method, are used in Warp to
address these needs, including: electrostatic and electromagnetic solvers, adaptive mesh
refinement, cut-cell boundaries, a large time step particle pusher, and implicit field solvers
and particle pushers. Ion beams have a long memory, and initialization of a simulation at
mid-system with an idealized particle distribution is often unsatisfactory; thus, a key goal is
to further develop and extensively exploit an integrated and detailed source-to-target beam
simulation capability.

In order to determine material properties (such as equation of state) in the warm dense
matter (WDM) regime, we must use simulation codes to help interpret experimental
diagnostics. The WDM regime is at the boundaries of solid-state physics and plasma physics,
between non-degenerate and degenerate material, between ionized and neutral states, and
between liquid and vapor. To understand and simulate the results of experiments that
volumetrically heat material, many processes must be combined into a single simulation.
These include phase changes, ionization processes, shock processes, spall processes, and
droplet formation, to name a few. One goal is to simulate as effectively as possible the
experiments that will be conducted on NDCX-1], as it compresses ion beams and uses them
to heat foil targets to temperatures of about 10,000 K. The matter is heated so rapidly that,
although its temperature is well above that of vaporization, inertia will keep it at solid
density (at least for an inertial confinement time of order one ns). Experimental diagnostics
will record the response of the material (e.g. temperature, density, velocity) to infer the
equation of state and other properties. Synthetic diagnostics in the hydrodynamic
simulations will be essential for inter-comparison.

10.1.1.2 Scientific Objectives for 2017

Between now and 2017, the project will concentrate on using advanced simulations to
provide critical support to the NDCX-II facility, including both its operations and the
experiments that it will drive. There is considerable scope for optimization of the beam
dynamics in the accelerator, in the neutralized drift line, and in the final transverse focusing
system. Already, “ensemble” runs at NERSC have enabled beam optimization, but these
have not included first-principles plasma models; by 2017 this should be routine.

NDCX-II was designed to be extensible and reconfigurable; on that timescale, the machine
should be extended by the addition of ten additional acceleration cells (which are already
available but require modification and installation), significantly increasing the beam
kinetic energy and decreasing its pulse duration. This configuration, too, will need extensive
simulation, including studies of the neutralization process and of non-ideal effects. Options
for multi-pulse operation also need to be thoroughly explored, for “pump-probe”
experiments.

Hydrodynamic codes such as Hydra and ALE-AMR can be used to model ion deposition and
the subsequent response of the target to volumetric heating. In support of HEDLP
experiments driven by NDCX-II, a core research effort will conduct hydrodynamic
simulations with realistic incoming beams (obtained from both simulations and detailed
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diagnostics, requiring reconciliation). NDCX-II is a user facility; thus, while some
experiments will be carried out by the core group and its close collaborators, more will be
fielded by visiting users. Almost all experiments will need at least some local simulation
support, even when outside users employ their own codes as their principal simulation
tools. LBNL, LLNL and SLAC have recently formed a Bay Area High Energy Density Sciences
(BA-HEDS) cooperative to facilitate coordinated experiments, some driven by NDCX-II's ion
beam, and others by high-power lasers and X-ray FEL’s at the other labs. These
developments will enlarge the scope of the simulation program.

The project will also carry out research on elements of target physics for heavy-ion beam-
driven IFE, including beam-target energy coupling, new ideas for improved targets, and
assessments of target behavior. While much of the actual target design work will be carried
out on computer facilities other than NERSC (especially systems at LLNL), it will be
important to employ NERSC for other aspects of this program element.

10.1.2 Computational Strategies

10.1.2.1 Approach

For each of the project goals described above, the strategies to be employed are:

(1) Optimize the properties of the NDCX-II beam for each class of target experiments;
achieve quantitative agreement with measurements; develop improved machine
configurations and operating points. To accomplish these goals, we plan to use Warp to
simulate NDCX-II from source to target, in full kinetic detail, including first-principles
modeling of beam neutralization by plasma. Additional tools, including kinetic codes such
as LSP and BEST, will be employed as appropriate. The output from an ensemble of Warp
runs (representing shot-to-shot variations) will be used as input to target simulations using
ALE-AMR on NERSC, and other codes on NERSC and elsewhere.

(2) Develop enhanced configurations of NDCX-II, and carry out studies to enable a next-step
ion beam facility (IB-HEDPF). To accomplish these goals, much of the work will involve
iterative optimizations employing Warp. These will, at first, assume ideal beam
neutralization downstream of the accelerator, but will then advance to first-principles
plasma models.

(3) Carry out detailed target simulations in the Warm Dense Matter regime using the ALE-
AMR code, including surface tension effects, liquid-vapor coexistence, and accurate models
of both the driving beam and the target geometry. For this we will need to make multiple
runs (to capture shot-to-shot variations), and to both develop and employ synthetic
diagnostics (to enable comparison with experiments). The new science that will be
revealed is the physics of the transition from the liquid to vapor state of a volumetrically
superheated material, wherein droplets are formed, and wherein phase transitions, surface
tension and hydrodynamics all play significant roles in the dynamics. These simulations
will enable calculations of equation of state and other material properties, and will also be
of interest for their illumination of the science of droplet formation.

10.1.2.2 Codes and Algorithms

Our main ion-beam code, Warp, was originally developed to simulate space-charge-
dominated beam dynamics in induction accelerators for heavy-ion fusion (HIF). In recent
years, the physics models in the code have been generalized, so that Warp can model beam
injection, complicated boundary conditions, denser plasmas, a wide variety of accelerator
“lattice” components, and the non-ideal physics of beams interacting with walls and
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plasmas. The code now has an international user base and is being applied to projects both
within and far removed from the HIF community.

Warp uses a flexible multi-species particle-in-cell model to describe beam dynamics and the
electrostatic or electromagnetic fields in particle accelerators. While the core routines of
Warp solve finite-difference representations of the field equations and relativistic or non-
relativistic motion equations, the code also uses a large collection of subordinate models to
describe lattice elements and such physical processes as beam injection, desorption, and
ionization. The representation of particles by a much smaller number of "macroparticles”
can be derived from Boltzmann's equation, describing the evolution of a population of
particles interacting by collisions and the collective fields.

Warp is a 3-D time-dependent multiple-species particle-in-cell (PIC) code, with the addition
of a “warped-coordinate” particle advance to treat particles in a curved beam pipe. Self-
fields are obtained via Poisson equations for scalar and vector potentials, or via Maxwell
equations. Time-dependent applied external fields can be specified through the Python user
interface. Warp also has 2-D models, using Cartesian or cylindrical geometry, as well as low-
order moment equations. Models are available for background gas, wall effects, stray
electrons, space-charge-limited and source-limited emission, and atomic processes such as
charge exchange. Elaborate initialization and run-time options allow realistic modeling of
complex systems. A beam may be initialized with one of many analytic distributions or with
a distribution synthesized from experimental data, or ions can be emitted from a flat or
curved diode surface. Lattice-element fields may be represented by several options, from
simple hard-edge analytic forms to first-principles 3-D calculations. Poisson's equation can
be solved using several methods, including FFT, Multigrid, and AMR/Multigrid. The
electromagnetic (EM) solver can also use MR. With multigrid, the Shortley-Weller method
for the subgrid-resolution description of conductors allows the use of complicated
boundary conditions.

Parallelization of Warp is done using domain decomposition with MPIL. Warp uses
independent spatial decompositions for particles and field quantities, allowing the particle
and field advances to be load-balanced independently. In transverse-slice 2-D runs, the field
solution is repeated on each node, but solved in parallel by processors within a node.

The size and duration of Warp jobs varies tremendously, depending on such factors as
problem dimensionality, grid size, duration, particle count, and the physical processes being
modeled. With our generalized decomposition, we do not foresee any limitation resulting
from the code's architecture; but Poisson solution scaling is poor at large problem sizes. For
a 3-D test problem using 512 x 512 x 512 cells, we have demonstrated excellent parallel
scaling of the electromagnetic PIC capability, up to about 50,000 processors.

Our Warp projects tend not to be data intensive; they use modest amounts of memory but
require many time steps. We typically run (in 2-D or 3-D) with of order 100 grid cells along
each transverse axis and 1000 grid cells along the longitudinal axis. Large 3-D simulations
typically have a mesh of order several 100s by 100s by 1,000s of grid cells. The data per cell
is either several scalars or several 3-D vectors, depending on the field model. Typically of
order 106 particles are used in runs without plasma electrons, with 13 or more variables
per particle, and including dynamics electrons can require up to 30 x 10¢ particles. We
currently use 120 to 1920 processors for typical Hopper runs and up to 6,144 for a few key
runs with fine grids and an augmented number of particles.

ALE-AMR is a relatively new code that combines Arbitrary Lagrangian Eulerian (ALE)
hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to micro-
structural regimes. The code is unique in its ability to model both hot radiating plasmas and
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cold fragmenting solids. The hydrodynamics are done in a Lagrangian model (wherein
material moves with the mesh), but the resulting mesh can be modified to prevent tangling
or severe mesh distortions. If the entire mesh is restored to the mesh of the previous time-
step after every step, the code is said to be run in Eulerian mode (fixed mesh). In general,
this is not done, and we only modify a portion of the mesh during a fraction of the time
steps. This ability to do selective remapping is the reason to use the word “arbitrary.” We
also employ the Hydra code, another 3-D radiation hydrodynamics ALE code; that code is
run on LLNL computers, which are accessed from LBNL and LLNL by group members. A
common feature of ALE codes is the ability to have multiple materials in a given
computational zone. Such mixed zones are generally created during the advection phase of
the advance, when material from the old mesh is transferred to the new mesh. The ALE-
AMR code uses a volume-of-fluids approach to calculate the interface between different
materials in a zone. Information from neighboring zones can be used to explicitly construct
the interfaces if needed.

One key added capability of ALE-AMR, relative to other ALE codes such as Hydra, is the
ability to dynamically add mesh elements (refinement) or remove mesh elements
(coarsening) during the run. This capability is called Adaptive Mesh Refinement (AMR);
however, the ability to remove zones by coarsening the mesh when there are no longer any
steep gradients is also important. ALE-AMR refines by a factor of three along each
dimension, so in 3D one zone becomes 27 zones. During refinement all material interfaces
must be explicitly defined to place the correct amount of each material in the new zones.
Numerical techniques were developed for many of the physics packages to work efficiency
on a dynamically moving and adapting mesh. ALE-AMR also continues several features that
allow for very long-time simulations, a unique fragmentation capability, and the ability to
“shape-in” unusual objects.

Additional physics, beyond basic hydrodynamics, is implemented in ALE-AMR using
operator splitting. For example, a flexible strength/failure framework allows “pluggable”
material models to update the anisotropic stress tensor that is used in the hydro advance
during the following step. The code also includes an ion-deposition model for bulk heating
of the material, and both heat conduction and radiation transport using the diffusion
approximation. The hydro uses explicit time stepping but some packages, e.g., radiation
transport, can do an implicit solve at each explicit time step.

The parallelism in ALE-AMR is currently MPI-only with the ability to do dynamic load
balancing based on the computational requirements. The domain decomposition is zonal.
During the ion deposition phase of the simulation, the regions with ion beams will have
smaller number of zones in the domain assigned to a given processor because of the
additional computation work associated with beam energy deposition. There are various
places in the code were additional levels of parallelism are possible and we are investigating
hybrid models, e.g., OpenMP + MPL

10.1.3 HPC Resources Used Today

10.1.3.1 Computational Hours

NERSC is (far and away) our principal computational resource. Computer resources at LLNL
are used for HYDRA. To date these have been modest, but it is anticipated that this usage
will expand as NDCX-II goes into production mode. Computational clusters at LBNL and
PPPL also are employed for code development and testing, and for some of the same
purposes as NERSC when the computational demands are much smaller.
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10.1.3.2 Parallelism

The number of compute cores is highly problem dependent - Warp in particular is used for
many different kids of runs. While we have used tens of thousands of cores, in a typical
large run we use a few hundred to a few thousand. The largest number we would consider
using in a production run, today, is 100,000. Fewer are typically used because the problems
being solved do not require more. Also we need to conserve our allocation and minimize
human effort, so for example, “ensemble” runs (many independent simulations in a single
batch submission) use relatively small numbers of particles, at the price of jitter in the
results. We sometimes have multiple jobs (ensemble or otherwise) running concurrently
(up to about five). With regard to strong vs. weak scaling, this depends upon the field solver
being used, e.g., the Poisson solver does not scale well to large numbers of cores, while the
electromagnetic solver does. We want strong scaling for increased resolution, rather than
for an enlarged problem domain. We are currently investigating the use of communication-
reduced solvers in the context of Warp.

10.1.3.3 Dataand|/O
Scratch (temporary) space: few 100 GB

Permanent (can be shared, NERSC Global Filesystem /project): 100 GB (including Home)
HPSS permanent archival storage: 1 TB

As noted above, our project does not tend to be storage intensive. During computations,
data is primarily written to scratch, which we also use for short-term storage (few weeks)
as runs are analyzed. For speed in the loading of Python (a topic of current interest), we
keep Python installations in scratch (with different ones for dynamic and static loading, for
example). We've been keeping our code repositories (for Warp and supporting tools) in
/project. In Home, we keep smaller output data files for long-term reference and post-
processing. HPSS is used for storing full output datasets, restart dumps, and large graphics
files and data dumps.

I/0 is of two general types: gathering data into the first processor and then writing it to
disk; and direct writes by each processor into its own file.

With regard to constraints due to 1/0, we have found that loading Python onto a large
number of processors scales poorly. NERSC staff has helped us improve performance here,
but it remains an area of concern for future machines in the 2017 time frame.

A typical run writes about 50GBs over a 24-hour period, so about 0.5MB/sec.

10.1.4 HPC Requirements in 2017

10.1.4.1 Computational Hours Needed

We anticipate a need for (of order) 40 M CRU’s / year in the 2017 time frame, primarily
driven by the need for computationally larger runs involving detailed plasma descriptions,
by the need to run ensembles for optimization and sensitivity analysis, and by the desire to
be able to use improved methods for optimization (large particle counts are needed in order
to have a smooth optimization cost function). We also anticipate much greater use of the
ALE-AMR code to support a wide variety of experiments on NDCX-IL

Our need for NERSC time is rapidly growing. In past years our requirements were modest.
We concentrated on NDCX-II machine design using simplified tools such as a 1-D beam
physics code (ASP), and on Warm Dense Matter simulations using both Hydra (at LLNL) and
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a specialized 1-D code (Dish). In FY11, we began applying NERSC resources to iterative
design calculations for the NDCX-II facility, and our usage rate increased roughly five-fold.
Now, three developments compel us to carry out far more demanding simulations at
NERSC: (1) the need to capture beam-in-plasma effects (requiring far more simulation
particles, and a smaller time-step size and grid spacing); (2) Our interest in self-focusing of
ion beams in plasma will require use of our explicit electromagnetic solver, which requires a
substantially smaller time step due to the Courant condition; and (3) the introduction of
target-response studies (requiring considerable resources for realistic problems).

We begin with a discussion of recent Warp usage, which has emphasized iterative design
and assessment (on NERSC and LBNL clusters) using ensembles of runs with random
errors. For this task 256 cases (instances) are typically run in a single batch job. The
number of cores has ranged between 768 and 6144, depending on the problem, with less
than 1 GB/core, using 60 GB total memory and 4 hours of wall-clock time. Much data
processing is in-line, and /0 is only about 100 GB / batch job. This approach leads to very
light traffic in and out of NERSC, with results stored at the Center.

Another class of Warp runs models ion beams in plasmas. Current problems of this type are
axisymmetric runs using 100’s x 1000’s of cells and tens of millions of particles (with 13 or
more variables per particle). These runs typically require 15-30 wall-clock hours on 120
processors of Hopper. With the Maxwell (EM) field model, tests show good scaling at fixed
problem size (5123 cells) to 50,000 processors (see Figure below).

We project the need for four classes of Warp runs: (1) Ensemble runs to optimize the output
beam from the NDCX-II accelerator, for each class of target being shot. So far, we haven’t
used gradient methods for optimization because of particle noise; we hope to overcome this
with larger runs. (2) Simulations of plasma injection into the drift-compression line and
final-focus solenoid, which can be quite costly because the plasma flow is relatively slow
(~10 ms) and it is necessary to operate on an electron timescale. Both EM and explicit
electrostatic (ES) models are used; run times are comparable because the time-step size in
the ES model, which is set by the need to resolve plasma oscillations, is often near the
Courant limit for light waves on the mesh. Also, the EM algorithm scales more readily to
very large numbers of processors. (3) Integrated simulations of one or more beams
compressing in a neutralizing plasma (with properties obtained from plasma-injection runs
as described above, or via measurements). Such runs require less computer time than
plasma injection runs, because the beam is in the system for < 1 ms; however, ensembles
are typically needed. (4) Detailed simulations resolving short time- and space-scales for,
e.g., two-stream instability. Since the highest growth rates for a cold beam and plasma are
for short wavelengths, while we seek to capture the overall system scale, such runs can be
costly, even in axisymmetric (r,z) geometry. Projected 3-D runs will, of course, require
substantially greater resources.

10.1.4.2 Parallelism

A typical run is expected to use tens of thousands of core, with large runs using hundreds of
thousands. Ensemble runs (with many cases run concurrently in a singe submission) can, in
principal, make good use of any number that are available to us.

We will definitely need multiple jobs running concurrently; up to 10,000 in an ensemble

would be useful, but not strictly necessary. In non-ensemble cases, modest numbers of
large runs are needed; that is, a similar total core count, but fewer simultaneous jobs.
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10.1.4.3 Dataand /O
Scratch (temporary) space: few TB

Permanent (can be shared, NERSC Global Filesystem /project): 1 TB (including Home)
HPSS permanent archival storage: 40 TB

[/0 Rates: we have only been bandwidth limited in the sense that loading the code onto
many processors has been an issue, requiring special approaches (e.g., a static build of
Python) that we would refer to avoid if possible.

All of these increased requirements derive from the greater problem sizes anticipated, and
from a somewhat greater number if runs (factor of several)

10.1.4.4 Scientific Achievements with 32X Current Resources

Our projected increase in needs, as described above, is by somewhat more than a factor of
32. Thus the achievements described above are relevant here.

10.1.4.5 Memory

Per-core, we anticipate needs comparable to those of current-day runs, that is, of order 1 GB
per core (number per node will depend upon the number of cores per node). Aggregate
memory will increase commensurately with the number of cores.

10.1.4.6 Many-Core and/or GPU Architectures

We do not currently employ GPU’s, but have been exploring the possibility. While the
central loop of Warp could be readily adapted, end-case challenges (diagnostics, boundary
conditions, etc.) make a full port to a GPU architecture challenging. We will rely on NERSC
assistance to help us assess what is possible here, and to implement the best strategy.

10.1.4.7 Software Applications and Tools

We anticipate need for MPI, and the capability for MPI at the Python level. We need
compilers for Fortran, C, C++, and perhaps OpenACC, OpenCL or something similar for
accelerator-enabled code. Much of our I/0 in Warp (e.g., dump files) is through Python,
posing challenges for performance; some code restructuring may be needed to take
advantage of MP11/0.

10.1.4.8 HPC Services

We anticipate a need for consulting as the available NERSC resources evolve. Much of our
visualization is in-line; CGM files are likely to remain important to our workflow. We hope
to be able to make increased use of Vislt with Warp. ALE-AMR currently uses Vislt as its
primary visualization tool. Our needs with regard to other services are not unusual.

10.1.4.9 Time to Solution and Throughput

We do not anticipate any unusual needs beyond the existing pattern of queue structures,
limits, etc.

10.1.4.10 Data Intensive Needs

Larger Warp runs may ultimately drive some use of data-intensive computing techniques.
We do not anticipate any special needs associated with data-intensive computing.
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10.1.4.11 What Else?

Interactivity (on the main NERSC computer, for parallel computations) is essential for
debugging and diagnostics development, because Warp produces many of its diagnostics
on-line (thereby avoiding massive data transfers, offloading mostly processed data).

The Warp code is deeply tied to Python. Dynamic libraries are part of the core of Python and
continued support for them would be useful. Dynamic libraries are not actually essential,
since Warp and Python can be built statically, however, static loading requires modification
of the Python source, introduces a more complicated and fragile build process, and makes
installing new and upgrading existing packages more difficult since they must be manually
incorporated into the build system (when they could otherwise be installed independently).
Solving the outstanding issue of scalable and efficient loading of dynamic libraries would
remove the need for the static build and would greatly ease code maintenance and preserve
flexibility.

We will continue to have a need for scatter-add deposition of source terms from the

particles onto the mesh. Integrity of these terms must be preserved as we optimize
performance using (probably) MPI plus on-node parallelism, and AMR.
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10.1.4.12 Requirements Summary

Used at NERSC Needed at NERSC
in2012 in2017
Computational Hours (Hopper core-hour
equivalent) 0.4 40
Scratch storage 0.3TB 3TB

Maximum number of cores* that can be used for
production runs

(not critical)

(not critical)

Shared global storage (/project)

0.1TB

1TB

Checkpoint bandwidth

(not critical)

(not critical)

Archival storage (HPSS)

0.75TB

40 TB

Maximum [/0 bandwidth (excluding checkpoint
data)

(not critical)

(not critical)

Number of conventional cores used for 3000 100,000
production runs

Memory per node 1GB 1GB
Aggregate memory 3TB 100 TB
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10.2 Laser Plasma Interactions

Worksheet Authors: Chuang Ren (University of Rochester); W. B. Mori, F. S. Tsung (UCLA)
NERSC Repositories:

“Investigations of advanced ignition physics and extreme states of matter,” m412, PI: W. B.
Mori (6,641,650 used in 2012)

“Study of laser-plasma interactions relevant to direct-drive ICF implosions,” m792, PI: C.
Ren (7,767,525)

“2D and 3D simulations of SRS under IFE Relevant Conditions,” m1157, PI: T.S. Tsung
(5,422,459)

19,831,634 total hours

10.2.1 Project Description

10.2.1.1 Overview and Context

The need to develop a cheap, safe, and plentiful source of energy is obvious. One possibility
is controlled fusion and one candidate is inertial fusion energy (IFE). In laser driven IFE,
laser energy has to be effectively coupled to a target to drive a symmetric implosion with
high-speed. During the implosion, the fuel shell has to maintain a low-entropy state and
hydrodynamic instabilities have to be controlled to prevent shell breakup. Laser plasma
instabilities (LPI) are central to many of these interconnected challenges. In both indirect-
and direct-drive schemes, LPI are unavoidable. They can reduce the amount of energy
coupled to a target through backscattering. They can affect implosion symmetry through
crossbeam energy transfer. They can raise the shell entropy through preheating from
suprathermal electrons. Understanding and predicting LPI are vital for the success of ICF.
More broadly, lasers are also a primary driver to create high-energy-density (HED) plasmas
in laboratory. Understanding how laser energy couples to targets is a critical part in any
laser-driven HED experiment.

The overall goal of our research is to develop a first principle-based understanding of LPI
and other HED physics that can be included in design codes in a computation-efficient way.
Particle-in-Cell (PIC) simulations play a unique role in developing such an understanding
for this highly nonlinear and kinetic physics. Focused and in-depth PIC simulations can
identify the essential physics of a particular physical process. They can also provide
benchmark to ensure the physics to be properly included in a particular aspect of design
codes. Due to the intense computation required, PIC simulations are at the frontier of high-
performance computing, requiring state-of-the-art computation facilities and development
of new algorithms for new computer architectures.

In this case study, we will use stimulated Raman scattering (SRS), two-plasmon-decay
(TPD), and hot electron-assisted shock generation as examples to illustrate the computation
needs in IFE/HED in 2017. They are chosen because they are fundamental issues in both
indirect and direct-drive IFE, including an advance ignition scheme: shock ignition. They are
chosen also because they require unprecedented computation resources to make progress
in these intrinsically three-dimensional and/or multi-scale physics.
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10.2.1.2 Scientific Objectives for 2017
1. Understand SRS and TPD in a laser beam of many speckles

An actual laser beam in ICF consists of many speckles, formed by breaking a coherent
wavefront using distributive phase plates. With polarization smoothing, laser polarization
can also change from speckle to speckle and even within a single speckle. SRS and TPD
evolution and hot electron generation in such a beam are very different from those in a
plane wave and intrinsically 3D. The speckles are coupled via the plasma waves and hot
electrons generated. The state-of-the-art PIC simulations comprised 2 speckles in 3D, much
less than the tens of thousands of speckles in an actual beam. A goal in 2017 is to study SRS
and TPD with 3D PIC simulations comprising of ~100 speckles. These simulations are
expected to close the gap between current 2D plane wave simulations and the experiments
on observables such as hot electron generation.

2. Understand hot electron-assisted shock generation in shock ignition

Shock ignition is a new ignition scheme where a target is first compressed by an assembly
pulse and then ignited by a high intensity spike. The assembly pulse is to compress the fuel
to high density without creating a hot spot. Ignition is achieved by a high intensity spike
launched at the end of the assembly pulse to drive a Gigabar ignitor shock that would collide
with the return shock and create ignition conditions near the inner surface of the assembled
fuel. Without needing to create the hot spot, the implosion in shock ignition can be on a
lower velocity curve, thus reducing the driver energy and hydrodynamic instabilities and
leading to a more robust and higher-gain ignition. At the high spike intensity, SRS and TPD
are expected to generate significant amount of hot electrons. Whether these electrons can
be stopped at the surface of the compressed shell to generate a strong shock is a critical
issue is shock ignition research. To study electrons transport in high-density plasmas on the
hydrodynamic time scale poses a grand challenge for PIC simulations. Hybrid PIC codes
where a reduced set of Maxwell’s equations using an Ohm’s law is solved in the high density
region can be an efficient tool for this problem, provided they are properly benchmarked
against full PIC simulations. These simulations will help either validate or disqualify the
shock ignition concept.

10.2.2 Computational Strategies (now and in 2017)

10.2.2.1 Approach

Our main challenge is the intense computation required and the limited resource available.
A 3D simulation of 100 interacting laser speckles requires ~180 million processor hours,
which is 12.5 times the total hours we used in 2012. Our codes have already achieved
excellent scalability, up to 1.5 million processors (on the LLNL Sequoia system).
Constrained by the available resources, we scaled down system sizes, dimensions, and
number of particles used, which can all affect simulation fidelity. We continue to develop
new algorithms to take advantage of new platforms such as GPU and also new reduced-
description models.
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10.2.2.2 Codes and Algorithms

Particle-in-Cell (PIC) codes model plasmas as particles that interact self-consistently via the
electromagnetic fields they themselves produce. These models work at the most
fundamental, microscopic level. As a result, they are the most compute intensive model in
plasma physics. PIC codes generally have three important procedures in the main iteration
loop. The first is the deposit, where some particle quantity, such as a charge, is accumulated
on a grid via interpolation to produce a source density. Various other quantities can also be
deposited, such as current densities, depending on the model. The second important
procedure is the field solver, which solves Maxwell’s equation or a subset to obtain the
electric and/or magnetic fields from the source densities. Finally, once the fields are
obtained, the particle forces are found by interpolation from the grid, and the particle co-
ordinates are updated, using Newton’s second law and the Lorentz force. The particle
processing parts dominate over the field solving parts in a typical PIC application. OSIRIS
uses finite difference for field solve and particle pusher. Parallelization is done using
domain decomposition with MPI across nodes and it has an option for using shared memory
parallelization using OpenMP within a node.

10.2.3 HPC Resources Used Today

10.2.3.1 Computational Hours

We used about 19.8 million processor hours in 2012.

10.2.3.2 Dataand /O

We mainly use scratch area (~12 TB) to store restart files and HPSS for archival data. We
did not use /project space in 2012 although in the past we used it. For large simulations,
OSIRIS has parallel I/0 based on hdf5. It also has the option of run-time or post-process file
merging. So far, in production runs with up to 20k cores, we have not had problems with
[/0. We estimate having about 70 TB of HPSS storage.

10.2.3.3 Parallelism

We typically used 2,000 - 20,000 cores. Our codes currently scale up to 1.5 million cores.
The number of cores we actually used was limited mainly by availability, i.e. the queue
turnaround time. We would like to have more jobs running concurrently but each user
typically have one job running per the current NERSC policy. For us weak scaling is more
important than strong scaling.

10.2.4 HPC Requirements in 2017

10.2.4.1 Computational Hours Needed

We anticipate requiring ~550 M hours. The need is driven by having to include a fair
amount of speckles in 3D to simulate laser absorption and hot electron generation in
realistic beam settings. This is essential in establishing a predictive capability in LPI since
the 2D plane wave simulations so far overestimated, for example, TPD hot electron
generation by a factor of 5-50. Each 3D simulation with 100 speckles requires 140 M hours.
We anticipate to do 1-3 such high fidelity runs together with other smaller scale exploratory
runs in 2017.
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10.2.4.2 Dataand /O

We expect a 20-30x increase of storage needs, in proportion to the processor hours
increase. We can accept the current [/0 rates, although an increase in the 1/0 rates would
devote more computer time to computation. An estimate of 50 GB/sec is needed for
completing checkpoint file writing within 30 minutes.

10.2.4.3 Scientific Achievements with 32X Current Resources

In 2017, with 32x current resources, our PIC simulations are expected to simulate LPI in ICF
under realistic laser and plasma conditions and can compare with experimental results. We
have every reason to believe our codes will be ready to take advantage of the increase
resources in 2017.

10.2.4.4 Parallelism

Our runs in 2012 routinely used 20k cores and this usage was limited only by the cores
available to us. We can easily use 10x more cores. We expect to run one, at most two, such
jobs at a time.

10.2.4.5 Memory

Ideally, we typically would like 1 GB/core. This number is expected to stay constant in 2017
since our job size increases typically through weak scaling.

10.2.4.6 Many-Core and/or GPU Architectures

We have already developed a parallel GPU version of OSIRIS that has been tested on the
UCLA Dawson cluster and shown to scale well to ~300 GPU’s. Speed-ups of ~40 from the
SSE version of OSIRIS and ~80 from the non-SSE version on the fastest i7 processor have
already been achieved for linear current deposition. Currently we continue to develop GPU
algorithms for high-order current deposition and collisions. Larger speed-ups are expected
for higher order particle interpolation. We believe we will be ready to take advantage of a
large GPU-assisted cluster in 2017.

10.2.4.7 Requirements Summary

Used at NERSC Needed at NERSC

in2012 in2017
Computational Hours (Hopper core-hour
equivalent) 19.8 M 550 M
Scratch storage and bandwidth 12 TB 40-300 TB

50 GB/sec

Shared global storage (/project) 3TB 20TB
Archival storage (HPSS) 79 TB 1,400 TB
Number of cores* used for production runs 20,000 ~200,000
Memory per node 1GB 1GB
Aggregate memory 20TB 200 TB
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11 Materials and Plasma-Surface Interactions

11.1 Plasma Materials Interactions

Principal Investigator: Brian D. Wirth, University of Tennessee

NERSC Repositories:

m1200: Computational modeling of plasma - surface interactions in tungsten exposed to
mixed He-H plasmas

m916: Ab-initio modeling of the energetics and structure of nanoscale Y-Ti-O cluster
precipitates in ferritic alloys

m1709: PSI SciDAC: Bridging from the Surface to the Micron Frontier

11.1.1 Project Description

11.1.1.1 Overview and Context

Plasma-material interactions pose an immense scientific challenge and are one of the most
critical issues in magnetic confinement fusion research. The demands on plasma-facing
materials in a steady-state fusion device include extreme particle and thermal fluxes. These
energetic fluxes have pronounced impacts on the topology and chemistry of the near-
surface region of the material, which influence the plasma sheath potentials and subsequent
incident particle flux spectra. These evolutions are also inherently multiscale in time and
are likely controlled by diffusional phenomena that are influenced by the high heat loads
and subsequent thermal (and stress) gradients in the material, as well as by defect
micro/nanostructures induced by both the ion and neutron particle irradiation. This
complexity is further underscored by the fact that the plasma and materials surface are
strongly coupled to each other, mediated by an electrostatic and magnetic sheath, despite
the vastly different physical scales for surface (~ nm) versus plasma (~ mm) processes.

For example, the high probability (> 90%) of prompt local ionization and re-deposition for
sputtered material atoms means that surface material in contact with the plasma is itself a
plasma-deposited surface, not the original ordered material and an unintended alloy at that.
Likewise, the recycling of hydrogenic plasma fuel is self-regulated through recycling
processes involving the near-surface fuel transport in the material and the ionization sink
action of the plasma. Another very serious aspect of the plasma-wall radiation damage in
fusion reactors is tritium retention. If any carbon is present in the reactor, it will erode in
the form of small CH radicals and molecules, which in turn tend to stick in other parts of the
reactor, forming both soft and hard carbon films. These can have very large T contents in a
form, which is hard to remove, and this has in fact been the major reason why the revised
ITER design projects that carbon-based materials will not be used in the first wall during
D+T operation. Furthermore, the intense radiation environment (ions, neutrons, photons)
experienced by materials exposed to the fusion plasma environment ensures that the
material properties are modified and dynamically coupled to the plasma materials surface
interaction processes. Some of the most critical plasma materials interaction issues include:
i) the net erosion of plasma-facing surfaces; ii) net tritium fuel retention in surfaces; iii) H
isotope and material mixing in the wall; and iv) the minimization of core plasma impurities.
Furthermore, the plasma-material surface boundary plays a central role in determining the
fusion performance of the core plasma. However, while it is widely accepted that the
plasma-surface interface sets a critical boundary condition for the fusion plasma, predictive
capabilities for PSI remain highly inadequate.
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Gaining understanding and predictive capabilities in this critical area will require
addressing simultaneously complex and diverse physics occurring over a wide range of
lengths (angstroms to meters) and times (femtoseconds to days and beyond to operating
lifetimes). The lower time and length scales correspond to individual ion implantation and
sputtering, which occurs at or near the material surface, in addition to a range of ionization
and recombination processes of the sputtered neutrals and ions in the near surface sheath.
At intermediate length and time scales, a wealth of physical processes are initiated,
including diffusion of the now implanted ionic/neutral species, the possibility of chemical
sputtering processes at the surface, the formation of gas bubbles, surface diffusion driving
surface topology changes and phonon scattering by radiation defects that reduces the
thermal conductivity of the material. At longer length and time scales, additional
phenomena such as long-range material transport in the plasma, re-deposition of initially
sputtered surface atoms, amorphous film growth and hydrogenic species diffusion into the
bulk material and permeation become important. This broad palette of physical phenomena
will require development not only of detailed physics models and computational strategies
at each of these scales, but algorithms and methods to strongly couple them in a way that
can be robustly validated. Furthermore, efficient and effective modeling techniques and
frameworks need to be developed to couple the materials surface evolution and eroded
material source terms into models of the sheath, scrape of layer and edge plasma physics.
While present research is confined to each of these scales, or pioneering ways to couple two
or more of them, the current approaches already push the state-of-the-art in technique and
available computational power. Therefore, simulations spanning multiple scales needed for
ITER, DEMO, etc., will require extreme-scale computing platforms and integrated physics
and computer science advances.

11.1.1.2 Scientific Objectives for 2017

Successful development of PFC simulation tools will provide the ability to evaluate steady-
state performance of tungsten-based PFC and divertor components in burning plasma
environments. This will enable the identification of critical experiments to confirm whether
practical PFC solutions exist for magnetic fusion energy beyond ITER.

The critical fusion materials science questions that will be able to be resolved through
access to increasingly capable high-performance computing resources and PFC simulation
tools are:

¢ What physical parameters control the time dependent evolution of the near-
surface morphology and composition in the re-deposition layer (e.g., is this spatial re-
deposition zone ever in a steady, or quasi-equilibrium, state?)—key phenomena required
within predictive modeling include recycling, surface morphology, gas bubble, precipitate
and second phase domains, and gas fueling/recycling;

¢ What are the effects of high-energy neutron damage on mediating, or exacerbating,
near- surface defect evolution and tritium species permeation and retention;

* The impact of dilute impurities on surface morphology evolution and plasma
contamination (e.g., Be in plasma, mixed material transport in tokamaks on

erosion/impurity generation); and

* How does the evolving bulk microstructure impact the thermal properties, and
thereby feedback into PFC evolution by modifying the resulting temperature profiles.
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11.1.2 Computational Strategies (now and in 2017)

11.1.2.1 Approach

Addressing the critical fusion materials science questions associated with plasma surface
interactions requires a number of research activities performed within a computational
multiscale materials modeling paradigm. Our project is based on simultaneously attacking
this problem from both a “bottom-up” atomistic-based approach, as well as from a “top-
down” continuum perspective that focuses on kinetic models of species reactions and
diffusion. The simultaneous approach improves the prospects for scale bridging, or
multiscale integration, which is imperative in complex, inherently multiscale materials
degradation such as plasma surface interactions.

Our project encompasses a full suite of multiscale materials modeling approaches, the
current proposal is focused entirely on attacking the problem from an atomistic perspective
using the LAMMPS molecular dynamics code, and a continuum, reaction - diffusion cluster
dynamics modeling approach, using our PARASPACE code and the currently under
development XOLOTL-PSI code.

The classical reaction-diffusion kinetic rate theory defines a defect/cluster by its character,
atomic configuration and size (or, more specifically, the number of point defects contained
within the cluster), but not by its spatial position since the theory assumes that the
concentration of each cluster is homogeneous throughout the volume of the sample.
However, more recent observations of radiation damage in irradiated materials, as well as
spatially dependent ion implantation and plasma exposure of materials dictate the need for
incorporating spatial dependence into the theory. PARASPACE is capable of handling
multiple types of clusters, containing for example a combination of intrinsic defects (self-
interstitial atoms or vacancies) and foreign gas atoms (helium, krypton etc.). PARASPACE
serves as a working model for Xolotl-PSI development. Modeling PFC behavior with Xolotl-
PSI requires extension of the number of cluster species to incorporate many more species
(e.g., deuterium, tritium, helium, as well as vacancies, self-interstitials and impurity atoms
such as Be or C that can induce separate chemical phases) within spatial domains.

The partial differential reaction-diffusion equation for each species i has the general form:

w =¢xP(r)+ V- [D,VC,(7,t)]+ GRT + GRE — ART - ARE (1.1)

t

where Ci refers to the volumetric concentration of the i-th cluster at the spatial position, r,
¢ is the incident gas particle flux, Pi is the production “probability” of the i-th cluster by
irradiation (or the implantation probability for an injected gas or impurity atom) at the

location 7, Di is the diffusivity of the i-th cluster, and V denotes the gradient operator. The
diffusion term can also be modified to account for biased-diffusion in a stress field. The
rates of reaction amongst species that can lead to addition or subtraction of clusters of type
i through a combination of 1st- and 2nd-order reaction kinetics, include GRT, the rate of
generation of the i-th cluster by trapping reactions (A + B & i) among other clusters, GRE, the
rate of generation of the i-th cluster by emission processes (C € i + B) of other clusters, ART,
the rate of annihilation of the i-th cluster by its trapping reaction with other clusters (i + B &
C), and ARE, the rate of annihilation of the i-th cluster by its own emission process (i eA +
B).

The system of partial differential equations represented by the coupled equations defined
by Eq. (1.1) are converted to ordinary differential equations by defining each cluster at
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every spatial depth grid point and discretizing the spatial gradient terms. The resulting
coupled ODEs include variation within the reaction terms to ensure point defect
conservation, i.e., that all the reactants and products of any reaction (trapping or emission)
are accounted for and are constrained within the prescribed phase space. The total number
of ODEs is equal to the total number of clusters multiplied by the total number of depth grid
points. It is not uncommon for simulations using the 1D PARASPACE code to reach 0(107)
degrees of freedom.

11.1.2.2 Codes and Algorithms

LAMMPS: Developed for large-scale molecular dynamics runs. Utilizes relatively short
range (< 4 nm) interatomic potentials of N-body or pair interactions. Libraries
requirements include MPI/MPICH. Web-site: http://lammps.sandia.gov

PARASPACE: Efficient one-dimensional reaction - diffusion cluster dynamics code. Utilizes
both domain decomposition and threaded parallelization, and the PARDISO [29] code
package for the implicit time integration of sparse, linear matrices. Libraries requirements
include MPI/MPICH, OPEN-MP, PARADISO. Web-site: http://www.pardiso-project.org

XOLOTL-PSI: Spatially-dependent, finite element formulation of the reaction-diffusion
cluster dynamics model under development as a built from scratch code supported by our
SciDAC-PSI project. David Bernholdt and Jay Billings are currently developing and writing
the code, and will be responsible for its use on NERSC HPC.

11.1.3 HPC Resources Used Today

11.1.3.1 Computational Hours

Since the basis for comparison in this review is Allocation Year 2012, we mention the two
repositories that were active that year: m916 (1.7M hours used at NERSC) and m1200
(0.6M hours used at NERSC). Beginning in AY2013, the PI also has another NERSC project,
m1709, usage for which will not be included here.

11.1.3.2 Dataand /O

Scratch (temporary) space: We typically use on the order of 30 GB in $SCRATCH to store
checkpoint files within 6 weeks. Scratch space is used for restart (checkpoint) files, and
dump files (the latter are backed up to permanent storage and/or local storage at intervals).

Permanent (can be shared, NERSC Global Filesystem /project): We typically use on the
order of 5 GB in $HOME. The “permanent” space is output files, log files, code, executables,
etc.

HPSS permanent archival storage: We typically transfer data files for visualization to our
local computing cluster for visualization and archival storage, however as our MD

simulations become larger in the future, we are likely to require additional archival storage.

We do not share data among machines currently, though Hopper and Edison will likely be
data sharing in the future.

Checkpointing: We write checkpoint/restart files (~1.2 seconds each) every 4 minutes or
so; recently reduced to every 12 minutes to increase efficiency (time lost repeating
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calculations vs. time spent writing checkpoints).

11.1.3.3 Parallelism

Strong scaling is significantly more important to us than weak scaling. Maximum number of
cores is 1200 cores (50 nodes) for “small” jobs (~4 million atoms) and 4080 cores (170
nodes) for “large” jobs (~16 million atoms). These numbers are, to my knowledge, near the
“maximum” usable without significant parallel inefficiency, though we have plans to re-
evaluate these numbers in the coming weeks. The frequency at which the jobs are
scheduled is also a factor in the calculation of the number of cores.

At any time, user karlh typically has 7-8 “small” calculations (which may soon expand to 8-
10) and one “large” calculation running. We also have three or four “large” calculations in
the future, either at NERSC or at another facility, and would like to increase this number.

11.1.4 HPC Requirements in 2017

11.1.4.1 Computational Hours Needed

At current production rates, user karlh will use something like 20 million hours in 2014 on
“small” simulations. If we move all calculations to NERSC facilities, that number could easily
be more like 45 million hours (including a similar number of “large” calculations for
comparison). By 2017 we anticipate needed 450 million hours for our runs.

Our need for more hours for large-scale MD of plasma-facing materials comes from the need
to test different surface orientations, different helium plasma implantation fluxes, since we
are currently perform simulations that are three to five orders of magnitude accelerated
compared to experiments, and different spatial areas. Also, as the calculations run longer,
we anticipate needing to add more atoms to the system, raising both the number of cores
used and the amount of storage space (the amount of additional storage needed is relatively
small).

11.1.4.2 Dataand /O

We generally experience bandwidth on the order of about 280 MB/s; in our worst-case
example, this means approximately 2% of the time is spent on 1/0, which is acceptable.
Faster is obviously better, but not necessary.

11.1.4.3 Scientific Achievements with 32X Current Resources

Simulation of larger systems is anticipated, which should continue to decrease the
simulated plasma implantation flux closer to experimental conditions, and this should be
possible, as we anticipate near-ideal weak scaling. Longer times are our goal, however, so
increases in strong scaling are preferable.

11.1.4.4 Parallelism

Using LAMMPS for molecular dynamics simulations we expect to be able to increase by
about 20x in general core usage, although this could increase by 50-100X if we also can
effectively utilize GPUs. A GPU version of LAMMPS is available and we are currently testing
performance on TITAN at OLCF.
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11.1.4.5 Memory

Memory requirements are modest; our largest calculation uses
mem=10312kb,vmem=75528kb (used on each of 24 nodes, or 4080 cores), according to
Hopper's reporting scheme. LAMMPS reports 21.5 GB, or 5.38 MB/core, as a lower-bound.

11.1.4.6 Many-Core and/or GPU Architectures

LAMMPS currently has GPU-based accelerator packages. We are in the process of testing
those capabilities for our purposes at the OLCF's Titan computational facility, and will use
them (both at NERSC and elsewhere) if there is an advantage to doing so.

11.1.4.7 Software Applications and Tools

LAMMPS is currently installed on NERSC machines, though the libraries for it (e.g., “make
makelib; make -f Makefile.lib hopper”) are not built---as such, I build them myself. It would
also be nice to have a Python 3 interpreter for Hopper (one exists for Edison). Other than
that, [ have been quite satisfied with NERSC's available applications, especially the available
compilers/interpreters for AWK, Python 2, Fortran (incl. 2003/2008), and C/C++.

11.1.4.8 HPC Services

We anticipate that as we utilize larger and larger MD simulations, we will be more
interested in performing in-situ visualization and data compression at NERSC.

11.1.4.9 Requirements Summary Worksheet

Used at NERSC Needed at NERSC
in2012 in2017
Computational Hours 2.3 Million 450 Million
0.05TB 10TB
Scratch storage and bandwidth
0.3GB/sec 250GB/sec
Shared global storage and bandwidth 0TB 100TB
(/project) N/A 250GB/sec
1TB 300TB
Archival storage and bandwidth (HPSS)
0.5GB/sec 500GB/sec
Number of cores* used for production 4,080 64,000
runs
Memory per node 100 GB 100 GB
Aggregate memory 24TB 30TB
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12 Integrated Modeling

12.1 Integrated Whole-Device Modeling Studies

Principal Investigators: Alexei Y. Pankin, Tech-X Corporation, and Arnold H. Kritz, Lehigh
University

Case Study Authors: Arnold H. Kritz, Alexei Y. Pankin, and Tariq Rafiq

NERSC Repositories: m1043 (A.Y. Pankin, PI); m649 (A.H. Kritz, PI)

12.1.1 Project Description

12.1.1.1 Overview and Content

The objective of this study is to investigate a possibility of integrated whole-device
modeling (WDM) studies at NERSC and to evaluate the HPC requirements up to 2017. This
study is complementary to the main research topics in the repositories m1043 (Modeling of
tokamak plasmas with large scale instabilities) and m649 (Integrated modeling simulations
for the plasma edge and core). The importance of the integrated WDM studies is related to
specific physics problems for which the interactive nature of multi-scale physics is critical
for understanding the nonlinear and nonlocal processes in tokamak plasmas. Typically, the
interactive modeling codes include modules that describe the plasma heating, MHD
equilibrium, large-scale instabilities, and core and edge transport. The WDM codes might
also include modules for the scrape-off-layer region and plasma-wall interactions. The main
challenges of the WDM studies are related to the fact that different components have
different characteristic length and time scales and, consequently, different computation
requirements. These two factors make optimal load balancing a very difficult task.

In this report, our experience with the TRANSP and FACETS codes is summarized. Other
codes that were used in this study include the neoclassical kinetic XGC-0 code, the M3D-
OMP equilibrium solver, and the ideal MHD stability ELITE code. These codes were coupled
with the TRANSP and FACETS codes in order to describe specific physics effects or to model
specific regions of tokamaks.

12.1.1.2 Scientific Objectives for 2017

XGCO The integrated WDM modeling codes are currently being used in the
T interpretive analysis of the experimental data and in the predictive
‘ ELITE studies of future tokamak discharges. The integrated WDM codes are

v also important for the verification and validation of physics models.

Eq. Solver A coupling schema in recent predictive modeling studies of transient

flux effects on the H-mode pedestal stability is shown in Fig. 1. High
physics fidelity codes and tools that have been developed during
three SciDAC projects are used in this study. The FACETS code is an
integrated whole-device predictive transport code that has been de-
e veloped as a part of the Framework Application for Core-Edge
- : Transport Simulations (FACETS) project (http://facetsproject.org/).
ELITE The XGCO code is a kinetic neoclassical code that has been developed

as a part of the Center for Edge Physics Simulations (EPSI) project

Figure 1. Data flow and (http://www.cims.nyu.edu/cpes/). The Integrated Plasma Simulator
code coupling schema (IPS) is a framework for component coupling that is developed as a
part of the Center for Simulation of RF Wave Interactions with
Magnetohydrodynamics (CSWIM) project (http://cswim.org/). The coupling between

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 85



different codes employs the IPS framework from CSWIM and the EFFIS framework from
EPSIL. In these studies it has been found that the stability of H-mode pedestal depends on
non-local effects. This conclusion became possible because of the coupling of high fidelity
codes together.

As individual physics components mature and are validated, they can be used in similar
integrated studies. We anticipate a significant increase of the integrated modeling studies in
the next five years. A key element in these studies will be the validation of the integrated
modeling results. New techniques that facilitate such integration are being developed. Some
of these techniques are based on the uncertainty quantification (UQ) analysis. Recently, the
UQ DAKOTA toolkit has been coupled with the FACETS and TRANSP codes. The
DAKOTA/FACETS simulations were used for the validation of transport models and the
DAKOTA/TRANSP simulations were used for the quantification of uncertainties in the
fusion Q prediction in the ITER tokamak. It has been demonstrated that the use of the UQ
methods in the integrated modeling studies can be an extremely efficient tool for model
validation, discharge optimization, and for predictive and interpretive analysis of the
tokamak plasmas. However, these techniques significantly increase the use of computer
resources.

The scientific objectives for the next several years will be the improvements of the coupling
techniques and the development of the integrated modeling frameworks that will facilitate
the coupling of plasma core, edge and wall models in tokamaks. The verification and
validation of the integrated modeling results will be a top priority. The development of UQ
techniques for the predictive studies and for the analysis of experimental data will continue.
The use of UQ methods in the interpretive analysis is of a particular importance because it
will help to standardize the computations of the error bars for the physics quantities that
are derived from the raw experimental data.
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12.1.1.3 Computational Strategies (now and in 2017)

The TRANSP code is a legacy integrated modeling code that has been developed as a serial
code. There are some efforts on the parallelizing the components of the TRANSP code. In
particular, the NUBEAM module for the neutral beam heating has been parallelized. The
parallel full-wave TORIC code for ICRF auxiliary heating has been recently implemented in
TRANSP.
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Figure 2. Number of TRANSP runs during the years of 2007-2012 [S. Jardin et al. TRANSP FY12 Usage Statistics
and Overview, APS DPP meeting (Providence RI, October 2012)]. The total number of runs is shown as blue bars,
the number of MPI runs is shown in yellow and number of cores used is shown in purple.

Finally, the parallel transport solver PT_SOLVER is being implemented and tested. The
NUBEAM, TORIC, and PT_SOLVER modules utilize individual communication groups. The
NUBEAM module was initially developed to run in serial as a component of the TRANSP
code. The parallel version of NUBEAM demonstrates significant speed improvements.
However, the particle advance per time step in NUBEAM is still 1000-10000 times slower
comparing to modern particle codes. All parallel modules in TRANSP are implemented
utilizing the original TRANSP framework that is not optimized for a parallel environment.
As a result, a significant portion of run time is spent in an idle mode. Despite the obvious
need for the framework and algorithmic improvements, the TRANSP code remains superior
in terms of physics modeling capabilities. A wide selection of validated physics components
makes the TRANSP code an attractive tool for the analysis of experimental data and for the
predictive modeling of future tokamak discharges. The number of TRANSP simulations has
continued to grow during the last 10 years as shown in Fig. 2. The majority of these
simulations is for the analysis of the experimental results and MPI usage is typically
associated with the NUBEAM and TORIC components. The approaching ITER
commissioning will result in an increase in the demand for the predictive simulations. We
expect that the number of TRANSP simulations will continue to grow in the next five years.
However, we think that the increasing demand for predictive simulations will be restrained
by the fundamental limitations in the computational framework and algorithmic deficiency.
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The ITER size results additional requirements for the TRANSP components. In particular, a
significantly larger number of Monte-Carlo particles in NUBEAM is needed than is needed
for existing tokamaks. Significant code improvements are required for ITER simulations.

The FACETS code is a relatively new code that has been developed with a fresh start.
Particular emphasis was given to the development of a parallel framework that facilitates
the coupling of new and legacy physics modules and that allows the incorporation of
modules for edge and plasma-wall interactions. An important aspect of this framework is
the optimized load balancing that minimizes the idle time. Fig. 3 shows the distribution of
CPU cores between different physics modules in the coupled core-edge transport simulation
using the FACETS code. Similar to the PT_SOLVER in the TRANSP code, a new parallel
transport solver in FACETS has been developed. The FACETS solver uses a Newton solve
for the time advance with a multilevel method to enlarge the radius of convergence. As with
a new code, the selection of physics module in FACETS is still somewhat limited. In addition,
the FACETS code utilizes

the ~ same  physics FACETS is launched
components as in the with a set of available
TRANSP code. These processor elements

physics modules have (PEs)
the same algorithmic
limitations as in
TRANSP. The user base
of the FACETS code is
still very limited.
However, we expect that
it will grow as new
physics components are
implemented.

FACETS allocates
PEs to physics
components

In this example, the
core divides up PEs
further for flux
calculation

A ;
Neutral Beam Socrces (NJEEAM) Wall (e~ aIIPS|)

In order to efficiently Figure 2. Use of CPU cores by different physics modules in the coupled core-edge
use the FACETS and transportsimulation using the FACETS Code

TRANSP codes on HPC,

additional code and algorithmic developments in both codes are necessary. The framework
improvement in TRANSP and the extension of physics components in FACETS are needed.
Some of these developments are already scheduled and expected to be completed by 2017.

12.1.2 HPC Requirements in 2017

There are three factors that will drive the number of integrated WDM simulations in the
next four years. The first factor is related to an increasing demand on the interpretive
analysis of experimental data. The commissioning the NSTX-U tokamak in 2014 and
restarting the Alcator C-Mod operation will contribute to the number of interpretive
TRANSP runs. The second factor is related to the approaching ITER commissioning. During
the period prior to the production of the first ITER plasma, there will be an increasing
market for the predictive simulations. Finally, the third factor is related to the
implementation of novel techniques such as uncertainty quantification methods and design
optimization techniques in the whole device modeling codes. These techniques can be used
in the interpretive analysis of experimental data and for the validation and verification of
physics modules in the transport codes. Because of these three driving factors, the total
number of integrated WDM simulations is expected to exceed 60,000 in 2017. The number
of CPU cores used in these simulations will increase at much rapid pace. The total number of
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cores utilized in the integrated WDM simulations is expected to grow at least tenfold in
2017. Such significant increase in the number of cores can be explained by the development
of physics components with improved fidelity that can be executed in parallel. In particular,
the TGLF module for the anomalous transport has been implemented in the TRANSP code
and the TGLF and GYRO modules can be executed from the FACETS framework. It is
expected that transport core solvers in the TRANSP and FACETS codes will utilize up to
2000 and 20000 cores correspondingly. The auxiliary heating modules such as NUBEAM
and TORIC are expected to utilize up to 1000 cores. Use of the HPC resources will be based
on modules required for the appropriate physics conditions in a particular simulation. In
order to optimize the load balancing and to accommodate long times in queues that are
often required for the integrated modeling codes, a dedicated cluster for the integrated
modeling at NERSC with ability to launch jobs on Hopper and other resources is needed.

12.1.2.1 Computational Hours Needed

Our estimate is based on the assumption that most simulations will be the interpretive
simulations with the TRANSP code. The estimated number of interpretive TRANSP runs is
35,000 per year in 2017. The number of predictive simulations with the TRANSP and
FACETS codes will continue to grow to 20,000 and 5,000, respectively. The interpretive
simulations in TRANSP utilize a smaller number of cores than the predictive simulations.
The average number of cores in the TRANSP runs is estimated as 24 for the interpretive
simulations and 128 for the predictive simulations. Because of the option to use the gyro-
kinetic GYRO code within the FACETS framework, the average number of cores in the
predictive FACETS runs is expected to grow to 1,000 in 2017. Based on the average number
of hours per run for the interpretive TRANSP, predictive TRANSP and predictive FACETS (6
hours, 50 hours, and 25 hours, respectively), we estimate the total number of core-hours
that will be needed for the integrated Whole Device Modeling simulations in 2017 is 260M
core-hours.

12.1.2.2 Parallelism

The number of cores needed for the interpretive TRANSP runs is somewhat limited. The
only modules that utilize MPI resources in the interpretive mode are the modules for
auxiliary heating such as NUBEAM and TORIC. Since there will be no need for the
interpretive ITER runs in 2017, the requirements for the number of cores in NUBEAM and
TORIC are not particularly stringent. Most interpretive simulations can be completed using
from 16 to 32 cores. However, we anticipate some high-resolution simulations for which the
number of cores will need to be increased to 256 or more. The TRANSP code does not
currently support the full interpretive mode when the fluxes from predictive modules are
directly compared with the fluxes found in the interpretive analysis. While there are plans
to implement this option in TRANSP, the actual work is not yet started, and we cannot
predict if this option will be available in 2017. The predictive TRANP runs can utilize up
2,000 cores and the FACETS runs can utilize up to 20,000 cores. Because of the improved
load balancing, the FACETS code has relatively high scalability.

12.1.2.3 Datal/O

The size of data files produced in the integrated modeling simulations depends on many
factors such as interpretive vs. predictive runs, and models used for sources and anomalous
transport. The typical size of data files produced in integrated modeling simulations is
expected to be in the range from 50 MB to 75 GB. The upper estimate is for FACETS
simulations that utilize the GYRO model for the anomalous transport and the NUBEAM
module for the neutral beam injection. While not all of these data files need to be stored
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permanently, the estimate takes into account the restart capabilities that are available both
in the TRANSP and FACETS codes. The FACETS code also supports MPI-I0.

Based on the number of predictive and interpretive runs the total storage space can be
estimated as 200 TB. About one third of these data files will need to be archived on HPSS.

12.1.2.4 Memory Required

16GB per node is a reasonable memory requirement both for the TRANSP and FACETS
simulations.

12.1.2.5 Many-Core and/or GPU Architectures

There are plans to port some reduced modules for anomalous transport and auxiliary
heating. However, these projects are at very early stages and it is difficult to predict if any
reasonable progress can be made to be implemented in the integrated modeling codes
before 2017. However, the FACETS code can take an advantage of the existent GYRO
development on porting the code to the GPU architecture.

12.1.2.6 Software Applications and Tools

We will continue to use the standard libraries at NERSC such as netCDF, HDF5, LAPACK,
BLAS, SUPERLU, and PETSC.
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Appendix A. Attendee Biographies

Application Scientists

Paul Bonoli received a PhD from Cornell University in 1981 under Professor Edward Ott.
The title of his dissertation was “The Effects of Toroidal Geometry and Scattering by Density
Fluctuations on the Accessibility and Energy Deposition of Lower Hybrid Waves”. He is
currently the Principal Investigator at MIT for the “Numerical Computation of Wave-Plasma
Interactions SciDAC Project” funded by the Office of Fusion Energy Science and for the NSTX
High Harmonic Heating and Current Drive Project at MIT. He is also now the co US Team
Leader of the International Tokamak Physics Activity (ITPA) Working Group on Steady
State Operation in ITER. Paul is a member of the American Physical Society and he is now
serving as a member of the Executive Committee of the International Sherwood Controlled
Fusion Theory Conference..

Jeff Candy is a principal scientist in the Fusion Theory Group at General Atomics, and lead
developer of the GYRO code. His primary research foci are gyrokinetic and neoclassical
theory/simulation, predictive transport modeling, and algorithms for parallel computing.
Dr. Candy maintains a general but active interest in numerical methods, in particular those
with application to plasma kinetic theory. Dr. Candy received his Ph.D. in 1994 under the
supervision of M.N. Rosenbluth, was visiting scientist at the JET Joint Undertaking in the
United Kingdom, and has been at General Atomics since 1998. He has received various
Canadian awards, including 4 NSERC postgraduate fellowships, 2 NSERC postdoctoral
scholarships, and the Sir James Lougheed Award of Distinction. In 2003, he was the
inaugural recipient of the Rosenbluth award for fusion theory. He was 2008 Jubileum
Professor at Chalmers University in Sweden, and was elected fellow of the American
Physical Society in 2009. Dr. Candy is the author of approximately 80 refereed journal
articles.

Choong-Seock (C-S) Chang is a Principal Research Physicist at the Princeton University
Plasma Physics Laboratory (PPPL), and a Joint Professor of Physics at the Korea Advanced
Institute of Science and Technology (KAIST). C.S. Chang is a Fellow of the American Physical
Society. He serves in numerous national and international scientific committees, including
the Council of the US Burning Plasma Organization (USBPO), Executive Committee for U.S.
Transport Task Force (TTF), Theory Coordinating Committee (TCC) for DOE FES, Users’
Council for National Center for Computational Sciences (NCCS), International Tokamak
Physics Activity (ITPA), and others. He is the head of the Center for Edge Physics Simulation
(EPSI) Scientific Discovery through Advanced Computing (SciDAC) project.

Stephane Ethier is a Computational Physicist in CPPG at the Princeton Plasma Physics
Laboratory. Previously, he was a postdoctoral researcher in the Applied Physics group of
the Mechanical and Aerospace Engineering Department of Princeton University, a computer
consultant at INRS-Energie et Materiaux, and a research assistant at McGill University in
Montreal, Canada. He received his Ph.D. from the Department of Energy and Materials
Institut National de la Recherche Scientifique (INRS), Montreal, Canada. He has been the
recipient of numerous awards including two postdoctoral fellowships from the Fonds pour
la Formation de Chercheurs et Aide a la Recherche, the Lumonics Student Paper Competion
Award, High Performance Computing Centre Award, National Sciences and the Engineering
Research Council Award for Summer Research in both plasma physics and biophysics. He
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has published several articles in refereed journals in addition to being a contributor to
international conferences.

Alex Friedman received his B.S. and Ph.D. degrees (in Engineering Physics and Applied
Physics, respectively) from Cornell University. He is a physicist with Lawrence Livermore
National Laboratory's Fusion Energy Sciences Program, and an Affiliate at Lawrence
Berkeley National Laboratory. He is a Fellow of the American Physical Society, a recipient of
the LLNL Physics Department's Distinguished Achievement Award, and a past Associate
Editor of the Journal of Computational Physics. His research interests include computational
plasma and particle beam physics, computational electromagnetics, accelerator physics and
engineering, methods for data analysis, and numerical analysis. He has authored over 100
published papers and numerous reports.

Kai GermaschewskKi is Assistant Professor in the Space Science Center of the Institute for
the Study of Earth, Oceans and Space at University of New Hampshire. he received his Ph.D.
in Computational Plasma Physics from the University of Duesseldorf, Germany in 2001. His
advisor was Rainer Grauer and his thesis is titled "Pulse propagation in media with
anisotropic dispersion”. After working one year as a post-doc at the Ruhr-University
Bochum, Germany he joined Amitava Bhattacharjee's Center for Magnetic Reconnection
Studies (CMRS) at the University of lowa in 2002, working on Hall-MHD simulation codes
employing Adaptive Mesh Refinement. He moved together with the group to the University
of New Hampshire in summer 2003. His research aims to gain a better understanding of
fast reconnection processes in two-fluid systems, applicable to laboratory as well as space
plasmas. The focus of his work is on sophisticated, high performance, massively parallel
numerical methods, in particular block-structured adaptive mesh refinement to efficiently
resolve a large range of spatial scales and implicit Newton-Krylov-Schwarz based methods
to overcome stability limitations present in explicit numerical schemes.

Stephen Jardin is the Theory Department Facilitator for MHD. He is also co-head of the
Computational Plasma Physics Group and head of Physics within the Next Step Option
design effort. Jardin, a Principal Research Physicist, has been on the Plasma Physics Faculty
of Princeton University with rank of Professor since 1986. He currently teaches a graduate
course in Computational Methods in Plasma Physics. He has been a member of the National
Energy Research Supercomputer User Group Executive Committee since 1992 and became
Chairperson of its Program Advisory Committee in 1999. He is also a member of the ESnet
Steering Committee and Chairman of the National Transport Code Collaboration Program
Advisory Committee. He is a Fellow of the American Physical Society. Jardin is the author of
more than 150 refereed papers, holds four U.S. patents, and has played a key role in the
development of several large magnetohydromagnetic (MHD) computer programs now
widely used in magnetic fusion research. He led the MHD design effort for the Burning
Plasma Experiment (BPX) and Tokamak Physics Experiment (TPX) experimental proposals.
He is the leader of the physics unit of the ARIES studies. Jardin received a bachelor's degree
in engineering physics with highest honors from the University of California, Berkeley, in
1970, where he was elected a member of the Phi Beta Kappa. After receiving a National
Science Foundation graduate fellowship, he received a master's in physics and a master's in
nuclear engineering from the Massachusetts Institute of Technology in 1973. In 1976, he
received a Ph.D. in Astrophysical Sciences, Plasma Physics Section, from Princeton
University.

Homa Karimabadi is the founder of SciberQuest and co-founder of three other startups
including Aitria Technologies. He has a unique combination of expertise in supercomputing
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techniques and information technology as well as strategic analysis and business
management. As a scientist, he is recognized for key discoveries in several fields and acted
as a consultant for SAIC. He has published over 70 articles in scientific journals on a wide
range of topics including cosmology, chaos theory, space plasmas, numerical algorithms,
and solar physics. On the business side, he guided the strategic planning and business
development for a venture funded internet start-up, including formulation/presentation of
business models. He also worked as a lead strategist for an Internet Incubator founded by a
McKinsey Partner. In addition to his role as the CEO/CTO at SciberQuest, Inc. Dr.
Karimabadi is also heading the space physics plasma simulation group at UCSD. He
received his B.S. in mathematics and astronomy from UC Berkeley and his PhD in plasma
astrophysics from the University of Maryland.

Alice Koniges became the first woman ever to earn a PhD in Applied and Computational
Mathematics at Princeton University. She began her career as a member of NERSC’s
Computational Physics Group in 1984 at LLNL. She achieved the first successful parallel
code run on the four-processor Cray-2. She began her career researching parallel computing
and plasma physics, focusing on the combination of these two fields. Her expertise in the
transition from vector to parallel computing culminated in her textbook Industrial Strength
Parallel Computing, published by Morgan Kaufmann Publishers in January 2000. Alice
joined the Berkeley Lab in 2009. Her current research interests include programming
models for multicore architectures, benchmarking and performance optimization of
application codes, development of Adaptive Mesh Refinement (AMR) and Arbitrary
Lagrangian Eulerian (ALE) algorithms for time-dependent PDE's, and application
supercomputing in plasma physics, laser physics, and energy research. She regularly gives
tutorials and short courses on application supercomputing. She also manages the NERSC
Petascale post-doc program as Principal Investigator of the Computational Science and
Engineering Petascale Initiative at LBNL. Previous to joining the Berkeley Lab, she held
various positions at the Lawrence Livermore National Laboratory, including management of
the Lab's institutional computing. She also led the effort to develop a new 3D multiscale
multiphysics code (ALE-AMR) that is used to predict the impacts of target shrapnel and
debris on the operation of the National Ignition Facility (NIF) the world's most powerful
laser, and model Warm Dense Matter (WDM) experiments at the NDCX facility at LBNL.
From 1995 to 1997, Alice led the Parallel Applications Technology Program at LLNL. This
was the LLNL portion of the largest (12 million) CRADA (Cooperative Research and
Development Agreement) ever undertaken by the Department of Energy. She spent 1998 at
the Max-Planck Institute in Garching, Germany (Computer Center and Plasma Physics
Institute), where she was a consultant to users at the Institute, assisting in the conversion of
applications codes for parallel computers. In addition to her PhD she also holds MSE and MA
degrees from Princeton, and a BA from the University of California, San Diego and has
published approximately 100 refereed technical papers.

Zhihong Lin is a Professor of Physics & Astronomy in the School of Physical Sciences at
University of California, Irvine. In 2000, he received the Presidential Early Career Award for
Scientists and Engineers. He was also the recipient of the Kaul Foundation Prize for
Excellence in Plasma Physics research and Technology Development in 1999 for performing
advanced simulations with unprecedented realism and resolution leading to results
demonstrating the positive impact of modern massively parallel computers and for
outstanding contributions to understanding the physics of sheared zonal flows. Prior to his
current position, he was a staff research physicist in the Theory Department at PPPL and a
DOE Fusion Energy Postdoctoral Fellow. Dr. Lin received his Ph.D. in Plasma Physics from
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Princeton University - Department of Astrophysical Sciences - Program in Plasma Physics in
1996. He received a B.S. in physics from Beijing University (China) in 1989.

Vyacheslav (Slava) Lukin holds the position of an Astrophysicist in the Space Science
Division of the US Naval Research Laboratory and is an Affiliate Assistant Professor of
Aeronautics and Astronautics at the University of Washington. He received B.A. (2000) in
Physics and Mathematics from Swarthmore College, and M.A. (2003) and Ph.D. (2008) in
Astrophysical Sciences from Princeton University. Dr. Lukin’s research interests span the
gamut from the physics of solar and space plasmas, to space weather prediction, to
numerical simulations of laboratory plasma experiments, to development of scalable high-
order methods for modeling the dynamics of highly nonlinear systems, to uncertainty
quantification in and validation of simulations of such systems. He is the lead principle
developer of the high-order finite element multi-fluid modeling framework HiFi. Dr. Lukin
collaborates with students and researchers utilizing the HiFi framework to study plasmas in
a variety of domains and parameter regimes: in basic laboratory plasma experiments, e.g.,
the Reconnection Scaling Experiment (LANL) and the Swarthmore Spheromak Experiment
(Swarthmore College), in hot fusion experiments, e.g., the Mega Ampere Spherical Tokamak
(Culham Centre for Fusion Energy, United Kingdom), and for modeling the Earth’s
ionospheric, magnetospheric and solar plasmas in collaboration with research groups at the
University of Wisconsin, LANL, Harvard-Smithsonian Center for Astrophysics, NASA
Goddard, and the University of Manchester.

John Mandrekas is a Program Manager at the DOE Office of Science’s Fusion Energy
Sciences program, where he manages the theory and advanced simulation programs and
the High Performance Computing resources. Previously, he was a Senior Research Scientist
at Georgia Tech in Atlanta, Georgia, where he did research in theoretical and computational
fusion plasma science and taught undergraduate and graduate level courses in plasma
physics and fusion. He received a Ph.D. in Nuclear Engineering from the University of Illinois
at Urbana-Champaign in 1987.

Alexei Pankin holds a Ph.D. in Physics from Institute for Nuclear Research (1999). His
dissertation was, "Turbulence of Non-Equilibrium Plasma Near Boundary of Marginal
Stability," (Thesis Advisor: Prof. Tatiana A. Davydova). His research interests are dynamical
systems, plasma physics, fluid dynamics, and numerical analysis, particularly: Subcritical
transition to turbulence in plasmas; subcritical turbulence; Waves and instabilities;
Diffusion processes in multicomponent gas/plasma mixtures; Numerical simulation of
processes in devices of plasma deposition; Self-organized critically (SOC) systems; Non-
linear optics: soliton propagation in optical fibers, stimulated backscattering; guided wave
optics;; Neural networks; and Linear stability analysis.

Scott Parker is Professor of Physics at University of Colorado. His research is in the area of
kinetic theory and simulation of plasmas. Most of my current work is in the area of direct
numerical simulation of tokamak plasma turbulence on large massively parallel computers.
These simulations are done in a five dimensional phase space using newly developed
particle-based methods. These calculations involve many millions of particles with self-
consistently calculated electric fields. For the first time, these simulations are showing
spectral features and transport levels at least qualitatively similar to turbulent transport
observed in large present day experiments. Our goal is a fundamental understanding of
plasma turbulence and transport in magnetized plasmas. Scientific visualization is utilized
to analyze the features of the three dimensional turbulent fluctuations.
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Chuang Ren is Assistant Professor of Mechanical Engineering and Physics at University of
Rochester. Prof. Ren received his B.S. (1990) and M. S. (1993) degrees in Physics from
Tsinghua University, Beijing, China. He received his Ph.D. in Physics from the University of
Wisconsin-Madison in 1998. He was a postdoctoral researcher and then a staff researcher at
UCLA before joining the University as an Assistant Professor of Mechanical Engineering and
a Scientist of the Laboratory for Laser Energetics in 2004. In 2005, he received a joint
appointment as Assistant Professor of Physics. In 2006, he was awarded a Faculty
Development Award in Plasma Physics from the Department of Energy. Prof. Ren's
research interest is generally in the area of theoretical and computational Plasma Physics.
In particular, he works to apply plasma physics to a wide range of applications including
astrophysics, inertial confinement fusion (ICF), plasma-based accelerators, and new
radiation sources.

Carl R. Sovinec is a Professor of Engineering Physics at the University of Wisconsin-
Madison. Professor Sovinec's research interests lie in the numerical simulation of plasmas
and fluids. His recent efforts have focused on simulating nonlinear electromagnetic
behavior in magnetically confined plasmas, where the extreme stiffness and anisotropy
resulting from the magnetic field provide great challenges for numerical approaches. The
work is aimed toward providing comprehensive modeling of magnetically confined
plasmas. Such modeling will advance the effort of achieving controlled fusion reactions for
energy production by helping us understand dynamics observed in existing devices and by
allowing us to optimize new configurations before hardware is constructed. As an academic,
Professor Sovinec hopes to share his enthusiasm for numerical simulation with new
generations of physicists and engineers. Professor Sovinec has active collaborations with a
number of organizations across the country and worldwide. As a major contributor to the
NIMROD (Non-Ideal Magnetohydrodynamics with Rotation) code development team,
http://nimrodteam.org, he regularly collaborates with team members at Tech-X
Corporation, Utah State University, and the University of Colorado-Boulder. He also consults
with NIMROD code users at Lawrence Livermore National Laboratory and the University of
Washington.

Linda Sugiyama is a member of the Research Laboratory of Electronics (RLE) at the
Massachusetts Institute of Technology High Energy Plasma Physics Group. She received a
BS in applied mathematics from the University of Wisconsin, Madison in 1975 and a PhD in
mathematics from MIT in 1980. She became a postdoctoral associate in RLE in 1980, joining
the RLE research staff in 1983. Sugiyama's research has centered on a continuing interest in
many-body interacting systems, with a focus on the physics of plasmas in magnetic fields
and on the development of magnetically confined plasmas for thermonuclear fusion.
Because of the complexity of these many-body systems, a great deal of Sugiyama's work has
been directed toward advancing and using computational models for simulating their
behavior. A major recent direction for her research has been efforts to simulate a confined
plasma's time evolution of a two-fluid magnetohydrodynamic model, in which the
electronics and ions are treated separately, rather than the more conventional single-fluid
approach. Sugiyama, widely known and respected in the field of plasma physics, is also
active in professional organizations, such as the American Physical Society for which she
serves as a member of the Committee on Women in Physics.

Frank S. Tsung is a researcher in the Department of Physics & Astronomy at the University
of California at Los Angeles. His research interests include particle-in-cell simulations of
wave particle interactions, including laser wakefield accelerators, laser plasma interactions
in inertial confinement fusion plasmas, and wave particle interactions in space and
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laboratory plasmas. He received his B.S. from UC Berkeley and his Ph.D. from UCLA under
the supervision of John M. Dawson. He is a principal architect is one of the code OSIRIS and
is a current member of NUGEX, the NERSC User Group’s Executive Committee.

Brian D. Wirth joined the University of Tennessee Nuclear Engineering Department in July
2010 as the ninth University of Tennessee-Oak Ridge National Laboratory Governor’s Chair.
Wirth was previously an associate professor at the University of California, Berkeley, which
he joined in 2002 following several years as a materials scientist at Lawrence Livermore
National Laboratory. Wirth leads a number of research projects funded by various U.S.
Department of Energy offices to investigate the performance of nuclear fuels and structural
materials in nuclear environments. The research is planned to lead to improved predictions
of the longevity of nuclear reactor components and ultimately the development of high-
performance, radiation resistant materials for advanced nuclear fission and fusion energy
applications. Wirth received a B.S. in Nuclear Engineering from the Georgia Institute of
Technology in 1992 and a Ph.D. in Mechanical Engineering from the University of California,
Santa Barbara in 1998, where he was a Department of Energy Nuclear Engineering
Graduate Fellow.

Xueqiao Xu is a theoretical and computational plasma physicist with general interests in
plasma physics, fluid mechanics, statistical mechanics, and parallel computing. Specific
plasma physics experience: particle simulation, continuum simulation, fluid simulation,
linear and nonlinear theory of micro-instabilities, turbulence, transport, and boundary
plasma physics. Specific achievements include: (1) Developed the BOUT two-fluid edge
turbulence code; (2) Lead physics developer for 5D continuum edge gyrokinetic code
TEMPEST; (3) Co-invented new Monte Carlo scheme for usual gyro-kinetic 6f particle-in-cell
plasma micro-turbulence simulations for modeling Coulomb collisions. Over 60 refereed
publications.

Editors and NERSC Application Support Personnel

Richard Gerber is NERSC Senior Science Advisor and User Services Deputy Group Lead
and, with Harvey Wasserman, organizes the NERSC High Performance Computing and
Storage Requirements Reviews for Science and edits the reports. He holds a Ph.D. in physics
from the University of Illinois at Urbana-Champaign, specializing in computational
astrophysics; held a National Research Council postdoctoral fellowship at NASA-Ames
Research Center 1993-1996; and has been on staff at NERSC since.

Harvey Wasserman is a member of the NERSC User Services Group and helps to organize
the NERSC High Performance Computing and Storage Requirements Reviews.
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Appendix B. Workshop Agenda

Tuesday, March 19

Time Topic Presenter
8:00am Arrive, informal discussions
8:30 AM Welcome, Overview of Requirements Reviews Dave Goodwin, ASCR
(NERSC Program Manager)
8:45 AM | Future Directions in Fusion Energy Science Research | John Mandrekas, FES Team
Leader, Theory &
Simulation
9:15 AM Workshop Goals, Process Richard Gerber, NERSC
User  Services  Deputy
Group Leader and NERSC
Senior Science Advisor
Magnetic Fusion Energy Sciences (MFES) Case
Studies
10:00 AM | Core Turbulence and Transport Jeff Candy, General Atomics
10:30 AM | Energetic Particles Zhihong Lin, U.C. Irvine
11:00 AM | RF / Plasma Interactions Paul Bonoli, MIT
11:30 AM | Plasma Edge Physics C.S. Chang, PPPL
12:00 PM | Group Photo
12:30 PM | Working Lunch Presentation: NERSC's 10-Year Plan Sudip Dosanjh, NERSC
Director
Magnetic Fusion Energy Sciences (MFES) Case
Studies (continued)
1:30 PM Macroscopic Stability Stephen Jardin, PPPL; Carl
Sovinec, U. Wisconsin
2:00 PM Small Scale Experimental Plasma Research Vyacheslav Lukin, NRL
General Plasma Science Case Study
2:30 PM General Plasma Science Kai Germaschewski, U.
New Hampshire;
Homa Karimabadi, UC San
Diego
3:00 PM PM Break
High Energy Density Laboratory Plasmas (HEDLP) &
Inertial Fusion Energy Sciences (IFES) Case Studies
3:15 PM Heavy lon Beams Alex Friedman, LLNL
3:45 PM Laser Plasma Interactions Chuang Ren, University of
Rochester
4:15 PM PM Break
Materials and Plasma-Surface Interactions Case Study
4:30 PM Materials and Plasma-Surface Interactions Brian Wirth, UTK
6:00 PM | Adjourn

Wednesday, March 20

8:00 AM Informal discussions

8:30 AM Data Discussion

9:15 AM Integrated Modeling Alexei Pankin, TechX, and
Arnold Kritz, Lehigh U.

10:00 AM AM Break

10:15 AM Day 1 Summary Richard Gerber & Harvey
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| Wasserman

10:45 AM High-level findings
11:15 AM Schedule for Report Harvey Wasserman
12:00 PM Working Lunch: Case Study Breakout Sessions All

1:00 PM | Adjourn
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Appendix C. Abbreviations and Acronyms

ALCC
ALCF
AMR
ASCR
AY
BER
CUDA
ELM
ESG
ESnet
FEM
FFT
GPGPU
GPS
GPU
HDF
HEDLP
HPC
HPSS
1/0
IDL
IFES
INCITE
LANL
LBNL
LLNL
MFES
MHD
MPI
NASA
NERSC
NetCDF
NGF
NISE
NRL
OLCF
ORNL
0S
PDE
PDSF
PPPL
SC
SciDAC
SLAC

uQ

ASCR Leadership Computing Challenge

Argonne Leadership Computing Facility
Adaptive Mesh Refinement

Advanced Scientific Computing Research, DOE Office of
Allocation Year

Biological and Environmental Research, DOE Office of
Compute Unified Device Architecture

Edge localized mode

Earth System Grid

DOE's Energy Sciences Network

Finite Element Modeling

Fast Fourier Transform

General Purpose Graphical Processing Unit
General plasma science

Graphical Processing Unit

Hierarchical Data Format

High Energy Density Laser Plasma
High-Performance Computing

High Performance Storage System

input output

Interactive Data Language visualization software
Inertial Fusion Energy Science

Innovative and Novel Computational Impact on Theory and Experiment

Los Alamos National Laboratory

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Magnetic Fusion Energy Science
Magnetohydrodynamics

Message Passing Interface

National Aeronautics and Space Administration
National Energy Research Scientific Computing Center
Network Common Data Format

NERSC Global Filesystem

NERSC Initiative for Science Exploration

Naval Research Laboratory

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

ooperating system

Partial Differential Equation

NERSC’s Parallel Distributed Systems Facility
Princeton Plasma Physics Laboratory

DOE's Office of Science

Scientific Discovery through Advanced Computing
SLAC National Accelerator Laboratory
Uncertainty Quantification
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Appendix D. About the Cover

“«

Image showing a portion of NERSC’s “Hopper” system, a Cray XE6 installed
during 2010. Hopper is NERSC's first peta-FLOP resource, with a peak
performance of 1.28 PetaFLOPs/sec, 153,216 compute cores, 212 Terabytes
of memory, and 2 Petabytes of disk. Hopper placed number five on the
November 2010 Top500 Supercomputer list.

Evolution of electrical current density, parallel to magnetic field, in the
Pegasus Toroidal Experiment at the University of Wisconsin-Madison, as
simulated by graduate student John O'Bryan with the NIMROD 3D
magnetohydrodynamics code. Image courtesy of Prof. Carl Sovinec,
University of Wisconsin

HiFi simulation of reconnection and merging of two spheromaks in
the Swarthmore Spheromak Experiment showing representative
magnetic field lines. Peak in current density is represented by the
surface in the center of the volume. From Gray et al, Physics of
Plasmas 17, 102106 (2010). Image courtesy of Vyacheslav Lukin,
Naval Research Laboratory.
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