

Advanced Scientific Computing Advisory Committee

Gaithersburg, MD October 28, 2008

The Modeling & Simulation behind everyday Products

Tom Lange

Director, Procter & Gamble Modeling & Simulation Global Capability Organization R&D

....By the time I was born

P&G

P&G Investors Know Us By...

- Sales: \$83.5 Billion FY June 30th, 2008
- Net Earnings: \$12.1 Billion

P&G has paid dividends without interruption since 1890

51 consecutive years of

increased dividend payment.

51-YEAR DIVIDEND HISTORY

(per share, adjusted for stock splits)

Procter & Gamble © 2008

Worlds Largest Consumer Goods Company...Market Cap ~ \$174 Billion (COB Monday 10/27/2008)

Employ: 138,000 employees Operate: in more the 80 Countries Worldwide R&D Technical Centers: More than 28 R&D centers in 10 Countries on 4 Continents

Why Brands?

The Two Moments

of Truth

OK... Enough of the B School take on things...

Second moment of Truth

LAY

modeling & simulation

Dz

Products must *perform* as expected (advertised) when used. *Performance* ... leveraging <u>Fundamental Science &</u> <u>Engineering Contradictions</u>.

Materials ... strong but soft—even wet, stretch not break, breath but contain, break...not tear.

Liquids ... mixtures can't separate, dispense easily... but stay where applied.

Packages ... creative design is key, strong but light, never leak but open easily.

P&G

Scale: Sell a Billion \$

We make **<u>billions</u>** of products a year...

P&G

Make a Billion Diapers...

How long does it take to make a billion Pampers?

P&G

Splicing Webs...

What Happens... When you miss!

'Innovation is our Lifeblood'

•Set up first product research lab in U.S. in 1890

hold 30,000+
Patents, apply for
3000 ish every year

Invest over \$2 Billion per year in R&D
 1995 Recipient of
 U.S. National
 Medal of Technology

modeling & simulation

... Atoms to the Enterprise

Product/ Device/ Package

P&G

Process & Making

Mechanical & Converting

Supply Chain Throughput & Reliability

Scales of Modeling

FIUCIEI & Gample @ 2000

Empirical & Optimization

- Supply Chain Analysis
- Planning & Scheduling Analysis
- Plant Throughput Analysis
- Reliability Engineering
- Consumer Response modeli
- DOE
- Optimization

x simulau01

***Collaboration began in 1994

Winner of Several Joint Awards with Los Alamos National Laboratories

P&G

Solid Mechanics:

- Rigid Body Kinematics
- Finite Element Analysis (FEA):
 - Implicit
 - Explicit
 - Linear
 - Non-linear
 - Massive Contact
 - Complex non-metal Material Models: High Strain Rates 1/500 Seconds, Elastic-plastic, Hysterisis: Visco-Elastic, Visco-Plastic

Lots of Small Parts... ... Everyone must work!

Procter & Gamble © 2008

P&G

Structures.

Hair Colorant Bottle: checking squeeze performance.

Material A: insufficient spring-back

Material B: sufficient spring-back

Stress

Bottle Optimal Weight System.

Optimizing the bottle weight : profiling the parison .

Bottle Race Trac *'Circa 2000'*

Virtual Race Track

LS-DYNA KEYWORD DECK BY LS-PRE

Fluids / Thermal

• Computational Fluid Dynamics (CFD):

- Free Surface Flow
- Contained Turbulent Flow
- Multi-Phase Flows
- Creeping & Low Reynold's Number Flows
- Non-Newtonian & Visco-Elastic Material Properties
- Flow in Porous Media

P&G

Make a 10⁹ Pringles?

FORTUNE

P&G

August 20, 2007

tricity, you can use it to charge the batteries." In Spain, the Barcelona Superins Spain, the Barcelona Supertorallop machine called MoreNotorallop machine seal and the seal atrum ("our sea", The Jastest in Surger Statest in Surger Statest in the Statest in Surger Statest in Surger Statest in the Statest in the world), Marchlostrum has prothe world) and to more than 200 the world) and to more than 200 the world) in the design of new used in the design of new

Aided in the design of milaided in the impart of milstudient for Europe, and even the formation of the even over the the term of the milbased the hat compared in the based the that compared in the based the that compared in the based the that compared of the the the the term of the the the term of term of term of the term of term

INTY is it receives the Cray Access is to no jour the Cray Access the addressing the community is addressing the community is addressing the community of the community is addressing the community of the community of the community of the community of the community architects in a second receiver they're known as second receiver in differentiation, and attached on multifireding, and attached on

WHY HPC

MATTERS

 Initial initinitial initinitial initinitial initinitial initial initial initial

How long does it Take to make a **Billion** Pringles?

... Aerodynamics are Relevant

What are the areas of Challenge & Research?

Multi_Physics...

What You Don't In WalMart Or Your Laundry Room!

Procter & Gamble © 2008

P&G

FSI Simulation

Fringe Levels

5.000e+04

4.500e+04

4.000e+04 _ 3.500e+04 _

3.000e+04

2.500e+04 _ 2.000e+04

1.500e+04

1.000e+04 _ 5.000e+03

0.000e+00

Material Properties Are The Key To Predicting Reality!

FSI: Fluid Structure Interaction

Sheet Flutter

Sheet Flutter w/flow Field

Procter & Gamble © 2008

P&G

Computational Chemistry Disciplines

Quantum Chemistry

Electronic properties

- Reactivity
- Structural details
- Spectral properties
- Femto-seconds, tens of atoms
- Challenges: simulating dynamic reactivity (http://loki.na.pg.com:8080/~stein/tmp/every5.mpeg)

- Hardware capacity
- Theory (shortcuts) and software development

Perfume Residuality QSAR

Log Observed Headspace Conc. Modeling identified new technology which was not apparent from empirical testing

DamacenoneUndecylenic AldehydeNew Insights:Want Globular Structurewith Partially Shielded Oxygen. NotCorrelated with Reactivity andAldehyde/Ketone not Required

Examples of Broader Palette/New IP

Methyl xxxx

P&G Multi-Scale Problem: Predict Viscosity Stability

Coarse-Grained Molecular Dynamics of Suds / Cleaning

Kelly Anderson, Xibing He, Russell Devane, Michael Klein (Upenn)

Phospholipid membrane... interacting with a vesicle..

P&G

Predicting equilibrium surface structure

Sodium Laura Ether Sulfate

Blue beads represent alkane chains, green beads represent Ether groups, yellow bead represent sulfate groups and red Spheres represent sodium ions. Water has been removed For clarity.

Predicting equilibrium surface properties

Initial: Surface Area / Molecule = 45 Å²

Final: Surface Tension = 43 mN/m

Initial: Surface Area / Moldecule= 22 Å² Final: SA/M= 46 Å² ST= 45 mN/m

Predicting how mixtures of surfactants behave

PEG C12E6 Phase Transition 465 ns

807,360 CG beads 61696 PEG molecules

Start 50 wt% PEG (Hexagonal phase)

Dehydrate

80 wt% PEG (Lamellar)

The Grand Cleaning Model

• <u>Micellization</u>:

- Calcium effects, size, CMC
- Polymer effects, size, CAC
- Interfacial Effects:
 - Calcium effects
 - Polymer effects
 - Surfactant effects
 - Hydrodynamic effects

Polyacrylate and surfactant at a clay surface

- <u>'Soil' Removal</u>
 - Emulsification
 - Solubilization

cylindrical micelles

oil-water interfaces

P&G Spontaneous vesicle formation

10 nm Vesicles...

Attempted fusion of two vesicles (cross section). Fusion is not spontaneous!

modeling & simulation

The High Performance Computing 'opportunity'

'Moore's Law'

Computing Hardware Performance

P&G Computing Costs \$/CPU-hr

- In 2001...Computing (hardware only) cost P&G ~\$1.50 per CPU-hr
- In 2008...P&G computing costs (Hdwr, support, facilities...) are ~ \$0.15 per Corehr.
- 2012 Computing (hardware only) projecting to cost ~ \$0.01-0.03 per Core-hr.

Pursuing Realism???

- Solve 'Bigger' more complex Problems (Billion Elements, Billion Atoms/Molecules...etc.)
- –do parametric studies vs. point estimates (Stochastic)
- -Reach more analysts ... Automating what it takes an expert to do today

The Challenge?...

The Challenges

- Application Software
 - Parallelism
 - Spatial AND
 - Is Temporal Decomposition Possible?
 - FAST Multi-physics Integration
 - The path from Basic Research to Commercial
- The DATA management issue...
- Education ...
 - Engineering & Science Graduates that are 'computational' aware (BS/MS)

