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Motivation

Key computational kernels for uncertainty quantification

• estimate model parameters and their uncertainty from data (statistical
inverse problem)

• propagate parameter uncertainty through model to predict quantities
of interest and their uncertainty (forward uncertainty propagation
problem)

Challenge: framework is often intractable for

• high-dimensional input parameter spaces

• expensive forward problems

Focus of this talk: How structure-exploiting methods can help overcome
the curse of dimensionality for the statistical inverse problem
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Lessons from deterministic inverse problems

A model deterministic linear inverse problem:
State estimation for atmospheric transport

min
u,q

∑
j

∫
Ω

∫ T

0
(u− u∗)2δ(x− xj) dx dt+

β

2

∫
Ω
q2 dx

ut − k∆u+ v · ∇u = 0 in Ω× (0, T )
u = q in Ω× {t = 0}

k∇u · n = 0 in ΓN × (0, T )
u = 0 on ΓD × (0, T )

u contaminant concentration q initial condition

v wind velocity k diffusion coefficient

T length of time window β regularization constant

xj jth sensor location u∗ observed concentration
Omar Ghattas — UT Austin Scalable methods for statistical inversion October 28, 2008 5 / 51



Lessons from deterministic inverse problems

Inverse atmospheric transport: Optimality conditions
State equation:

ut − k∆u+ v · ∇u = 0 in Ω× (0, T )
u = q in Ω× {t = 0}

k∇u · n = 0 on ΓN × (0, T )
u = 0 on ΓD × (0, T )

Adjoint equation (for adjoint concentration p):

−pt − k∆p−∇ · (pv) = −
∑
j

(u− u∗)δ(x− xj) in Ω× (0, T )

p = 0 in Ω× {t = T}
(k∇p+ pv) · n = 0 on ΓN × (0, T )

p = 0 on ΓD × (0, T )

Control equation:
−βq − p|t=0 = 0 in Ω
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Lessons from deterministic inverse problems

Inverse atmospheric transport: Construction of Hessian
Discretized optimality conditions: BTB 0 AT

0 βI −T T
A −T 0

 u
q
p

 =

 BTBu∗

0
0


Elimination of u and p blocks yields the equation for q:

(GTG+ βI)q = −GTBu∗

where

G = BA−1T is the input–output map

H = GTG+ βI is the (reduced) Hessian

= T TA−TBTBA−1T + βI

Use CG to solve system, form hessian-vector product on the fly at cost of
one forward/adjoint PDE solve per iteration.
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Lessons from deterministic inverse problems

Inverse atmospheric transport: Typical solution

Solution of an airborne contaminant inverse problem in the Greater Los
Angeles Basin with onshore winds; mesh Peclet = 10
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Lessons from deterministic inverse problems

Inverse atmospheric transport: Scalability

Fixed size scalability of unpreconditioned and multigrid preconditioned inversion;
problem size is 2574

CPUs no preconditioner multigrid
hours efficiency hours efficiency

128 5.65 1.00 2.22 1.00
512 1.41 1.00 0.76 0.73
1024 0.74 0.95 0.48 0.58

Isogranular scalability of unpreconditioned and multigrid preconditioned inversion:

grid problem size CPUs no precond. multigrid
q (u, p, q) hours iter hours iter

1294 2.15E+6 5.56E+8 16 2.13 23 1.05 8
2574 1.70E+7 8.75E+9 128 5.65 23 2.22 6
5134 1.35E+8 1.39E+11 1024 — — 4.89 5

Presented at SC’05; built on PETSc library
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Lessons from deterministic inverse problems

A peek into why CG is so effective for Hessians with
“compact + identity” structure
At iteration k, CG solves the weighted least squares problem

min
Pk

||ek|| =
X
i

Pk [λi]
2 ξ2i λi

where Pk is polynomial of order k and e0 =
X
i

ξivi, Hvi = λivi

Example spectrum of data misfit (β = 0) portion of Hessian (H def
= GTG+ βI)
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Lessons from deterministic inverse problems

Analytical example of Hessian spectrum
1D advection-diffusion with periodic boundary conditions, inversion for initial condition with
final time observations

min
q

∫ L

0

(u− u∗(T ))2dx+
β

2

∫ L

0

q2dx

where: ut − kuxx + vux = 0 in (0, L)× (0, T )
kux(0, t) = kux(L, t) for t ∈ (0, T )
u(0, t) = u(L, t) for t ∈ (0, T )

u = q in (0, L)× {t = 0}

Hessian: jth eigenfunction: e2πijx/L, jth eigenvalue: e−8j2π2kT/L2
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Bayesian framework for statistical inverse problems

Bayesian formulation for statistical inversion
(Tarantola framework)

• Given:
I a forward model g(m) = d relating model parameters m with

observables d, and its uncertainty

I actual observations dobs and their uncertainty

I a “prior” estimate, of model parameters, mprior, and its uncertainty

• Seek a statistical characterization of model parameters consistent
with observations, forward model, and prior model

Omar Ghattas — UT Austin Scalable methods for statistical inversion October 28, 2008 13 / 51



Bayesian framework for statistical inverse problems

Bayesian formulation for statistical inversion
Given:

ρM(m) := prior p.d.f. of model parameters

ρD(d) := prior p.d.f. of the data

θ(d|m) := conditional p.d.f. relating d and m

Then posterior p.d.f. of model parameters is given by:

σM(m) = k ρM(m)
∫

D

ρD(d) θ(d|m)

µD(d)
dd

L(m) := likelihood function

constant for linear data space

normalization constant

From A. Tarantola, Inverse Problem Theory, 2005
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Bayesian framework for statistical inverse problems

Bayesian formulation for statistical inversion
Gaussian uncertainties, nonlinear forward model

If forward model uncertainty is Gaussian:

θ(d|m) = const. exp

„
−

1

2
(d− g(m))T C−1

T (d− g(m))

«
and observation uncertainty is Gaussian:

ρD(d) = const. exp

„
−

1

2
(d− dobs)

T C−1
d (d− dobs)

«
and prior model parameter uncertainty is Gaussian:

ρM(m) = const. exp

„
−

1

2

`
m−mprior

´T
C−1

M

`
m−mprior

´«
Then the posterior model parameter p.d.f. is given by:

σM(m) = k exp (−S (m))

where the misfit function is:

S(m) :=
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)+

1

2

`
m−mprior

´T
C−1

M

`
m−mprior

´

forward model covariance

observation covariance

prior model parameter
covariance

not Gaussian!

CD = CT + Cd
forward model and measurement
uncertainty combine
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Bayesian framework for statistical inverse problems

Bayesian formulation for statistical inversion
Gaussian uncertainties, linear forward problem

If modeling, measurement, and prior uncertainties are all Gaussian, and if in
addition the forward problem is linear, i.e.,

G m = d

Then the posterior p.d.f. for the model parameters is also Gaussian:

σM(m) = k exp (−S (m))

where

2 S (m) := (G m− dobs)
T C−1

D (G m− dobs)

+ (m−mprior)
T C−1

M (m−mprior)
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Bayesian framework for statistical inverse problems

Bayesian formulation for statistical inversion
Gaussian uncertainties, linear forward problem (continued)

Since the posterior p.d.f. for the model parameters is Gaussian, its mean can be found by
maximizing the p.d.f., which is equivalent to solving the weighted least squares
optimization problem:

m̃ = arg minS(m) := ‖Gm− dobs‖2C−1
D

+ ‖m−mprior‖2C−1
M

Note the connection with the regularization approach to inverse problems: C−1
M plays the

role of the regularizer.

The posterior parameter covariance is given by the inverse of the Hessian:

C̃M =
“
GT C−1

D G+C−1
M

”−1

Note also the posterior p.d.f. for the data is also Gaussian, with mean and covariance
given by:

d̃ = Gm̃ C̃D = GC̃M GT
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MCMC sampling
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MCMC sampling

MCMC sampling

Example Probability Density

Given a probability density π(x):

• How do we interrogate the distribution?

• Often high dimensional

• Computationally expensive

The MCMC Approach

• Replace π(x) by a sample chain {xk}
• Compute using ergodic averages

E[f(X)] =

Z
Rn

f(x)π(dx) ≈
1

N

NX
j=1

f(xk)
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MCMC sampling

MCMC sampling

Sampled Probability Density

Given a probability density π(x):

• How do we interrogate the distribution?

• Often high dimensional

• Computationally expensive

The MCMC Approach

• Replace π(x) by a sample chain {xk}
• Compute using ergodic averages

E[f(X)] =

Z
Rn

f(x)π(dx) ≈
1

N

NX
j=1

f(xk)
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MCMC sampling

Metropolis-Hastings algorithm

1 xk ← x0

2 k ← 0
3 Choose a point y from the proposal density q(xk, · )

4 α← min
(

1,
π(y)q(y,xk)
π(xk)q(xk,y)

)
5 If α > rand([0, 1]) Then

Accept: xk+1 = y

Otherwise

Reject: xk+1 = xk

End If

6 k ← k + 1
7 Repeat from step 3
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MCMC sampling

Some proposal functions

The best proposal function is just the PDF itself:

• q(xk,y) = π(y)

• α(xk,y) = min
(

1, π(y)π(xk)
π(xk)π(y)

)
≡ 1

• Can also use any approximation π̃(y)

Gaussian random walks:

• q(xk,y) = N(µ,Γ)
• Lots of freedom in choosing µ and Γ
• Both can depend on xk

Many others:

• Hybrid Monte Carlo

• Gibbs sampling
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MCMC sampling

Delayed Rejection Adaptive Metropolis (DRAM)

Delayed rejection

• If proposal y is rejected, don’t give up

• Use new proposal: q1(xk,y,y1)
• q1 is typically much more conservative

• Second accept/reject step with similar criterion

• We can delay rejection multiple times

Adaptation of proposal covariance

• Modify proposal Γ with current sample covariance

• Non-Markovian, but still converges
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MCMC sampling

Approaches to reducing the cost of each sample

• Reduced model of the forward problem
I POD (e.g. Wang and Zabaras, Willcox et al.)
I Stochastic Galerkin (e.g Marzouk, Najm and Rahn)

• Reduced model of the outputs (i.e. response surface)
I Gaussian process model (e.g. O’Hagan and Kennedy)
I Stochastic response surface (Balakrishnan, Roy, Ierapetritou, Flach,

Georgopoulos)
• “Preconditioned” MCMC using reduced order models

I Higdon, Lee, and Holloman
I Christen and Fox
I Efendiev, Hou, and Luo
I Efendiev, Datta-Gupta, Ginting, Ma, and Mallick

Omar Ghattas — UT Austin Scalable methods for statistical inversion October 28, 2008 23 / 51



MCMC sampling

Desired properties for speeding up sampling algorithms

• Scale to high-dimensional parameter spaces

• Take advantage of known properties of the misfit function (e.g.,
gradient, low rank approximation of Hessian, ...)

• Reuse techniques developed for the deterministic inverse problem

• Build on experience from linear inverse problem
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Langevin methods and stochastic Newton
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Langevin methods and stochastic Newton

Background: Langevin dynamics

Langevin dynamics
• Stochastic differential equation (continuous in time)

I π(x) is a stationary solution
I ⇒ Trajectories sample π(x)

• Uses derivative information of π(x)
• Can be preconditioned for better performance

Discrete Langevin dynamics

• Discretization with timestep ∆t introduces bias

• Use as proposal distribution for Metropolis-Hastings algorithm
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Langevin methods and stochastic Newton

Preconditioned Langevin MCMC
Given a probability density of the form:

π(x) = c exp(−V (x))

The associated Langevin SDE is given by:

dXt = −A∇V dt+
√

2A1/2dW t

Discretize with a timestep ∆t to derive Langevin proposal:

xk+1 = xk −A∇V∆t+
√

2∆tA1/2N(0, I)

Notes:
• Preconditioner A must be symmetric positive definite
• Process is ergodic (convergence of time averages)
• W t is i.i.d. vector of standard Brownian motions
• W t has independent increments given by

I W (t+∆t) −W t ∼ N
(
0,∆t I

)
• N(0, I) is the i.i.d. standard normal pdf
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Langevin methods and stochastic Newton

Stochastic Newton’s method

• Standard Langevin MCMC proposal given by:

xk+1 = xk −A∇V∆t+
√

2∆tA1/2N(0, I)

• For preconditioner A, use the inverse of the (local) Hessian
H(x) = ∇2V to precondition; set ∆t = 1

xk+1 = xk −H−1∇V +H−1/2N(0, I)

• This becomes the stochastic equivalent of Newton’s method
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Langevin methods and stochastic Newton

Stochastic Newton: Optimal sampling of Gaussians

• Consider a Gaussian density N(µ,Γ):

V =
1
2

(x− µ)TΓ−1(x− µ)

∇V = Γ−1(x− µ)
H = ∇2V = Γ−1

• Apply Stochastic Newton:

xk+1 = xk −H−1∇V +H−1/2N(0, I)
= xk − ΓΓ−1(xk − µ) + Γ1/2N(0, I)
= µ+ Γ1/2N(0, I)
= N(µ,Γ)

• Samples xk act like independent draws from the true PDF
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Langevin methods and stochastic Newton

Classical vs. Stochastic Newton

Classical Newton:

• Given a cost function: V (x)
• xk+1 = xk −H−1∇V
• Optimizes best fit quadratic in one step

Stochastic Newton:

• Given a probability density: exp
(
− V (x)

)
• xk+1 = xk −H−1∇V +H−1/2N(0, I)
• Samples best fit Gaussian in one step

Vanilla flavor Langevin resembles steepest descent

• xk+1 = xk −∆t∇V +
√

∆tN(0, I)
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Langevin methods and stochastic Newton

Stochastic Newton: Computational considerations

Need local Hessians and gradients for each MCMC step

• Can be expensive... even to reject proposal points

• Use adjoints if available

• Exploit all of the machinery of large scale deterministic inverse
problems (low rank approximations, inexact Newton methods, trust
region ideas, etc.)

H not always positive definite away from xmap

• Current implementation:
I Compute eigenvector decomposition: H = V DV T

I Replace small or negative eigenvalues with floor threshold
I Apply the square root as H1/2 = V D1/2V T

• Future: Inexact Newton and/or Gauss-Newton
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Results for an inverse wave propagation problem
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Results for an inverse wave propagation problem

1D seismic wave propagation

µ1

µ2

T = 0 T = T1 T = T2

1D Seismic wave propagation

Seismic wave propagation forward model:

• 1D wave equation

• Ricker wavelet source at surface

• Measure reflected wavefield

• Add receiver noise

Inverse Problem:

• Discretize medium into n layers

• Reconstruct shear modulus of medium

• Bayesian inversion framework
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Results for an inverse wave propagation problem

The forward model

Given µ(x), we solve the 1D wave equation:

ρ∂
2u
∂t2
− ∂

∂x

(
µ(x) ∂

∂xu
)

= δ(x− 0) · F (t)

√
ρµ ∂u

∂t

∣∣
x=1

= −µ · ∂u∂z
∣∣
x=1

µ ∂u
∂z

∣∣
x=0

= 0

u|t=0 = 0
u̇|t=0 = 0

and observe the displacement field u(0, t) at surface
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Results for an inverse wave propagation problem

Bayesian inversion setting

Uncertainty quantification problem:

• Layered medium with two parameters (µ1, µ2)
• Uniform prior on [0.5, 10]× [0.5, 10]

πpr(µ) ∝ 1

• Gaussian likelihood function:

πlike(yobs|µ) = exp
(
− 1

2
(y(µ)− yobs)TΓ−1

noise(y(µ)− yobs)
)

• Ultimately we wish to sample the posterior distribution:

πpost(µ|yobs) ∝ πpr(µ)πlike(yobs|µ)
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Results for an inverse wave propagation problem

2D parameterization of input space
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Results for an inverse wave propagation problem

Sample observation data
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Results for an inverse wave propagation problem

2D posterior density
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Results for an inverse wave propagation problem

DRAM chains vs. Stochastic Newton chains

DRAM Chains Stochastic Newton Chains

Omar Ghattas — UT Austin Scalable methods for statistical inversion October 28, 2008 39 / 51



Results for an inverse wave propagation problem

2D MPSRF for DRAM vs. Stochastic Newton
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Results for an inverse wave propagation problem

16 Layer inversion problem

As before, solve Bayesian inverse problem for 16 layer parameters
• Gaussian smoothness prior between layers:

I Covariance Γ between layers i and j:

Γij = θ1 exp
(−(i− j)2

2θ2
2

)
I Prior mean is constant µ(x) = 5

• Gaussian likelihood function:

πlike(yobs|µ) = exp
(
− 1

2
(F (µ)− yobs)TΓ−1

noise(F (µ)− yobs)
)

• Again we wish to sample the posterior distribution:

πpost(µ|yobs) ∝ πpr(µ)πlike(yobs|µ)
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Results for an inverse wave propagation problem

16D parameterization of input space
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Results for an inverse wave propagation problem

16D MPSRF plots
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Results for an inverse wave propagation problem

16D MPSRF plots (rescaled)
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Results for an inverse wave propagation problem

KDE cross correlation plots – physical basis
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Results for an inverse wave propagation problem

KDE cross correlation plots – prior basis
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Results for an inverse wave propagation problem

65D inversion problem

Solve Bayesian inverse problem for 65-layer parametrization
• Gaussian smoothness prior between grid points:

I Covariance Γ between grid points i and j:

Γij = θ1 exp
(−(i− j)2

2θ2
2

)
I Prior mean is constant µ(x) = 5

• Gaussian likelihood function:

πlike(yobs|µ) = exp
(
− 1

2
(y(µ)− yobs)TΓ−1

noise(y(µ)− yobs)
)

• Again we wish to sample the posterior distribution:

πpost(µ|yobs) ∝ πpr(µ)πlike(yobs|µ)
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Results for an inverse wave propagation problem

65D parametrization of input space
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Results for an inverse wave propagation problem

65D MPSRF plots

2 4 6 8 10 12

x 10
4

10
0

10
1

10
2

10
3

10
4

Number of points in chain

M
P

S
R

F
 V

al
ue

 (
lo

gs
ca

le
)

MPSRF value for 65D Runs

 

 
DRAM
Stochastic Newton

MPSRF statistic for 65D parameterization
Stochastic Newton samples cost ≈ 82× one DRAM sample
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Results for an inverse wave propagation problem

65D MPSRF plots (rescaled)
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MPSRF statistic for 65 layer parameterization
Axes rescaled to reflect total computation time
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Results for an inverse wave propagation problem

Conclusions
• For linear statistical inverse problems, fast methods can be constructed that

exploit low rank approximations of the Hessian

• Hessian-preconditioned Langevin MCMC (aka Stochastic Newton)
I motivated by connection to deterministic Newton method
I exactly samples a Gaussian posterior
I naive implementation shows several orders of magnitude improvement

over DRAM

• Can capitalize on several decades of advances in deterministic PDE-based
optimization and inverse methods to vastly improve stochastic Newton, e.g.

I inexact Newton (Eisenstat-Walker, negative curvature ideas)
I trust region methods
I exploit “compact + differential” structure of Hessians (e.g. low rank

approximations, Fredholm-multigrid type preconditioners)

• I believe that exploiting deterministic PDE inverse problem structure is
mandatory for scaling MCMC to high dimensions and expensive forward
problems
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