Esnet in Context

Department of Energy Advanced Scientific Computing Advisory Committee October 25, 2001

> Stephen Wolff, Cisco Systems swolff@cisco.com

Outline

ESnet review – summary Trends in National Research Networks

ESnet review

10-11 Sep 01, co-incident with ESSC meeting in Santa Fe Review committee – R. Kendall, DoE Ames Lab **E.** P. Love, Internet2 G. Strawn, NSF V. White, Fermilab W. Turnbull, NOAA **S**. Wolff, Cisco

ESnet is a small ISP

Traffic volume, February 2001 –
ESnet – 45 TB
Abilene – 1057 TB
Uunet/Worldcom - ??
New applications could add 1 Gb/s, 24x7
1 Gb/s = 10.8 TB/day or about 328 TB/mo.

vBNS and Abilene

Abilene Traffic

ASCAC - 25-10-01

ESnet oversight

 User governance (ESSC, ESCC) appropriate for historical growth patterns
 Not well constituted to cope with the approaching step increase in capacity requirements

Fragmentation is (again) a possibility
 UCAID HENP Working Group

ESnet performance

- Connectivity is adequate for most current users
- Good management tools and user services
- Lean, cost-effective operation

ESnet planning

User governance is

risk averse
not well constituted for a strategic view

Special programs (e.g., biotech, SciDAC) need to plan networking requirements and budget for needed capacity

ESnet planning for new services & technologies

No central knowledge of networking research
 Establishment of ESRSC a good step, but needs wider scope

ESnet is hard to defend as a commodity ISP

NRN trends

NRN trends

Fiber – ownership or IRU 39 million miles of fiber in continental US **20-35%** lit 2% in use (Source: Merrill Lynch) Principal costs are trenching & terminating Economic parameters are unclear IPv6 GEANT (EU) WIDE (Japan) NoF (UCAID)

NRN trends (cont.)

Collaboration emerging as driver
 Access Grid – "group-to-group"
 UC CITRIS center
 ...but it's not easy
 Adoption of "Grid" paradigm
 Storage networks
 Optical networks

Teleimmersion requirements

I	Latency	Band width F	Reliable	Multi cast	Security	Streaming	Dyn QoS
Control	< 30 ms	64 Kb/s	Yes	No	High	No	Low
Text	< 100 ms	64 Kb/s	Yes	No	Medium	No	Low
Audio	< 30 ms	Nx128 Kb/s	No	Yes	Medium	Yes	Medium
Video	< 100 ms	Nx5000 Kb/s	s No	Yes	Low	Yes	Medium
Tracking	<10ms	Nx128 Kb/s	No	Yes	Low	Yes	Medium
Database	<100 ms	>1 Gb/s	Yes	Maybe	Medium	No	High
Simulation	ni≺ 30 ms	>1 Gb/s	Mixed	Maybe	Medium	Maybe	High
Haptic	< 10 ms	≻1 Mb/s	Mixed	Maybe	Low	Maybe	High
Rendering	1 < 30 ms	> 1 Gb/s	No	Maybe	Low	Maybe	Medium

Source: R. Stevens, ANL

(cf. also mini-essay by Valdis Kletnieks, VaTech)

Example: CA*net 4

Predicated on a commodity market in lambdas Postulates a transition from the network as a set of services to a set of owned objects "Object-oriented networking" End-user control Full mesh among administrative domains (initially regional nets) No backbone network Links are owned/leased GMPLS, OBGP, UCP,...

Example: DTF / Teragrid

\$53m NSF funding
backplane first, a network second
Qwest fiber IL <-> CA, SONET framing
4 * OC192 ~ 40 Gb/s

National Computational Science ALLIANCE

ASCAC - 25-10-01

