Esnet in Context

Department of Energy Advanced Scientific Computing Advisory Committee
October 25, 2001

Stephen Wolff, Cisco Systems
swolff@cisco.com
Outline

- ESnet review – summary
- Trends in National Research Networks
ESnet review

- 10-11 Sep 01, co-incident with ESSC meeting in Santa Fe
- Review committee –
 - R. Kendall, DoE Ames Lab
 - E. P. Love, Internet2
 - G. Strawn, NSF
 - V. White, Fermilab
 - W. Turnbull, NOAA
 - S. Wolff, Cisco
ESnet is a small ISP

- Traffic volume, February 2001 –
 - ESnet – 45 TB
 - Abilene – 1057 TB
 - Uunet/Worldcom - ??
- New applications could add 1 Gb/s, 24x7
 - 1 Gb/s = 10.8 TB/day or about 328 TB/mo.
vBNS and Abilene
ESnet oversight

- User governance (ESSC, ESCC) appropriate for historical growth patterns
- Not well constituted to cope with the approaching step increase in capacity requirements
- Fragmentation is (again) a possibility
- UCAID HENP Working Group
ESnet performance

- Connectivity is adequate for most current users
- Good management tools and user services
- Lean, cost-effective operation
ESnet planning

- User governance is
 - risk averse
 - not well constituted for a strategic view
- Special programs (e.g., biotech, SciDAC) need to plan networking requirements and budget for needed capacity
ESnet planning for new services & technologies

- No central knowledge of networking research
- Establishment of ESRSC a good step, but needs wider scope
- ESnet is hard to defend as a commodity ISP
NRN trends
NRN trends

- Fiber – ownership or IRU
 - 39 million miles of fiber in continental US
 - 20-35% lit
 - 2% in use (Source: Merrill Lynch)
- Principal costs are trenching & terminating
- Economic parameters are unclear

- IPv6
 - GEANT (EU)
 - WIDE (Japan)
 - NoF (UCAID)
NRN trends (cont.)

- Collaboration emerging as driver
 - Access Grid – “group-to-group”
 - UC CITRIS center
 - …but it’s not easy
- Adoption of “Grid” paradigm
- Storage networks
- Optical networks
Teleimmersion requirements

<table>
<thead>
<tr>
<th>Latency</th>
<th>Bandwidth</th>
<th>Reliable</th>
<th>Multicast</th>
<th>Security</th>
<th>Streaming</th>
<th>Dyn QoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>< 30 ms</td>
<td>64 Kbps</td>
<td>Yes</td>
<td>No</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Text</td>
<td>< 100 ms</td>
<td>64 Kbps</td>
<td>Yes</td>
<td>No</td>
<td>Medium</td>
<td>No</td>
</tr>
<tr>
<td>Audio</td>
<td>< 30 ms</td>
<td>Nx128 Kbps</td>
<td>No</td>
<td>Yes</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Video</td>
<td>< 100 ms</td>
<td>Nx5000 Kbps</td>
<td>No</td>
<td>Yes</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>Tracking</td>
<td><10ms</td>
<td>Nx128 Kbps</td>
<td>No</td>
<td>Yes</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>Database</td>
<td><100 ms</td>
<td>> 1 Gbps</td>
<td>Yes</td>
<td>Maybe</td>
<td>Medium</td>
<td>No</td>
</tr>
<tr>
<td>Simulation</td>
<td>< 30 ms</td>
<td>> 1 Gbps</td>
<td>Mixed</td>
<td>Maybe</td>
<td>Medium</td>
<td>Maybe</td>
</tr>
<tr>
<td>Haptic</td>
<td>< 10 ms</td>
<td>> 1 Mbps</td>
<td>Mixed</td>
<td>Maybe</td>
<td>Low</td>
<td>Maybe</td>
</tr>
<tr>
<td>Rendering</td>
<td>< 30 ms</td>
<td>> 1 Gbps</td>
<td>No</td>
<td>Maybe</td>
<td>Low</td>
<td>Maybe</td>
</tr>
</tbody>
</table>

Source: R. Stevens, ANL

(cf. also mini-essay by Valdis Kletnieks, VaTech)
Example: CA*net 4

- Predicated on a commodity market in lambdas
- Postulates a transition from the network as a set of services to a set of owned objects
 - “Object-oriented networking”
- End-user control
- Full mesh among administrative domains (initially regional nets)
 - No backbone network
 - Links are owned/leased
- GMPLS, OBGP, UCP,…
Example: DTF / Teragrid

- $53m NSF funding
- backplane first, a network second
- Qwest fiber IL <-> CA, SONET framing
- 4 * OC192 ~ 40 Gb/s
FINIS