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Outline
• Update on NSF’s distributed terascale facility
• What grid and facilities strategy is appropriate for DOE?
• Limits to cluster based architectures 
• New paths to petaflops computing capability
• Grid implications of affordable petaflops
• Summary and recommendations
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NSF TeraGrid Approach [$53M in FY01-FY03]
• DTF’s project goal is deployment of a production Grid environment

• staged deployment based on service priorities
• first priority is a linked set of working IA-64 based clusters

• immediately useful by the current NSF PACI user base
• supporting current high-end applications
• standard cluster and data management software

• Grid software deployed in phases
• basic, core, and advanced services

• DTF technology choices based on application community trends
• > 50% of top 20 PACI users compute on Linux clusters

• development and production runs
• majority of NSF MRE projects plan Data Grid environments
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Major DTF and TeraGrid Tasks
• Create management structure – Harder than we thought!
• Engage major application teams – Starting with ITRs and MREs
• Construct high bandwidth national network – On track
• Integrate terascale hardware and software – Planning underway
• Establish distributed TeraGrid operations – New Concepts needed
• Deploy and harden Grid software – Need Grid testbeds
• Expand visualization resources – Development needed
• Implement outreach and training program – PACI Leverage
• Assess scientific impact – Need metrics and process
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TeraGrid [40 Gbit/s] DWDM Wide Area Network
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• Solid lines in place and/or available by October 2001
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TeraGrid Middleware Definition Levels
• Basic Grid services [little new capability]

• deployment ready
• in current use
• immediate deployment planned

• Core Grid services [essential Grid]
• largely ready
• selected hardening and enhancement
• planned deployment in year one

• Advanced Grid services [True Grid]
• ongoing development
• expect to deploy in year two and later
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Grid Middleware [toolkits for building Grids]
• PKI Based Security Infrastructure
• Distributed Directory Services
• Reservations Services
• Meta-Scheduling and Co-Scheduling
• Quality of Service Interfaces
• Grid Policy and Brokering Services
• Common I/O and Data Transport Services
• Meta-Accounting and Allocation Services
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Expected NSF TeraGrid Scientific Impact
• Multiple classes of user support

• each with differing implementation complexity
• minimal change from current practice
• new models, software, and applications

• Benefit to three user communities
• existing supercomputer users

• new capability [FLOPS, memory, and storage]
• data-intensive and remote instrument users

• linked archives, instruments, visualization and computation
• several communities already embracing this approach

– GriPhyN, BIRN, Sloan DSS/NVO, BIMA, …
• future users of MRE and similar facilities

• DTF is a prototype for ALMA, NEESGrid, LIGO, and others



Argonne National Laboratory + University of ChicagoR. Stevens 

Strategies for Building Computational Grids
• Three current approaches to developing and deploying Grid Infrastructure 

• Top Down – NASA IPG, NSF DTF, UK e-science
• Bottom Up – Life Science’s Web Based Computing
• User Community Based – GriPhyN, iVDG, PPDG, etc.

• Current Grid Software R+D Mostly focused on Top Down and User 
Community Models

• Major Grid Building “activities” 
• Grid software infrastructure and toolkit development
• Grid hardware resources [systems, networks, data, instruments]
• Grid applications development and deployment
• Grid resource allocation and policy development



DOE Programs and Facilities
Technical Challenges: Distributed Resources, Distributed Expertise
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Vision for a 
DOE Science Grid

Large-scale science and engineering is typically done 
through the interaction of

• collaborators
• heterogeneous computing resources,
• multiple information systems, and
• experimental science and engineering facilities

all of which are geographically and organizationally dispersed.

The overall motivation for “Grids” is to enable routine interactions of 
networked combinations of these resources to facilitate large-scale 
science and engineering.

Two Primary Goals
•Build a DOE Science Grid that ultimately incorporates computing,
data, and instrument resources at most, if not all, of the DOE Labs 
and their partners.

•Advance the state-of-the-art in high performance, widely 
distributed computing so that the Grid can be used as a single, 
very large scale computing, data handling, and collaboration 
facility.

Grid services provide uniform access to 
many diverse resources

Scientific applications use workflow 
frameworks to coordinate resources and 

solve complex, multi-disciplinary problems
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Grid Strategies Appropriate for DOE-SC
• Possible three layered structure of DOE-SC Grid resources

• Large-Scale Grid Power Plants O[10]
• [Multiprogram Labs, LBNL-NERSC, ORNL, ANL, PNNL, etc.]

• Data and Instrument Interface Servers O[100]
• [Major DOE Facilities, LHC, APS, ALS, RHIC, SLAC, etc.]

• PI and small “l” laboratory based resources O[1000-10,000]
• [Workstations and small Clusters, laboratory data systems, databases, etc.]

• Need tool development, applications development and support appropriate 
to each layer and user community

• Need resource allocation policies appropriate for each class of resource 
and user community
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Near Term Directions for “Clusters” 
• High-Density Web Server Farms [IA-32, AMD, Transmeta]

• Blade based servers optimized for dense web serving
• Scalable, but not aimed at high-performance numerical computing

• Passive Backplane Based Clusters [IA-32, Infiniband]
• Reasonably dense packaging possible 
• High-Scalability not a design goal

• IA-64, x86-64 and Power4 “Server” based compute nodes
• Good price performance, poor packaging density
• Designed for commercial I/O intensive configurations

• Sony Playstation2 [Emotion Engine, IBM Cell Project]
• Excellent pure price performance $50K/Teraflop
• Not a balanced system, difficult microarchitecture 
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Limits to Cluster Based Systems for HPC
• Memory Bandwidth

• Commodity memory interfaces [SDRAM, RDRAM, DDRAM]
• Separation of memory and CPU implementations limits performance

• Communications fabric/CPU/Memory Integration
• Current networks are attached via I/O devices
• Limits bandwidth and latency and communication semantics

• Node and system packaging density
• Commodity components and cooling technologies limit densities
• Blade based servers moving in right direction but are not High Performance

• Ad Hoc Large-scale Systems Architecture
• Little functionality for RAS
• Commodity design points don’t scale



The PSX2's Emotion Engine 
provides ten floating-point 
multiplier-accumulators, four 
floating-point dividers, and 
an MPEG-2 decoder.

Each vector unit has enough 
parallelism to complete a vertex 
operation [19 mul-adds + 1 divide] 
every seven cycles. 
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IBM, Sony and Toshiba “Cell” Project
• $400M investment towards Teraflop processor
• Targeted at PS3, broadband applications

• Each company will produce products based on the core technology
• 100 nm feature size ⇒ 2006 [based on SIA Roadmap]
• Design Center in Austin TX opening later this year
• Sony’s description of PS3 is 1000x performance of PS2

• Planned use for all of Sony’s product lines
• Video, Audio, Computer Games, PCs Etc.
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Cluster Technology Will not Scale to Petaflops
• Affordable and Usable Petaflops will require improvements in a 

number of areas:
• Improved CPU-Memory Bandwidth [e.g. PIM, IRAM]
• HW Based Latency Management [e.g. multithreaded architectures]
• Integrated Communications Infrastructure [e.g. on-chip networking]
• Increased level of system Integration and Packaging [e.g. SOC, ClOC]
• New Large-scale Systems Architectures 

• Aggressive Fault Management and Reliability Features
• Scalable Systems Management and Serviceability Features

• Dramatic Improvements in Scalable Systems Software



Argonne National Laboratory + University of ChicagoR. Stevens 

UCB VIRAM-1 Integrated Processor/Memory
• Microprocessor

• 256-bit media processor [vector]
• 14 MBytes DRAM
• 2.5-3.2 billion operations per second 
• 2W at 170-200 MHz
• Industrial strength compiler

• 280 mm2 die area
• 18.72 x 15 mm
• ~200 mm2 for memory/logic
• DRAM: ~140 mm2

• Vector lanes: ~50 mm2

• Technology: IBM SA-27E
• 0.18µm CMOS
• 6 metal layers [copper]

• Transistor count: >100M
• Implemented by 6 Berkeley graduate students

15 mm

18
.7
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m

Thanks to DARPA: funding
IBM: donate masks, fab
Avanti: donate CAD tools
MIPS: donate MIPS core
Cray: Compilers, MIT:FPU
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Petaflops from V-IRAM?
• In 2005 .. V-IRAM 6 Gflops/64 MBs
• 50 TF per 19” Rack [~10K CPUs/Disk assemblies per rack]

• 100 drawers of 100 processors [like library cards]
• cross bar interconnected at Nx 100 MB/s

• 20 optically interconnected Racks 
• 1015 FLOPS ⇒~$20M

• Power ~ 20K Watts x 20 = 400K Watts
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A Possible Path Towards Petaflops User Facilities
• Community Based Approach to Petaflops Systems Development

• Laboratories, Universities, and Applications Communities
• User Requirements, Software and Systems Design

• Exploiting New Design Ideas and Technology for Scalability
• Cluster-on-a-chip Level Integration 
• Hardware/software Co-design

• Affordable Petaflops Enable Personal Teraflops
• $50M PFlops System ⇒ $50K TFlops
• Enable Broad Deployment and Scientific Impact

• Advanced Networking and Middleware
• Embed Petaflops Capability in the Grid
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Grid Implications of Affordable Petaflops 
• $50M Petaflops system ⇒ $50K Teraflops systems
• DOE Computing Facilities Circa 2006-2010

• Power Plant Level ⇒ O[1-10] PFs computers
• Data Server Level ⇒ O[20-100] 100 TFs Data Servers
• PI Level ⇒ O[1000-10,000] 1 TF lab systems

• Data Server Capability
• Power Plant Level ⇒ 10-20 PB secondary, 100-1000 PB tertiary
• Data Server Level ⇒ 100-500 PB sec, 1000+ PB tertiary
• PI Level ⇒ ~1 PB secondary

• Networking Capability
• Ideal BW ⇒ 10% of bisection bandwidth per system for peer-to-peer
• Terabit WAN backbones and backplanes will be needed
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Summary
• Grid Based Computing Concept is well matched to DOE’s Distributed 

Facilities and Missions needs
• Grids do not replace need for large-scale computers

• Increases high-end demand via Portals 
• Increases data intensive computing and high-performance networking
• software environments link desktops to high-end platforms [petaflops]

• Grids require new ways to allocate and manage computing and data 
resources
• Need a broader view of resources and resource allocations

• Grids and Technology for Petaflops Facilities make sense together
• Technologies for Petaflops will power future grids at all levels
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Recommendations
• DOE should aggressively pursue development of Grid 

Technologies and deployment of Grid based Infrastructure
• DOE should facilitate Grid Applications Communities relevant 

to mission areas: Security, Energy, Climate, HEP, etc.
• DOE should participate in National and International 

coordination of Grid development and Deployment
• DOE should support development of computing platform 

technologies that will enable future Grid engines, including new 
approaches to Petaflops and associated affordable Teraflops


