STATUS AND NEEDS FOR DOE COMPUTING:
A MISSION DRIVEN PERSPECTIVE

D. D. SCHNACK

SCIENCE APPLICATIONS INTERNATIONAL CORP.

SAN DIEGO, CA

Presented to the ASCAC Subcommittee on Facilities
25 October 2001, Washington, DC
OUTLINE

• Mission needs for DOE computing facilities
 • Example: Fusion Energy Sciences

• Background: The development of DOE computing within the fusion program (OFES)

• How computing relates to the present OFES mission

• Computational Projects within OFES
 • Example: The NIMROD Project

• Are present DOE facilities meeting our mission needs?

• A vision for the direction of computing to support DOE missions
PERSONAL EXPERIENCE WITH DOE COMPUTING

- Continuous user of DOE computing facilities since 1973
 - pre-history => CTRCC => MFECC => NERSC => ???
- Staff member of CTRCC and MFECC at LLNL
- Personally developed many large scale computational models that used these facilities
- Project leader for the NIMROD Project
 - Large scale, multi-disciplinary, multi-institutional computational project within OFES
- I am not a computer scientist, but I must solve real programmatic problems that require advanced computing resources
The mission of the U.S. Fusion Energy Sciences Program is to advance plasma science, fusion science, and fusion technology -- the knowledge base needed for an economically and environmentally attractive fusion energy source.

Fusion plasmas present an extreme scientific challenge

- The fundamental laws of physics are known, but the collective nonlinear dynamical behavior is very complicated
- Dynamics characterized by extreme separation of space and time scales, and extreme anisotropy
- Science problems are as challenging as fluid turbulence
- Scientific uncertainties can have large impact on program costs
- Relevant experiments are very expensive
- Realistic simulation using large scale computing is cost effective
• Advanced fusion experiment will cost ~ $2-10 B
• Cost proportional to volume: $ \sim V$
• Power density proportional to square of max. pressure: $P/V \sim p_{\text{max}}^2$
 \Rightarrow $\sim 1/p_{\text{max}}^2$ for fixed P and B (engineering constraints)
• Physics uncertainties (e.g., neo-classical tearing modes) limit max. pressure to $\sim 2/3 p_{\text{max-theoretical}}$

Uncertainties in nonlinear physics account for $\sim 1/2$ the cost of advanced fusion experiment!

Predictive fluid simulation with realistic parameters has high leverage to remove this uncertainty
• Fusion is a decentralized program

• In the 1970s it was recognized that the required simulation capability could only be obtained with a centralized computer center and high speed long distance networking

• Reduced duplication of effort, eliminated institutional monopolies, facilitated collaborations

 It was revolutionary!

• This model has been subsequently adopted by other programs and other agencies

• Evolved into the present DOE computing environment
IMPORTANT FUSION PROBLEMS NOT REQUIRING SUPERCOMPUTING

- Programmatically important, but not requiring the most advanced computing facilities
 - *Equilibrium*: static balance between magnetic and pressure forces in experimental geometry (solving a complicated PDE)
 - *Stability*: Is the equilibrium stable to small displacements? (solving a complicated eigenvalue problem)
 - *Transport*: diffusion of mass and energy in response to microscopic processes (solving a time dependent PDE)

The majority of fusion computing problems do not require the most advanced supercomputers

ESSENTIAL PROBLEMS REQUIRE SUPERCOMPUTING
• Problems whose solution is essential to the OFES mission:

 • *Turbulent transport*:
 • Computing diffusion coefficients from first principles => a fundamental understanding of the basic confinement properties of fusion plasmas

 • *Long time scale fluid dynamics* (extended MHD):
 • Nonlinear evolution of slowly evolving plasma instabilities => a fundamental understanding of consequences of operating near stability boundaries

These problems require the largest, fastest supercomputers imaginable!
The important fusion problems are time dependent, and therefore 4-dimensional.

- They require many thousands of time steps.
- Often a large, ill-conditioned linear algebra problem must be solved at each time step.
- Parallelization can be applied to the 3 spatial dimensions.
- Parallelization cannot be applied to time.
 - Prohibited by causality.

Programmatically important fusion problems are not optimally suited to massive parallelization!
FACTORS AFFECTING FUSION COMPUTING

• Ascendancy of massively parallel computer architecture over serial vector machines, and associated conversion costs

• Uncertainty in configuration of future computer architecture, and anticipated costs of additional future code conversions

• High cost and long time line of individual (superhero) code development, and general inaccessibility of resulting codes by the fusion community

• Increasing programmatic importance of physics problems that require extensions of the capability of existing computational tools
NEEDS OF FUSION COMPUTING

• The need to lower the future cost of application development, maintenance, and use

• The need to implement computational and programming methods that isolate architecture dependencies so that future codes will be more efficiently adapted to evolving new architectures

• The need to make applications codes more readily available to, and usable by, the overall fusion science community

• The need for advanced simulation codes to address physics problems of immediate programmatic interest

 OFES responded with Project-based Computing
PROJECT-BASED COMPUTING

• The *old* way: Code development by individual researcher (the Superhero):
 • Individual or institutional monopolies
 • Non-portable, unreadable, inflexible, non-maintainable code
 • Eventually required expensive rewriting

• The *new* way: Code development by inter-disciplinary, multi-institutional team
 • Publicly available (including source), no monopolies
 • Extensible, modular, portable, maintainable code

Need for centralized facilities that not only provide high quality CPU cycles, but that also facilitate project function
The vision of the NIMROD project is to provide the magnetic fusion research community with a useful and widely available computational tool that can be applied to obtain a predictive understanding of the nonlinear dynamics of the most modern and expensive fusion experiments.

- The NIMROD project represents a new paradigm for fusion computing because:
 - It seeks to solve the critical nonlinear physical problems facing the fusion program within a user-friendly, widely available, self-contained structure that allows interaction with commonly available analysis tools and experimental data bases; and,
 - It aims not only to provide this advanced computational capability, but also to change fundamentally the way that capability is developed, deployed, and maintained within the fusion program.
A NIMROD PHYSICS CALCULATION

- Time-dependent, nonlinear evolution of a slowly growing, non-ideal MHD instability at large Reynolds' number \((S \sim 10^6)\)

- Computed on T3E at NERSC:
 - 8 dependent variables on 49,252 vertices
 - 154 PEs
 - 40,870 time steps
 - 64,680 CPU hours => 7.38 CPU years
 - 3.2 months wall clock time

- Increasing number of PEs has little effect because of causality

 This performance is only marginally acceptable
HIGH END NEEDS FOR MISSION PERFORMANCE

• The largest, fastest systems available (can never be too big, or too fast)

• Optimize performance for long runs
 • Specialized systems for time dependent problems?
 • Longer residence time for jobs?
 • Revisit the MP paradigm?

• Maximize memory for large Reynolds' number calculations

• Offload smaller jobs to mid-range systems

• ????
MID-RANGE NEEDS FOR MISSION PERFORMANCE

• Most fusion computing capacity does not require high-end computing

• Lack of generally available mid-range computing systems
 • Beowulf/Linux clusters
 • "Tens of dozens" of processors
 • Much cheaper than supercomputers, but too expensive for small groups/institutions

 Back to pre-CTRCC computing situation

• Needed for debugging, and preparing large problems

• These jobs are clogging the queues on present DOE supercomputers
NETWORKING AND OTHER SUPPORT

- Large data "farms" for archiving data (many Gbytes/run)
- Fast networks for transferring data between central and local facilities
- Software and hardware to enable team interaction
- High end graphics, and the capability to use it remotely (in the real world of firewalls, etc.)
- Debugging and performance analysis tools
- Mathematical software libraries
 - F90. Don't insist on C++
- ???
VISION TO SUPPORT THE FUSION MISSION

• The largest, fastest supercomputer (of course!), but...
 • Configuration optimized for time dependent problems requiring many time steps (inherently sequential)
 • Access limited to only the largest, programmatically important problems

• Centrally available mid-range computing facility
 • Provide needed capacity for majority of fusion applications, and eliminate institutional monopolies
 • Offload jobs from the supercomputer

• Storage, networking, communication, and graphics to facilitate code and data comparisons, and enable remote collaborations
SUMMARY

- The fusion mission is not optimally served by the MP computer paradigm
 - Need specialized architectures for time dependent problems
- Present DOE facilities are not configured in a way that well serves the fusion computing mission
- Need for centralized mid-range computing facility
- Remote collaborations are the reality
 - Need networks, hardware, and software that facilitates these efforts