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Diffusion models and applications 

Stochastic 
Diffusion, 
percolation 

Threshold 
models 

Constrained 
Network flows 

Chip firing, 
sandpiles 

Malware 

Independent  
failures 

Epidemics 

Packet flows 

Adoption of 
technology 

Cascading  
failures 

Fads and 
Social conventions 

Power grid 

Commodities/ 
information 

 Graph connecting different entities 
 Nodes change state based on their neighbors’ states 

Wide variety of models for different applications 



Broad goals 

Motivation: wide variety of diffusion processes 
are used in different applications 

 Can be formulated by similar fundamental questions 
in terms of graph dynamical systems 

Goals: 

 Modeling and analysis of complex networks 

 Characterize dynamical properties, especially in terms 
of the underlying graph structure 

 Techniques to optimize and control dynamics 



Challenges 

 Underlying complex networks 
 Analytical approaches based on renormalization and 

differential equation methods not easily applicable 

 Network structure not well understood - need for better 
models 

 Characterization of dynamical properties 
 Need to identify new properties 

 Need for new scalable computational approaches  
 Poor locality  

 High expansion and large separators 

 Dynamics on and of networks 

 Co-evolution between networks and diffusion process 

 Behavioral changes 

 



Models of Complex Networks 

Erdos-Renyi, 
Chung-Lu 
models 

 Very simple 
models 
 Main goal: capture 
degree distribution 
 well understood 
analytically 

Small world, PA, 
copying models 

 Based on 
hypotheses of 
social evolution 
(“rich get richer”, 
etc.) 

HOT model 

First principles 
approaches: synthetic 
networks 

 Combination of 
optimization 
objectives with 
random evolution 

 Most realistic 
 Useful for network/policy 
planners 
 Need lot of data, models 
and HPC tools 

Increasing complexity and realism 

 [Borner, et al., 2007] 
[Li, et al., 2005] 



Beyond degree distributions 

Edge swap  
operation 

 Edge swap operations 
 Preserves degree distribution 
 Polynomial time mixing [Feder et al., 2005] 

 Disease dynamics not completely 
determined by degree distribution 
 Need random graph models to preserve 
non-local properties 

Changes in static network 
properties with edge swaps 

Changes in disease dynamics 
with  edge swaps 

Day 



Outline for the rest of the talk 

Part I: Modeling and analysis of complex 
networks 

 Map-reduce based algorithms for relational subgraph 
analysis 

Part II: Dynamical properties: mathematical and 
computational aspects 

 Characterize different local diffusion models and 
techniques for controlling dynamical properties 

Part III: Simulation tools for diffusion models 

 Malware spread in large proximity networks 



PART I: MODELING AND ANALYSIS 
OF VERY LARGE GRAPH PROPERTIES 



Summary of contributions 

 “First principles” approach for synthetic social 
and infrastructure networks 
 Integrates a large number of diverse public and 

commercial data sets 

 Stochastic models that capture properties of real 
networks 

Computing properties of very large networks 
 Efficient sampling based approaches for computing 

structural properties 

 Mapreduce/Hadoop based for relational subgraph 
analysis 

 New parallel algorithms for dynamical properties 



General goal 

Embedding of H in G 

G=(V,E): very large graph  

H=(V’,E’): small 
template/subgraph 

Goal: find one or more embeddings 
of labeled subgraph H in G 

Non-induced embedding: 



Motivation and applications: data 
mining, social networks, Semantic web 

 Detecting fraud in financial 
transactions  [Bloedorn et al.] 

 Other applications: connection 
subgraphs [Faloutsos, et al.] 

[Brochelor et al]: query of the form  
 ?v1, ?v2, ?v3, p such that ?v1 is a faculty member 
at UMD, ?v2 is an Italian university, who is a friend 
of ?v1 and ?v3 has commented on paper p by ?v1 



Motivation and applications: systems, 
networking and software engineering 

 Automatic custom instruction set 
generation by enumerating convex 
subgraphs [Bonzini et al.] 

 Mining call graphs to localize software bugs 
[Eichiner et al.] 

 Other applications: anomaly detection in 
networks through subgraph analysis [Noble 
et al.] 

 [Maxwell et al.] discovering  graph 
grammars corresponding to 
memory leaks 



Motivation and applications: 
bioinformatics 

[Alon et al.] Characterization of protein-protein interaction 
networks based on differences in counts of trees on 9 nodes  

[Alon] network motifs in transcription networks 



Variations: subgraph enumeration 
problems 

Functions on the space of embeddings 
 Existence and counting all occurrences 

 Functions of labels as part of embeddings 

 Approximate embeddings 

Relational queries 
 Involving node and edge labels 

 Specified by graph grammars 

Motifs and most frequent subgraphs 
 Contrast with random graphs with similar properties 

Graphlets 
 Generalization of degree distribution 



Summary of results 

SAHad: randomized Hadoop based algorithm for 
enumerating trees and tree-like subgraphs 
 For given ε, δ: produces (1±ε) approximation with 

probability ≥ 1-δ 

 Worst case work complexity bound of O(22km f(ε,δ)) 

 Scales to graphs with over 500 million edges and 
templates of size up to 12 

 Color-coding technique for approximate enumeration 

Heterogeneous computing environments 
 Different clusters and amazon EC2 without any system 

level optimization 



Summary of results (continued) 

Broad class of relational subgraph queries 

 Node and edge labeled subgraphs 

 Extension to tree-width bounded subgraphs (low 
treewidth = like trees) 

 Can easily compute classes of distributive functions on 
the space of embeddings 

 Can extend to weighted and approximate matches 

 Systematic approach to handle queries specified by a 
class of tree grammars (chain grammars) 

 Graphlets and motifs 



Prior approach and challenges 

 Large literature on frequent subgraph enumeration 
and variations: Apriori, FSG,… 
 Maintain candidate matches for subgraphs with k-1 edges, 

and extend to subgraph with k edges 
 Backtracking/extensive bookkeeping to ensure valid 

matches 
 Scales to ~100,000 node graphs, not clear how to 

parallelize 
 No rigorous worst case bounds 

 Database techniques: preprocessing based on fixed 
distribution of queries 

 Dynamic programming based on color-coding 
 No prior parallelization 



Attempt: divide and conquer 

H1 

H2 

Could identify embeddings of H1 and H2 
and put them together? 



But … overlaps possible 

Need to keep track of extra information to avoid 
overlaps between embeddings of sub-templates 



Color-coding idea 

[Alon, Yuster, Zwick, 95]  



Dynamic programming for paths 

1 

2 

C(1,        )=2 

3 
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C(3,        )=0 

C(4,        )=1 
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C(1,        )=2 
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C(3,        )=0 

C(4,        )=1 

C(2,         ) = C(1,      ) +  
                      C(3,      ) + C(4,     ) 

Dynamic programming for paths 



Mapreduce/Hadoop 

Map 

Map 

Reduce 

Reduce 

Data stream 

Key value pairs  
<k1, v1>  <k2, v2> <k3, v3> All pairs with key k1:  

<k1, v11, v12, … 

All pairs with key k2:  
<k2, v11, v12, … 

 Powerful framework for processing large amount of streaming data 
 Developed by Google for web applications [Dean and Ghemavat, 2005] 
 Open source implementation: Hadoop  

 Mapreduce internally sorts key-value pairs and reorganizes items with 
same key value for reducer 
 Mapper produces key-value pairs for each data item 
 Reducer processes all elements with same key 
 Can be repeated multiple times 
 System takes care of producing data streams and sorting 

HDFS 



Graph algorithms using 
Mapreduce/Hadoop 

 

Finding paths and diameter 

Pagerank and other random walk based measures 

Community detection and clustering problems 

Subgraph analysis 

 Counting #triangles: [Pagh et al., 2011], [Suri et al., 
2011] 

 Subgraph enumeration to ~100,000 node graphs: [Liu 
et al., 2009] 



Extension to trees 



SAHad: mapreduce implementation 



Performance analysis 



Experiments: setting 

Computing resources 
 Athena: 42 node cluster 

with 32 cores per node 
 Amazon EC2 

Different templates 



Performance analysis: time & space 
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Size of template 

Performance with MPI based implementation Performance in Amazon EC2 



Variation with #reducers per node 

 Athena: one disk per node 
 Many reducers: contention for disk 

Total running time for different tasks Total running time vs #reducers per node 

Distribution of total 
running time of reducers 



Summary of experimental results 
Experiment Computing 

resource 
Template and 
network 

Key observations 

Approximation error Athena U7; GNP Error below 0.5% 

Impact of number of 
data nodes 

Athena U10; Miami, GNP scale from 4 hours to 
30 minutes with data 
nodes from 3 to 13 

Impact of #concurrent 
reducers 

Athena, EC2 U10; Miami Non-monotone 
variation in running 
time 

Impact of #concurrent 
mappers 

Athena, EC2 U10; Miami Time generally 
constant 

Unlabeled/labeled 
template 

Athena, EC2 Varying templates 
7-12 

< 35 minutes 

Graphlets Athena U5; Miami, 
Chicago 

< 35 minutes 



PART II: DYNAMICS & CONTROL 



Diverse diffusion processes 

Model Description Example Applications 

Percolation and 
extensions: 
SI/SIS/SIR/Independent 
cascades 

Each red node infects each blue neighbor 
independently with some probability 
 

Malware, failures, 
infections 

Complex contagion: 
threshold and variants 

Each blue node switches to red if at least  
 

Spread of innovations, 
peer pressure 

Non-monotone multi-
threshold models 

Thresholds for switching from blue to red 
and from red to blue 

More complex social 
behavior 

Voter models Each node picks the state of a random 
neighbor 

Spread of ideologies 

Constrained network 
flows 

Flows with node/link capacities and 
additional constraints on paths 

Packet flows, traffic, 
wireless networks 

Graph dynamical system: 
contact graph, node states, local 
functions, update order Example: ratcheted threshold-2 model 



Key Questions 
Understanding Dynamical 

Properties 
Computational aspects Interventions to control the 

dynamics 

 Existence and 
characteristics of fixed 
points 
 E.g.: average 

#nodes in state 1 in 
fixed point 

 Transient lengths 
 Stability 

 How do changes in 
graph, update order 
or functions alter 
dynamics? 

 Who becomes 
“infected”? 

 Impact of network 
structure 

 

 Computing different 
dynamical properties 
 Reachability: does the 

system reach specific 
configurations of 
interest? 

 Predecessor existence: 
what kind of 
configurations could 
lead to the current 
one? 

 Simulation tools that scale 
to large systems 

 

 Forcing node states: 
changing local functions 
 Freezing selected nodes in 

a specific state 
• Malware spread 

(SIS/SIR): anti-virus 
patches 

• Influence spread 
(threshold): choose 
sources to seed spread 

• Voter models: make 
some nodes stubborn 

 Changes in the graph 
 Add/delete edges to 

indirectly alter dynamics 
 

 



Summary of results 

 Analyzing dynamical properties 
 Stability in threshold systems 
 Characterization of limit cycles and fixed points in bi-threshold 

systems 
 Impact of structural properties: identifying static graph 

properties 

 Efficient algorithms for computing dynamical properties 
 Efficient algorithms and scalable simulation tools for computing 

dynamical properties 

 Control and optimization of the dynamics 
 Influence maximization in voter dynamics 
 Critical sets to control diffusion in SIR (e.g., vaccinations) and 

threshold models (countering influence) 
 Game theoretical analysis of distributed interventions 



Specific results: controlling diffusion in 
threshold systems 



Bicriteria approximation for threshold=1 

t s 
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b 

b 
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M 

M Flow based algorithm 



Bi-threshold model: limit cycles and 
fixed points 

Non-monotone dynamics: more 
realistic model of agent behavior 



Proof: fixed points for trees 

v switches from 0 to 1 if it has at 
least one 1-neighbor, and from 1 to 
0 if it has at least one 0-neighbor 



PART III: EFFICIENT SIMULATION 
TOOLS 



Summary of results: efficient 
computational tools 

 

EpiFast: Epidemics on large social-contact 
networks 

EpiCure: spread of malware in proximity networks 

 InterSim: HPC framework based on graph 
dynamical systems 



 Malware: from nuisance to a threat 

 Challenges and tools needed 
 Multiple scales: Bluetooth to Internet; self-

forming; resistant to regulation 

 Need to model mobility, multi-level network 
representation to capture interactions between 
humans and devices, and behavioral changes 

 Modeling and simulation of malware spread: 
more abstract models and efficient simulation 
tools that scale to large networks 

 

Malware on hybrid wireless networks 
43 

“Human mobility and wireless 
networks could abet the spread of 
mobile malware” – Jon Kleinberg, 

Nature 2008 

Time 
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Internet 

worms 

Human 

worms 

Days Seconds 

Mobile 

worms 

Key questions 
 Detect and understand characteristics of the spread of new worms 
 Identify vulnerable devices and networks  
 Strategies to control the spread: anti-virus patches, quarantining 



Current approaches: broad spectrum 

IDLE

Inquiry Phase

Build a neighbor list

For every neighbor

Paging Phase

Connect to a neighbor node

Worm Query Phase

Worm Replication 

Phase

No

Yes

Yes

No

Query Times out

Times out / Success

NoYes

Empty
neighbor list?

Connected?
All neighbors 
Connected?

S I 

Compartmental model 
 Assume complete mixing 

population 
 Random waypoint mobility 

Detailed modeling of 
all device states 
 Does not scale 

beyond networks 
with few hundred 
devices 

Motivating question: approach that captures worm characteristics 
reasonably well, but scales to very large graphs  



Our approach: EpiCure 
 Malware modeled as a stochastic diffusion 

processes. 

 High resolution models of synthetic social 
contact networks, mobility and call behavior 

 First principles based approach, integrates 
over 14 different public and commercial data 
sets 

 Detailed model of movement and activities  
of people in urban regions 

 Can explicitly incorporate behavioral changes 
in model 

 EpiCure: HPC modeling and simulation 
environment to study mobile malware in 
large dynamic networks 

 Generic: can work with generic malware 
models and networks (user inputs) 

 Scalable: Scales to large realistic dynamic 
networks 

 Expressive: Allows one to study a large class 
of adaptive and non-adaptive responses 

 

Synthetic 
Data 

Activity 
Patterns 

TRANSIMS 

Sub-location 
Modeling 

Bluetooth 
Network 

Construction of Realistic 
Mobile network 



Approach and key techniques for scaling 

 Approach 
 Network-based representation 
 Probabilistic timed transition system (PTTS) 
motivated by human epidemics 
 Bluetooth specific states abstracted out 
 State reduction by offline traversal 
 Threading based optimization 
 Error less that 5% 
 Scales to millions of devices 

 

Highly 
detailed 
ns-2 based 
Bluetooth 
model 



Approach and key techniques for scaling 

Highly 
detailed 
ns-2 based 
Bluetooth 
model 

 Approach 
 Network-based representation 
 Probabilistic timed transition system (PTTS) 
motivated by human epidemics 
 Bluetooth specific states abstracted out 
 State reduction by offline traversal 
 Error less that 5% 
 Scales to millions of devices 

 



Sample results: simulation setup 

 
Factorial experiment design 

Network 

Area Chicago Downtown area (zip 60602) 

Demographics People in age group of 20 – 50 years 

People (devices); 
locations 

30000; 4400 

Smart device ownership 100% - every individual in the demographic has a smart phone 

Simulation 

Replicates 5 

Duration of Simulation 8 hours (8 AM to 4 PM), typical work schedule 

Initially infected 1%,5%,10% 

Wallclock Max 2 hours (lower when responses are implemented) 

Infection seed 8 AM 

Sensitivity 
analysis 

Malware parameters Idle time, pto 

Network parameters:  Market share (m), Location Density (d) 

Response 
mechanisms 

Static Degree and Betweenness centrality 

Device-based detection Passive  self detection, local and centralized signature dissemination 

Results 
Cumulative infection size 

T(q,x): time taken to infect q percent of devices when x is varied 



Sample results: mobility matters 

Activity-based mobility model 

Random Waypoint mobility model 



Results: controlling malware spread 

Setting: detection by activity monitoring 
 System call, power signature or behavior based detection 
 Require some number of occurrences before detection: “self detection 

threshold” 
 Use self detection for automatic signature generation: local and 

centralized signature dissemination 
 

 

Centralized dissemination is more effective than local 
 



 Speed and Parallelization 
– Sequential EpiCure 300X faster than NS-2 
– Speedups are obtained with <5% loss in 

accuracy 
– Parallel implementation: Hybrid MPI-threads 

improves efficiency for multi-core clusters 

 Scale and Complexity 
– Scales to  3-5 million devices 
– Heterogeneous and realistic  spatial networks 
– Time Varying Networks 
 
 

 

500 Devices 3—5 M devices 

ns-2 45-50 hrs Cannot Study 

EpiCure 

10 minutes 

(0.1% error, 

comp. NS-2) 

1.5 hrs (<5% 

error comp. 

EpiCure v1.0) 

New model reduction and algorithmic techniques needed to scale 
and parallelize: EpiCure is the first modeling environment that 
can represent and study malware over urban scale, time varying 
and heterogeneous networks 

Computational contributions 



Summary of computational 
contributions 52 

Factors 

Simulation based computational models 

Random Mobility 
[Yan et al. ACSAC ’06, 

ASIACCS ’07] 

Real Mobility Data 
[Wang, Nature ’09] 

EpiCure  Environment 

Scope 1 location Large area Large area 

Temporal Scale ms. / µs. Time unit (time to infect) Time units (TUs) 

Spatial Scale meters Cell tower region, uniform meters 

Network size 500 – 1000 devices 6 million 3-5 million 

Within-host 
Malware Model 

Detailed implementation Compartmental model (SI) 
High fidelity malware model, specific to the 

malware & Bluetooth protocol. 
Can implement other manifestations. 

Mobility model 
Random Waypoint, Random 

Walk, Random Landmark 
Cell tower position from mobile 

call data 
Activity-based mobility model, activity 

location for each individual 

Device  interaction 
network 

Based on mobility models 
Homogeneous distribution of 
devices in each tower region 

High resolution network, pair-wise 
interaction model 

Detection Can be implemented 
Not studied, difficult to 

implement 
Detection based on infection propagation 

Control mechanisms Can be implemented 
Not studied and not easy to 

implement 
Self detection, signature dissemination 

schemes & co-evolution of networks 

Network co-
evolution 

Co-evolution of networks can be modeled 
and studied 



Summary 

Graph dynamical systems 

 Rich framework to capture a wide variety of diffusion 
phenomena 

 Challenging algorithmic problems, need new 
computational tools 

Fundamentally new computational challenges 

 Very large heterogeneous graphs 

 Cannot be easily partitioned 

 Non-uniform communication patterns: difficult to 
parallelize in conventional models 

 



Thank you 


