Diffusion on complex networks:
algorithmic foundations

Anil Kumar S. Vullikanti
Dept. of Computer Science and
Virginia Bioinformatics Institute

Virginia Tech

, : - Virginia
Network Dynamics and Simulation Science Laboratory [[ﬂlﬂ]]TeCh
W

Acknowledgements

Joint work with:

Q NDSSL members including: Madhav Marathe Henning Mortveit,
Maleq Khan, Zhao Zhao, Chris Kuhlman, Samarth Swarup

Q S. S. Ravi, SUNY Albany

Q Dan Rosenkrantz, SUNY Albany

Q Aravind Srinivasan, University of Maryland

Q Rajmohan Rajaraman, Northeastern University
Q Ravi Sundaram, Northeastern University

Diffusion models and applications

U Graph connecting different entities
[Nodes change state based on their neighbors’ states

Fads and

Social conventions Epidemics
Independent
Adoption of failures
technology Threshold Stochastic Malware
models lefu5|or.1,
percolation
Cascading Chip firing, Constrained
failures sandpiles Network flows

Commodities/
information

Power grid

Packet flows

Wide variety of models for different applications

Broad goals

 Motivation: wide variety of diffusion processes
are used in different applications

= Can be formulated by similar fundamental questions
in terms of graph dynamical systems

d Goals:
= Modeling and analysis of complex networks

" Characterize dynamical properties, especially in terms
of the underlying graph structure

=" Techniques to optimize and control dynamics

Challenges

Q Underlying complex networks

= Analytical approaches based on renormalization and
differential equation methods not easily applicable

= Network structure not well understood - need for better
models

Q Characterization of dynamical properties
= Need to identify new properties

Q Need for new scalable computational approaches
= Poor locality
= High expansion and large separators
= Dynamics on and of networks
= Co-evolution between networks and diffusion process
= Behavioral changes

Models of Complex Networks

Erdos-Renyi,
Chung-Lu
models

copying models

Small world, PA, [HOT model]

First principles
approaches: synthetic
networks

Increasing complexity and realism

= \ery simple
models

= Main goal: capture
degree distribution
= well understood
analytically

[Li, et al, 2005]

" Based on = Combination of
hypotheses of optimization
social evolution objectives with
(“rich get richer”, random evolution
etc.)

[Borner, et al., 2007]

= Most realistic

= Useful for network/policy
planners

= Need lot of data, models
and HPC tools

|

& ?

Beyond degree distributions

0 Edge swap operations

= Preserves degree distribution
= Polynomial time mixing [Feder et al., 2005]

Q Disease dynamics not completely
determined by degree distribution

Q Need random graph models to preserve
non-local properties

Changes in static network
properties with edge swaps

#infections

Edge swap
operation

Day

Changes in disease dynamics
with edge swaps

Outline for the rest of the talk

dPart |

: Modeling and analysis of complex

networks

= Ma

p-reduce based algorithms for relational subgraph

analysis

dPart |

I: Dynamical properties: mathematical and

computational aspects

®» Characterize different local diffusion models and

tec

dPart |
= Ma

nniques for controlling dynamical properties

|: Simulation tools for diffusion models

ware spread in large proximity networks

PART I: MODELING AND ANALYSIS
OF VERY LARGE GRAPH PROPERTIES

Summary of contributions

d “First principles” approach for synthetic social
and infrastructure networks

" |[ntegrates a large number of diverse public and
commercial data sets

= Stochastic models that capture properties of real
networks

d Computing properties of very large networks

= Efficient sampling based approaches for computing
structural properties

* Mapreduce/Hadoop based for relational subgraph
analysis

= New parallel algorithms for dynamical properties

-~

G=(V,E): very large graph

General goal

H=(V',E’): small

template/subgraph

Non-induced embedding:
f: V' — V such that

(u,v) € E' = (f(u),f(v)) € E

r

L

Goal: find one or more embeddings
of labeled subgraph Hin G

~

Motivation and applications: data
mining, social networks, Semantic web

[Brochelor et al]: query of the form

?v,, ?V,, ?v;, p such that ?v, is a faculty member O Detecting fraud in financial
at UMD, ?v, is an Italian university, who is a friend transactions [Bloedorn et al.]
of ?v; and ?v; has commented on paper p by ?v, Q Other applications: connection

subgraphs [Faloutsos, et al.]

Motivation and applications: systems,
networking and software engineering

java.util. HashMap$Entry

QO Automatic custom instruction set
generation by enumerating convex
subgraphs [Bonzini et al.]

A Mining call graphs to localize software bugs
[Eichiner et al.]

Q Other applications: anomaly detection in
networks through subgraph analysis [Noble
et al.]

A [Maxwell et al.] discovering graph
grammars corresponding to
memory leaks

Motivation and applications:
bioinformatics

[Alon et al.] Characterization of protein-protein interaction
networks based on differences in counts of trees on 9 nodes

[Alon] network motifs in transcription networks

Variations: subgraph enumeration

problems
d Functions on the space of embeddings
= Existence and counting all occurrences
" Functions of labels as part of embeddings
" Approximate embeddings
d Relational queries
" |Involving node and edge labels
= Specified by graph grammars
d Motifs and most frequent subgraphs
= Contrast with random graphs with similar properties

d Graphlets
= Generalization of degree distribution

Summary of results

d SAHad: randomized Hadoop based algorithm for
enumerating trees and tree-like subgraphs

= For given g, 0: produces (1+€) approximation with
probability > 1-6

= \Worst case work complexity bound of O(22km f(g,6))

= Scales to graphs with over 500 million edges and
templates of size up to 12

= Color-coding technique for approximate enumeration
d Heterogeneous computing environments

= Different clusters and amazon EC2 without any system
level optimization

Summary of results (continued)

d Broad class of relational subgraph queries

= Node and edge labeled subgraphs

= Extension to tree-width bounded subgraphs (low
treewidth = like trees)

= Can easily compute classes of distributive functions on
the space of embeddings

= Can extend to weighted and approximate matches

= Systematic approach to handle queries specified by a
class of tree grammars (chain grammars)

= Graphlets and motifs

Prior approach and challenges

A Large literature on frequent subgraph enumeration
and variations: Apriori, FSG,...

" Maintain candidate matches for subgraphs with k-1 edges,
and extend to subgraph with k edges

= Backtracking/extensive bookkeeping to ensure valid
matches

= Scales to ~100,000 node graphs, not clear how to
parallelize

* No rigorous worst case bounds

0 Database techniques: preprocessing based on fixed
distribution of queries

Qd Dynamic programming based on color-coding
* No prior parallelization

Attempt: divide and conquer

H,

Could identify embeddings of H; and H,
and put them together?

But ... overlaps possible

Need to keep track of extra information to avoid
overlaps between embeddings of sub-templates

[Alon, Yuster, Zwick, 95]

Color-coding idea

@ Basic idea: color graph with k = |H]
distinct colors and only count colorful
embeddings.

@ Dynamic programming to count number
of colorful embeddings.

@ If G is colored uniformly at random,
number of embeddings is proportional to
#colorful embeddings:

Pr[given embedding of H is colorful] = %
E[# colorful embeddings of H in G] =
Xt (# embeddings)

Dynamic programming for paths

@ Let col(v) denote color of node v

@ Let C(v,S) be the number of embeddings
of colorful paths of length |S| using set S
of colors, that end at node v.

C(v. {¢}) = {1 if col(v) =1¢

0 else

Cv.5)= Y C(w,S — {col(v))
w:(v,w)eE

1 | |
Goal: compute 5 XV: C(v,{1,..., k})

Dynamic programming for paths

@ Let col(v) denote color of node v

@ Let C(v,S) be the number of embeddings
of colorful paths of length |S| using set S
of colors, that end at node v.

C(v. {¢}) = {1 if col(v) =1¢

0 else

C(l,e®)=2
C(3,e@)=0

1 ’ ’ —
Goal: compute > XV: C(v,{1,..., k}) C(4,00)=1

Cv.5)= Y C(w,S — {col(v))
w:(v,w)eE

C(2,0@0)=C(l,00@) +
C(30@) + C(4®0)

Mapreduce/Hadoop

Key value pairs
<k, v;> <ky, vy> <k;, v3> All pairs with key k,:

[) <Ky, Vi1, Vioy oo [)
Data stream Map v o Reduce
> wep [vors | e
4 N - -
Map All pairs with key k,: Reduce
\ . <k2’ V11, vlz, Y \ /

A Powerful framework for processing large amount of streaming data
= Developed by Google for web applications [Dean and Ghemavat, 2005]
= Open source implementation: Hadoop
d Mapreduce internally sorts key-value pairs and reorganizes items with
same key value for reducer
= Mapper produces key-value pairs for each data item
= Reducer processes all elements with same key
= Can be repeated multiple times
= System takes care of producing data streams and sorting

Graph algorithms using
Mapreduce/Hadoop

A Finding paths and diameter
d Pagerank and other random walk based measures
d Community detection and clustering problems

d Subgraph analysis

= Counting #triangles: [Pagh et al., 2011], [Suri et al,,
2011]

= Subgraph enumeration to ~100,000 node graphs: [Liu
et al., 2009]

Extension to trees

@ Partition T into sub-trees 7 ={ Ty, T,,..., T, }.

T; has children child;(T;) and child,(T;) and root
.‘O(TJ’)'

@ Recursively compute C(v,p(T;),S): #colorful
embeddings of T; using set S of colors
(|S| = | Ti|) in which v is mapped to p(T;) using
the following recurrence

C(Va :O(Ti)a S) —

Z-3 5.5 C(v.p(childh (T;)). S1)
C(u, p(childy(T;)), S2),

where the summation is over all valid 51, 5,, Z is
a scaling factor

SAHad: mapreduce implementation

Performance analysis

LEMMA

Consider any node v and template T;.

@ The input and output sizes for a Counter.Mapper instance,

corresponding to v and T; are O((|Chﬂdﬁ(T)|) + (\ch;fdz(T)|) + d(v))

and O(((Ichrfd1(T)\) + (|Ch”,d2))d(v) respectively.

@ T[he size of the input to any Counter Reducer is

O(((|chﬁdﬁ(T,-)\) + (|ch;fdt))d(v) and the corresponding work

complexity is O((|chi1’dﬁ(T;)|)(\ch:fdg(T)d(v)).

THEOREM

For any given €,0 > 0, SAHAD produces a (1 + €) approximation to the
total number of embeddings with probability at least 1 — 0, and has a
total total work complexity of O(|E[22Ke¥ log (1/6)%).

Experiments: setting

Network | No. of Nodes(in million) | No. of Edges(in million)
Miami 2.1 1054

Chicago 9.0 5379

GNPI100 0.1 2.0

Different templates

Computing resources
O-C U:5_1: - Us-2 Us-3 O Athena: 42 node cluster

with 32 cores per node

Op(ﬁg L Amazon EC2
U7-1 U10-1

© @ w @ ‘&"@ ® "o
L7-1 ?) Li10-1

Performance analysis:

time & space

250 ' ' ' ‘Miami - GNP100 - T
IVITATTY] — ——
S GNPI0Q werrienn g Miami e
> ‘» - Chicago - e,
~ 200 |] o2 10000 | J—
£ ;|_: < W e g
C: = .
= [T e
\£ 150 B T E E 1000 | — e oL ‘0..‘
£ 100 . b
£ £ g 100 |
€ g
=] c 7
m 50 r -1 -:
S 10 1 1 1 1 1
0 R—— e —— 2 1 2 3 4 4 6 10
/ 3 . X 15
2 4 6 8 10 - 14 Size d"ﬂ&frﬁepsl“]:if?“’ ares
umber of computing,nodes
computing nodes
l-l' T T T T T T
40 — ' unlabeled —
35 S}%Hgg 17 labeled CERERd
s L ar W e Mt -
-~ 30r . = 10} 4
E) | e
; "IO L i E E
:u - ‘é.l & F i
£ 15t . s
s = 4t .
- 10 - g * #
5L | 2F .\ i
R
0 , i 0 :

Us-1 U7-1 Uld-1 L7-1 L10-1 L12-1

template
Performance in Amazon EC2

GNP100 Miami
graph

Performance with MPI based implementation

Variation with #reducers per node

1,)0 T T T T T T T T 25 T T T T
= mapper 1
shuffle and sorting né
100 - B 20 | reducer ¥
£ 80 £]
o Z §
E e} = ;
=11] C=r)
s 4 5 3
§
¥
20 g
2 ER [
0 1, 1, b, |t

0o 2 4 6 8 10 12 14 16 18 6 8 10 12 14 16 18
number of reducers per node number of reducers per node

Total running time vs #reducers per node Total running time for different tasks

0 " 7 reducers on each node —— 60 " 15 reducers on each node ———
25 || — 1 50
Distribution of total - i w]
running time of reducers 2 s 2 3
2 10 2 2
s] T _L
0 0
140 150 160 170 180 190 200 20 40 60 80 100 120 140
running time (min) running time (min)

[Athena: one disk per node
 Many reducers: contention for disk

Summary of experimental results

Experiment

Approximation error

Impact of number of
data nodes

Impact of #concurrent

reducers

Impact of #concurrent

mappers

Unlabeled/labeled
template

Graphlets

Computing
resource

Athena

Athena

Athena, EC2

Athena, EC2

Athena, EC2

Athena

Template and
network

U7; GNP

U10; Miami, GNP

U10; Miami

U10; Miami

Varying templates
7-12

U5; Miami,
Chicago

Key observations

Error below 0.5%

scale from 4 hours to
30 minutes with data
nodes from 3 to 13

Non-monotone
variation in running
time

Time generally
constant

< 35 minutes

< 35 minutes

PART Il: DYNAMICS & CONTROL

Diverse diffusion processes

Graph dynamical system: @ @ @

contact graph, node states, local

functions, update order Example: ratcheted threshold-2 model

Percolation and Each red node infects each blue neighbor Malware, failures,

extensions: independently with some probability infections

SI/SIS/SIR/Independent

cascades

Complex contagion: Each blue node switches to red if at least Spread of innovations,

threshold and variants peer pressure

Non-monotone multi- Thresholds for switching from blue tored More complex social

threshold models and from red to blue behavior

Voter models Each node picks the state of a random Spread of ideologies
neighbor

Constrained network Flows with node/link capacities and Packet flows, traffic,

N of PR P N L LA I T T T R L des 2 7 o~ o 1, ~

Key Questions

Understanding Dynamical Computational aspects Interventions to control the
Properties dynamics

O Existence and O Computing different O Forcing node states:

characteristics of fixed
points
= E.g.:average
#nodes in state 1 in
fixed point
O Transient lengths
O Stability
= How do changes in
graph, update order
or functions alter
dynamics?
0 Who becomes
“infected”?
O Impact of network
structure

dynamical properties

= Reachability: does the
system reach specific
configurations of
interest?

= Predecessor existence:
what kind of
configurations could
lead to the current
one’?

[Simulation tools that scale

to large systems

changing local functions
® Freezing selected nodes in
a specific state
e Malware spread
(SIS/SIR): anti-virus
patches
* Influence spread
(threshold): choose
sources to seed spread
e Voter models: make
some nodes stubborn

O Changes in the graph

= Add/delete edges to
indirectly alter dynamics

Summary of results

Q Analyzing dynamical properties
= Stability in threshold systems

" Characterization of limit cycles and fixed points in bi-threshold
systems

" Impact of structural properties: identifying static graph
properties

Q Efficient algorithms for computing dynamical properties

= Efficient algorithms and scalable simulation tools for computing
dynamical properties

Q Control and optimization of the dynamics

" |Influence maximization in voter dynamics

= Critical sets to control diffusion in SIR (e.g., vaccinations) and
threshold models (countering influence)

= Game theoretical analysis of distributed interventions

Specific results: controlling diffusion in
threshold systems

Bicriteria approximation for threshold=1

Flow based algorithm

@ Construct flow network

with M = o0, b = k/OPT

@ Output edges in minimum

(s, t)-cut (S, S)

Bi-threshold model: limit cycles and

fixed points

0111 1011
tate of 1 if > k! 1-neighbors ! : E;g?:l[i\{}mi;g?g
state orT v =

0 if < k! 1-neighbors m 1101_/ 0 ™ 1110
N 0000 TN

1001 0110 1117 1100 0011

Non-monotone dynamics: more N T
realistic model of agent behavior Example with kT = 1, Kkt =3
THEOREM

Consider a bi-threshold system with thresholds k', k!.
@ If the system is synchronous, all limit cycles are of length at most 2.

@ If the system is asynchronous: if kt — k! < 1, all limit sets are fixed

points. Otherwise, there can exist arbitrarily long limit cycles (even
on a tree).

@ If the system is asynchronous and the graph is a tree, with
k! =1,kl = d(v) + 1, all limit sets are fixed points.

Proof: fixed points for trees

kKl =1 ki = d(v)+1= v switches from 0 to 1 if it has at

least one 1-neighbor, and from 1 to
0 if it has at least one 0-neighbor

Proof by induction

Qo

Without loss of generality, can assume permutation ™ updates nodes
level by level, with the higher numbered levels first.

Inductive hypothesis: if x — x’, then for each node v other than the

root, x/, =), where p(v) is the parent of v

p(v
Base case. v is a leaf = following cases

@ X,(,) = l: Irrespective x, either 0 or 1, x, =1

@ X,(,) = 0: Irrespective x, either 0 or 1, x, =0
Inductive step: consider interior node v. For each child w of v, we
have x/, = x,, by induction. Therefore, as in the case of leaves, we

. f _
will have x|, = x,(,)
Again by induction, it follows that after the ith iteration, all nodes in
the first / levels have the same state as the root.

PART Ill: EFFICIENT SIMULATION
TOOLS

Summary of results: efficient
computational tools

d EpiFast: Epidemics on large social-contact
networks

d EpiCure: spread of malware in proximity networks

dInterSim: HPC framework based on graph
dynamical systems

Malware on hybrid wireless networks

. A
ad Malware: from nuisance to a threat

Internet
worms

A Challenges and tools needed

= Multiple scales: Bluetooth to Internet; self-

forming; resistant to regulation worms i

= Need to model mobility, multi-level network >
. . . Seconds Time Days
representation to capture interactions between
humans and devices, and behavioral changes

Space

“Human mobility and wireless
networks could abet the spread of

* Modeling and simulation of malware spread: mobile malware” — Jon Kleinberg,
more abstract models and efficient simulation Nature 2008
tools that scale to large networks

dKey questions
= Detect and understand characteristics of the spread of new worms
= |dentify vulnerable devices and networks
= Strategies to control the spread: anti-virus patches, quarantining

Current approaches: broad spectrum

IDLE)=

Inquiry Phase
Build a neighbor list

Empty
neighbor list?

No

For every neighbor

v

Paging Phase
Connect to a neighbor node

Compartmental model
O Assume complete mixing Yes

population
O Random waypoint mobility | Worm Query Phase |

| Query Times out

Worm Replication
Phase Times out / Success

Detailed modeling of

all device states

1 Does not scale
beyond networks
with few hundred
devices

reasonably well, but scales to very large graphs

Motivating question: approach that captures worm characteristics

Our approach: EpiCure

O Malware modeled as a stochastic diffusion
processes.

QO High resolution models of synthetic social
contact networks, mobility and call behavior

= First principles based approach, integrates
over 14 different public and commercial data
sets

Construction of Realistic
Mobile network

* Detailed model of movement and activities
of people in urban regions

= Can explicitly incorporate behavioral changes
in model

Synthetic Activity
. . . . Dat Patt
Q EpiCure: HPC modeling and simulation = —
environment to study mobile malware in
large dynamic networks Sub-location
Modeling

= Generic: can work with generic malware
models and networks (user inputs)

= Scalable: Scales to large realistic dynamic
networks

= Expressive: Allows one to study a large class
of adaptive and non-adaptive responses

Approach and key techniques for scaling

Highly
detailed
ns-2based [—
Bluetooth —————————— Time Unit (TY) ———————=
Q E 3 3 E E O timeout
I . . | . H - idle
Q Approach

= Network-based representation

= Probabilistic timed transition system (PTTS)
motivated by human epidemics

= Bluetooth specific states abstracted out

= State reduction by offline traversal

» Threading based optimization

" Error less that 5%

= Scales to millions of devices

Approach and key techniques for scaling

Highly
detailed
ns-2based [—
Bluetooth —————————— Time Unit (TY) ———————=
Q E 3 3 E E O timeout
I . . | . H - idle
Q Approach

= Network-based representation

= Probabilistic timed transition system (PTTS)
motivated by human epidemics

= Bluetooth specific states abstracted out

= State reduction by offline traversal

" Error less that 5%

= Scales to millions of devices

Sample results: simulation setup

Factorial experiment design

Network

Simulation

Sensitivity
analysis

Response
mechanisms

Results

Area
Demographics

People (devices);
locations

Smart device ownership
Replicates

Duration of Simulation
Initially infected
Wallclock

Infection seed

Malware parameters
Network parameters:

Static

Device-based detection

Chicago Downtown area (zip 60602)
People in age group of 20 — 50 years

30000; 4400

100% - every individual in the demographic has a smart phone
5

8 hours (8 AM to 4 PM), typical work schedule

1%,5%,10%

Max 2 hours (lower when responses are implemented)

8 AM

Idle time, p,,

Market share (m), Location Density (d)

Degree and Betweenness centrality
Passive self detection, local and centralized signature dissemination

Cumulative infection size

T(g,x): time taken to infect g percent of devices when x is varied

Sample results: mobility matters

Activity-based mobility model

140 r
— EpiMat (1 %)
12{}_..—..—..!Epi\|.at{5%}
----- EpiMNeat (10 %)
g1m} RWR-300s ...
% —— —RWPS0Ge
D BOE-eee e e Tl
E “..-f-f;.--;--r ----------- =
. F -
E -
N i L
J
ok
g8 AM 815AM 830AM B45AM 9 AM

Random Waypoint mobility model Time of Day

Results: controlling malware spread

Setting: detection by activity monitoring

O System call, power signature or behavior based detection

L Require some number of occurrences before detection: “self detection
threshold”

L Use self detection for automatic signature generation: local and
centralized signature dissemination

,,=500.sd, =2 :

|:|5 | =50|}5d :.-_1_
— rep th . :
l.ep=?DD’3d1h=E’ . E‘'_.r"-f' .
= |:|4 : : ___'.__:\ -..._.;._
@ .
o :
2 o
T P B
w .
8 ; -
& :
O |:|2 _........._rﬁ'.
=2 . L ' —
it R
VIR | B S DU FORIUURNI S
0 a : : :
8 AM 10 AM 12 Noon 2PM 4PM

Time of Day

Centralized dissemination is more effective than local

Computational contributions

O Speed and Parallelization
ial Epi 500 Devices _
— Sequential EpiCure 300X faster than NS-2 I S evices

— Speedups are obtained with <5% loss in ns-2 45-50 hrs Cannot Study
accuracy

— Parallel implementation: Hybrid MPI-threads 10 minutes 1.5 hrs (<5%
improves efficiency for multi-core clusters .
EpiCure (0.1% error, error comp.

0 Scale and CompIeXity comp. NS-2) EpiCure v1.0)
— Scales to 3-5 million devices

— Heterogeneous and realistic spatial networks
— Time Varying Networks

New model reduction and algorithmic techniques needed to scale
and parallelize: EpiCure is the first modeling environment that
can represent and study malware over urban scale, time varying
and heterogeneous networks

Summary of computational
contributions

Simulation based computational models

Random Mobility

[Van et al. ACSAC '06 Real Mobility Data

[Wang, Nature '09] EpiCure Environment

ASIACCS '07]
Scope 1 location Large area Large area
Temporal Scale ms. / us. Time unit (time to infect) Time units (TUs)
Spatial Scale meters Cell tower region, uniform meters
Network size 500 - 1000 devices 6 million 3-5 million

High fidelity malware model, specific to the
Detailed implementation Compartmental model (SI) malware & Bluetooth protocol.
Can implement other manifestations.

Within-host
Malware Model

Mobility model Random Waypoint, Random Cell tower position from mobile Activity-based mobility model, activity
y Walk, Random Landmark call data location for each individual
Device interaction . Homogeneous distribution of High resolution network, pair-wise
Based on mobility models
network devices in each tower region interaction model
. . Not studied, difficult to
Detection Can be implemented . Detection based on infection propagation
implement
. . Not studied and not easy to Self detection, signature dissemination
Control mechanisms Can be implemented . .
implement schemes & co-evolution of networks
Network co- Co-evolution of networks can be modeled

evolution and studied

Summary

d Graph dynamical systems

= Rich framework to capture a wide variety of diffusion
phenomena

* Challenging algorithmic problems, need new
computational tools

d Fundamentally new computational challenges
= Very large heterogeneous graphs
= Cannot be easily partitioned

= Non-uniform communication patterns: difficult to
parallelize in conventional models

Thank you

