
Diffusion on complex networks:
algorithmic foundations

Anil Kumar S. Vullikanti

Dept. of Computer Science and

Virginia Bioinformatics Institute

Virginia Tech

Network Dynamics and Simulation Science Laboratory

Acknowledgements

Joint work with:

 NDSSL members including: Madhav Marathe Henning Mortveit,
Maleq Khan, Zhao Zhao, Chris Kuhlman, Samarth Swarup

 S. S. Ravi, SUNY Albany

 Dan Rosenkrantz, SUNY Albany

 Aravind Srinivasan, University of Maryland

 Rajmohan Rajaraman, Northeastern University

 Ravi Sundaram, Northeastern University

Diffusion models and applications

Stochastic
Diffusion,
percolation

Threshold
models

Constrained
Network flows

Chip firing,
sandpiles

Malware

Independent
failures

Epidemics

Packet flows

Adoption of
technology

Cascading
failures

Fads and
Social conventions

Power grid

Commodities/
information

 Graph connecting different entities
 Nodes change state based on their neighbors’ states

Wide variety of models for different applications

Broad goals

Motivation: wide variety of diffusion processes
are used in different applications

 Can be formulated by similar fundamental questions
in terms of graph dynamical systems

Goals:

 Modeling and analysis of complex networks

 Characterize dynamical properties, especially in terms
of the underlying graph structure

 Techniques to optimize and control dynamics

Challenges

 Underlying complex networks
 Analytical approaches based on renormalization and

differential equation methods not easily applicable

 Network structure not well understood - need for better
models

 Characterization of dynamical properties
 Need to identify new properties

 Need for new scalable computational approaches
 Poor locality

 High expansion and large separators

 Dynamics on and of networks

 Co-evolution between networks and diffusion process

 Behavioral changes

Models of Complex Networks

Erdos-Renyi,
Chung-Lu
models

 Very simple
models
 Main goal: capture
degree distribution
 well understood
analytically

Small world, PA,
copying models

 Based on
hypotheses of
social evolution
(“rich get richer”,
etc.)

HOT model

First principles
approaches: synthetic
networks

 Combination of
optimization
objectives with
random evolution

 Most realistic
 Useful for network/policy
planners
 Need lot of data, models
and HPC tools

Increasing complexity and realism

 [Borner, et al., 2007]
[Li, et al., 2005]

Beyond degree distributions

Edge swap
operation

 Edge swap operations
 Preserves degree distribution
 Polynomial time mixing [Feder et al., 2005]

 Disease dynamics not completely
determined by degree distribution
 Need random graph models to preserve
non-local properties

Changes in static network
properties with edge swaps

Changes in disease dynamics
with edge swaps

Day

Outline for the rest of the talk

Part I: Modeling and analysis of complex
networks

 Map-reduce based algorithms for relational subgraph
analysis

Part II: Dynamical properties: mathematical and
computational aspects

 Characterize different local diffusion models and
techniques for controlling dynamical properties

Part III: Simulation tools for diffusion models

 Malware spread in large proximity networks

PART I: MODELING AND ANALYSIS
OF VERY LARGE GRAPH PROPERTIES

Summary of contributions

 “First principles” approach for synthetic social
and infrastructure networks
 Integrates a large number of diverse public and

commercial data sets

 Stochastic models that capture properties of real
networks

Computing properties of very large networks
 Efficient sampling based approaches for computing

structural properties

 Mapreduce/Hadoop based for relational subgraph
analysis

 New parallel algorithms for dynamical properties

General goal

Embedding of H in G

G=(V,E): very large graph

H=(V’,E’): small
template/subgraph

Goal: find one or more embeddings
of labeled subgraph H in G

Non-induced embedding:

Motivation and applications: data
mining, social networks, Semantic web

 Detecting fraud in financial
transactions [Bloedorn et al.]

 Other applications: connection
subgraphs [Faloutsos, et al.]

[Brochelor et al]: query of the form
 ?v1, ?v2, ?v3, p such that ?v1 is a faculty member
at UMD, ?v2 is an Italian university, who is a friend
of ?v1 and ?v3 has commented on paper p by ?v1

Motivation and applications: systems,
networking and software engineering

 Automatic custom instruction set
generation by enumerating convex
subgraphs [Bonzini et al.]

 Mining call graphs to localize software bugs
[Eichiner et al.]

 Other applications: anomaly detection in
networks through subgraph analysis [Noble
et al.]

 [Maxwell et al.] discovering graph
grammars corresponding to
memory leaks

Motivation and applications:
bioinformatics

[Alon et al.] Characterization of protein-protein interaction
networks based on differences in counts of trees on 9 nodes

[Alon] network motifs in transcription networks

Variations: subgraph enumeration
problems

Functions on the space of embeddings
 Existence and counting all occurrences

 Functions of labels as part of embeddings

 Approximate embeddings

Relational queries
 Involving node and edge labels

 Specified by graph grammars

Motifs and most frequent subgraphs
 Contrast with random graphs with similar properties

Graphlets
 Generalization of degree distribution

Summary of results

SAHad: randomized Hadoop based algorithm for
enumerating trees and tree-like subgraphs
 For given ε, δ: produces (1±ε) approximation with

probability ≥ 1-δ

 Worst case work complexity bound of O(22km f(ε,δ))

 Scales to graphs with over 500 million edges and
templates of size up to 12

 Color-coding technique for approximate enumeration

Heterogeneous computing environments
 Different clusters and amazon EC2 without any system

level optimization

Summary of results (continued)

Broad class of relational subgraph queries

 Node and edge labeled subgraphs

 Extension to tree-width bounded subgraphs (low
treewidth = like trees)

 Can easily compute classes of distributive functions on
the space of embeddings

 Can extend to weighted and approximate matches

 Systematic approach to handle queries specified by a
class of tree grammars (chain grammars)

 Graphlets and motifs

Prior approach and challenges

 Large literature on frequent subgraph enumeration
and variations: Apriori, FSG,…
 Maintain candidate matches for subgraphs with k-1 edges,

and extend to subgraph with k edges
 Backtracking/extensive bookkeeping to ensure valid

matches
 Scales to ~100,000 node graphs, not clear how to

parallelize
 No rigorous worst case bounds

 Database techniques: preprocessing based on fixed
distribution of queries

 Dynamic programming based on color-coding
 No prior parallelization

Attempt: divide and conquer

H1

H2

Could identify embeddings of H1 and H2
and put them together?

But … overlaps possible

Need to keep track of extra information to avoid
overlaps between embeddings of sub-templates

Color-coding idea

[Alon, Yuster, Zwick, 95]

Dynamic programming for paths

1

2

C(1,)=2

3

4

C(3,)=0

C(4,)=1

1

2

C(1,)=2

3

4

C(3,)=0

C(4,)=1

C(2,) = C(1,) +
 C(3,) + C(4,)

Dynamic programming for paths

Mapreduce/Hadoop

Map

Map

Reduce

Reduce

Data stream

Key value pairs
<k1, v1> <k2, v2> <k3, v3> All pairs with key k1:

<k1, v11, v12, …

All pairs with key k2:
<k2, v11, v12, …

 Powerful framework for processing large amount of streaming data
 Developed by Google for web applications [Dean and Ghemavat, 2005]
 Open source implementation: Hadoop

 Mapreduce internally sorts key-value pairs and reorganizes items with
same key value for reducer
 Mapper produces key-value pairs for each data item
 Reducer processes all elements with same key
 Can be repeated multiple times
 System takes care of producing data streams and sorting

HDFS

Graph algorithms using
Mapreduce/Hadoop

Finding paths and diameter

Pagerank and other random walk based measures

Community detection and clustering problems

Subgraph analysis

 Counting #triangles: [Pagh et al., 2011], [Suri et al.,
2011]

 Subgraph enumeration to ~100,000 node graphs: [Liu
et al., 2009]

Extension to trees

SAHad: mapreduce implementation

Performance analysis

Experiments: setting

Computing resources
 Athena: 42 node cluster

with 32 cores per node
 Amazon EC2

Different templates

Performance analysis: time & space
R

u
n

n
in

g
ti

m
e

 f
o

r
U

1
0

#computing nodes

To
ta

l i
n

te
rm

e
d

ia
te

 f
ile

 s
iz

e

Size of template

Performance with MPI based implementation Performance in Amazon EC2

Variation with #reducers per node

 Athena: one disk per node
 Many reducers: contention for disk

Total running time for different tasks Total running time vs #reducers per node

Distribution of total
running time of reducers

Summary of experimental results
Experiment Computing

resource
Template and
network

Key observations

Approximation error Athena U7; GNP Error below 0.5%

Impact of number of
data nodes

Athena U10; Miami, GNP scale from 4 hours to
30 minutes with data
nodes from 3 to 13

Impact of #concurrent
reducers

Athena, EC2 U10; Miami Non-monotone
variation in running
time

Impact of #concurrent
mappers

Athena, EC2 U10; Miami Time generally
constant

Unlabeled/labeled
template

Athena, EC2 Varying templates
7-12

< 35 minutes

Graphlets Athena U5; Miami,
Chicago

< 35 minutes

PART II: DYNAMICS & CONTROL

Diverse diffusion processes

Model Description Example Applications

Percolation and
extensions:
SI/SIS/SIR/Independent
cascades

Each red node infects each blue neighbor
independently with some probability

Malware, failures,
infections

Complex contagion:
threshold and variants

Each blue node switches to red if at least

Spread of innovations,
peer pressure

Non-monotone multi-
threshold models

Thresholds for switching from blue to red
and from red to blue

More complex social
behavior

Voter models Each node picks the state of a random
neighbor

Spread of ideologies

Constrained network
flows

Flows with node/link capacities and
additional constraints on paths

Packet flows, traffic,
wireless networks

Graph dynamical system:
contact graph, node states, local
functions, update order Example: ratcheted threshold-2 model

Key Questions
Understanding Dynamical

Properties
Computational aspects Interventions to control the

dynamics

 Existence and
characteristics of fixed
points
 E.g.: average

#nodes in state 1 in
fixed point

 Transient lengths
 Stability

 How do changes in
graph, update order
or functions alter
dynamics?

 Who becomes
“infected”?

 Impact of network
structure

 Computing different
dynamical properties
 Reachability: does the

system reach specific
configurations of
interest?

 Predecessor existence:
what kind of
configurations could
lead to the current
one?

 Simulation tools that scale
to large systems

 Forcing node states:
changing local functions
 Freezing selected nodes in

a specific state
• Malware spread

(SIS/SIR): anti-virus
patches

• Influence spread
(threshold): choose
sources to seed spread

• Voter models: make
some nodes stubborn

 Changes in the graph
 Add/delete edges to

indirectly alter dynamics

Summary of results

 Analyzing dynamical properties
 Stability in threshold systems
 Characterization of limit cycles and fixed points in bi-threshold

systems
 Impact of structural properties: identifying static graph

properties

 Efficient algorithms for computing dynamical properties
 Efficient algorithms and scalable simulation tools for computing

dynamical properties

 Control and optimization of the dynamics
 Influence maximization in voter dynamics
 Critical sets to control diffusion in SIR (e.g., vaccinations) and

threshold models (countering influence)
 Game theoretical analysis of distributed interventions

Specific results: controlling diffusion in
threshold systems

Bicriteria approximation for threshold=1

t s
I

b

b

b

M

M Flow based algorithm

Bi-threshold model: limit cycles and
fixed points

Non-monotone dynamics: more
realistic model of agent behavior

Proof: fixed points for trees

v switches from 0 to 1 if it has at
least one 1-neighbor, and from 1 to
0 if it has at least one 0-neighbor

PART III: EFFICIENT SIMULATION
TOOLS

Summary of results: efficient
computational tools

EpiFast: Epidemics on large social-contact
networks

EpiCure: spread of malware in proximity networks

 InterSim: HPC framework based on graph
dynamical systems

 Malware: from nuisance to a threat

 Challenges and tools needed
 Multiple scales: Bluetooth to Internet; self-

forming; resistant to regulation

 Need to model mobility, multi-level network
representation to capture interactions between
humans and devices, and behavioral changes

 Modeling and simulation of malware spread:
more abstract models and efficient simulation
tools that scale to large networks

Malware on hybrid wireless networks
43

“Human mobility and wireless
networks could abet the spread of
mobile malware” – Jon Kleinberg,

Nature 2008

Time

S
p

a
c
e

Internet

worms

Human

worms

Days Seconds

Mobile

worms

Key questions
 Detect and understand characteristics of the spread of new worms
 Identify vulnerable devices and networks
 Strategies to control the spread: anti-virus patches, quarantining

Current approaches: broad spectrum

IDLE

Inquiry Phase

Build a neighbor list

For every neighbor

Paging Phase

Connect to a neighbor node

Worm Query Phase

Worm Replication

Phase

No

Yes

Yes

No

Query Times out

Times out / Success

NoYes

Empty
neighbor list?

Connected?
All neighbors
Connected?

S I

Compartmental model
 Assume complete mixing

population
 Random waypoint mobility

Detailed modeling of
all device states
 Does not scale

beyond networks
with few hundred
devices

Motivating question: approach that captures worm characteristics
reasonably well, but scales to very large graphs

Our approach: EpiCure
 Malware modeled as a stochastic diffusion

processes.

 High resolution models of synthetic social
contact networks, mobility and call behavior

 First principles based approach, integrates
over 14 different public and commercial data
sets

 Detailed model of movement and activities
of people in urban regions

 Can explicitly incorporate behavioral changes
in model

 EpiCure: HPC modeling and simulation
environment to study mobile malware in
large dynamic networks

 Generic: can work with generic malware
models and networks (user inputs)

 Scalable: Scales to large realistic dynamic
networks

 Expressive: Allows one to study a large class
of adaptive and non-adaptive responses

Synthetic
Data

Activity
Patterns

TRANSIMS

Sub-location
Modeling

Bluetooth
Network

Construction of Realistic
Mobile network

Approach and key techniques for scaling

 Approach
 Network-based representation
 Probabilistic timed transition system (PTTS)
motivated by human epidemics
 Bluetooth specific states abstracted out
 State reduction by offline traversal
 Threading based optimization
 Error less that 5%
 Scales to millions of devices

Highly
detailed
ns-2 based
Bluetooth
model

Approach and key techniques for scaling

Highly
detailed
ns-2 based
Bluetooth
model

 Approach
 Network-based representation
 Probabilistic timed transition system (PTTS)
motivated by human epidemics
 Bluetooth specific states abstracted out
 State reduction by offline traversal
 Error less that 5%
 Scales to millions of devices

Sample results: simulation setup

Factorial experiment design

Network

Area Chicago Downtown area (zip 60602)

Demographics People in age group of 20 – 50 years

People (devices);
locations

30000; 4400

Smart device ownership 100% - every individual in the demographic has a smart phone

Simulation

Replicates 5

Duration of Simulation 8 hours (8 AM to 4 PM), typical work schedule

Initially infected 1%,5%,10%

Wallclock Max 2 hours (lower when responses are implemented)

Infection seed 8 AM

Sensitivity
analysis

Malware parameters Idle time, pto

Network parameters: Market share (m), Location Density (d)

Response
mechanisms

Static Degree and Betweenness centrality

Device-based detection Passive self detection, local and centralized signature dissemination

Results
Cumulative infection size

T(q,x): time taken to infect q percent of devices when x is varied

Sample results: mobility matters

Activity-based mobility model

Random Waypoint mobility model

Results: controlling malware spread

Setting: detection by activity monitoring
 System call, power signature or behavior based detection
 Require some number of occurrences before detection: “self detection

threshold”
 Use self detection for automatic signature generation: local and

centralized signature dissemination

Centralized dissemination is more effective than local

 Speed and Parallelization
– Sequential EpiCure 300X faster than NS-2
– Speedups are obtained with <5% loss in

accuracy
– Parallel implementation: Hybrid MPI-threads

improves efficiency for multi-core clusters

 Scale and Complexity
– Scales to 3-5 million devices
– Heterogeneous and realistic spatial networks
– Time Varying Networks

500 Devices 3—5 M devices

ns-2 45-50 hrs Cannot Study

EpiCure

10 minutes

(0.1% error,

comp. NS-2)

1.5 hrs (<5%

error comp.

EpiCure v1.0)

New model reduction and algorithmic techniques needed to scale
and parallelize: EpiCure is the first modeling environment that
can represent and study malware over urban scale, time varying
and heterogeneous networks

Computational contributions

Summary of computational
contributions 52

Factors

Simulation based computational models

Random Mobility
[Yan et al. ACSAC ’06,

ASIACCS ’07]

Real Mobility Data
[Wang, Nature ’09]

EpiCure Environment

Scope 1 location Large area Large area

Temporal Scale ms. / µs. Time unit (time to infect) Time units (TUs)

Spatial Scale meters Cell tower region, uniform meters

Network size 500 – 1000 devices 6 million 3-5 million

Within-host
Malware Model

Detailed implementation Compartmental model (SI)
High fidelity malware model, specific to the

malware & Bluetooth protocol.
Can implement other manifestations.

Mobility model
Random Waypoint, Random

Walk, Random Landmark
Cell tower position from mobile

call data
Activity-based mobility model, activity

location for each individual

Device interaction
network

Based on mobility models
Homogeneous distribution of
devices in each tower region

High resolution network, pair-wise
interaction model

Detection Can be implemented
Not studied, difficult to

implement
Detection based on infection propagation

Control mechanisms Can be implemented
Not studied and not easy to

implement
Self detection, signature dissemination

schemes & co-evolution of networks

Network co-
evolution

Co-evolution of networks can be modeled
and studied

Summary

Graph dynamical systems

 Rich framework to capture a wide variety of diffusion
phenomena

 Challenging algorithmic problems, need new
computational tools

Fundamentally new computational challenges

 Very large heterogeneous graphs

 Cannot be easily partitioned

 Non-uniform communication patterns: difficult to
parallelize in conventional models

Thank you

