Data and Communications in Basic Energy Sciences
Creating a Pathway for Scientific Discovery

A Workshop Co-sponsored by Basic Energy Sciences and Advanced Scientific Computing Research

Bethesda North Marriott Hotel & Conference Center
Bethesda, MD
October 24-25, 2011
Charge

• Review status, successes, and shortcomings of current data and communication pathways for scientific discovery in the basic energy sciences;

• Ascertain knowledge, methods and tools needed to mitigate present and projected data and communication shortcomings;

• Consider opportunities and challenges related to data and communications with the combination of techniques in single experiments;

• Identify research areas in data and communications needed to underpin advances in the basic energy sciences in the next ten years;

• Create the foundation for information exchanges and collaborations among ASCR-BES research and facilities communities

Co-Chairs

• Peter Nugent, LBNL (NERSC)
• J. Michael Simonson, ORNL (SNS)

Reports

• Draft- by December 9, 2011
• Final- by January 23, 2012
BES Scientific User Facilities: Resources for Energy Research

- 4 Synchrotron Radiation Light Sources
- Linac Coherent Light Source
- 3 Neutron Sources
- 3 Electron Beam Microcharacterization Centers
- 5 Nanoscale Science Research Centers

Provided to workshop participants by BES
Broader Context

- Other Agencies: Data Driven Science, Storage, Analysis, Simulation
- NSF Task Force on Data and Visualization
- Representatives here from NSF, NIST
- Other Programs in DOE: LHC, RHIC, Climate Research, Leadership Computing…..
- Interagency Working Group on Big Data
- Competes Act 2010: Working Group on Public Access
- Office of Science Working Group on Digital Data
- Data Play a Key Role in Materials Genome

Provided to workshop participants by BES
BES facilities have capability to produce **TeraBytes** of data per day from *single* beam lines

LCLS, SNS, Synchrotron Light Sources, e- Microscopes are excellent examples

Increasing use of time resolved & tomographic studies

Increased need for analysis ‘on the fly’

Broad spectrum of BES data needs requires:

- New level of understanding as a result of sophisticated applied mathematics and computer science techniques
- New science that extracts the most from our (i.e. BES) facilities
Number of Participants- 80
- National Laboratories, Universities, NIST, NSF & International

Observers- ASCR, BES, BER, HEP & SC-2

Plenary Speakers
- Brent Fultz, CalTech- Workflow
- Thomas Schulthess, ETH Swiss SC Center- Theory & Algorithms
- Dave Pugmire, ORNL, Visualization and Analysis
- Quincey Koziol, University of Illinois, Data Processing & Management

Luncheon Speaker
- Adam Riess, 2011 Nobel Laureate in Physics
 Professor, John Hopkins University
 Scientist, Space Telescope Science Institute
Break-out Sessions

- **Workflow management: Experiment to Science**
 - Identifying and managing the data path from experiment to publication.

- **Theory and algorithms**
 - Recognizing the need for new tools for computation at scale, supporting large data sets and realistic theoretical models.

- **Visualization and Analysis**
 - Supporting near-real-time feedback for experiment optimization and new ways to extract and communicate critical information from large data sets.

- **Data Processing and Management**
 - Outlining needs in computational and communication approaches and infrastructure needed to handle unprecedented data volume and information content.
Poster Session

- “High Performance Computing in Accelerator Science”
- “SciDAC’s Scientific Data Management Center”
- “ESnet: A Partner in Data Intensive Science”
- “Challenges and Opportunities in Data Systems at the Spallation Neutron Source”
- “Data Challenges at Current and Future Light Sources”
- “Linac Coherent Light Source”
- “Data Needs from BES Nanoscale Research Centers: Examples from the Center for Nanophase Materials Sciences”
Workflow, Processing & Viz.

Start Data Acquisition → Live Data View → Reduce/View Data → Decide what to do next

If something is wrong → Change configuration

Propose new experiment

DATA STORAGE → Preliminary Findings

ANALYSIS
Theory & Algorithms

- Sustained support for interdisciplinary team consisting of domain scientists (theory and experiment), applied mathematicians, computer scientists working together to meet the theory/algorithm challenges for facilities’ data
 - Pilot studies
 - One team for each end station/facility
- Inverse problems and solution algorithms (near term 1-3 years), but there is a need for long term R&D
- Feature extraction, image analysis (near term 1-3 years), include model based constraint (longer term)
- Combine multiple data sources and imaging techniques to provide more reliable solutions (mid-term 5 years)
- Ab initio theory guided experiments for data triage/reduction (long term 5-10 years)
- Computational endstation that couples virtual and real experiments (long term 5-10 years)

Preliminary Findings
Detector and source advancements will enable transformative science within BES facilities. Current systems are producing a tremendous amount of data. Future systems will overwhelm current analysis pipelines.

- Integrate theory and analysis components seamlessly within experimental workflow.
- Move analysis to closer to experiment.
- Match data management access and capabilities with advancements in detectors & sources.
Integrate theory and analysis...

... components seamlessly within experimental workflow.

- Coupled simulation and experiment
- Theory guidance for experimental design
- Analysis feedback to steer experiment
- Common data formats
- Common community toolsets for analysis and workflow
- Apply ASCR’s investment in visualization and analysis tools (invest in adaptation specific to experiments)
Move analysis to closer to experiment

- Real-time (in-situ), streaming analysis at beamline.
- Local data reduction capabilities
 - 0 suppression
 - Hierarchical filtering
 - Baseline and background subtraction
- Live visualization of experiment
- Improve the efficiency of the experiment
- Increase data-quality
- Improve off-line analysis

Preliminary Findings
Match data management access and capabilities...

... with advancements in detectors & sources.

- Remove the bottlenecks
- Apply existing data transport and mobility toolsets
- Apply forefront mathematical techniques to more efficiently extract science from the experiment.
- Interoperability across different facilities/beamlines
- Combine multiple data sets
- Expandable
- Incorporate legacy data
- Integrated teams of engineers, scientists and computer scientists to solve these problems

Preliminary Findings
Data Challenges at Current and Future Light Sources

Data Rate ~ Brightness x N_{BL}

100s of Megapixel/second detectors are starting to be used at light sources (and EM centers). ALS, for example, will soon be generating >10 Tb/hr. Requires:

- Implementation of uniform data transfer and management approaches
- Realtime data reduction
- Information extraction

Needs will grow faster than Moore’s law — next generation sources will produce ~TB/s

Today — Examples:

- Ptychography
- Tomography
- Scanning X-ray microscopes
- Correlation spectroscopy
- Photoemission microscopes
- Energy-resolved Laue Diffraction

Tomorrow — Examples:

- Chemically-Specific Nanoscale Imaging
- Ultrafast Nanoscale Spin Dynamics
- Giga-shot Imaging of Heterogeneous Ensembles
- Cinematic Imaging of Reacting Flows

Computational Methods for Determining the Structure of Energy-Cycle Biomachines Through Diffractive Imaging

Motivation: Speckle patterns from fs solution X-ray scattering allows more accurate shape determinations of macromolecules in solution. The experiment is performed on an ensemble of particles in solution.

Challenges: How to perform data processing at kHz to MHz rate? How to efficiently solve the ‘inverse’ problem from autocorrelations to structure?