
ReveR-SES: Reversible
Software Execution Systems

Kalyan S. Perumalla
Oak Ridge National Laboratory

November 2, 2011

Advanced Scientific Computing
Advisory Committee (ASCAC) Meeting,
Washington, DC

Research funded by DOE Career Award (ERKJR12)

ASCAC Meeting Nov 2, 2011 Perumalla 2

Project Personnel

• Kalyan S. Perumalla (PI)

• Alfred J. Park (Post-doc)

• Vladimir A. Protopopescu

• Vinod Tipparaju

Other Collaborators no cost

• Christopher Carothers (RPI)

• David Jefferson (LLNL)

ASCAC Meeting Nov 2, 2011 Perumalla 3

Outline
• Introduction

– Problem and Solution Approach
– Illustrations
– Related Work
– Research Challenges

• Research Components
– Automation
– Runtime
– Theory
– Experimentation

• Summary

ASCAC Meeting Nov 2, 2011 Perumalla 4

Problem

• Very large scale concurrency is burdened
by inefficiency at best, and by infeasibility at worst
Underlying (software) challenges include synchronization, fault

tolerance, and debugging

• Need to explore paradigm alternative(s) to overcome
challenges

Simulation execution
is forward-only

• Almost all current
simulations,
models, software
are inherently
forward-only

Paranoid runtime

• Needs all
components to
be always correct

Non-scalable
execution

• High synchro-
nization cost

• Untenable
system-wide fail-
safety

ASCAC Meeting Nov 2, 2011 Perumalla 5

Our Solution Approach
• Relieve runtime paranoia via reversibility

Enable software-level reversible execution at scale

• Perform basic research to enable efficient reversibility
Explore, define, refine, implement, test, experiment, study, and advance
the paradigm of reversible execution for efficient large-scale concurrency

Solution:

Reversible
Software

Efficient Support
for Fault

Tolerance

Relaxed
Synchronization

Efficient Support
for Debugging

Others (Adiabatic
computing,
Quantum

Computing, etc.)

Reverse Computation

Forward Computation

Fault point

ASCAC Meeting Nov 2, 2011 Perumalla 6

Simplified Illustration of
Reversible Software Execution

Traditional Checkpointing
Undo by saving and restoring

e.g.
 {save(x);x = x+1}
 {restore(x)}

Disadvantages
• Large state memory size
• Memory copying overheads

slow down forward execution
• Reliance on memory increases

energy costs

Reversible Software
• Undo by executing in reverse

e.g.
 { x = x+1 }
 { x = x-1 }

Advantages
• Reduced state memory size
• Reduced overheads; moved

from forward to reverse
• Reliance on computation can be

more energy-efficient

ASCAC Meeting Nov 2, 2011 Perumalla 7

Illustration of a More Complex Reversible
Model Execution
• Example: Simulate elastic collisions

reversibly
– n-particle collision in d dimensions, conserving

momentum and energy
– Incoming velocities X‘, outgoing velocities X

• Traditional, inefficient solution
– In forward execution, checkpoint X'
– In reverse execution, restore X‘ from checkpoint
– Memory M proportional to n, d, and #collisions Nc

M=n×d×8× Nc bytes

• New, reversible software solution
– Generate new reverse code
– In forward execution, no checkpoint of X'
– In reverse execution, invoke reversal code to

recover X‘ from X
– Memory dramatically reduced

E.g., for n=2, 1 bit per collision
– In fact, zero-memory can also be achieved!

We have now solved it for n=2, 1≤d≤ 3, and n=3, d=1

P2

P1

D/2

-D/2
R12

+θ +θ

D'/2

-D'/2

Phase
Space

D/2

-D/2

S/2
+θ

+θ

v1

v2

v'1

v'2

S=v1+v2
D=v1-v2

ASCAC Meeting Nov 2, 2011 Perumalla 8

Related Work

Reversible
processes
e.g. libckpt

Reverse
language
compilers
e.g. rcc

Reversible high-
level language
e.g. R language

Reversible
machine/
assembly
instruction
sets

Reversible
chips, gates,
circuits

Specialized

General-purpose

Utility

Fine-grained

Coarse-grained

Reverse execution unit
 Re

ve
rs

ib
ili

ty

Sp
ec

tr
um

Time warp, VLIW, Trace scheduling, Adiabatic circuits, Speculative
execution, Database Transact., Undo-redo, Functional programming,
Cellular automata, Thermodynamics, Quantum computing, …

Forward-only Reversible
Synchronous Old paradigm of all traditional

parallel computing
A sub-optimal variant, but improved
scalability than forward-only

Asynchronous Other emerging paradigms (Non-
blocking collectives, new languages,
programming models, etc.)

Our proposed new paradigm of fully
generalized, staggered, reversible
execution by all processors

ASCAC Meeting Nov 2, 2011 Perumalla 9

Reversible Software: Challenge
• Conceptually appealing at a high level, but

very hard to realize in practice

• With very few exceptions, most existing
simulations are irreversible
Very complex control flows, data structures, inter-

processor dependencies

• Almost all existing approaches for undoing
computation rely on memory, not true
(reverse) computation software

• Need theory, methodology, frameworks,
proofs-of-concept, and scaling demonstrations
to advance reversible software

ASCAC Meeting Nov 2, 2011 Perumalla 10

Selected Research Challenges in
Reversible Software

Generate efficient
reversible models of

physical systems

(Semi-)
Automatically make

existing models/code
reversible (reverse

compiler)

Develop efficient
runtime engines for
reversible execution

at scale

Determine, and
achieve, memory
lower bound for

efficient reversibility

Determine trade-off
between reversal, re-

computation, and
memory costs

Develop backward-
compatible

interfaces for
reversibility

Implement, establish
feasibility, and

optimize reversibility
at scale

ASCAC Meeting Nov 2, 2011 Perumalla 11

Principal Research Components

• Reverse compilers, reversible
libraries, … Automation

• Execution supervisor, extensions to
standards, … Runtime

• Memory limits, novel modeling
approaches, methodologies, … Theory

• Experimentation system,
benchmarks, mini-apps, scaling, … Experiments

ASCAC Meeting Nov 2, 2011 Perumalla 12

Our Automation Approach
Reversible Software

• Fundamentally distinct
from checkpointing

• Theoretically, a strict
superset of checkpointing

Reversibility
Support

Checkpointing

Full

Periodic

Incremental

Reversible
Software

Automated

Compiler-
based

Interpreter-
based

Library-based

Log-based

Programmer
Assisted

Source code-
based

Model-based

Pragma-based

ASCAC Meeting Nov 2, 2011 Perumalla 13

Automation (cont.) – Compiler-based

• Source-to-source compilation approach

• Initially, memory minimization over
application code is via #pragma hints

Application
software to be

reversed

Reverse
compiler

Forward and
reverse

functions

Normal
compiler Executable

Reversible
Libraries

Runtime
Engine

ASCAC Meeting Nov 2, 2011 Perumalla 14

Automation (cont.) – Basic Reversal
Methodology for Source-to-Source

• Simple generation rules as starting points for reverse source generation, and
upper-bounds on bit requirements for various statement types

• Much optimization necessary at a higher-level, beyond these rules

ASCAC Meeting Nov 2, 2011 Perumalla 15

Automation (cont.) – Model-based
Reversal Example

α+
∂
∂

=
∂
∂

2

2

x
Fk

t
F α+

∆
+−

=
∆
− −+

+

2
11

1

)(
2

x
aaak

t
aa j

i
j

i
j

i
j

i
j

i

Reversible Execution
•Space discretized into cells
•Each cell i at time increment j
computes ai

j

•Can go forward & reverse in
time
 Forward code computes ai

j+1

 Reverse code recovers ai
j

•Note that ai+1
j+1=ai+1

j due to
discretization across cells

Diffusion Equation
Discretization

Forward

tkx
txaxaatka

j
i

j
i

j
ij

i ∆−∆
∆∆+∆−+∆

=
+

−+

2)(
)()()(

2

212
11 α

Reverse

t
x

a
tk

xaa
tka

j
i

j
i

j
i

j
i ∆+

∆
∆
∆

−++
∆=

−+
+ α

)(

)2()(
2

2

11
1

ASCAC Meeting Nov 2, 2011 Perumalla 16

Automation (cont.) – Linear Codes
Compute nth and n+1th Fibonacci number: f(n)=f(n-1)+f(n-2)

Forward

for i from 2 to n:
 Invoke f()
 .
f()
{
 int c = a
 a = b
 b = b + c
}

Reverse

for i from n to 2:
 Invoke f-1()
 .
f-1()
{
 int c = a
 a = -a + b
 b = c
}

i 2 3 4 5 6

a

b

0

1

1

1

1

2

2

3

3

5

5

8

c 0 1 1 2 3

f-1(f(a,b)) = (a,b)
f-1(f-1(f(f(a,b)))) = (a,b) …

Reverse

int a = 0, b = 1

In general, can reverse linear codes, by using single
static assignment (SSA), inversion and reduction.
Examples: Swap, Circular Shift

ASCAC Meeting Nov 2, 2011 Perumalla 17

Automation (cont.) – Libraries
• Reversible versions of commonly-used libraries

• Example 1: Random number generation
– Reversible random number generator RRNG (to be

released soon) in C, Java, and FORTRAN
– Large period, multiple independent streams

• Example 2: Reversible data structures
– We are developing container data types with forward

and reverse modes

• Example 3: Reversible linear algebra
– We are developing a first cut at Rever-BLAS (Reversible

Basic Linear Algebra Services)

ASCAC Meeting Nov 2, 2011 Perumalla 18

Reversible Runtime: Relaxation of
Synchronization

Computation Idle Tight
Synchroni-

zation
Computation

Idle

Real time

P1

P2

P3

P4

P5

Relaxed
 Synchronization

Computation

Computation

Real time

P1

P2

P3

P4

P5

E.g., Vampir Trace of
Parallel Ocean Program (POP)

Tight (traditional) Relaxed (reversible)

Local and Global Causality
• Causal errors detected and corrected at runtime
• Intra-processor reversal with anti-computation
• Inter-processor reversal with anti-messages
• Runtime performs intermediate message

buffering and flow control

ASCAC Meeting Nov 2, 2011 Perumalla 19

Reversible Runtime (cont.) – Feasibility
• Relatively fine-grained GUPS-like model

– discrete event model, hand-coded reverse code, model size increased with
no. of cores (weak scaling), randomized processor neighborhood of ±100

• Reversible asynchronous execution achieved with high efficiency

Executed on up to 216K cores
of Jaguar (Cray XT5)

ε = millions of events/second
α = factor of improvement over

synchronous execution

ASCAC Meeting Nov 2, 2011 Perumalla 20

Reversible Runtime (cont.)
• Reversible execution of a reaction-diffusion process model
• High efficiency achieved at scale, with low-level Portals

communication layer; over 2× faster than synchronous mode

Executed on up to 216K cores
of Jaguar (Cray XT5)

ε = millions of events/second
ρ = average number of

rollbacks per core
α = factor of improvement

over synchronous mode

Reaction:

Diffusion:

Exponentially distributed
dwell times, travel times

(1)

1
r i

r R
t N ln rs

ip e
ρ

∈

−∑
= −

ASCAC Meeting Nov 2, 2011 Perumalla 21

Theory
• New, reversible physical system

models
– E.g., reversible elastic collisions, phase

space coverage

• Numerical reversal challenges
– E.g., reversible transcendental functions

• Reversible complex probability
distributions
– E.g., reversible rejection sampling

• Reversible root-finding
– E.g., reversibility of Newton method

• Other reversible numerical methods

• Reversible Turing machines, entropy

Probability Density Function

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1

FPT

Fr
eq

ue
nc

y

Forward First Passage Time

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 11 21 31 41 51 61 71 81 91

Invocation i

i't
h

FP
T(

)

Reverse First Passage Time

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 11 21 31 41 51 61 71 81 91

Invocation i

i't
h

RF
PT

()

ASCAC Meeting Nov 2, 2011 Perumalla 22

Experimentation – μπ Virtual MPI Testbed
216K Real Cores, 221M Virtual Ranks
• Facilitates co-design, helps us in

experimentation with new runtime
frameworks in/over MPI

• Several MPI applications tested over μπ
Tests: mpiping, allreduce, matmul, pical, …
Benchmarks: FFTE, GUPS, Gaussian Elimination, …
Applications: Sweep3D, NWChem, …
DOE Mini-Apps: pHPCG, CGPOP, …

virtual-barrier, LPX=1024, on Jaguar (Cray XT5)

ASCAC Meeting Nov 2, 2011 Perumalla 23

What Challenges
• Usable: Simulate real MPI codes
• Fast: Purely discrete event execution
• Ultra-scale: 106-107 ranks
• Highest fidelity: Function, timing, feedback

Why Motivation
• Exascale co-design
• Prepare software for scaling
• Debug, test, fine-tune frameworks, codes
• Experiment with user-chosen hardware

How Techniques
• Multiplex virtual on real ranks
• Optimize virtual MPI layer speed
• Achieve correct timing / ordering
• Expand supported MPI primitives

Etc Highlights
• Tested with several million simulated ranks
• 1,024 virtual ranks per real rank
• Tested with multiple MPI benchmarks, apps
• To be used with DOE mini-apps

μπ
Software-based virtual

experimentation system
“Seed Corn” of HPC*

Experimentation (cont.) – μπ System for Exploring
new Million-Rank MPI Runtimes and Applications

*HPC=High Performance Computing

ASCAC Meeting Nov 2, 2011 Perumalla 24

Vision: Integrated Reversible Software

Fully
Optimized
Reversible

Software at
Scale

ASCAC Meeting Nov 2, 2011 Perumalla 25

Outreach – Near-term (Planned)

Software Releases

• Rever-RNG (C, FORTRAN, Java)

• Rever-C (Source-to-Source C Reversal Compiler)

• Rever-BLAS (BLAS extension)

• Rever-Apps (Mini-apps)

“Rever Challenge Series”

• Competition open to the community

• Easy, medium, hard set of reversal problems

• Reference solutions and implementations to be
provided by us at the end of each competition

Summary
• Reversible Software Execution adds an

important, orthogonal dimension to high
performance computing

• Successful proof-of-concept can
jumpstart a new class of research all the
way from the top to the bottom layers of
HPC

• Technology is in basic research stage
• Challenge is immense but potential

payoff for future is high

• Also, positions for future developments
•Adiabatic Computing, Quantum Computing

ASCAC Meeting Nov 2, 2011 Perumalla 27

Publications
• K. S. Perumalla, A. J. Park and V. Tipparaju, “GVT Algorithms and Discrete Event Execution Dynamics

on 129K+ Processor Cores,” International Conference on High Performance Computing, 2011

• K. S. Perumalla and A. J. Park, “Improving Multi-Million Virtual Rank MPI Execution in µπ,“ Intl.
Conference on Modeling and Simulation of Computing and Telecommunication Systems, 2011

• S. K. Seal and K. S. Perumalla, “Reversible Parallel Discrete Event Formulation of a TLM-based Radio
Signal Propagation Model”, ACM Transactions on Modeling and Computer Simulation, 2011

• K. S. Perumalla and S. K. Seal, “Discrete Event Modeling and Massively Parallel Execution of
Epidemic Outbreak Phenomena,” Transactions of the Society for Modeling and Simulation Intl., 2011

• S. K. Seal, K. S. Perumalla and S. P. Hirshman, “Improved Parallelization of the SIESTA Magneto-
hydrodynamic Equilibrium Code Using Cyclic Reduction,” DP11 American Physical Society, 2011.

• C. D. Carothers, and K. S. Perumalla, “On Deciding between Conservative and Optimistic Approaches
on Massively Parallel Platforms,” Winter Simulation Conference, 2010

• K. S. Perumalla and C. D. Carothers, “Compiler-based Automation Approaches to Reverse
Computation,” Workshop on Reverse Computation, 2010

• K. S. Perumalla, “µπ: A Scalable and Transparent System for Simulating MPI Programs,” ICST Intl.
Conference on Simulation Tools and Techniques, 2010

• K. S. Perumalla, A. J. Park and V. Tipparaju, “Towards Software-level Virtual Experimentation of MPI-
based Million-way Concurrency,” (in preparation)

• K. S. Perumalla and V. A. Protopopescu, “Reversible Simulation of Elastic Collisions,” (in preparation,
for Mathematical Modeling in Applied Sciences)

Thank you
Contact
Kalyan S. Perumalla
Senior R&D Staff & Manager, ORNL
Adjunct Professor, Georgia Tech

perumallaks@ornl.gov
www.ornl.gov/~2ip
+1 (865) 241-1315
+1 (865) 576-0003 (fax)

Oak Ridge National Laboratory
PO Box 2008, MS-6085
Oak Ridge, TN 37831-6085

mailto:perumallaks@ornl.gov�
http://www.ornl.gov/~2ip�

	ReveR-SES: Reversible Software Execution Systems
	Project Personnel
	Outline
	Problem
	Our Solution Approach
	Simplified Illustration of�Reversible Software Execution
	Illustration of a More Complex Reversible Model Execution
	Related Work
	Reversible Software: Challenge
	Selected Research Challenges in Reversible Software
	Principal Research Components
	Our Automation Approach
	Automation (cont.) – Compiler-based
	Automation (cont.) – Basic Reversal Methodology for Source-to-Source
	Automation (cont.) – Model-based Reversal Example
	Automation (cont.) – Linear Codes
	Automation (cont.) – Libraries
	Reversible Runtime: Relaxation of Synchronization
	Reversible Runtime (cont.) – Feasibility
	Reversible Runtime (cont.)
	Theory
	Experimentation – μπ Virtual MPI Testbed 216K Real Cores, 221M Virtual Ranks
	Experimentation (cont.) – μπ System for Exploring new Million-Rank MPI Runtimes and Applications
	Vision: Integrated Reversible Software
	Outreach – Near-term (Planned)
	Summary
	Publications
	Thank you

