AAAAAAAAAAAAAAAAAA

Planning for the Exascale Software
Center

Robert Ross

Mathematics and Computer Science Division
Argonne National Laboratory
rross@mcs.anl.gov

éx,\\ U.S. DEPARTMENT OF
.4/ ENERGY

Platform R&D
2 Vendor Tracks

ePower
e|ntegration
* Risk Mitigation

Critical
Technologies

(everyone
benefits)
eMemory

*Nonvolatile storage
eOptics

Software and
Environments
eOperating
environment
eSystems Software
oSystem reliability

e Programming
model

Major Components of DOE Exascale Initiative

Co-design

ePerformance
models
eSimulators
eApplications
integration with
vendors

Platforms

eEarly prototypes to
ensure component
integration and
usefulness

*Risk mitigation for
vendors — Non
recoverable
engineering cost

Research and development, but also
coordination and Quality Assurance.

The Changing Face of Extreme-Scale Platforms

Yesterday

Today

Tomorrow

Seymour & team
designs and hand

builds set of
computers

Dozen HPC
companies
flourish:
incompatible OS
& components

Commodity
components and
Open Source
move effort to
integration

Design-Build partnerships
for extreme scale e.g.

* LLNL/ANL/IBM

* Sandia/ORNL/Cray

* Fujitsu/NEC/Hitachi/Riken

Globally distributed
teams, Diverse
technology providers,
Co-Design with
applications, Open
Source Software

e.g: PRACE

Current HPC software approach needs a reboot

It is our view that complex systems almost always fail in complex ways ...
— Columbia Accident Investigation Board Report, August 2003

= Software development uncoordinated with hardware features

— (e.g., power mgmt, multicore tools, math libraries, advanced memory models)

= Only basic acceptance test software is delivered with platform
— UPC, HPCToolkit, Optimized libraries, PAPI, can be YEARS late

= Vendors often “snapshot” key Open Source components and then deliver
a stale code branch

= Community codes unprepared for sea change in architectures
= “Coordination via contract” is poor and only involves 2 parties
= No global evaluation of key missing components

Current ESC Planning Team

Coordinating Pls:

Pete Beckman, Argonne National Laboratory

Jack Dongarra, University of Tennessee

Pavan Balaji, Argonne National Laboratory

George Bosilca, University of Tennessee

Ron Brightwell, Sandia National Laboratory

Jonathan Carter, Lawrence Berkeley National Laboratory
Franck Cappello, University of lllinois

Barbara Chapman, University of Houston

James Demmel, University of California Berkeley

Al Geist, Oak Ridge National Laboratory

Bill Gropp, University of lllinois

Paul Hargrove, Lawrence Berkeley National Laboratory
Michael Heroux, Sandia National Laboratory

Kamil Iskra, Argonne National Laboratory

Rusty Lusk, Argonne National Laboratory

Allen Malony, University of Oregon

Arthur Barney Maccabe, Oak Ridge National Laboratory
Terry Moore, University of Tennessee

John Mellor-Crummey, Rice University

Robert Ross, Argonne National Laboratory

Marc Snir, University of lllinois

Rajeev Thakur, Argonne National Laboratory

Vinod Tipparajuv, Oak Ridge National Laboratory
Jeff Vetter, Oak Ridge National Laboratory

Kathy Yelick, Lawrence Berkeley National Laboratory

Special thanks for feedback and help developing material:

Bronis de Supinski, Lawrence Livermore National Laboratory Robert Wisniewski, IBM

Mark Seager, Lawrence Livermore National Laboratory
Pat McCormick, Los Alamos National Laboratory

Andy White, Los Alamos National Laboratory

Peg Williams, Cray

Peter Young, Cray

A

Al Gara, IBM

Bill Dally, Nvidia

Steve Parker, Nvidia

David Lombard, Intel

Ed Temple, Argonne National Laboratory

Exascale Software Center (ESC)

Goal: Ensure successful deployment of coordinated exascale
software stack on Exascale Initiative platforms.

Ultimately responsible for success of software

= |dentify required software capabilities

= |dentify gaps

= Design and develop open-source software components

— Both: evolve existing components, develop new ones
— Includes maintainability, support, verification

= Ensure functionality, stability, and performance

= Collaborate with platform vendors to integrate software
= Coordinate outreach to the broader open source

= Track development progress and milestones

Assumptions

Common ESC Software

Several Vendor p|atform Vendor A, Partnership Vendor B, Partnership
partnershlps Platform-specific Platform-specific
. ft ft
~2015 early scalability Somware .
demonstration systems
. Platform Hardware Platform Hardware
— Arch 2010-2011 ; System build 2015

~2018 exascale system
— Arch 2014-2015 ; System build 2018
Co-design centers provide initial applications

ESC:
— Partnership funding agencies, labs, and universities
— Responsible for the common software environment for El systems
— All development will be open source

— Some components will be integrated and supported by vendor, others will be
provided atop basic platform, supported by ESC

— Vendor-specific components will be part of their platform strategy
e E.g.: system management, RAS, compiler, etc.

The Exascale Software Center in One Slide

= Scope
— Deliver high quality system software for exascale platforms
e ~2015,~2018

— |dentify software gaps, research & develop solutions, test and
support deployment

— Increase the productivity and capability and reduce the risk of
exascale deployments

= Cost:
— Applied R&D: ~10-20 distributed teams of 3 to 7 people each
— Large, primarily centralized QA, integration, and verification center

= Schedule overview
— 2010 -Q1 2011: Planning and technical reviews
— April 2011: Launch Exascale Software Center!

— 2014, 2017: SW ready for integration for 2015, 2018 systems
respectively

ESC Organization Chart

DOE
Program
HQ
ESC Management
==== Director:
Deputy:
Software|Components QA Co-Design
. Testing, QA, HPC
Programmin Numerical Center Vend
M g | : ™ Librariesand Integration - Or' -
Odels e 8 , Integration Team
Support
Operating Data Application
Systems and Run ™= Management and Integration and
Time Analysis Performance
Application System
Programmer f=t===Management and
Tools Cybersecurity

Specific Challenges for the Center

= How does the Center participate in co-design activities? What
are vendors and application teams looking for from the
Center?

= Gijven resource constraints, how does the Center select
components to be supported? What does the Center require
of these components and the teams that develop them? How
does the Center interact with these teams?

= How do we engage with the larger DOE, US, and international
communities?

10

The Exascale Software Center and Co-Design
Processes

Platform R&D Co-Desi
Architects Software = o-Lesign

) Centers
(vendors) Community

Initial

Refining
System

Desi
Design esign

Initial Integration,
earch ’ Test & QA Deployment,
Prototypes
Support

Applied Research and Development 4

11

Co-Design Examples (current successes)

Co-Design Example: Math Libraries

0 BLAS, Sca/LAPACK co-design: Well-known, huge success.

o Trilinos, PETSc:

Services:

m Libraries: State-of-the-art libraries for scalable solvers, etc.
= Framework: Building blocks for app implementations.
m Kernels (non-BLAS): SpMYV, SpSV — good avg. performance.

Vendor collaboration:

m Cray-specific sparse kernels: avg 30% performance boost.
m Trilinos, PETSc pre-compiled for Crays:

module load trilinos/10.4.1
module load petsc
m “Heads-up” on trends:

Vendor: Early Sp kernels results for future systems.
Trilinos /PETSc teams: Perf-impacting app, algorithm trends.

| More Examples from Co-Design with [BM

Hardware

= Added MMU

= # of cores

= # of chips

= Efficiency and safety improvements in the
power module designs

MPI

® MPI scalability fixes (esp. memory)

* Fine-grained locking or lock-free methods for
thread safety (open portable atomics lib)

= Derived datatype optimizations

Operating System

= Smart scheduler

= Reduced memory footprint

= Performance improvements (python, shr libs)
= Speculative multi-threading system
programming interface

Code Development & Tools

* Improved performance counters

= Improved behavior for TLS and TM to better
match application needs

= Flexible programming model - MP|
everywhere; flexible task/thread ratio

® Increased user level APIs

System Management

= Distributed control system

= New pervasive security model

= Open source, plug-in dynamic allocator
= Many RAS usability and performance

é improvements

1/0

= Full size, standard PCl-e cards

= Debugger interfaces for IO nodes

= Persistent memory uses

= Page sizes and scalability improvements

MPICH Co-design with IBM and Cray

-1 The MPICH group has for years worked closely with
both IBM and Cray in co-designing MPICH for Blue
Gene and XT systems

o1 Specific optimizations were recently added to MPICH to
improve its multithreaded performance to attain the
high multithreaded message rates needed for BG/Q

1 On the 32-bit BG/P architecture, we worked with IBM
to make MPI_Aint as a 64-bit quantity to enable HDF-5
and other 1/O libraries access files larger than 2GB
correctly

o Similarly, various optimizations and features, such as
support for checkpoint-restart and improvements to the
Nemesis communication layer, were added in
collaboration with Cray to better support Cray systems

Co-Design Examples: System Mgmt

Blue Gene/Q resource allocation system
Collaboration between ANL, LLNL, and IBM

Supports dynamic allocation of network and node
resources

O

Blue Gene/P RAS real-time streaming interface

O

Supports real-time notifications of system failure events
Dovetails with existing RAS polling system from BG/L
Collaboration between ANL, LLNL, and IBM

Vendors and Co-Design

Platform R&D
Architects % Software
(vendors) Community

= Want something like ESC to coordinate and take real responsibility for features and

milestones

— Improved leverage over projects that are currently less responsive than needed

= Do not want “toss over the wall” strategy. “hardening” cannot be done by different team.
= Need to manage risk of final machine functionality, performance, stability and acceptance

= Key ESC models:

— ESC developed -- vendor integrated and supported
— ESC developed — ESC provided, and supported

Formalized roles between ESC and Vendors for development, risk, support, and acceptance
Feedback and progress tracking between ESC and vendors must be shared
Application co-design centers should coordinate discussions of system software through ESC

= NDA material for roadmaps, across co-design centers, etc will be difficult to coordinate

Examples of software package

Primary developer

First-level Support

Second-level

Provider Support Provider
1 | RAS, system mgmt, compilers Vendor Vendor Vendor
2 | OS, MPI, PAPI, math libraries ESC Vendor ESC
3 | Performance tools, 1/O libraries ESC ESC ESC
4 | Perl, Python Broader Community | Vendor
5 | Eclipse IDE Broader Community | Broader Community

13

Applications and Co-Design R&D

Software
Community

Co-Design
Centers

Want something like ESC to coordinate and take real responsibility for features and
milestones

— Improved leverage over projects that are currently less responsive than needed
Want to know specifics about hardware and available software

Applications will provide best estimates of needs for exascale science:
— Data movement, memory sizes, programming models, etc

Applications will test and evaluate prototype system software

Need help managing risk of final machine functionality, performance, stability and
acceptance

Formalized roles between ESC and App Co-Design Centers for development, risk,
support, and acceptance

Feedback and progress tracking between ESC and App Co-Design Centers
Coordinate discussions of system software through ESC

NDA material for roadmaps, across co-design centers, etc will be difficult to
coordinate

14

An Overabundance of Software

oMM 3| c | o
2]

| e] ¢ | < | ' |
Software Requirements for HPC

l:nmu-m-u-umw- 92 09 5ol e o9 Soding Adoflerrg I

B L
— A

Syt bl sy ol - o B

Owen

R e]
i W Ymim Ko
Gy e e ad

Wiy b iy e o sl

! Woons

o Sl vwein ¥ iy

SN g il
SN Sy amall i

Wy s aod s s ¥

- -

whin U Do N naing Syl
- ad s s

b e

e T o v

S b b sy el wyn by

Corbgeranr ke ogwmani “an

Cor g e Nhar g "
B

b

g m i Haenm Wy

Ay dem e e n Narage

Software and functionality fall into
variety of categories:

|/O Storage

Math Libraries
Performance Tools
Etc.

oftware executes in a number of
omains within the system:

— Service node, I/0O nodes, compute

nodes, login nodes, etc

15

Examples: ORNL XT3 I/0 and Math Libraries

< A B C D E BN ¢ |
1 Software Requirements for HPC
2
3 Site: ORNL — .
4 System: Cray XT3 Note that this list is best viewed as a da
5 Submitted 8/25/06 (menu Data>>Filter>>Autofilter), and Pi
6 Contact: Jeff Vetter, vetter@ornl.gov
7
& Site System Node Type:L1 Category :L2 Type L3 Function :Package Provider
All App Support iLibrary I/O & Storage HDF5_PAR NCSA
9 |ORNL iCray XT3
Al App Support ilibrary /0 & Siorage " HOF5 SERIAL INCSA
10 ORNL Cray XT3
11 ORNL Cray XT3 :All App Support iLibrary IYO & Storage :netCDF UCAR/Unidata
12 ORNL Cray XT3 Al App Support iLibrary IO & Storage inetCDF, parallel :ANL
Compute :iApp Support ilibrary Math PetSC ANL
13 ORNL Cray XT3
Compute :iApp Support ilibrary Math Aztec Sandia
14 ORNL iCray XT3
15 ORNL Cray XT3 :Compute :App Support :Library Math BLAS AMD
16 ORNL Cray XT3 :Compute :App Support :Library Math FFTPack Netlib
17 ORNL Cray XT3 :Compute :App Support :Library Math FFTW MIT
18 ORNL Cray XT3 :Compute :App Support :Library Math LAPACK AMD
.\ 19 ORNL Cray XT3 :Compute :App Support :Library Math MUMPS CERFACS

16

Examples: LLNL BG/P Tools

Site System :Node Type :L1 Category :L2 Type :L3 Function Package Provider

LLNL BG/P Service Prog Env Tool Infrastructure LaunchMON LLNL (Open Source)

LLNL BG/P Service Prog Env Tool Infrastructure MRNet University of Wisconsin
LLNL BG/P Service Prog Env Tool Infrastructure Dyninst University of Wisconsin
LLNL BG/P Service Prog Env Tool Infrastructure StackWalker University of Wisconsin
LLNL BG/P Service Prog Env Tool Infrastructure secure VNC Vaporware

LLNL BG/P Service Prog Env Tool GUI Tool Gear LLNL(Open Source)

LLNL BG/P Service Prog Env Tool GUI telitk Open Source

LLNL BG/P Service Prog Env Tool GUI X11 Open Source

LLNL BG/P Service Prog Env Tool GUI Qt TrollTech (Open Source)
LLNL BG/P Compute Prog Env Tool Performance Analysis Tau Paratools/Univ. of Oregon |
LLNL BG/P Compute Prog Env Tool Performance Analysis HPM Processor Vendor and Lint
LLNL BG/P Compute Prog Env Tool Performance Analysis PAPI UTK(Open Source)

LLNL BG/P Compute Prog Env Tool Performance Analysis OTF Paratools (Open Source)
LLNL BG/P Service Prog Env Tool Performance Analysis Vampir/VampirServ Dresden Univ

LLNL BG/P Service Prog Env Tool Performance Analysis VampirTrace Dresden Univ

LLNL BG/P Service Prog Env Tool Tool version selection dotkit LLNL{Open Source)

LLNL BG/P Service Prog Env Tool Editor emacs Open Source

LLNL BG/P Service Prog Env Tool Editor vim Open Source

LLNL BG/P Compute Prog Env Tool Performance Analysis mpiP LLNL/ORNL(Open Source!
LLNL BG/P Service Prog Env Tool Source Code Control svn Open Source

LLNL BG/P Service Prog Env Tool Source Code Control cvs Open Source

LLNL BG/P Service Prog Env Tool Source Code Control gt Open Source

17

Examples: LLNL Visualization and Analysis

:Package :Provider :Support Criticality
Visit LLNL(Open Source) LLNL 1
OpenGL Open Source Community 1
EnSight CEl Licensing 2
ImageMagick Open Source Open Source 2
Tecplot Tecplot, Inc. Licensing 2
IDL ITT Visual Informations System: Licensing 2
gnuplot Open Source Open Source 2
POV-Ray Open Source Community 2
RasMol Open Source Community 2
vmd UIUC(Open Source) uviuC 2
ParaView Open Source Community 2
NCAR NCAR(Open Source) NCAR 3
mplayer Open Source Community 3
Blockbuster LLNL(Open Source) LLNL 3
GIMP Open Source Community 3
xxdiff/tkdifffmeld Open Source Community 3

18

Breadth of Software Capabilities in ESC

= |nitial set of types of software capabilities developed based on
|IESP report, DOE Exascale workshops, and conversations with
vendors and application teams

Programming Models

Operating Systems and Runtime
Application Programmer Tools
Numerical Libraries and Frameworks
Data Management and Analysis

System Management and Cybersecurity

= |s this the minimum set that ESC should support?

= Where do we make the cut between vendor-supported and ESC-
supported software?

= What can we rely on the co-design centers to support?

19

Selecting ESC Components to Provide Capability

= ESCis responsible for delivering successful software

— Technical evaluation:

e Criticality to successful deployment and key applications

e Technical risk for achieving goal
— Project team evaluation:

e Team history of delivering high-quality, applied software

e Management and institutional support

= ESC will make component selection and resource

decisions based on criticality and risk

— Continuous evaluations of progress; adjust resources

Technical Evaluation Matrix

4

Identify
Needs

3

Identify
Gaps

$

Low Risk

Moderate Risk

ESC Supported

Important

Vendor
Supported

Critical

Most Critical

20

ESC Software ‘ Pr;:‘::sées ‘ Test & QA ‘ I;r::ﬁ)':r:::t‘
Development

Support

= Successful applied R&D teams are built around clear goal of delivering working,
supported packages

= Good software hygiene can’t be someone else’s job

= ESC must work with successful teams existing processes or in some cases, boot
new teams within institutions with excellent history of deployed software

— Probably not feasible to launch new team at site without history of software success
= Formal plans and milestones and reviews are necessary for each component

= Co-design feedback and risk-based assessments work well with spiral development
discipline for software (common in R&D)

System Concept| Test and i Understand the
E\aluate Pl e chmrcmcnts
Software Sytem
Requirem exds
Software Sytem / /
Design /
A Detiled Design ‘ / ﬂrl He
Re;rxfx::m A ‘ Cod & ThitTest ‘ Rapid P ' l
Review Pl »\ \\M rototyping , |
Design A Tegntim & \ \ \ /
R&W&W et
Critical Build in Desngn the
Deign A Stages ~—__ . System
Test
s U ” Readire: . \ /

-

21

Required Processes for ESC Components

= Formulation of clear deliverables with specific targets for functionality,
performance, and stability

= Defined team management plan and risk tracking

= Documented software development plans
— QA (unit tests, integration, etc)
— Performance testing
— Documentation, support
— Bug and new feature tracking

= Resource accounting

= Technical review schedule
= Release schedule

" |ntegration plan

22

Distributed Project Staffing Approach

= “ESC Component Teams” should be located where their center of mass
has demonstrated success

— E.g: Math libraries at UTK, Performance tools at UOregon and Rice

= Each Component Team will have at least one “embedded” QA and testing
staff member provided by ESC

— Position will be held by professional QA/build engineer (i.e., not a student or
postdoc)

— Candidates will be approved by ESC director of QA and have performance
appraisal “matrix input”

= Each site must have local ESC team members responsible for integration
— Will belong to production computing division, not R&D division
= QA, integration, and support team will be primarily at one site

= Resources dedicated to collaboration and software development
infrastructure is required

23

Community Engagement

[ESP Activities

European Exascale
Initiative

ASCR/NNSA Institutes

Domain Science Institutes "
A e 4

Computer Science
Institutes

Co-design Centers

Applications Co-design
-y

ESC

Hardware Co-design

.

Third Party Software

Next Steps in ESC Planning

= Develop software planning documents:
— Definition of review materials
— Formal review in April 2011

= Build application co-design liaisons, develop plan for jointly
evaluating key software

= Build links to IESP organizational plan

= Begin technical evaluation and ranking of key software
components

= Link to NSF, NASA, DARPA, and other groups

25

Acknowledgments: ESC Planning Team

Coordinating Pls:

Pete Beckman, Argonne National Laboratory

Jack Dongarra, University of Tennessee

Pavan Balaji, Argonne National Laboratory

George Bosilca, University of Tennessee

Ron Brightwell, Sandia National Laboratory

Jonathan Carter, Lawrence Berkeley National Laboratory
Franck Cappello, University of lllinois

Barbara Chapman, University of Houston

James Demmel, University of California Berkeley

Al Geist, Oak Ridge National Laboratory

Bill Gropp, University of lllinois

Paul Hargrove, Lawrence Berkeley National Laboratory
Michael Heroux, Sandia National Laboratory

Kamil Iskra, Argonne National Laboratory

Rusty Lusk, Argonne National Laboratory

Allen Malony, University of Oregon

Arthur Barney Maccabe, Oak Ridge National Laboratory
Terry Moore, University of Tennessee

John Mellor-Crummey, Rice University

Robert Ross, Argonne National Laboratory

Marc Snir, University of lllinois

Rajeev Thakur, Argonne National Laboratory

Vinod Tipparajuv, Oak Ridge National Laboratory
Jeff Vetter, Oak Ridge National Laboratory

Kathy Yelick, Lawrence Berkeley National Laboratory

Special thanks for feedback and help developing material:

Bronis de Supinski, Lawrence Livermore National Laboratory Robert Wisniewski, IBM

Mark Seager, Lawrence Livermore National Laboratory
Pat McCormick, Los Alamos National Laboratory

Andy White, Los Alamos National Laboratory

Peg Williams, Cray

Peter Young, Cray

A

Al Gara, IBM

Bill Dally, Nvidia

Steve Parker, Nvidia

David Lombard, Intel

Ed Temple, Argonne National Laboratory

26

