Computing at Argonne and ALCF Update

Michael E. Papka
Division Director (interim)
Argonne Leadership Computing Facility
Argonne’s computing ecosystem

Research / Departmental

Campus Computing/LCRC

Distributed/Cloud Computing

Storage / Data Intensive

Visualization / Collaboration

Global Research Networks

Leadership Computing
Argonne Magellan Cloud Hardware - Final

Compute Servers
504 Compute Servers
Nehalem Dual quad-core 2.66GHz
24GB RAM, 500GB Disk
QDR Infiniband
Totals
4032 Cores, 40TF Peak
12TB Memory, 250TB Disk

Active Storage Servers
200 Compute/Storage Nodes
40TB FLASH/SSD Storage
9.6TB Memory, 1.6PB Disk
QDR Infiniband

GPU Servers
133 GPU Servers
8.5TB Memory, 133TB Disk
266 Nvidia 2070 GPU cards
QDR Infiniband

Big Memory Servers
~10 Compute Servers
~10TB Memory, ~10TB Disk
QDR Infiniband

File Servers (8) (/home) 160TB

Mgt Servers (12)

Gateway Servers (16)

ESNet 10Gb/s

ANI 100 Gb/s
Spring 2011
PADS Petascale Analysis and Data Server

NSF MRI supported shared instrumentation
Beagle (coming soon)

NIH Supported
150 Teraflops – 18,000 cores
Cray XE6
For Biomedical Computing
Installation November 2010
ALCF-2: How We Got Here...

- **2009**: BG/Q Mira
- **2010**: Today 5/17/2010
- **2011**: T&D Delivery Complete
- **2012**: 10PF Delivery Complete
- **2013**: CD-4 DME Complete Steady State

CD-0 Mission Need

CD-1/2a Acquisition & Baseline

Charge Questions
- Is the ALCF approach to identify the preferred alternative for the follow-on upgrade reasonable and will the proposed alternative address the scientific requirements for Leadership Computing as planned?
- Is the ALCF management appropriately structured and empowered to ensure success delivering the proposed upgrade while continuing to deliver leadership resources to its users?
- Are the cost and schedule estimates reasonable and within scope for the proposed ALCF upgrade?
- Is the project ready for CD-1/CD-2 approval?

Contract Package Complete

CD-2b/3 SOW/Contract Start Construction
ALCF Early Science Program

- **Next-generation IBM Blue Gene machine *Mira***
 - 10 petaFLOPS, 750k cores, 750 TB memory
- **Engineer scientific codes for Mira**
- **Burst of large-scale science calculations**
 - 2 billion core-hours
16 ESP Projects

<table>
<thead>
<tr>
<th>Science Areas</th>
<th>Algorithms/Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics</td>
<td>Structured Grids</td>
</tr>
<tr>
<td>Biology</td>
<td>Unstructured Grids</td>
</tr>
<tr>
<td>CFD/Aerodynamics</td>
<td>FFT</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Dense Linear Algebra</td>
</tr>
<tr>
<td>Climate</td>
<td>Sparse Linear Algebra</td>
</tr>
<tr>
<td>Combustion</td>
<td>Particles/N-Body</td>
</tr>
<tr>
<td>Cosmology</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>Fusion Plasma</td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Nuclear Structure</td>
<td></td>
</tr>
</tbody>
</table>

7 National Lab Pls
9 University Pls
Early Science Program Projects

- **Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model**
 Science: Climate PI: Venkatramani Balaji

- **Materials Design and Discovery: Catalysis and Energy Storage**
 Science: Materials/Chemistry PI: Larry A. Curtiss

- **Direct Numerical Simulation of Autoignition in a Jet in a Cross-Flow**
 Science: Combustion PI: Christos Frouzakis

- **High Accuracy Predictions of the Bulk Properties of Water**
 Science: Chemistry PI: Mark Gordon

- **Cosmic Structure Probes of the Dark Universe**
 Science: Astro/Cosmology PI: Salman Habib

- **Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy Production and Storage with MADNESS and MPQC**
 Science: Chemistry PI: Robert Harrison

- **Petascale, Adaptive CFD**
 Science: Aerodynamics PI: Kenneth Jansen

- **Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates**
 Science: Geophysics PI: Thomas Jordan

- **High-Speed Combustion and Detonation (HSCD)**
 Science: Combustion PI: Alexei Khokhlov

- **Petascale Simulations of Turbulent Nuclear Combustion**
 Science: Astro/Cosmology PI: Don Lamb

- **Lattice Quantum Chromodynamics**
 Science: Nuclear Structure PI: Paul Mackenzie

- **Petascale Direct Numerical Simulations of Turbulent Channel Flow**
 Science: Energy PI: Robert Moser

- **Ab-initio Reaction Calculations for Carbon-12**
 Science: Nuclear Structure PI: Steven C Pieper

- **NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular Systems Based on a Polarizable Force Field**
 Science: Bio Protein PI: Benoit Roux

- **Global Simulation of Plasma Microturbulence at the Petascale & Beyond**
 Science: Fusion PI: William Tang

- **Multiscale Molecular Simulations at the Petascale**
 Science: Biology PI: Gregory Voth
Thank-you