
Automatic Differentiation in

Computational Science

Boyana Norris
norris@mcs.anl.gov

http://www.mcs.anl.gov/~norris

Paul Hovland, Sri Hari Krishna Narayanan, Jean Utke

ASCAC Meeting, Nov. 10, 2010

mailto:norris@mcs.anl.gov
http://www.mcs.anl.gov/~norris

Outline

 Why automatic differentiation?

 Application examples

 AD in a nutshell

 Research challenges and opportunities

 Summary

Why automatic differentiation?

 Given: some numerical model
 implemented as a program

 Wanted: sensitivity analysis, optimization, parameter (state)
 estimation, higher order approximation, …

Why automatic differentiation? (cont.)

 Alternative #1: hand-coded derivatives
– hand-coding is tedious and error-prone

– coding time grows with program size and complexity

– automatically generated code may be faster

– no natural way to compute derivative matrix-vector products (Jv,
JTv, Hv) without forming full matrix

– maintenance is a problem (must maintain consistency)

 Alternative #2: finite difference approximations
– introduce truncation error that in the best case halves the digits of

accuracy

– cost grows with number of independents

– no natural way to compute JTv products

 use tools to do it at least semi-automatically!

AD in computational science

 AD is used in applications for computing
– Gradients

– Jacobian projections

– Hessian projections

– Higher-order derivatives (full or partial tensors, univariate tensor
series)

 Derivatives are used for
– Measuring the sensitivity of a simulation to unknown or poorly known

parameters (e.g., how does ocean bottom topography affect flow?)

– Assessing the role of algorithm parameters in a numerical solution
(e.g., how does the filter radius impact a large eddy simulation?)

– Computing a descent direction in numerical optimization (e.g.,
compute gradients and Hessians for use in aircraft design)

– Solving discretized nonlinear PDEs (e.g., compute Jacobians or
Jacobian-vector products for combustion simulations)

Application highlights

 Atmospheric chemistry

 Breast cancer biostatistical analysis

 CFD: CFL3D, NSC2KE, (Fluent 4.52: Aachen) ...

 Chemical kinetics

 Climate and weather: MITgcm, MM5, CICE

 Semiconductor device simulation

 Water reservoir simulation

 Mechanical engineering (design optimization)

6

7

Tuned parameters Standard parameters

- Simulated (yellow) and observed (green) March ice thickness (m)

Parameter tuning: Sea ice model

Application: Sensitivity analysis in simplified

climate model

 Sensitivity of flow through Drake Passage to ocean bottom
topography
– Finite difference approximations: 23 days

– Naïve automatic differentiation: 2 hours 23 minutes

– Smart automatic differentiation: 22 minutes

Application: Preliminary results for MITgcm

 Time for one simulation run (20 years at 4 degree resolution):
51.75 hrs

 Time for one gradient computation using AD: 204.2 hrs (8.5
days)

 Time to approximate one gradient using finite differences:
1.08 million years

 Goal: O(10)-O(100) gradient evaluations at 1/2 degree
resolution

Application: mesh quality optimization

 Optimization used to move mesh vertices to create elements as close
to equilateral triangles/tetrahedra as possible

 Semi-automatic differentiation is 10-25% faster than hand-coding for
gradient and 5-10% faster than hand-coding for Hessian

 Automatic differentiation is a factor 2-5 times faster than finite
differences

Before After

Application: solution of nonlinear PDEs

 Jacobian-free Newton-Krylov solution of model problem (driven cavity)

AD + TFQMR:

AD + BiCGStab:

FD(w=10-5) + GMRES:

FD(w=10-3) + GMRES:

AD + GMRES:

FD(w=10-5) + BiCGStab:

FD(w=10-7) + GMRES: does not converge

FD + TFQMR: does not converge

AD = automatic differentiation

FD = finite differences

W = noise estimate for Brown-Saad

Automatic differentiation (AD) in a nutshell

 Technique for computing analytic derivatives of programs

 Derivatives are used in a many numerical algorithms, including
nonlinear equation solvers, optimization algorithms, and
uncertainty quantification

 AD = analytic differentiation of elementary functions +
propagation by chain rule
– Every programming language provides a limited number of elementary

mathematical functions

– Thus, every function computed by a program may be viewed as the
composition of these so-called intrinsic functions

– Derivatives for the intrinsic functions are known and can be combined
using the chain rule of differential calculus

14

AD in a nutshell (cont.)

 Associativity of the chain rule leads to two main modes:
forward and reverse

 Can be implemented using source transformation or operator
overloading

16

Modes of AD

 Forward Mode

– Propagates derivative vectors, often denoted ∇u or g_u

– Derivative vector ∇u contains derivatives of u with respect to
independent variables

– Time and storage proportional to vector length (# indeps)

 Reverse Mode
– Propagates adjoints, denoted ū or u_bar

– Adjoint ū contains derivatives of dependent variables with respect to u

– Propagation starts with dependent variables—must reverse flow of
computation

– Time proportional to adjoint vector length (# dependents)

– Storage proportional to number of operations

– Because of this limitation, often applied to subprograms

16

Accumulating derivatives

 Represent function using a directed acyclic graph (DAG)

 Computational graph
– Vertices are intermediate variables, annotated with function/operator

– Edges are unweighted

 Linearized computational graph
– Edge weights are partial derivatives

– Vertex labels are not needed

 Compute sum of weights over all paths from independent to
dependent variable(s), where the path weight is the product of
the weights of all edges along the path [Baur & Strassen]

 Find an order in which to compute path weights that
minimizes cost (e.g., FLOPS): identify common subpaths
(=common subexpressions in Jacobian)

A small example

... lots of code...

a = cos(x)

b = sin(y)*y*y

f = exp(a*b)

... lots of code...

18

Forward mode: 9 + 12p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
 g_1(1:p) = d1dy*g_y(1:p)
tmp2 = tmp1*y
 g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p)
b = tmp2*y
 g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p)
tmp1 = a*b
 g_1(1:p) = b*g_a(1:p)+a*g_b(1:p)
f = exp(tmp1)
 g_f(1:p) = f*g_1(1:p)

New algorithm: 17 + 3p

a = cos(x)
 dadx = -sin(x)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1 * y
b = tmp2*y
f = exp(a*b)
 adjx = f*a*dadx
 adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y))
 g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)

ADIC 1 mode: 11 + 5p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1*y
b = tmp2*y
 adjy = y*y*d1dy + y*tmp1 + tmp2
 g_b(1:p) = adjy*g_y(1:p)
f = exp(a*b)
 adja = f*b
 adjb = f*a
 g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p)

p independents

Preaccumulation:
•Reduces flops (factor 2 or more)
•Reduces memory requirements (adjoint mode)
•Optimal strategy can reduce flops by another factor
of 2

 y x

*

sin

cos

*

*

exp

...

...

q dependents

a

b

f

a

cos(y)

f

t2

-sin(x)

y

y
t1

b

y x

...

...

q dependents

f

adjy adjx

y x

...

...

q dependents

a

b

f

adjy

-sin(x)

adja

adjb

Automatic generation of derivative code

 Automatic differentiation (AD) tools automate the creation of
derivative code

 Automatic generation of derivative code from function code
offers several benefits relative to hand-coded derivatives
– Higher productivity

– Improved quality: hand-coding is tedious and hence error-prone

– Higher performance: tools explore combinatorial search space

– Improved software maintenance: easier to maintain consistency

 AD tools require:
– Robust compiler infrastructure (Open64/SL, ROSE)

– Traditional and domain-specific compiler analyses (OpenAnalysis)

– Combinatorial algorithms to identify effective strategies for
combining partial derivatives (XAIFBooster – CSCAPES)

Argonne-developed AD tools

 OpenAD/F (Argonne/UChicago/Rice)
– Support for many Fortran 95 features

– Developed by a team with expertise in combinatorial algorithms,
compilers, software engineering, and numerical analysis

– Forward and reverse; source transformation

 ADIC (Argonne/UChicago)
– Support for all of C, some C++

– Source transformation; forward and reverse mode

– New version (2.0) based on industrial strength compiler infrastructure

– Shares some infrastructure with OpenAD/F

 ADIFOR (Rice/Argonne)
– Mature and very robust tool

– Support for all of Fortran 77

– Forward and (adequate) reverse modes

OpenAD system architecture

21

http://www.mcs.anl.gov/OpenAD

Impact*

 ADIFOR
– Cited in 232 journal articles (ISI)

– Cited in ~750 online articles (Google Scholar)

– 678 registered users (does not include users registered at Rice)

– 484 subscribers to adifor-users mailing list

 ADIC
– Cited in 53 journal articles

– Cited in ~160 online articles

– 861 registered users

– 564 subscribers to adic-users mailing list

 Direct collaboration with several applications groups; funded
collaborations with:
– MIT: Ocean Modeling and State Estimation

– NASA Langley: Multidisciplinary Design Optimization

– PNNL: Atmospheric Chemistry
*2008 data

Research challenges and opportunities

 Producing more efficient derivative computations
– Identifying and exploiting structure (e.g., sparsity, low rank)

– Numerical algorithms that exploit cheap derivative quantities, e.g.,
Jacobian-vector and vector-Jacobian products, univariate Taylor series
coefficients, etc.

– Elimination strategies

– Compiler analysis

• Context sensitive, flow sensitive analysis

• Linearity analysis

• Parallel, object-oriented programs

Research challenges and opportunities (cont.)

 Mathematical challenges

 Language feature coverage (e.g., C++ templates)

 Multi-language applications

 Different parallel programming models
– MPI, OpenMP, hybrid, GPGPU, etc.

 Exploiting parallelism in derivative computation

 Efficient checkpointing strategies

 Derivative propagation
– Hardware acceleration (cell processor, GeForce 8800GTX)

– Sparse linear combinations (SparsLinC)

Research examples

 Exploiting scarcity reduces both the number of flops to
preaccumulate local partials and the number of flops to
propagate global derivatives
– Scarcity: the Jacobian J for a given function

may have fewer than n * m degrees of freedom. A scarse J can be
represented by a graph with a minimal edge count.

 Matrix coloring for problems with nested sparsity structure
can reduce the cost of Jacobian computations for nonlinear
PDEs discretized on regular grids (e.g., PETSc DA or DMMG)

 Polynomial-time algorithms for detecting structural
properties (e.g., symmetry) of DAGs

 Fully automated derivatives when standard interfaces are
available (e.g., NEOS, PETSc)

27

f : n a m

28

Matrix Coloring

 Jacobian matrices are often sparse

 The forward mode of AD computes J × S, where S is usually
an identity matrix or a vector

 Can “compress” Jacobian by choosing S such that
structurally orthogonal columns are combined

 A set of columns are structurally orthogonal if no two of
them have nonzeros in the same row

 Equivalent problem: color the graph whose adjacency matrix
is JTJ

 Equivalent problem: distance-2 color the bipartite graph of J

29

Compressed Jacobian

30

Example of a challenge: Chain rule (non-

)differentiability

if (x .eq. 1.0) then

 a = y

else if ((x .eq. 0.0) then

 a = 0

else

 a = x*y

endif

b = sqrt(x**4 + y**4)

31

Mathematical Challenges

 Derivatives of intrinsic functions at points of non-
differentiability

 Derivatives of implicitly defined functions

 Derivatives of functions computed using numerical
methods

32

Points of nondifferentiability

 Due to intrinsic functions
– Several intrinsic functions are defined at points where their derivatives are not, e.g.:

• abs(x), sqrt(x) at x=0
• max(x,y) at x=y

– Requirements:
• Record/report exceptions
• Optionally, continue computation using some generalized gradient

– ADIFOR/ADIC approach
• User-selected reporting mechanism
• User-defined generalized gradients, e.g.:

– [1.0,0.0] for max(x,0)
– [0.5,0.5] for max(x,y)

• Various ways of handling
– Verbose reports (file, line, type of exception)
– Terse summary (like IEEE flags)
– Ignore

 Due to conditional branches
– May be able to handle using trust regions

33

Implicitly Defined Functions

– Implicitly defined functions often computed using iterative
methods

– Function and derivatives may converge at different rates

– Derivative may not be “accurate” if iteration halted upon function
convergence

– Solutions:

• Tighten function convergence criteria

• Add derivative convergence to stopping criteria

• Compute derivatives directly, e.g. A x = b

34

Derivatives of Functions Computed Using Numerical

Methods

 Differentiation and approximation may not commute

 Need to be careful about how derivatives of numerical
approximations are used

 For example, differentiating through an ODE integrator can
provide unexpected results due to feedback induced by
adaptive stepsize control:

35

Addressing limitations in black box AD

 Detect points of nondifferentiability
– proceed with a subgradient

– currently supported for intrinsic functions, but not conditional
statements

 Exploit mathematics to avoid differentiating through an
adaptive algorithm

 Modify termination criterion for implicitly defined
functions
– Tighten tolerance

– Add derivatives to termination test (preferred)

Automatic differentiation and parallelism

 Data-flow analysis framework must become MPI-aware:
requires identifying potential send-receive pairs

 Reverse mode dramatically reduces derivative cost for scalar
functions
(1 cpu-week versus 1 million cpu-years for a climate model)
but requires control and data flow reversal relative to
function evaluation
– In message-passing codes, send becomes receive and receive

becomes send; situation significantly more complicated in case of
nonblocking communication (EuroPVM/MPI2008, PDSEC2009)

– Requirement to restore state in reverse order leads to full state and
incremental checkpointing strategies; restarts can be done in
parallel

 New prefix-like algorithms for derivatives of parallel
reduction operations

Exascale challenges

 AD is a semantic transformation and the resulting code may
exhibit different concurrency characteristics than the original
computation

 Differentiation of some existing (e.g., PGAS) and future
programming models

 Checkpointing for reverse mode

Summary

 Automatic differentiation provides a (semi-)automated way
for generating accurate derivatives

 AD research spans multiple areas: applied mathematics,
combinatorial algorithms, compilers

 AD algorithms and tools must keep pace with
– Increasingly complex applications

– Evolving hardware, increasing levels of parallelism

– Changing programming models and languages

For More Information

 Andreas Griewank and Andrea Walther, Evaluating
Derivatives, 2nd edition, SIAM, 2008.

 Griewank, “On Automatic Differentiation”; this and other
technical reports available online at:
http://www.mcs.anl.gov/autodiff/tech_reports.html

 AD in general: http://www.mcs.anl.gov/autodiff/,
http://www.autodiff.org/

 ADIFOR: http://www.mcs.anl.gov/adifor/

 ADIC: http://www.mcs.anl.gov/adic/

 OpenAD: http://www.mcs.anl.gov/openad/

 Other tools: http://www.autodiff.org/

http://www.mcs.anl.gov/autodiff/tech_reports.html
http://www.mcs.anl.gov/autodiff/
http://www.autodiff.org/
http://www.mcs.anl.gov/adifor/
http://www.mcs.anl.gov/adic/
http://www.mcs.anl.gov/openad/
http://www.autodiff.org/adtools/

