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Why automatic differentiation? 

 Given:  some numerical model    
  implemented as a program 

 

 Wanted: sensitivity analysis, optimization, parameter (state) 
 estimation, higher order approximation, … 

 



Why automatic differentiation? (cont.) 

 Alternative #1: hand-coded derivatives 
– hand-coding is tedious and error-prone 

– coding time grows with program size and complexity 

– automatically generated code may be faster 

– no natural way to compute derivative matrix-vector products (Jv, 
JTv, Hv) without forming full matrix 

– maintenance is a problem (must maintain consistency) 

 Alternative #2: finite difference approximations 
– introduce truncation error that in the best case halves the digits of 

accuracy 

– cost grows with number of independents 

– no natural way to compute JTv products 

 use tools to do it at least semi-automatically! 



AD in computational science 

 AD is used in applications for computing 
– Gradients 

– Jacobian projections 

– Hessian projections 

– Higher-order derivatives (full or partial tensors, univariate tensor 
series) 

 Derivatives are used for 
– Measuring the sensitivity of a simulation to unknown or poorly known 

parameters (e.g., how does ocean bottom topography affect flow?) 

– Assessing the role of algorithm parameters in a numerical solution 
(e.g., how does the filter radius impact a large eddy simulation?) 

– Computing a descent direction in numerical optimization (e.g., 
compute gradients and Hessians for use in aircraft design) 

– Solving discretized nonlinear PDEs (e.g., compute Jacobians or 
Jacobian-vector products for combustion simulations) 

 



Application highlights 

 Atmospheric chemistry 

 Breast cancer biostatistical analysis 

 CFD: CFL3D, NSC2KE, (Fluent 4.52: Aachen) ... 

 Chemical kinetics  

 Climate and weather: MITgcm, MM5, CICE  

 Semiconductor device simulation 

 Water reservoir simulation 

 Mechanical engineering (design optimization) 
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Tuned parameters Standard parameters 

- Simulated (yellow) and observed (green) March ice thickness (m) 

Parameter tuning: Sea ice model 



Application: Sensitivity analysis in simplified 

climate model 

 Sensitivity of flow through Drake Passage to ocean bottom 
topography 
– Finite difference approximations: 23 days 

– Naïve automatic differentiation: 2 hours 23 minutes 

– Smart automatic differentiation: 22 minutes 



Application: Preliminary results for MITgcm 

 Time for one simulation run (20 years at 4 degree resolution): 
51.75 hrs 

 Time for one gradient computation using AD: 204.2 hrs (8.5 
days) 

 Time to approximate one gradient using finite differences: 
1.08 million years 

 Goal: O(10)-O(100) gradient evaluations at 1/2 degree 
resolution 



Application: mesh quality optimization 

 Optimization used to move mesh vertices to create elements as close 
to equilateral triangles/tetrahedra as possible 

 Semi-automatic differentiation is 10-25% faster than hand-coding for 
gradient and 5-10% faster than hand-coding for Hessian 

 Automatic differentiation is a factor 2-5 times faster than finite 
differences 

Before After 



Application: solution of nonlinear PDEs 

 Jacobian-free Newton-Krylov solution of model problem (driven cavity) 
 

 

AD + TFQMR: 

AD + BiCGStab: 

FD(w=10-5 ) + GMRES: 

FD(w=10-3 ) + GMRES: 

AD + GMRES: 

FD(w=10-5 ) + BiCGStab: 

FD(w=10-7 ) + GMRES:            does not converge 

FD + TFQMR:  does not converge 

 
 
 
 

 

AD = automatic differentiation 

FD = finite differences 

W = noise estimate for Brown-Saad 

 



Automatic differentiation (AD) in a nutshell 

 Technique for computing analytic derivatives of programs 

 Derivatives are used in a many numerical algorithms, including 
nonlinear equation solvers, optimization algorithms, and 
uncertainty quantification 

 AD = analytic differentiation of elementary functions + 
propagation by chain rule 
– Every programming language provides a limited number of elementary 

mathematical functions 

– Thus, every function computed by a program may be viewed as the 
composition of these so-called intrinsic functions 

– Derivatives for the intrinsic functions are known and can be combined 
using the chain rule of differential calculus 
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AD in a nutshell (cont.) 

 Associativity of the chain rule leads to two main modes: 
forward and reverse 

 Can be implemented using source transformation or operator 
overloading 
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Modes of AD 

 Forward Mode  

– Propagates derivative vectors, often denoted ∇u or g_u 

– Derivative vector ∇u contains derivatives of u with respect to 
independent variables 

– Time and storage proportional to vector length (# indeps)  

 Reverse Mode 
– Propagates adjoints, denoted ū or u_bar  

– Adjoint ū contains derivatives of dependent variables with respect to u 

– Propagation starts with dependent variables—must reverse flow of 
computation 

– Time proportional to adjoint vector length (# dependents) 

– Storage proportional to number of operations  

– Because of this limitation, often applied to subprograms 
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Accumulating derivatives 

 Represent function using a directed acyclic graph (DAG) 

 Computational graph 
– Vertices are intermediate variables, annotated with function/operator 

– Edges are unweighted 

 Linearized computational graph 
– Edge weights are partial derivatives 

– Vertex labels are not needed 

 Compute sum of weights over all paths from independent to 
dependent variable(s), where the path weight is the product of 
the weights of all edges along the path [Baur & Strassen] 

 Find an order in which to compute path weights that 
minimizes cost (e.g., FLOPS): identify common subpaths 
(=common subexpressions in Jacobian) 

 



A small example 

... lots of code... 

a = cos(x) 

b = sin(y)*y*y 

f = exp(a*b) 

... lots of code... 
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Forward mode: 9 + 12p 
 

a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
  g_1(1:p) = d1dy*g_y(1:p) 
tmp2 = tmp1*y 
  g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p) 
b = tmp2*y 
  g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p) 
tmp1 = a*b 
  g_1(1:p) = b*g_a(1:p)+a*g_b(1:p) 
f = exp(tmp1) 
  g_f(1:p) = f*g_1(1:p) 

New algorithm: 17 + 3p 
 
a = cos(x) 
  dadx = -sin(x) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1 * y 
b = tmp2*y 
f = exp(a*b) 
  adjx = f*a*dadx 
  adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y)) 
  g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)  

ADIC 1  mode: 11 + 5p 
 
a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1*y 
b = tmp2*y 
  adjy = y*y*d1dy + y*tmp1 + tmp2 
  g_b(1:p) = adjy*g_y(1:p) 
f = exp(a*b) 
  adja = f*b 
  adjb = f*a 
  g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p) 

p independents 

Preaccumulation: 
•Reduces flops (factor 2 or more) 
•Reduces memory requirements (adjoint mode) 
•Optimal strategy can reduce flops by another factor 
of 2 
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Automatic generation of derivative code 

 Automatic differentiation (AD) tools automate the creation of 
derivative code 

 Automatic generation of derivative code from function code 
offers several benefits relative to hand-coded derivatives 
– Higher productivity 

– Improved quality: hand-coding is tedious and hence error-prone 

– Higher performance: tools explore combinatorial search space 

– Improved software maintenance: easier to maintain consistency 

 AD tools require: 
– Robust compiler infrastructure (Open64/SL, ROSE) 

– Traditional and domain-specific compiler analyses (OpenAnalysis) 

– Combinatorial algorithms to identify effective strategies for 
combining partial derivatives (XAIFBooster – CSCAPES) 

 



Argonne-developed AD tools 

 OpenAD/F (Argonne/UChicago/Rice) 
– Support for many Fortran 95 features 

– Developed by a team with expertise in combinatorial algorithms, 
compilers, software engineering, and numerical analysis 

– Forward and reverse; source transformation 

 ADIC (Argonne/UChicago) 
– Support for all of C, some C++ 

– Source transformation; forward and reverse mode 

– New version (2.0) based on industrial strength compiler infrastructure 

– Shares some infrastructure with OpenAD/F 

 ADIFOR (Rice/Argonne) 
– Mature and very robust tool 

– Support for all of Fortran 77 

– Forward and (adequate) reverse modes 

 

 



OpenAD system architecture 

21 

http://www.mcs.anl.gov/OpenAD  



Impact* 

 ADIFOR  
– Cited in 232 journal articles (ISI)  

– Cited in ~750 online articles (Google Scholar) 

– 678 registered users (does not include users registered at Rice) 

– 484 subscribers to adifor-users mailing list 

 ADIC 
– Cited in 53 journal articles 

– Cited in ~160 online articles 

– 861 registered users 

– 564 subscribers to adic-users mailing list 

 Direct collaboration with several applications groups; funded 
collaborations with: 
– MIT: Ocean Modeling and State Estimation 

– NASA Langley: Multidisciplinary Design Optimization 

– PNNL: Atmospheric Chemistry 
*2008 data 



Research challenges and opportunities 

 Producing more efficient derivative computations 
– Identifying and exploiting structure (e.g., sparsity, low rank) 

– Numerical algorithms that exploit cheap derivative quantities, e.g., 
Jacobian-vector and vector-Jacobian products, univariate Taylor series 
coefficients, etc.  

– Elimination strategies 

– Compiler analysis 

• Context sensitive, flow sensitive analysis 

• Linearity analysis 

• Parallel, object-oriented programs 

 



Research challenges and opportunities (cont.) 

 Mathematical challenges 

 Language feature coverage (e.g., C++ templates) 

 Multi-language applications 

 Different parallel programming models 
– MPI, OpenMP, hybrid, GPGPU, etc. 

 Exploiting parallelism in derivative computation 

 Efficient checkpointing strategies 

 Derivative propagation 
– Hardware acceleration (cell processor, GeForce 8800GTX) 

– Sparse linear combinations (SparsLinC) 

 

 



Research examples 

 Exploiting scarcity reduces both the number of flops to 
preaccumulate local partials and the number of flops to 
propagate global derivatives 
– Scarcity: the Jacobian J for a given function     

may have fewer than n * m degrees of freedom. A scarse J can be 
represented by a graph with a minimal edge count. 

 Matrix coloring for problems with nested sparsity structure 
can reduce the cost of Jacobian computations for nonlinear 
PDEs discretized on regular grids (e.g., PETSc DA or DMMG) 

 Polynomial-time algorithms for detecting structural 
properties (e.g., symmetry) of DAGs 

 Fully automated derivatives when standard interfaces are 
available (e.g., NEOS, PETSc) 
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f :  n a m
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Matrix Coloring 

 Jacobian matrices are often sparse 

 The forward mode of AD computes J × S, where S is usually 
an identity matrix or a vector 

 Can “compress” Jacobian by choosing S such that 
structurally orthogonal columns are combined 

 A set of columns are structurally orthogonal if no two of 
them have nonzeros in the same row 

 Equivalent problem: color the graph whose adjacency matrix 
is JTJ 

 Equivalent problem: distance-2 color the bipartite graph of J 
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Compressed Jacobian 
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Example of a challenge: Chain rule (non-

)differentiability 

if (x .eq. 1.0) then 

   a = y 

else if ((x .eq. 0.0) then 

   a = 0 

else 

   a = x*y 

endif 

 

b = sqrt(x**4 + y**4) 
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Mathematical Challenges 

 Derivatives of intrinsic functions at points of non-
differentiability 

 Derivatives of implicitly defined functions 

 Derivatives of functions computed using numerical 
methods 
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Points of nondifferentiability 

 Due to intrinsic functions 
– Several intrinsic functions are defined at points where their derivatives are not, e.g.: 

• abs(x), sqrt(x) at x=0 
• max(x,y) at x=y 

– Requirements: 
• Record/report exceptions 
• Optionally, continue computation using some generalized gradient 

– ADIFOR/ADIC approach 
• User-selected reporting mechanism 
• User-defined generalized gradients, e.g.: 

– [1.0,0.0] for max(x,0) 
– [0.5,0.5] for max(x,y) 

• Various ways of handling 
– Verbose reports (file, line, type of exception) 
– Terse summary (like IEEE flags) 
– Ignore 

 Due to conditional branches 
– May be able to handle using trust regions 
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Implicitly Defined Functions 

– Implicitly defined functions often computed using iterative 
methods 

– Function and derivatives may converge at different rates 

– Derivative may not be “accurate” if iteration halted upon function 
convergence 

– Solutions: 

• Tighten function convergence criteria 

• Add derivative convergence to stopping criteria 

• Compute derivatives directly, e.g. A x = b 
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Derivatives of Functions Computed Using Numerical 

Methods 

 Differentiation and approximation may not commute 

 Need to be careful about how derivatives of numerical 
approximations are used 

 For example, differentiating through an ODE integrator can 
provide unexpected results due to feedback induced by 
adaptive stepsize control: 
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Addressing limitations in black box AD 

 Detect points of nondifferentiability 
– proceed with a subgradient 

– currently supported for intrinsic functions, but not conditional 
statements 

 Exploit mathematics to avoid differentiating through an 
adaptive algorithm 

 Modify termination criterion for implicitly defined 
functions 
– Tighten tolerance 

– Add derivatives to termination test (preferred) 



Automatic differentiation and parallelism 

 Data-flow analysis framework must become MPI-aware: 
requires identifying potential send-receive pairs 

 Reverse mode dramatically reduces derivative cost for scalar 
functions  
(1 cpu-week versus 1 million cpu-years for a climate model) 
but requires control and data flow reversal relative to 
function evaluation 
– In message-passing codes, send becomes receive and receive 

becomes send; situation significantly more complicated in case of 
nonblocking communication (EuroPVM/MPI2008, PDSEC2009) 

– Requirement to restore state in reverse order leads to full state and 
incremental checkpointing strategies; restarts can be done in 
parallel 

 New prefix-like algorithms for derivatives of parallel 
reduction operations 



Exascale challenges 

 AD is a semantic  transformation and the resulting code may 
exhibit different concurrency characteristics than the original 
computation 

 Differentiation of some existing (e.g., PGAS) and future 
programming models 

 Checkpointing for reverse mode 



Summary 

 Automatic differentiation provides a (semi-)automated way 
for generating accurate derivatives 

 AD research spans multiple areas: applied mathematics, 
combinatorial algorithms, compilers 

 AD algorithms and tools must keep pace with 
– Increasingly complex applications 

– Evolving hardware, increasing levels of parallelism 

– Changing programming models and languages 



For More Information 

 Andreas Griewank and Andrea Walther, Evaluating 
Derivatives, 2nd edition, SIAM, 2008. 

 Griewank, “On Automatic Differentiation”; this and other 
technical reports available online at: 
http://www.mcs.anl.gov/autodiff/tech_reports.html 

 AD in general: http://www.mcs.anl.gov/autodiff/, 
http://www.autodiff.org/ 

 ADIFOR: http://www.mcs.anl.gov/adifor/ 

 ADIC: http://www.mcs.anl.gov/adic/ 

 OpenAD: http://www.mcs.anl.gov/openad/ 

 Other tools: http://www.autodiff.org/ 
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