Automatic Differentiation in
Computational Science

Boyana Norris

norris@mcs.anl.gov

http://www.mcs.anl.gov/~norris

Paul Hovland, Sri Hari Krishna Narayanan, Jean Utke

ASCAC Meeting, Nov. 10, 2010



mailto:norris@mcs.anl.gov
http://www.mcs.anl.gov/~norris

Outline

0 Why automatic differentiation?

0 Application examples

2 AD in a nutshell

0 Research challenges and opportunities
Q Summary



Why automatic differentiation?

QO Given: some numerical model
implemented as a program

0 Wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher order approximation, ...



Why automatic differentiation? (cont.)

a Alternative #1: hand-coded derivatives

hand-coding is tedious and error-prone
coding time grows with program size and complexity
automatically generated code may be faster

no natural way to compute derivative matrix-vector products (Jv,
JTv, Hv) without forming full matrix

maintenance is a problem (must maintain consistency)

0 Alternative #2: finite difference approximations

introduce truncation error that in the best case halves the digits of
accuracy

cost grows with number of independents
no natural way to compute J'v products

=» use tools to do it at least semi-automatically!



AD in computational science

0 ADis used in applications for computing

Gradients

— Jacobian projections

Hessian projections

Higher-order derivatives (full or partial tensors, univariate tensor
series)

a Derivatives are used for

Measuring the sensitivity of a simulation to unknown or poorly known
parameters (e.g., how does ocean bottom topography affect flow?)

Assessing the role of algorithm parameters in a numerical solution
(e.g., how does the filter radius impact a large eddy simulation?)

Computing a descent direction in numerical optimization (e.g.,
compute gradients and Hessians for use in aircraft design)

Solving discretized nonlinear PDEs (e.g., compute Jacobians or
Jacobian-vector products for combustion simulations)



Application highlights

Atmospheric chemistry

Breast cancer biostatistical analysis

CFD: CFL3D, NSC2KE, (Fluent 4.52: Aachen) ...
Chemical kinetics

Climate and weather: MITgcm, MM5, CICE
Semiconductor device simulation

Water reservoir simulation

Mechanical engineering (design optimization)

0

o 000000 D0

0.1

-0.2

| OvlonE, |
0.0100
0.0093
00087
0.0080
0.0073
0.0057
00050
0.0053
0.0047
00040
0.0033
0.0027
00020
0.0013
0.0007




Parameter tuning: Sea ice model

= Simulated (yellow) and observed (green) March ice thickness (m)

Tuned parameters Standard parameters



Application: Sensitivity analysis in simplified
climate model

O Sensitivity of flow through Drake Passage to ocean bottom
topography
— Finite difference approximations: 23 days
— Naive automatic differentiation: 2 hours 23 minutes
— Smart automatic differentiation: 22 minutes



Application: Preliminary results for MITgcm

0 Time for one simulation run (20 years at 4 degree resolution):
51.75 hrs

0 Time for one gradient computation using AD: 204.2 hrs (8.5
days)

0 Time to approximate one gradient using finite differences:
1.08 million years

0 Goal: O(10)-O(100) gradient evaluations at 1/2 degree
resolution



Application: mesh quality optimization

O Optimization used to move mesh vertices to create elements as close
to equilateral triangles/tetrahedra as possible

Q Semi-automatic differentiation is 10-25% faster than hand-coding for
gradient and 5-10% faster than hand-coding for Hessian

O Automatic differentiation is a factor 2-5 times faster than finite
differences

Before After



Application: solution of nonlinear PDEs

0 Jacobian-free Newton-Krylov solution of model problem (driven cavity)

AD + TFQMR: h 22

AD + BiCGStab: 31
FD(w=10"°) + GMRES: 31
FD(w=103) + GMRES: 32
AD + GMRES: 42
row=10) + sicestar: | ''¢
FD(w=107) + GMRES: does not converge
FD + TFQMR: does not converge
0 20 40 60 80 100 120 140

Time to solution (sec)

AD = automatic differentiation
FD = finite differences
W = noise estimate for Brown-Saad



Automatic differentiation (AD) in a nutshell

0 Technique for computing analytic derivatives of programs

QO Derivatives are used in a many numerical algorithms, including
nonlinear equation solvers, optimization algorithms, and
uncertainty quantification

0 AD = analytic differentiation of elementary functions +
propagation by chain rule

— Every programming language provides a limited number of elementary
mathematical functions

— Thus, every function computed by a program may be viewed as the
composition of these so-called intrinsic functions

— Derivatives for the intrinsic functions are known and can be combined
using the chain rule of differential calculus

14



AD in a nutshell (cont.)

QO Associativity of the chain rule leads to two main modes:
forward and reverse

0 Can be implemented using source transformation or operator
overloading



Modes of AD

Q Forward Mode

Propagates derivative vectors, often denoted Vuor g u

Derivative vector Vu contains derivatives of u with respect to
independent variables

— Time and storage proportional to vector length (# indeps)

a Reverse Mode

Propagates adjoints, denoted ti or u_bar
Adjoint U contains derivatives of dependent variables with respect tou

Propagation starts with dependent variables—must reverse flow of
computation

Time proportional to adjoint vector length (# dependents)
Storage proportional to number of operations
Because of this limitation, often applied to subprograms

16



Accumulating derivatives

Q

Represent function using a directed acyclic graph (DAG)
Computational graph

— Vertices are intermediate variables, annotated with function/operator
— Edges are unweighted

Linearized computational graph
— Edge weights are partial derivatives
— Vertex labels are not needed

Compute sum of weights over all paths from independent to
dependent variable(s), where the path weight is the product of
the weights of all edges along the path [Baur & Strassen]

Find an order in which to compute path weights that
minimizes cost (e.g., FLOPS): identify common subpaths
(=common subexpressions in Jacobian)



A small example

... lots of code...

a = cos(x)

b = sin(y)*y*y

f=exp(a*b)
NENG digoniddeid 7 -5Pp

Bt (PP L Bre)

e T e WED)

... lots of code...

Preaccumulation:
*Reduces flops (fg

q dependents

p independents

18



Automatic generation of derivative code

0 Automatic differentiation (AD) tools automate the creation of
derivative code

0 Automatic generation of derivative code from function code
offers several benefits relative to hand-coded derivatives
— Higher productivity
— Improved quality: hand-coding is tedious and hence error-prone
— Higher performance: tools explore combinatorial search space
— Improved software maintenance: easier to maintain consistency

QO AD tools require:
— Robust compiler infrastructure (Open64/sL, ROSE)
— Traditional and domain-specific compiler analyses (OpenAnalysis)

— Combinatorial algorithms to identify effective strategies for
combining partial derivatives (XAIFBooster — CSCAPES)



Argonne-developed AD tools

0 OpenAD/F (Argonne/UChicago/Rice)
— Support for many Fortran 95 features

— Developed by a team with expertise in combinatorial algorithms,
compilers, software engineering, and numerical analysis

— Forward and reverse; source transformation

0 ADIC (Argonne/UChicago)

— Support for all of C, some C++

— Source transformation; forward and reverse mode

— New version (2.0) based on industrial strength compiler infrastructure
— Shares some infrastructure with OpenAD/F

0 ADIFOR (Rice/Argonne)
— Mature and very robust tool
— Support for all of Fortran 77
— Forward and (adequate) reverse modes



OpenAD system architecture

http://www.mcs.anl.gov/OpenAD



Impact®

a ADIFOR
— Cited in 232 journal articles (ISI)
— Cited in ~750 online articles (Google Scholar)
— 678 registered users (does not include users registered at Rice)
— 484 subscribers to adifor-users mailing list

a ADIC

— Cited in 53 journal articles

— Cited in ~160 online articles

— 861 registered users

— 564 subscribers to adic-users mailing list

0 Direct collaboration with several applications groups; funded
collaborations with:
— MIT: Ocean Modeling and State Estimation
— NASA Langley: Multidisciplinary Design Optimization

— PNNL: Atmospheric Chemistry *2008 dat
dala



Research challenges and opportunities

0 Producing more efficient derivative computations
— ldentifying and exploiting structure (e.g., sparsity, low rank)

— Numerical algorithms that exploit cheap derivative quantities, e.g.,
Jacobian-vector and vector-Jacobian products, univariate Taylor series
coefficients, etc.

— Elimination strategies

— Compiler analysis
e Context sensitive, flow sensitive analysis
e Linearity analysis
e Parallel, object-oriented programs



Research challenges and opportunities (cont.)

0 Mathematical challenges
0 Language feature coverage (e.g., C++ templates)
O Multi-language applications

Q Different parallel programming models
— MPI, OpenMP, hybrid, GPGPU, etc.

O Exploiting parallelism in derivative computation
0 Efficient checkpointing strategies
Q Derivative propagation

— Hardware acceleration (cell processor, GeForce 8800GTX)
— Sparse linear combinations (SparsLinC)



Research examples

a

Exploiting scarcity reduces both the number of flops to
preaccumulate local partials and the number of flops to
propagate global derivatives

— Scarcity: the Jacobian J for a given function f: R" a R"
may have fewer than n * m degrees of freedom. A scarse J can be
represented by a graph with a minimal edge count.
Matrix coloring for problems with nested sparsity structure
can reduce the cost of Jacobian computations for nonlinear
PDEs discretized on regular grids (e.g., PETSc DA or DMMG)

Polynomial-time algorithms for detecting structural
properties (e.g., symmetry) of DAGs

Fully automated derivatives when standard interfaces are
available (e.g., NEOS, PETSc)

27



Matrix Coloring

Q
Q

Jacobian matrices are often sparse

The forward mode of AD computes ) x S, where S is usually
an identity matrix or a vector

Can “compress” Jacobian by choosing S such that
structurally orthogonal columns are combined

A set of columns are structurally orthogonal if no two of
them have nonzeros in the same row

Equivalent problem: color the graph whose adjacency matrix
isJT)

Equivalent problem: distance-2 color the bipartite graph of J



1an

Compressed Jacob

il H A L G LT




Example of a challenge: Chain rule (non-
)differentiability

if (x .eq. 1.0) then

a =Yy

else if ((x .eq. 0.0) then
a=20

else
a = x*y

endif

b = sqrt(x**4 + y**4)



Mathematical Challenges

O Derivatives of intrinsic functions at points of non-
differentiability

O Derivatives of implicitly defined functions

0 Derivatives of functions computed using numerical
methods



Points of nondifferentiability

0 Due to intrinsic functions
— Several intrinsic functions are defined at points where their derivatives are not, e.g.:
e abs(x), sgrt(x) at x=0
e max(x,y) at x=y
— Requirements:
e Record/report exceptions
e Optionally, continue computation using some generalized gradient
— ADIFOR/ADIC approach
e User-selected reporting mechanism
e User-defined generalized gradients, e.g.:
— [1.0,0.0] for max(x,0)
— [0.5,0.5] for max(x,y)
e Various ways of handling
— Verbose reports (file, line, type of exception)
— Terse summary (like IEEE flags)
— Ignore
0 Due to conditional branches
— May be able to handle using trust regions



Implicitly Defined Functions

— Implicitly defined functions often computed using iterative
methods

— Function and derivatives may converge at different rates
— Derivative may not be “accurate” if iteration halted upon function
convergence
— Solutions:
e Tighten function convergence criteria
e Add derivative convergence to stopping criteria
e Compute derivatives directly, e.g. Allx=[lb



Derivatives of Functions Computed Using Numerical
Methods

Q Differentiation and approximation may not commute

0 Need to be careful about how derivatives of numerical
approximations are used

0 For example, differentiating through an ODE integrator can
provide unexpected results due to feedback induced by
adaptive stepsize control:

Vz' = a—IVt +ai
ot' op



Addressing limitations in black box AD

0 Detect points of nondifferentiability

— proceed with a subgradient
— currently supported for intrinsic functions, but not conditional
statements

0 Exploit mathematics to avoid differentiating through an
adaptive algorithm
0 Modify termination criterion for implicitly defined

functions
— Tighten tolerance
— Add derivatives to termination test (preferred)



Automatic differentiation and parallelism

0 Data-flow analysis framework must become MPIl-aware:
requires identifying potential send-receive pairs

0 Reverse mode dramatically reduces derivative cost for scalar
functions
(1 cpu-week versus 1 million cpu-years for a climate model)
but requires control and data flow reversal relative to
function evaluation

— In message-passing codes, send becomes receive and receive
becomes send; situation significantly more complicated in case of
nonblocking communication (EuroPVM/MPI2008, PDSEC2009)

— Requirement to restore state in reverse order leads to full state and
incremental checkpointing strategies; restarts can be done in
parallel

0 New prefix-like algorithms for derivatives of parallel

reduction operations



Exascale challenges

0 ADis a semantic transformation and the resulting code may
exhibit different concurrency characteristics than the original
computation

0 Differentiation of some existing (e.g., PGAS) and future
programming models

O Checkpointing for reverse mode



Summary

0 Automatic differentiation provides a (semi-)automated way
for generating accurate derivatives

0 AD research spans multiple areas: applied mathematics,
combinatorial algorithms, compilers

0 AD algorithms and tools must keep pace with
— Increasingly complex applications

— Evolving hardware, increasing levels of parallelism

— Changing programming models and languages



For More Information

U 0O 0O O

Andreas Griewank and Andrea Walther, Evaluating
Derivatives, 2" edition, SIAM, 2008.

Griewank, “On Automatic Differentiation”; this and other
technical reports available online at:
http://www.mcs.anl.gov/autodiff/tech reports.html

AD in general: http://www.mcs.anl.gov/autodiff/,
http://www.autodiff.org/

ADIFOR: http://www.mcs.anl.gov/adifor/
ADIC: http://www.mcs.anl.gov/adic/

OpenAD: http://www.mcs.anl.gov/openad/
Other tools: http://www.autodiff.org/



http://www.mcs.anl.gov/autodiff/tech_reports.html
http://www.mcs.anl.gov/autodiff/
http://www.autodiff.org/
http://www.mcs.anl.gov/adifor/
http://www.mcs.anl.gov/adic/
http://www.mcs.anl.gov/openad/
http://www.autodiff.org/adtools/

