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Why automatic differentiation? 

 Given:  some numerical model    
  implemented as a program 

 

 Wanted: sensitivity analysis, optimization, parameter (state) 
 estimation, higher order approximation, … 

 



Why automatic differentiation? (cont.) 

 Alternative #1: hand-coded derivatives 
– hand-coding is tedious and error-prone 

– coding time grows with program size and complexity 

– automatically generated code may be faster 

– no natural way to compute derivative matrix-vector products (Jv, 
JTv, Hv) without forming full matrix 

– maintenance is a problem (must maintain consistency) 

 Alternative #2: finite difference approximations 
– introduce truncation error that in the best case halves the digits of 

accuracy 

– cost grows with number of independents 

– no natural way to compute JTv products 

 use tools to do it at least semi-automatically! 



AD in computational science 

 AD is used in applications for computing 
– Gradients 

– Jacobian projections 

– Hessian projections 

– Higher-order derivatives (full or partial tensors, univariate tensor 
series) 

 Derivatives are used for 
– Measuring the sensitivity of a simulation to unknown or poorly known 

parameters (e.g., how does ocean bottom topography affect flow?) 

– Assessing the role of algorithm parameters in a numerical solution 
(e.g., how does the filter radius impact a large eddy simulation?) 

– Computing a descent direction in numerical optimization (e.g., 
compute gradients and Hessians for use in aircraft design) 

– Solving discretized nonlinear PDEs (e.g., compute Jacobians or 
Jacobian-vector products for combustion simulations) 

 



Application highlights 

 Atmospheric chemistry 

 Breast cancer biostatistical analysis 

 CFD: CFL3D, NSC2KE, (Fluent 4.52: Aachen) ... 

 Chemical kinetics  

 Climate and weather: MITgcm, MM5, CICE  

 Semiconductor device simulation 

 Water reservoir simulation 

 Mechanical engineering (design optimization) 
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Tuned parameters Standard parameters 

- Simulated (yellow) and observed (green) March ice thickness (m) 

Parameter tuning: Sea ice model 



Application: Sensitivity analysis in simplified 

climate model 

 Sensitivity of flow through Drake Passage to ocean bottom 
topography 
– Finite difference approximations: 23 days 

– Naïve automatic differentiation: 2 hours 23 minutes 

– Smart automatic differentiation: 22 minutes 



Application: Preliminary results for MITgcm 

 Time for one simulation run (20 years at 4 degree resolution): 
51.75 hrs 

 Time for one gradient computation using AD: 204.2 hrs (8.5 
days) 

 Time to approximate one gradient using finite differences: 
1.08 million years 

 Goal: O(10)-O(100) gradient evaluations at 1/2 degree 
resolution 



Application: mesh quality optimization 

 Optimization used to move mesh vertices to create elements as close 
to equilateral triangles/tetrahedra as possible 

 Semi-automatic differentiation is 10-25% faster than hand-coding for 
gradient and 5-10% faster than hand-coding for Hessian 

 Automatic differentiation is a factor 2-5 times faster than finite 
differences 

Before After 



Application: solution of nonlinear PDEs 

 Jacobian-free Newton-Krylov solution of model problem (driven cavity) 
 

 

AD + TFQMR: 

AD + BiCGStab: 

FD(w=10-5 ) + GMRES: 

FD(w=10-3 ) + GMRES: 

AD + GMRES: 

FD(w=10-5 ) + BiCGStab: 

FD(w=10-7 ) + GMRES:            does not converge 

FD + TFQMR:  does not converge 

 
 
 
 

 

AD = automatic differentiation 

FD = finite differences 

W = noise estimate for Brown-Saad 

 



Automatic differentiation (AD) in a nutshell 

 Technique for computing analytic derivatives of programs 

 Derivatives are used in a many numerical algorithms, including 
nonlinear equation solvers, optimization algorithms, and 
uncertainty quantification 

 AD = analytic differentiation of elementary functions + 
propagation by chain rule 
– Every programming language provides a limited number of elementary 

mathematical functions 

– Thus, every function computed by a program may be viewed as the 
composition of these so-called intrinsic functions 

– Derivatives for the intrinsic functions are known and can be combined 
using the chain rule of differential calculus 
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AD in a nutshell (cont.) 

 Associativity of the chain rule leads to two main modes: 
forward and reverse 

 Can be implemented using source transformation or operator 
overloading 

 



16 

Modes of AD 

 Forward Mode  

– Propagates derivative vectors, often denoted ∇u or g_u 

– Derivative vector ∇u contains derivatives of u with respect to 
independent variables 

– Time and storage proportional to vector length (# indeps)  

 Reverse Mode 
– Propagates adjoints, denoted ū or u_bar  

– Adjoint ū contains derivatives of dependent variables with respect to u 

– Propagation starts with dependent variables—must reverse flow of 
computation 

– Time proportional to adjoint vector length (# dependents) 

– Storage proportional to number of operations  

– Because of this limitation, often applied to subprograms 
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Accumulating derivatives 

 Represent function using a directed acyclic graph (DAG) 

 Computational graph 
– Vertices are intermediate variables, annotated with function/operator 

– Edges are unweighted 

 Linearized computational graph 
– Edge weights are partial derivatives 

– Vertex labels are not needed 

 Compute sum of weights over all paths from independent to 
dependent variable(s), where the path weight is the product of 
the weights of all edges along the path [Baur & Strassen] 

 Find an order in which to compute path weights that 
minimizes cost (e.g., FLOPS): identify common subpaths 
(=common subexpressions in Jacobian) 

 



A small example 

... lots of code... 

a = cos(x) 

b = sin(y)*y*y 

f = exp(a*b) 

... lots of code... 
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Forward mode: 9 + 12p 
 

a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
  g_1(1:p) = d1dy*g_y(1:p) 
tmp2 = tmp1*y 
  g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p) 
b = tmp2*y 
  g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p) 
tmp1 = a*b 
  g_1(1:p) = b*g_a(1:p)+a*g_b(1:p) 
f = exp(tmp1) 
  g_f(1:p) = f*g_1(1:p) 

New algorithm: 17 + 3p 
 
a = cos(x) 
  dadx = -sin(x) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1 * y 
b = tmp2*y 
f = exp(a*b) 
  adjx = f*a*dadx 
  adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y)) 
  g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)  

ADIC 1  mode: 11 + 5p 
 
a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1*y 
b = tmp2*y 
  adjy = y*y*d1dy + y*tmp1 + tmp2 
  g_b(1:p) = adjy*g_y(1:p) 
f = exp(a*b) 
  adja = f*b 
  adjb = f*a 
  g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p) 

p independents 

Preaccumulation: 
•Reduces flops (factor 2 or more) 
•Reduces memory requirements (adjoint mode) 
•Optimal strategy can reduce flops by another factor 
of 2 
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Automatic generation of derivative code 

 Automatic differentiation (AD) tools automate the creation of 
derivative code 

 Automatic generation of derivative code from function code 
offers several benefits relative to hand-coded derivatives 
– Higher productivity 

– Improved quality: hand-coding is tedious and hence error-prone 

– Higher performance: tools explore combinatorial search space 

– Improved software maintenance: easier to maintain consistency 

 AD tools require: 
– Robust compiler infrastructure (Open64/SL, ROSE) 

– Traditional and domain-specific compiler analyses (OpenAnalysis) 

– Combinatorial algorithms to identify effective strategies for 
combining partial derivatives (XAIFBooster – CSCAPES) 

 



Argonne-developed AD tools 

 OpenAD/F (Argonne/UChicago/Rice) 
– Support for many Fortran 95 features 

– Developed by a team with expertise in combinatorial algorithms, 
compilers, software engineering, and numerical analysis 

– Forward and reverse; source transformation 

 ADIC (Argonne/UChicago) 
– Support for all of C, some C++ 

– Source transformation; forward and reverse mode 

– New version (2.0) based on industrial strength compiler infrastructure 

– Shares some infrastructure with OpenAD/F 

 ADIFOR (Rice/Argonne) 
– Mature and very robust tool 

– Support for all of Fortran 77 

– Forward and (adequate) reverse modes 

 

 



OpenAD system architecture 
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http://www.mcs.anl.gov/OpenAD  



Impact* 

 ADIFOR  
– Cited in 232 journal articles (ISI)  

– Cited in ~750 online articles (Google Scholar) 

– 678 registered users (does not include users registered at Rice) 

– 484 subscribers to adifor-users mailing list 

 ADIC 
– Cited in 53 journal articles 

– Cited in ~160 online articles 

– 861 registered users 

– 564 subscribers to adic-users mailing list 

 Direct collaboration with several applications groups; funded 
collaborations with: 
– MIT: Ocean Modeling and State Estimation 

– NASA Langley: Multidisciplinary Design Optimization 

– PNNL: Atmospheric Chemistry 
*2008 data 



Research challenges and opportunities 

 Producing more efficient derivative computations 
– Identifying and exploiting structure (e.g., sparsity, low rank) 

– Numerical algorithms that exploit cheap derivative quantities, e.g., 
Jacobian-vector and vector-Jacobian products, univariate Taylor series 
coefficients, etc.  

– Elimination strategies 

– Compiler analysis 

• Context sensitive, flow sensitive analysis 

• Linearity analysis 

• Parallel, object-oriented programs 

 



Research challenges and opportunities (cont.) 

 Mathematical challenges 

 Language feature coverage (e.g., C++ templates) 

 Multi-language applications 

 Different parallel programming models 
– MPI, OpenMP, hybrid, GPGPU, etc. 

 Exploiting parallelism in derivative computation 

 Efficient checkpointing strategies 

 Derivative propagation 
– Hardware acceleration (cell processor, GeForce 8800GTX) 

– Sparse linear combinations (SparsLinC) 

 

 



Research examples 

 Exploiting scarcity reduces both the number of flops to 
preaccumulate local partials and the number of flops to 
propagate global derivatives 
– Scarcity: the Jacobian J for a given function     

may have fewer than n * m degrees of freedom. A scarse J can be 
represented by a graph with a minimal edge count. 

 Matrix coloring for problems with nested sparsity structure 
can reduce the cost of Jacobian computations for nonlinear 
PDEs discretized on regular grids (e.g., PETSc DA or DMMG) 

 Polynomial-time algorithms for detecting structural 
properties (e.g., symmetry) of DAGs 

 Fully automated derivatives when standard interfaces are 
available (e.g., NEOS, PETSc) 
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f :  n a m
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Matrix Coloring 

 Jacobian matrices are often sparse 

 The forward mode of AD computes J × S, where S is usually 
an identity matrix or a vector 

 Can “compress” Jacobian by choosing S such that 
structurally orthogonal columns are combined 

 A set of columns are structurally orthogonal if no two of 
them have nonzeros in the same row 

 Equivalent problem: color the graph whose adjacency matrix 
is JTJ 

 Equivalent problem: distance-2 color the bipartite graph of J 



29 

Compressed Jacobian 
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Example of a challenge: Chain rule (non-

)differentiability 

if (x .eq. 1.0) then 

   a = y 

else if ((x .eq. 0.0) then 

   a = 0 

else 

   a = x*y 

endif 

 

b = sqrt(x**4 + y**4) 
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Mathematical Challenges 

 Derivatives of intrinsic functions at points of non-
differentiability 

 Derivatives of implicitly defined functions 

 Derivatives of functions computed using numerical 
methods 
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Points of nondifferentiability 

 Due to intrinsic functions 
– Several intrinsic functions are defined at points where their derivatives are not, e.g.: 

• abs(x), sqrt(x) at x=0 
• max(x,y) at x=y 

– Requirements: 
• Record/report exceptions 
• Optionally, continue computation using some generalized gradient 

– ADIFOR/ADIC approach 
• User-selected reporting mechanism 
• User-defined generalized gradients, e.g.: 

– [1.0,0.0] for max(x,0) 
– [0.5,0.5] for max(x,y) 

• Various ways of handling 
– Verbose reports (file, line, type of exception) 
– Terse summary (like IEEE flags) 
– Ignore 

 Due to conditional branches 
– May be able to handle using trust regions 
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Implicitly Defined Functions 

– Implicitly defined functions often computed using iterative 
methods 

– Function and derivatives may converge at different rates 

– Derivative may not be “accurate” if iteration halted upon function 
convergence 

– Solutions: 

• Tighten function convergence criteria 

• Add derivative convergence to stopping criteria 

• Compute derivatives directly, e.g. A x = b 
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Derivatives of Functions Computed Using Numerical 

Methods 

 Differentiation and approximation may not commute 

 Need to be careful about how derivatives of numerical 
approximations are used 

 For example, differentiating through an ODE integrator can 
provide unexpected results due to feedback induced by 
adaptive stepsize control: 
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Addressing limitations in black box AD 

 Detect points of nondifferentiability 
– proceed with a subgradient 

– currently supported for intrinsic functions, but not conditional 
statements 

 Exploit mathematics to avoid differentiating through an 
adaptive algorithm 

 Modify termination criterion for implicitly defined 
functions 
– Tighten tolerance 

– Add derivatives to termination test (preferred) 



Automatic differentiation and parallelism 

 Data-flow analysis framework must become MPI-aware: 
requires identifying potential send-receive pairs 

 Reverse mode dramatically reduces derivative cost for scalar 
functions  
(1 cpu-week versus 1 million cpu-years for a climate model) 
but requires control and data flow reversal relative to 
function evaluation 
– In message-passing codes, send becomes receive and receive 

becomes send; situation significantly more complicated in case of 
nonblocking communication (EuroPVM/MPI2008, PDSEC2009) 

– Requirement to restore state in reverse order leads to full state and 
incremental checkpointing strategies; restarts can be done in 
parallel 

 New prefix-like algorithms for derivatives of parallel 
reduction operations 



Exascale challenges 

 AD is a semantic  transformation and the resulting code may 
exhibit different concurrency characteristics than the original 
computation 

 Differentiation of some existing (e.g., PGAS) and future 
programming models 

 Checkpointing for reverse mode 



Summary 

 Automatic differentiation provides a (semi-)automated way 
for generating accurate derivatives 

 AD research spans multiple areas: applied mathematics, 
combinatorial algorithms, compilers 

 AD algorithms and tools must keep pace with 
– Increasingly complex applications 

– Evolving hardware, increasing levels of parallelism 

– Changing programming models and languages 



For More Information 

 Andreas Griewank and Andrea Walther, Evaluating 
Derivatives, 2nd edition, SIAM, 2008. 

 Griewank, “On Automatic Differentiation”; this and other 
technical reports available online at: 
http://www.mcs.anl.gov/autodiff/tech_reports.html 

 AD in general: http://www.mcs.anl.gov/autodiff/, 
http://www.autodiff.org/ 

 ADIFOR: http://www.mcs.anl.gov/adifor/ 

 ADIC: http://www.mcs.anl.gov/adic/ 

 OpenAD: http://www.mcs.anl.gov/openad/ 

 Other tools: http://www.autodiff.org/ 
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