
Automatic Differentiation in

Computational Science

Boyana Norris
norris@mcs.anl.gov

http://www.mcs.anl.gov/~norris

Paul Hovland, Sri Hari Krishna Narayanan, Jean Utke

ASCAC Meeting, Nov. 10, 2010

mailto:norris@mcs.anl.gov
http://www.mcs.anl.gov/~norris

Outline

 Why automatic differentiation?

 Application examples

 AD in a nutshell

 Research challenges and opportunities

 Summary

Why automatic differentiation?

 Given: some numerical model
 implemented as a program

 Wanted: sensitivity analysis, optimization, parameter (state)
 estimation, higher order approximation, …

Why automatic differentiation? (cont.)

 Alternative #1: hand-coded derivatives
– hand-coding is tedious and error-prone

– coding time grows with program size and complexity

– automatically generated code may be faster

– no natural way to compute derivative matrix-vector products (Jv,
JTv, Hv) without forming full matrix

– maintenance is a problem (must maintain consistency)

 Alternative #2: finite difference approximations
– introduce truncation error that in the best case halves the digits of

accuracy

– cost grows with number of independents

– no natural way to compute JTv products

 use tools to do it at least semi-automatically!

AD in computational science

 AD is used in applications for computing
– Gradients

– Jacobian projections

– Hessian projections

– Higher-order derivatives (full or partial tensors, univariate tensor
series)

 Derivatives are used for
– Measuring the sensitivity of a simulation to unknown or poorly known

parameters (e.g., how does ocean bottom topography affect flow?)

– Assessing the role of algorithm parameters in a numerical solution
(e.g., how does the filter radius impact a large eddy simulation?)

– Computing a descent direction in numerical optimization (e.g.,
compute gradients and Hessians for use in aircraft design)

– Solving discretized nonlinear PDEs (e.g., compute Jacobians or
Jacobian-vector products for combustion simulations)

Application highlights

 Atmospheric chemistry

 Breast cancer biostatistical analysis

 CFD: CFL3D, NSC2KE, (Fluent 4.52: Aachen) ...

 Chemical kinetics

 Climate and weather: MITgcm, MM5, CICE

 Semiconductor device simulation

 Water reservoir simulation

 Mechanical engineering (design optimization)

6

7

Tuned parameters Standard parameters

- Simulated (yellow) and observed (green) March ice thickness (m)

Parameter tuning: Sea ice model

Application: Sensitivity analysis in simplified

climate model

 Sensitivity of flow through Drake Passage to ocean bottom
topography
– Finite difference approximations: 23 days

– Naïve automatic differentiation: 2 hours 23 minutes

– Smart automatic differentiation: 22 minutes

Application: Preliminary results for MITgcm

 Time for one simulation run (20 years at 4 degree resolution):
51.75 hrs

 Time for one gradient computation using AD: 204.2 hrs (8.5
days)

 Time to approximate one gradient using finite differences:
1.08 million years

 Goal: O(10)-O(100) gradient evaluations at 1/2 degree
resolution

Application: mesh quality optimization

 Optimization used to move mesh vertices to create elements as close
to equilateral triangles/tetrahedra as possible

 Semi-automatic differentiation is 10-25% faster than hand-coding for
gradient and 5-10% faster than hand-coding for Hessian

 Automatic differentiation is a factor 2-5 times faster than finite
differences

Before After

Application: solution of nonlinear PDEs

 Jacobian-free Newton-Krylov solution of model problem (driven cavity)

AD + TFQMR:

AD + BiCGStab:

FD(w=10-5) + GMRES:

FD(w=10-3) + GMRES:

AD + GMRES:

FD(w=10-5) + BiCGStab:

FD(w=10-7) + GMRES: does not converge

FD + TFQMR: does not converge

AD = automatic differentiation

FD = finite differences

W = noise estimate for Brown-Saad

Automatic differentiation (AD) in a nutshell

 Technique for computing analytic derivatives of programs

 Derivatives are used in a many numerical algorithms, including
nonlinear equation solvers, optimization algorithms, and
uncertainty quantification

 AD = analytic differentiation of elementary functions +
propagation by chain rule
– Every programming language provides a limited number of elementary

mathematical functions

– Thus, every function computed by a program may be viewed as the
composition of these so-called intrinsic functions

– Derivatives for the intrinsic functions are known and can be combined
using the chain rule of differential calculus

14

AD in a nutshell (cont.)

 Associativity of the chain rule leads to two main modes:
forward and reverse

 Can be implemented using source transformation or operator
overloading

16

Modes of AD

 Forward Mode

– Propagates derivative vectors, often denoted ∇u or g_u

– Derivative vector ∇u contains derivatives of u with respect to
independent variables

– Time and storage proportional to vector length (# indeps)

 Reverse Mode
– Propagates adjoints, denoted ū or u_bar

– Adjoint ū contains derivatives of dependent variables with respect to u

– Propagation starts with dependent variables—must reverse flow of
computation

– Time proportional to adjoint vector length (# dependents)

– Storage proportional to number of operations

– Because of this limitation, often applied to subprograms

16

Accumulating derivatives

 Represent function using a directed acyclic graph (DAG)

 Computational graph
– Vertices are intermediate variables, annotated with function/operator

– Edges are unweighted

 Linearized computational graph
– Edge weights are partial derivatives

– Vertex labels are not needed

 Compute sum of weights over all paths from independent to
dependent variable(s), where the path weight is the product of
the weights of all edges along the path [Baur & Strassen]

 Find an order in which to compute path weights that
minimizes cost (e.g., FLOPS): identify common subpaths
(=common subexpressions in Jacobian)

A small example

... lots of code...

a = cos(x)

b = sin(y)*y*y

f = exp(a*b)

... lots of code...

18

Forward mode: 9 + 12p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
 g_1(1:p) = d1dy*g_y(1:p)
tmp2 = tmp1*y
 g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p)
b = tmp2*y
 g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p)
tmp1 = a*b
 g_1(1:p) = b*g_a(1:p)+a*g_b(1:p)
f = exp(tmp1)
 g_f(1:p) = f*g_1(1:p)

New algorithm: 17 + 3p

a = cos(x)
 dadx = -sin(x)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1 * y
b = tmp2*y
f = exp(a*b)
 adjx = f*a*dadx
 adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y))
 g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)

ADIC 1 mode: 11 + 5p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1*y
b = tmp2*y
 adjy = y*y*d1dy + y*tmp1 + tmp2
 g_b(1:p) = adjy*g_y(1:p)
f = exp(a*b)
 adja = f*b
 adjb = f*a
 g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p)

p independents

Preaccumulation:
•Reduces flops (factor 2 or more)
•Reduces memory requirements (adjoint mode)
•Optimal strategy can reduce flops by another factor
of 2

 y x

*

sin

cos

*

*

exp

...

...

q dependents

a

b

f

a

cos(y)

f

t2

-sin(x)

y

y
t1

b

y x

...

...

q dependents

f

adjy adjx

y x

...

...

q dependents

a

b

f

adjy

-sin(x)

adja

adjb

Automatic generation of derivative code

 Automatic differentiation (AD) tools automate the creation of
derivative code

 Automatic generation of derivative code from function code
offers several benefits relative to hand-coded derivatives
– Higher productivity

– Improved quality: hand-coding is tedious and hence error-prone

– Higher performance: tools explore combinatorial search space

– Improved software maintenance: easier to maintain consistency

 AD tools require:
– Robust compiler infrastructure (Open64/SL, ROSE)

– Traditional and domain-specific compiler analyses (OpenAnalysis)

– Combinatorial algorithms to identify effective strategies for
combining partial derivatives (XAIFBooster – CSCAPES)

Argonne-developed AD tools

 OpenAD/F (Argonne/UChicago/Rice)
– Support for many Fortran 95 features

– Developed by a team with expertise in combinatorial algorithms,
compilers, software engineering, and numerical analysis

– Forward and reverse; source transformation

 ADIC (Argonne/UChicago)
– Support for all of C, some C++

– Source transformation; forward and reverse mode

– New version (2.0) based on industrial strength compiler infrastructure

– Shares some infrastructure with OpenAD/F

 ADIFOR (Rice/Argonne)
– Mature and very robust tool

– Support for all of Fortran 77

– Forward and (adequate) reverse modes

OpenAD system architecture

21

http://www.mcs.anl.gov/OpenAD

Impact*

 ADIFOR
– Cited in 232 journal articles (ISI)

– Cited in ~750 online articles (Google Scholar)

– 678 registered users (does not include users registered at Rice)

– 484 subscribers to adifor-users mailing list

 ADIC
– Cited in 53 journal articles

– Cited in ~160 online articles

– 861 registered users

– 564 subscribers to adic-users mailing list

 Direct collaboration with several applications groups; funded
collaborations with:
– MIT: Ocean Modeling and State Estimation

– NASA Langley: Multidisciplinary Design Optimization

– PNNL: Atmospheric Chemistry
*2008 data

Research challenges and opportunities

 Producing more efficient derivative computations
– Identifying and exploiting structure (e.g., sparsity, low rank)

– Numerical algorithms that exploit cheap derivative quantities, e.g.,
Jacobian-vector and vector-Jacobian products, univariate Taylor series
coefficients, etc.

– Elimination strategies

– Compiler analysis

• Context sensitive, flow sensitive analysis

• Linearity analysis

• Parallel, object-oriented programs

Research challenges and opportunities (cont.)

 Mathematical challenges

 Language feature coverage (e.g., C++ templates)

 Multi-language applications

 Different parallel programming models
– MPI, OpenMP, hybrid, GPGPU, etc.

 Exploiting parallelism in derivative computation

 Efficient checkpointing strategies

 Derivative propagation
– Hardware acceleration (cell processor, GeForce 8800GTX)

– Sparse linear combinations (SparsLinC)

Research examples

 Exploiting scarcity reduces both the number of flops to
preaccumulate local partials and the number of flops to
propagate global derivatives
– Scarcity: the Jacobian J for a given function

may have fewer than n * m degrees of freedom. A scarse J can be
represented by a graph with a minimal edge count.

 Matrix coloring for problems with nested sparsity structure
can reduce the cost of Jacobian computations for nonlinear
PDEs discretized on regular grids (e.g., PETSc DA or DMMG)

 Polynomial-time algorithms for detecting structural
properties (e.g., symmetry) of DAGs

 Fully automated derivatives when standard interfaces are
available (e.g., NEOS, PETSc)

27

f : n a m

28

Matrix Coloring

 Jacobian matrices are often sparse

 The forward mode of AD computes J × S, where S is usually
an identity matrix or a vector

 Can “compress” Jacobian by choosing S such that
structurally orthogonal columns are combined

 A set of columns are structurally orthogonal if no two of
them have nonzeros in the same row

 Equivalent problem: color the graph whose adjacency matrix
is JTJ

 Equivalent problem: distance-2 color the bipartite graph of J

29

Compressed Jacobian

30

Example of a challenge: Chain rule (non-

)differentiability

if (x .eq. 1.0) then

 a = y

else if ((x .eq. 0.0) then

 a = 0

else

 a = x*y

endif

b = sqrt(x**4 + y**4)

31

Mathematical Challenges

 Derivatives of intrinsic functions at points of non-
differentiability

 Derivatives of implicitly defined functions

 Derivatives of functions computed using numerical
methods

32

Points of nondifferentiability

 Due to intrinsic functions
– Several intrinsic functions are defined at points where their derivatives are not, e.g.:

• abs(x), sqrt(x) at x=0
• max(x,y) at x=y

– Requirements:
• Record/report exceptions
• Optionally, continue computation using some generalized gradient

– ADIFOR/ADIC approach
• User-selected reporting mechanism
• User-defined generalized gradients, e.g.:

– [1.0,0.0] for max(x,0)
– [0.5,0.5] for max(x,y)

• Various ways of handling
– Verbose reports (file, line, type of exception)
– Terse summary (like IEEE flags)
– Ignore

 Due to conditional branches
– May be able to handle using trust regions

33

Implicitly Defined Functions

– Implicitly defined functions often computed using iterative
methods

– Function and derivatives may converge at different rates

– Derivative may not be “accurate” if iteration halted upon function
convergence

– Solutions:

• Tighten function convergence criteria

• Add derivative convergence to stopping criteria

• Compute derivatives directly, e.g. A x = b

34

Derivatives of Functions Computed Using Numerical

Methods

 Differentiation and approximation may not commute

 Need to be careful about how derivatives of numerical
approximations are used

 For example, differentiating through an ODE integrator can
provide unexpected results due to feedback induced by
adaptive stepsize control:

35

Addressing limitations in black box AD

 Detect points of nondifferentiability
– proceed with a subgradient

– currently supported for intrinsic functions, but not conditional
statements

 Exploit mathematics to avoid differentiating through an
adaptive algorithm

 Modify termination criterion for implicitly defined
functions
– Tighten tolerance

– Add derivatives to termination test (preferred)

Automatic differentiation and parallelism

 Data-flow analysis framework must become MPI-aware:
requires identifying potential send-receive pairs

 Reverse mode dramatically reduces derivative cost for scalar
functions
(1 cpu-week versus 1 million cpu-years for a climate model)
but requires control and data flow reversal relative to
function evaluation
– In message-passing codes, send becomes receive and receive

becomes send; situation significantly more complicated in case of
nonblocking communication (EuroPVM/MPI2008, PDSEC2009)

– Requirement to restore state in reverse order leads to full state and
incremental checkpointing strategies; restarts can be done in
parallel

 New prefix-like algorithms for derivatives of parallel
reduction operations

Exascale challenges

 AD is a semantic transformation and the resulting code may
exhibit different concurrency characteristics than the original
computation

 Differentiation of some existing (e.g., PGAS) and future
programming models

 Checkpointing for reverse mode

Summary

 Automatic differentiation provides a (semi-)automated way
for generating accurate derivatives

 AD research spans multiple areas: applied mathematics,
combinatorial algorithms, compilers

 AD algorithms and tools must keep pace with
– Increasingly complex applications

– Evolving hardware, increasing levels of parallelism

– Changing programming models and languages

For More Information

 Andreas Griewank and Andrea Walther, Evaluating
Derivatives, 2nd edition, SIAM, 2008.

 Griewank, “On Automatic Differentiation”; this and other
technical reports available online at:
http://www.mcs.anl.gov/autodiff/tech_reports.html

 AD in general: http://www.mcs.anl.gov/autodiff/,
http://www.autodiff.org/

 ADIFOR: http://www.mcs.anl.gov/adifor/

 ADIC: http://www.mcs.anl.gov/adic/

 OpenAD: http://www.mcs.anl.gov/openad/

 Other tools: http://www.autodiff.org/

http://www.mcs.anl.gov/autodiff/tech_reports.html
http://www.mcs.anl.gov/autodiff/
http://www.autodiff.org/
http://www.mcs.anl.gov/adifor/
http://www.mcs.anl.gov/adic/
http://www.mcs.anl.gov/openad/
http://www.autodiff.org/adtools/

