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High-Performance Computer Simulation 
in the Energy Biosciences.

Jeremy C. Smith

Quantum
Mechanical

Molecular
Mechanical



2 Managed by UT-Battelle
for the Department of Energy

Overcoming 
recalcitrance is the 

single coherent 
overarching theme

for BESC

The fundamental science
of biomass recalcitrance
is poorly understood

Sugars

Cellulosic
biomass

Fuel(s)

Recalcitrance:
Resistance to

breakdown
into sugars
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Lignocellulosic Biomass Exhibits 
Structural Complexity
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Atomic-Detail Computer Simulation - Basic Principles

Molecular Mechanics Potential
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Quantum
Mechanical

Molecular
Mechanicalor QM/MM 

Potential

Simulation -
exploring the energy 
landscape
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~1Å
atomic-level

~10Å
molecular-level
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Simulation Model of Lignocellulose

~1000Å
coarse-grained
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Cray 
XT4

One Million Atoms –
Molecular Dynamics

ROLAND
SCHULZ
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2004 
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Electrostatics
1. Shift Truncation (fast, not 

accurate)

2. Particle Mesh Ewald (slow, 
accurate)

3. Reaction Field
• cuts simulation time to ≈1/3 cf PME (10k cores)
• improves scaling 
• accurate?
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Electrostatics: Cellulose 
Fibril in Aqueous Solution
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3.3M atom system 100M atom system

Molecular Dynamics 
Scaling

ROLAND
SCHULZ
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Length-Scale Correspondence:
Simulation versus Experiment

Small-Angle Neutron Scattering

1000 Å / ~3.3 M atoms
INCITE XT5

100 Å / ~500k atoms
INCITE XT4 

Simulation

10 Å /~50k atoms 
NSF Teragrid



12 Managed by UT-Battelle
for the Department of Energy

Cellulose: Models of Pretreatment

Crystalline/Amorphous

Crystalline 
(1ns@300K)

Amorphous 
(1ns@650K)

BENJAMIN
LINDNER
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Bragg Scattering from MD Simulation

13
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PqqS −∝)(

Pneutron=3.39+/-0.001

26-molecule lignin aggregate

 

P = 6 +
∂N(r)

∂r

Psimulation=3.31+/-0.001
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Complex of cellulose and lignins
3.3 M atoms

Simulation Model of Lignocellulose
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cellulose cellulose

lignin

Cellulose  
Accessible Surface Area 
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Topologic information via contact maps

Combined Contact Map
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Catalytic Mechanism of 
Cellulase CelS

MOUMITA
SAHARAY
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Catalytic Mechanism of 
Cellulase CelS
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Cellulosome 
Organization

Cellulosome assembly is mediated by

cohesin-dockerin interaction.
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Cohesin-Dockerin Principal 
Component Modes

Wild Type F162A Q52A

JIANCONG
XU
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Multiscaling

Length

Ab Initio
Quantum Mechanics

Approximate 
Quantum Mechanics

Quantum Mechanics/
Molecular Mechanics

Molecular Mechanics

Mesoscale
Coarse-Graining

0.01nm 1nm 10nm >1µm

100ns >1µs Time
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Emptying Hg flasks at the dumping shed 
(1955)

Oak Ridge 

Toxic
Methylmercury
CH3Hg+

Inert
Hg(0)



26 Managed by UT-Battelle
for the Department of Energy

MerR

HgHg

30º

-35 -10

DNA

RNAP

+ HgHg
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α2α2’

Hg(II)

The MerR Machine

HAO-BO 
GUO
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Catalytic Mechanism of MerB 
Hg-C Protonolysis

JERRY
PARKS

• Thiol bis-coordination of Hg 
at Transition State 
Polarizes Attacking Proton.

e- densitye- density

H Hg(II)H3CLG
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Funding

US Department of Energy

• OBER Bioenergy Science Center.

• OBER ERSP SFA Biogeochemical and Molecular   
Mechanisms Controlling Contaminant 
Transformation in the Environment.

• OBER FWP Integration of Neutron Scattering and 
Computer Simulation in the Imaging of 
Lignocellulosic Biomass
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Future

Supercomputing Entering 
Production Phase

Simulation Toolbox 
Established

Force Fields Established

Preliminary Biomass 
Models Built

Input from Experimental 
Characterization
Required

Pretreatment Effects
To be Examined

Cellulase Catalytic 
Effect Understood

Cellulosome  
Action 
To be Understood
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