

High-Performance Computer Simulation in the Energy Biosciences.

Jeremy C. Smith

80 glucose units

~40 nm

National Laborator

Simulation Model of Lignocellulose

1 nm

length-scale

1 µm

National Laborator

One Million Atoms – Molecular Dynamics

Electrostatics

- Shift Truncation (fast, not 1. accurate)
- Particle Mesh Ewald (slow, 2. accurate)

Reaction Field 3.

- cuts simulation time to ≈1/3 cf PME (10k cores)
- improves scaling
- accurate?

~40 nm

BENJAMIN LINDNER

Electrostatics: Cellulose Fibril in Aqueous Solution

ROLAND SCHULZ

Molecular Dynamics Scaling

3.3M atom system

100M atom system

Spallation Neutron Source

Length-Scale Correspondence: Simulation versus Experiment

Cellulose: Models of Pretreatment

BENJAMIN LINDNER

crystalline

inner core

crystalline

Crystalline (1ns@300K)

Amorphous (1ns@650K)

Bragg Scattering from MD Simulation

LOUKAS PETRIDIS

14 Managed by UT-Battelle for the Department of Energy

Single Lignin Molecule

26-molecule lignin aggregate

National Laboratory

for the Department of Energy

Simulation Model of Lignocellulose

Complex of cellulose and lignins 3.3 M atoms

Probing the Microbial-Mineral Interface by Neutron Reflectivity

Topologic information via contact maps

Combined Contact Map

Amorph / far

MOUMITA SAHARAY

Catalytic Mechanism of Cellulase *CelS*

Catalytic Mechanism of Cellulase *CelS*

Cellulosome Organization

Cellulosome assembly is mediated by

cohesin-dockerin interaction.

JIANCONG XU

National Laboratory

Cohesin-Dockerin Principal Component Modes

F162A

Wild Type

Multiscaling

Toxic Methylmercury CH₃Hg⁺

MerR

National Laboratory

Funding

US Department of Energy

- OBER Bioenergy Science Center.
- OBER ERSP SFA Biogeochemical and Molecular Mechanisms Controlling Contaminant Transformation in the Environment.
- OBER FWP Integration of Neutron Scattering and Computer Simulation in the Imaging of Lignocellulosic Biomass

Pretreatment Effects To be Examined

