

A Short History of Mathematics, Computing and Information Sciences Research at DOE

Dr. Daniel A. Hitchcock November 1, 2000

Advanced Computing Is Critical for Scientific Discovery

A Short History of Mathematics and Computing Research at DOE

"Von Neumann to the Present"

MICS Budget Changes from FY 2000 to FY 2001

Increment ~ \$30M *FY 2000 ~ \$116M* FY 2000 Budget Increment from FY 2000 to FY 2001 Education Education Math Enabling Technology Centers Computer Science □ Enabling Technology Centers Sci. App. Pilot Sci. App. Pilot Net Research Advanced Collaboratories & Networks Collab. Tools Collab. Pilot Advanced Collaboratories & Networks Total Facilities Total Facilities

The Challenges

- Terascale Computers
- Tera -- PetaScale Data
- Applied Math
- Software
- Collaboratories and Networks

Terascale Computer Challenge

Tera -- PetaScale Data Challenge

- High performance computers and new experimental facilities will produce millions of gigabytes of ٠ data.
- Enabling scientists to interact with this volume of data and find and analyze critical features is a ٠ formidable challenge.
- Remote access time is a serious ٠ concern.
- Disks and Tapes getting bigger but not faster ٠
- Increases in parallelism required to integrate system ٠

Applied Math Challenges

Algorithm Scaling with Problem Size Determines the Size Problem that can be Solved!

Algorithms determine what fraction of peak performance is delivered to science

Software Challenge

The time it takes to move an application to a new generation of computers is time lost to scientific discovery.

- Scientific modeling and simulation codes endure much longer than the life of a generation of computers (~3 years)
 - The "Gaussian" computational chemistry code for which John Pople was awarded the 1998 Nobel Prize has been in existence (and evolving) since 1970.
- DOE has pioneered many of the advanced software technologies required to accomplish this goal while achieving high performance
- Significant research, as well as education and software support, are required to achieve the promise of these initial efforts.

National Collaboratory Challenges

Collaboratories link geographically distributed researchers, data, and tools via networks to enable remote access to facilities, access to data sets, shared environments, and ease of collaboration

MICS is an *INTEGRATED* Program Research --> Users

MICS Tries to Adopt an Architectural View of the Problem

Defense	Defense S&T Leadership		D	DE Missions	Climate	Cleanup
Physics	Chemistry	Sc	ien	tific Discipli	nes Biolog	y Materials
5	SW		C	ollaboratory	Data N	Agmt. &
Development ACTS Toolkit				Electronic Notebook	V ISU8 CAVE	Lization EigenVR
Algorithms Math &		Debug	gers	Libraries &	Tools	PVM MPI
Comp Sci. Portals Globus		Adv. No	ets.	Systems So	ftware	I/O - HPSS POOMA
Computers Experiments				Facilities Netw	vorks Datab	bases Storage

MICS is an Intgral Part of Federal IT Research Enterprise

Who Manages What in MICS

- Division Director: C.E. Oliver (Acting)
 - Applied Mathematics: D. Hitchcock (Acting)
 - Computer Science:
 - Clusters, System Software, Tools: F. Johnson (on Detail from NIST)
 - Data Management, Viz & I/O: D. Hitchcock
 - Advanced Computing Software Tools: M.A. Scott
 - Network Research: T. N'Dousse
 - Collaboratory Tools & Collaboratory Pilots: M.A. Scott
 - Scientific Application Pilots: T. Kitchens & Staff
 - Facilities:
 - NERSC: T. Kitchens
 - ESnet: G. Seweryniak
 - ACRF's: W. Polansky and T. Kitchens

Computational Science Education FY 2000: \$2M

Objective:

Develop future generations of leaders in applied mathematics and computational science

Accomplishments:

Ongoing Projects

Computational Sciences Graduate Fellowship Program:

Future Plans

Doubling of CSGF

Applied Mathematics FY 2000: \$19M

Objectives:

Support mathematical and computational research that facilitates the use of the latest high-performance computer systems in advancing our understanding of science and technology.

Accomplishments:

Libraries

AMR

NP hardness of 3-d Ising Model

Differential-Algebraic Equations

Theory of Chaos

Ongoing Projects

Applied Mathematics Research: Linear Algebra CFD PDE's Optimization Grid Generation

Coupling Applied Math to Applications:

Materials Science Biology Combustion High Energy Physics

Future Plans

Math Libraries for Terascale computers Enabling Technology Centers? Predictability Feature Description Get Permanent Program Manager in Place

A Few Examples

Computer Science Research & Tools FY 2000: \$19M

Objectives:

Enable Scientists to rapidly construct software, execute it with high performance on terascale computers, and manage the resulting data

Accomplishments:

PVM, MPI

Storage Access Control System

Dyninst/Paradyne

ACTS Toolkit

Ongoing Projects

Systems Software Data Management, Visualization & I/O Advanced Computing Software Tools

Future Plans

Enabling Technology Centers

Recompete ACTs Toolkit

Operating Systems

System Software Environment

Goals and Objectives

A common system software and tool technology base for terascale systems which:

Delivers high sustained application performance, ease of use, and manageability

Enables and supports a unified environment forscientific computation from desktop to teraop systems

Ongoing Projects System Software Technology

Scalable cluster management tools Resource management Harness, Cumulvs, Netsolve

Parallel Programming/Performance

MPICH -- performance, thread safety Unified Parallel C Heterogeneous distributed computation Performance instrumentation Accomplishments

MPI, MPI-2

MPICH

Netsolve (99 IR100 award)

Paradyn, DynInst

Terascale systems software roadmap

Future Plans

Scalable systems management resource management, scheduling common management infrastructure

Performance measurement, benchmarks, modeling and prediction

Microkernels for terascale systems

High performance messaging and remote memory access

Open source emphsis

ARMCI First portable 1-sided communication library

- Core communication capability of Global Arrays (GA) were generalized, extended, and made standalone
- Approach
 - simple progress rules
 - less restrictive than MPI-2 (includes 1-sided communication)
 - low-level
 - high-performance
 - optimized for noncontiguous data transfers (array sections, scatter/gather)
 - implemented using whatever mechanisms work best on given platform:
 - active messages, threads, sockets, shared memory, remote memory copy
- Used by GA as its run-time system and contributed to other projects
 - Adlib (U. Syracuse)
 - Padre/Overture (LLNL)
 - U. Florida

Intelligent Protocols in ARMCI

Data Management, Visualization and I/O Technologies

Objectives:

Develop tools to enable scientists to extract knowledge from petabytes of scientific data

Enable high speed I/O from terascale computers and storage systems

Accomplishments:

Storage Access Coordination System (STACS)

CAVELib

Billion Cell Rendering

MUSE

MPI-IO, ROMIO

Future Plans

Petabyte Data Challenge

Multi-Dimensional Clustering

Feature Extraction

Vector and Tensor Fields

Hierarchical Methods

Ongoing Projects

Data Mgt:

Indexing & Query estimation Distributed Data Mining Advanced database concepts HENP Data Grand Challenge, PPDG, ESG

Visualization:

VR& Haptics Rendering very large datasets Feature Extraction

1/0:

Scalable I/O Consortium HPSS Network Attached Disk Caches

Challenge of Petabytes of Data Access Coordination System (STACS)

Challenge of Petabytes of Data STACS Parallel Performance

ACTS Toolkit Program: Software Interoperability for HPC

Objectives:

Develop an *integrated* set of software tools, algorithms, and environments that accelerate the adoption and use of advanced computing for mission-critical problems.

Ongoing Projects

- •Numerics
- •Code Execution
- •Code Development
- •Test and Consult
- •Applications Support Tools

Future Plans

- Develop a support technology for simplifying the process of making tools interoperable
- Recompete funds to expand the types of tools that are made interoperable

ACTS Toolkit Program: Success Story

Sintering - simulating the dynamics of micro-structural interactions, requiring the solution of a large set of coupled ODEs

Previously used LSODE, limited to 100s of degrees of freedom, now can handle 10,000s ALE3D test problems run with PETSc based parallel multi-grid solver

- Run on NERSC 512 processor T3E and LLNL ASCI Blue Pacific
- Simulation with 16 million+ degrees of freedom

Scientific Application Partnerships FY 2000: \$4M

Objectives:

Bring together discipline scientists, computer scientists and mathematicians to apply the results of MICS funded research on scientific problems critical to DOE.

Produce new Discipline Science and new Computational Science

Ongoing Projects

All Projects Ended in FY 2000

Accomplishments:

Gordon Bell Prize: Magnetic Materials

Billion Particle Accelerator Simulation

.1º Simulation of Global Ocean

Future Plans

Recompete Scientific Application Partnerships

Closer Partnerships with Program Offices

Advancing Materials Sciences

Understanding the magnetic properties of materials will enable the design of stronger, lighter magnets and new materials for magnetic data storage and recording.

Scientists recently reported a breakthrough in calculating the magnetic properties of materials.

Combining modeling advances with the most powerful DOE-SC computer, DOE scientists were able to predict the effect of temperature on the magnetic moment of a crystal of iron. This is the first step to predicting the performance of magnets at typical operating temperatures.

These simulations won the 1998 Gordon Bell prize in supercomputing for the fastest scientific application.

Advancing Climate Simulation

Climate simulation on terascale computers will improve our understanding of global climate and enable the study of regional scale impacts of global change.

Ocean circulation: Comparison of Modeling and Observation

MICOM Sea surface height variability (3-year average)

TOPEX (from NASA/JPL, courtesy of G. Goni)

MODELING

min: 0 ; max: 35 cm

OBSERVATION

DOE's program is an element of the U.S. Global Change Research Program.

DOE's program is designed to make full use of the computing capabilities provided by computers capable of 10 to 100 teraflops.

The new program will provide greater certainty in predictions of future climates at both global and regional scales. It will also provide detailed information on the effects of climate change, including many not now possible, e.g., changes in topical storm frequency.

Collaboratory Tools & Pilots FY 2000: \$7M

Vision & Objectives

Accelerate the ability of DOE to accomplish its mission through advanced computing and collaboration technologies.

Ongoing Projects and Applications

National Collaboratories

Materials Microcharacterization Collaboratory Diesel Combustion Collaboratory R&D technology projects

Grand Challenge and other projects

Supercomputer Solution of Massive Crystallographic and Microtomographic Structural Problems

Applications-Network Technology-Network Testbed Partnerships

National Collaboratories -Headline Success Stories

- Remote Operation Of Unique Instrumentation Can Speed Up Research
- TelePresence to the Rescue: Medical Emergency at the South Pole
- Collaboratories Are Influencing Industry Directions
- Real-time Reconstruction of Microtomographic Data Becomes Possible
- Going Paper-Free in the Clean Room
- The Particle Physics Data Grid is Paving the Way for Distributed Analysis of Future High Energy Physics Experiments
- PNNL Comes to You: Enhancing Science Education at Eastern Oregon University
- Remote Instrument Operation Works Internationally
- Virtual NMR Facility Matures into Core Resource at National Scientific User Facility
- Extending the Learning Experience by Bringing TelePresence Microscopy and Science Collaboratories into the Class Room

Early Examples of Grid Applications

Quasi-real-time, collaborative supercomputer analysis of microtomographic data

Access to remote supercomputers from desktop interfaces

High-Performance Network Research Program FY 2000: \$2M

Goals and Objectives

To develop secure and scalable high-performance networks to support wide area distributed high-end applications, the science grid, and collaboration.

To accelerate the adoption of emerging network technologies into production networks through testing and advanced deployment.

To provide leadership in the research and development of advanced networks services that have direct impact on DOE mission.

Program Elements

Traffic Modeling and Simulation

Network-Aware Middleware

Traffic Modeling and Simulation

Intelligent Network Security

Accomplishments

Future Plans

Distributed Parallel Storage System (DPSS)

The DPSS is a collection of disk servers which operate in parallel over a wide area network to provide logical block level access to large data sets. To achieve high performance they exploit many levels of parallelism, including that available at the level of the disks, controllers, processors / memory banks, servers, and the network. DPSS has achieved 570Mb/sec over an OC 12 Connection.

Distributed Parallel Storage System (DPSS)

Total Throughput = 570 Mbits/sec (71 MB/sec) on 32 data streams, or 17 Mbits/stream

High Performance Computing and Communications Facilities

- High Performance Computers for Scientists (NERSC)
- High Performance Networks to Support Scientific Research (ESnet)
- Testbeds to Support Computational Science and Computer Science Research (ACRF's)

National Energy Research Scientific Computing Center (NERSC) FY 2000: \$26.5M

Goal/Objective

Provide Capability Resources and Professional User Friendly Services to Computational Scientists on Projects within the Missions of the Department of Energy

Accomplishments

Gordon Bell Prize winning Magnetic Materials effort: First over 1 Tflops Parallel Climate Model: T3E@17GFlops Accelerator Design and Modeling: SNS Turbulent Transport in Tokamak Core Boomerang (Our Universe is Flat!) Quantum Chemistry: Electron Scattering off Hydrogen

Program Elements

Operations of HPC's: J-90 PVP, T3E MPP, and IBM; Storage: HPSS Advanced Systems and User Services HPC Research including Future Technologies

Future

Near Term: Again the world's most powerful unrestricted computing center at ~3.0 TeraFlops Nearer Term: Move Hardware and Operations to the Oakland Building

NERSC Facility: Comparison to Similar Centers in the U.S.

Gflop/s based on R_max value of machines as published in the TOP500 list Tbytes based on total amount of file storage in HPSS systems

FY 1999 Allocations

NERSC FY99 Usage by Institution Type

NERSC Serves a Broad Array of Disciplines

FY 1999 Distribution

users

usage

Computational Science Enabled by NERSC

NTTP Grand Challenge:

- unprecedented progress in understanding turbulent transport in tokamak core plasmas
- more than 60 publications based on NERSC results

Bruce Cohen, LLNL, about NERSC:

"... All but a very small percentage of these results were obtained on the T3E at NERSC. Essential to obtaining these results on the T3E were the large memory (needed to support high resolution threedimensional time-dependent calculations and good particle statistics in the kinetic calculations), the large number of processors, the high rate of availability, the excellent production environment (excellent mix of interactive and batch, excellent debugger and job scheduler, and consultants), and the big allocation that this project has enjoyed. "

ESnet FY 2000: \$17 M

Goal:

A future in which advanced network capabilities enable seamless collaborations for DOE and its researchers"

Objective:

Provide highly capable and reliable communications infrastructure and leadingedge network services that support DOE's missions

Program Elements:

Nation-wide high-performance research network

Advanced network services to support science in DOE

Immense (and very successful) cooperative effort

Extensive structure of domestic (commercial and R&E) and international interconnects

Advanced Technology and Research program

Future:

Continue to improve on success

Research and implement new technologies

Increase emphasis on research, security, and coordination with other Federal Network efforts

Be an enabling component of the DOE collaborative and Grid environments

Stay nimble and current with emerging technology

ESnet - History

- Pre- HPCC: 1986 1991
 - ESnet declared to be the "official" network for all of Energy Research (now Office of Science - SC)
 - Backbone a combination of 9.6K and 56K satellite and terrestrial circuits, DECnet & TCP/IP
 - 22 sites connected by end of 91 to T1 Backbone
- 1992-1994
 - Competitive RFP launched for "Fast Packet ESnet Services"
 - '94 Contract Awarded to Sprint T3 and up
- 1995 1999
 - '95 ESnet Operations re-competed, moved to LBNL
 - Traffic grows from 2.4 to over 8.7 Tbytes/month & T3 and OC3c ATM based interconnects established
- 2000 ESnet: new contract with Qwest: *Beyond ATM*

ESnet Program - Committees

Advanced Computational Research Facilities FY2000: \$11.5M

Objectives

Provide pioneer capability computing for scientific applications relevant to the Office of Science mission.

Provide Testbeds to examine critical CS issues

Accomplishments

Provided state-of-the-art computational resources for Grand Challenge calculations.

Evaluated feasibility of innovative computer architectures (IBM SP, SGI Origin 2000, Paragon) to meet SC computational needs.

Ongoing Projects

CHIBA City, a 512 CPU Linux cluster (ANL). Falcon & Colt - Compaq AlphaServer SCs (ORNL).

Nirvana, 2048 Processor SGI (LANL) "Probe" HPSS Testbed (LBNL/ORNL)

TERA Evaluation- (UCSB)

Prototype Topical Center(ORNL)

Plans

Explore novel architectures & testbeds Evaluate for topical applications Expand technical & vendor bases for future hardware purchases.

ACRF Evolution

- High Performance Computing Research Centers
 - FY1992- Established High Performance Computing Research Centers at LANL & ORNL (global climate/ground water).
 - FY1993- Initiated Grand Challenge computational research program.
 - FY1995- Established an HPCRC at ANL (applications testing/computer science).
- FY1995-2000- Advanced Computing Research Facilities
 - Upgraded hardware at LANL
 - Focused ORNL and ANL efforts toward research.
 - Coupled Grand Challenges to specific HPCRC.
 - Allocated portion of NERSC allocated for Grand Challenges.
- FY 2000- Completed Grand Challenges.

Probe Testbed

Enable Research on Terascale File Storage and Data Systems

Budget Detail Backup

MICS Budget History

MICS Budget History

Distribution of Applied Math Research Projects

FY 2000 Labs: \$14.0M

- **Computational Fluids**
- **Differential Equations**

- Linear Algebra
- Optimization

Predictability

Distribution of Computer Science Research Projects

FY 2000 Labs: \$15.2M FY 2000 Universities: \$3.8M

Systems Software Enironment
Data Management, Visualization & I/O
Advanced Computing Software Tools

Distribution of Collaboratory Projects

Distribution of Network Research Projects

FY 1999: \$5M

Universities