Computing Facilities @ Argonne

Rick Stevens Argonne National Laboratory University of Chicago

Outline

- Brief History of Computing Facilities at ANL
- Current Description [HW, SW, People]
- Usage Patterns and Current User Communities
- Facilities for Computer Science Research
- Advanced Networking and Grids @ ANL
- New User Communities and New Applications
- Trends and Strategies for the Future
- Questions!

Rick Stevens, May 2001

Brief History of Argonne Computing Facilities

- Supporting both Computer Science and Applied Mathematics Research and DOE Advanced Applications
- 20 years of computing facilities innovation
 - First Unix on Vax 11/780 in DOE ~1980
 - First Denelcor HEP in DOE [first GP MIMD system]
 - First Sequent, first Encore, first BBN Butterfly + TC2OOO in DOE
 - First Cydrome in DOE [VLIW]
 - First AMT DAP in DOE [SIMD]
 - First Thinking Machines Connection Machine in DOE [w/Caltech]
 - First IBM SP in DOE [installed simultaneously with Cornell]
 - First CAVE Virtual Realty System in DOE
 - First > 8 pipe Reality Monster [SGI Onyx2/Origin2000] in DOE

Rick Stevens, May 2001

Overview of Argonne Computing Facilities

- The ACRF period [1983-1992]
 - Focus was on exploring parallel architectures
 - Developing programming models and software tools
 - Training new generation of CS researchers [> 1000]
 - Every major form of parallel computer architecture -1 [no dataflow]
 - ANL ACRF served as international center for parallel computing
- The HPCRC period [1992-1999]
 - ANL focused on production oriented parallel computing for Grand Challenges in addition to Computer Science

Rick Stevens, May 2001

Argonne Computing Facilities Description

- Hardware Environment [Today]
 - IBM SP 144 nodes [ready for retirement!]
 - SGI Origin2000 [128 CPUs + 12 Infinite Reality Pipes]
 - 512 CPU IA-32 Linux Cluster + Graphics + Storage nodes
 - 120 TB IBM 3495 based tape tape system + 10 TB data front end
 - Special Purpose Clusters [IA-32 Linux + NT, Alpha Linux]
 - Visualization, Data Caches, Software Development, Compbio
 - Hundreds of PCs/Workstations and Servers
 - High-performance networking and QoS testber
 - Five Access Grid nodes and development environments
 - Virtual Reality and Visualization laboratory

Rick Stevens, May 2001

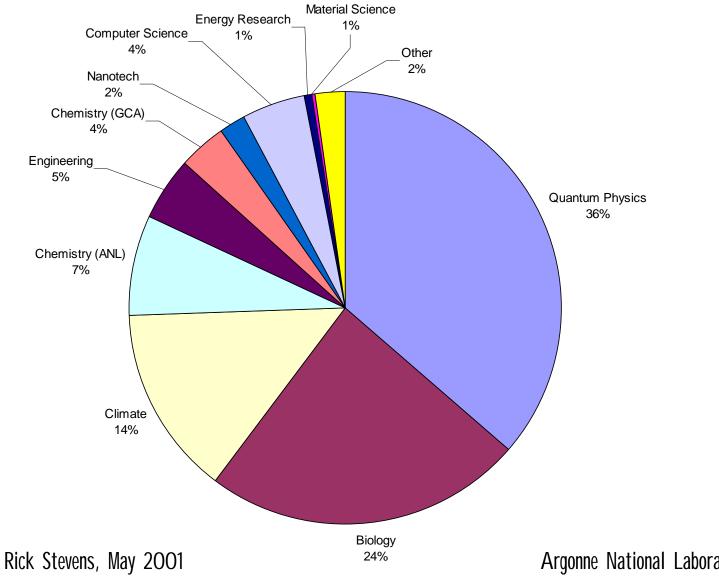
ANL Facilities: Available Software

- Software Environment [Hundreds of Open Source tools]
 - Comprehensive Suite of Software Development Tools
 - Compilers, libraries, debuggers, program viz, performance tools,...
 - Systems software for Parallel systems
 - Schedulers, systems management, filesystems, MP libraries,...
 - Accounting, visualization, data management,...
 - Grid Development Tools
 - Globus environment, network performance, collaboration tools,...
 - Application Code Suites
 - Climate modeling, Bioinformatics, Nuclear Physics, Astrophysics
 - Chemistry, Materials, CFD, Structural Biology, etc.

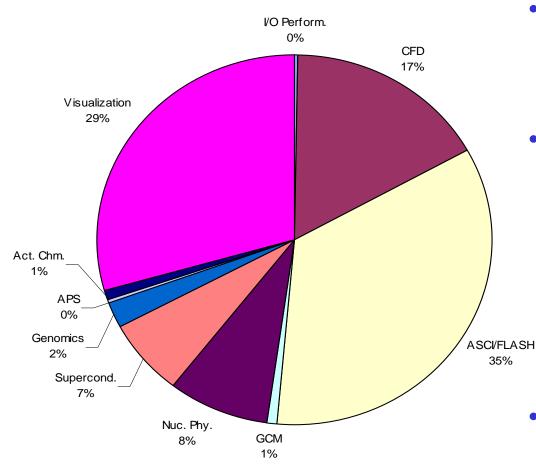
Rick Stevens, May 2001

ANL Computational Facilities: Personnel

- MCS has a systems development and support staff of \sim 13 FTEs
 - 5 FTEs focused on Large-scale Systems
 - SP, SGI and Chiba City Clusters + Storage Systems
 - 4 FTEs focused on workstation computing environment
 - >500 + PCs/workstations, +40 servers
 - 2 FTEs on advanced network engineering and support
 - Multicast, all optical, research testbeds, security etc.
 - 2 FTEs on advanced visualization and collaboration infrastructure
 - CAVE, AccessGrid, Tiled Displays, Grid Support


Rick Stevens, May 2001

The ANL Computer Facilities User Base


- MCS Facilities support three communities
 - Computer Science and Math Researchers [internal + external]
 - Computational Science Developers [internal + external]
 - Semi-Production Computational Science Users [mostly internal]
- Total active accounts ~ 1000 users
 - Large-scale systems ~300 users
 - General MCS Division ~500 users
 - General Collaborators ~200 users

Rick Stevens, May 2001

IBM SP - Usage

SGI Origin 2000 - Usage

- The SGI is split into two separate systems Denali and Tundra.
- Denali 96 cpus
 - Used for both CS and applications.
 - Always, always busy.
 - Challenge: scheduling.
 - Decision: emphasis on interactivity over performance. (I.e. CS over cycles.)
- Tundra: 32 cpus, 12 lrs
 - Dedicated to visualization.

Argonne National Laboratory + University of Chicago

Rick Stevens, May 2001

What Facility Support Does Computer Science Need?

- Interactivity
 - Edit, Compile, Run, Debug/Run, Repeat.
 - In many cases those runs are very short and very wide.
- Flexible Systems Software
 - A specific OS, kernel, or a specific set of libraries and compilers.
 - [Which frequently conflict with some other user's needs]
 - Re-configurable hardware, Access to hardware counters
 - Permission to crash the machine, In some cases, root access
- Ability to test at Scale
- Non-requirements
 - Exclusivity. "Performance" is an issue, but typically only on timing runs.

Rick Stevens, May 2001

Scalability – an Unrecognized Crisis

- Scalability is hard:
 - Complexity of solutions + Fault tolerance
 - Understanding program behavior is hard huge amounts of data
 - Lack of available scalability testbeds
- Scalability research is important:
 - Improve real performance of applications
 - The size of the average system is growing. We need better scalability now. Everyone will need it in 3-5 years.
- To have a scalable system, we need scalable...
 - ... algorithms
 - ... development tools
 - ... Systems software and middleware
 - ... systems administration methods and tools

Rick Stevens, May 2001

Chiba City - the Argonne Scalable Cluster

256 computingnodes.512 PIII CPUs.

32 visualization nodes.

8 storage nodes. 4TB of disk.

Myrinet interconnect.

Mission: Scalability and open source software testbed. 1 of 2 rows of Chiba City:

http://www.mcs.anl.gov/chiba/

Rick Stevens, May 2001

Chiba City Timeline

- November 1998: Started thinking seriously about it
- October 1999: Installation
- November February: Development
 - Development of the management software, debugging all kinds of things.
- March June: Early users
 - Physics simulation code, weather code, communications libraries, ...
- August Present: Production support
 - Available for research partners in computer science and computational science
 - Primary objective: reliable full-scale application runs
- June 2001: Scalable System Software Developers
 - Available to other system software projects that require a scalable testbed
 - Outreach to CS departments, and systems software developers and researchers

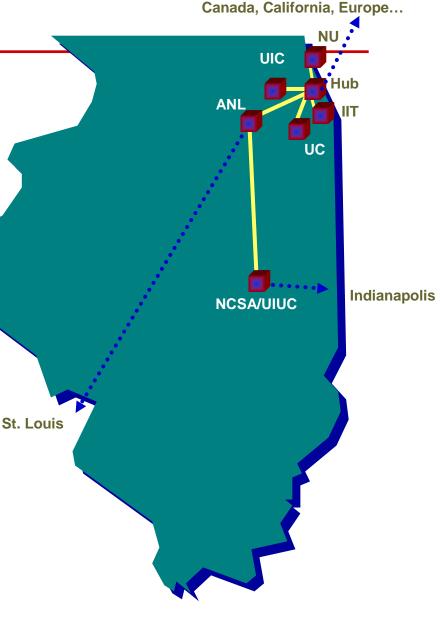
Rick Stevens, May 2001

Chiba City Utilization — Availability is Important

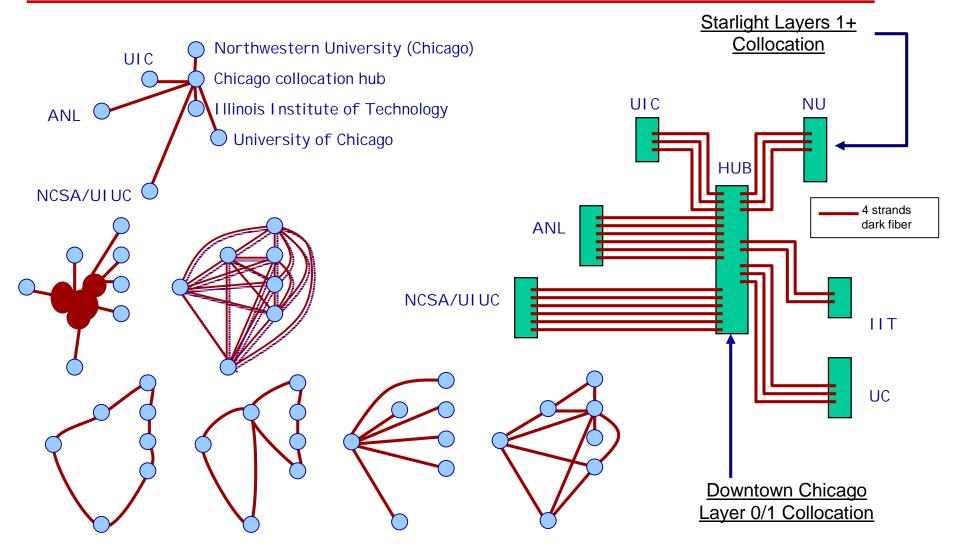
Week	Node Hrs	% Utilization	Total
2001/02/19	12,836.9	34.1	37,632.00
2001/02/26	12,678.2	33.7	37,632.00
2001/03/05	11,289.2	30.0	37,632.00
2001/03/12	15,984.5	42.5	37,632.00
2001/03/19	17,302.2	46.0	37,632.00
2001/03/26	15,500.4	41.2	37,632.00
2001/04/02	17,971.1	47.8	37,632.00
2001/04/09	23,362.2	62.1	37,632.00
2001/04/16	19,436.9	51.7	37,632.00
2001/04/23	23,212.3	61.7	37,632.00

Rick Stevens, May 2001

Networking and Grids


- Driven by dispersion of researchers [people remain the most critical resource, even in the 21st century]
- Connecting computational resources: the biggest machines, data storage, the [local] user interface to computation
- Collaborative technology [Access Grids]
- Existing large-scale Grid building efforts
 - The distributed terascale NSF proposal: ANL, NCSA, SDSC, Caltech
 - The Consortium for Cell Signaling: U. of Texas, 20 others
 - The GriPhyN Project: Grid tech for CMS, ATLAS, LIGO, SDSS
- Grids are not useful without BANDWIDTH

Rick Stevens, May 2001


I-WIRE

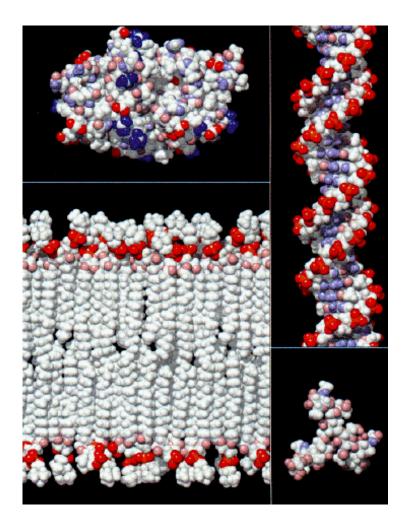
- Leverages Longstanding Research Partnerships
 - ANL/UC, NCSA/UIUC, UIC, Northwestern, IIT
- Addresses Need for Network Research Program
 - Essential to DOE science, mathematics, computer science research
 - Recognition of rapid ongoing evolution in network technologies and exponential growth in demand.
- Vision to create joint industry / academic
 - / laboratory partnerships
 - Accelerate concept-to-reality
 - Invent future applications by simulating future technology environments

Rick Stevens, May 2001

I-WIRE Proposed Topology

Rick Stevens, May 2001

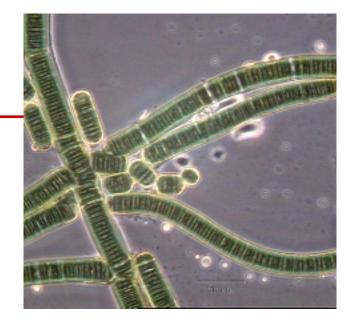
The New User Communities @ ANL

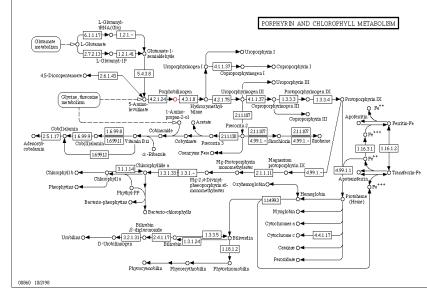

- Biology and Nanoscience are our strategic focus for Growth
 - Genome-to-life and National Nanotechnology Initiatives
- Continuing support for Climate, HEP/NP, Nuclear Engineering and Energy Systems [but don't see much strategic growth]
- We believe "Grids" will emerge as the dominate mechanism for application delivery [compute + data + people + tools]
- DOE computing facilities must become Grid enabled
 - And part of the national and international fabric of compute and data resources available to scientists through advanced resource sharing mechanisms

Rick Stevens, May 2001

Computational Biology and Bioinformatics Areas

- Sequence analysis, interpretation and annotation
- Structural biology modeling and simulation
- Computational approaches to proteomics
- Analysis of gene expression array data
- Computer models of cells and cellular processes
- Computer Aided Biological Design (CABD)


Rick Stevens, May 2001



Biological CAD: Tools for Design in Life Science

- Understanding biological systems from an information systems standpoint [e.g., organization, communication, transformation]
- Modeling biological systems: genes, molecules, pathways, organelles, cells, tissues, organs and organisms, communities
- **Designing** new biological structures and systems:
 - New biochemical pathways
 - Engineered microorganisms
 - Computer Aided Genome Design
 - Synthetic Model Organisms

Rick Stevens, May 2001

Compare Your Facility to Other Leading HPC Centers

- Historically our focus has been primarily on enabling advanced CS research and supporting a limited set of applications...
 - We have less FLOPS and BYTES than NERSC, NCSA or SDSC
 - We have more computer scientists than most Centers
 - We do more software development than most HPC centers
 - We have substantially fewer support staff than most HPC centers
 - We don't see ourselves competing with most HPC Centers but rather complementing them and collaborating on enabling technologies
 - We believe we can take on more risky technologies than HPC Centers primarily focused on production computing for applications
 - We believe our facilities quality is world class, and enabling world class CS

Rick Stevens, May 2001

The Most Important Trend in HPC for the Next Decade?

- Complete dominance of commodity technologies and architectures
 - Transition from PCs to embedded systems as best price/performance
 - How to leverage this trend is the key HPC systems architecture issue...
- Increasing availability of bandwidth and storage capacities
 - All optical networking will drive bandwidth prices steeply down
- Continuing Struggle with Scalability in Software
 - By 2010 we will be building systems >> 1 M CPUs
- Grid oriented infrastructure will be incredibly important
 - Data intensive science communities will demand Grid-like facilities
- Hopefully something unexpected will make future HPC more interesting

Rick Stevens, May 2001

Advanced Computing Facilities

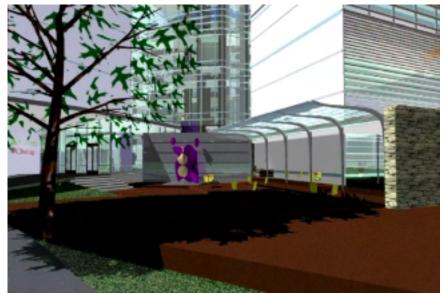
- Immediate: 1–2yrs
 - Develop O[1O³] Node Software Scalability Research System
 - Deploy Teraflops Applications Science Compute Engine [SciDAC + GTL]
- Near Term: 3-5yrs
 - Upgrade Scalability Testbed and Applications Engine [10-30 TF]
 - Prototype Petaflops Capable Systems Technologies and Micro Architectures
- Medium Term: 5–10yrs
 - Deploy Targeted Petaflops System for Biology and Nanoscience Apps
 - Prototypes for Exaflops System Technologies and Micro Architectures
- Long Term: 10–20yrs
 - Testbed Facility for Alternative Programming Model Development
 - Deploy Exaflops Applications Computing Environment

Rick Stevens, May 2001

Networking Infrastructure and Facilities

- Immediate: 1-2yrs
 - I-WIRE Testbed and Grid Collaboration and Computing Infrastructure
 - Design New Conventional Facilities for Computation Related Activities
- Near Term: 3-5yrs
 - Upgrade of ANL Wide Networking and Distributed Storage Infrastructure
 - Occupancy of New Conventional Facilities [e.g. MCS, ACS, CI, Etc.]
- Medium Term: 5–10yrs
 - Production Use of National/International All Optical Research Network
 - Development of Laboratories for Alternative Computing Model Research
- Long Term: 10–20yrs
 - Establish Argonne Constellation Science Centers
 - Construction of Computing Facilities for Exaflops Systems

Rick Stevens, May 2001


Where Does Moore's Law Take Us?

	Annual					
Technology Area	Growth Rate	1	5	10	20	30
OPS/sec/\$	60%	10.0E+6	104.9E+6	1.1E+9	120.9E+9	13.3E+12
FLOPS/sec/\$	60%	5.0E+6	52.4E+6	549.8E+6	60.4E+9	6.6E+12
Bytes/\$ (RAM)	70%	1.0E+6	14.2E+6	201.6E+6	40.6E+9	8.2E+12
Bytes (Low)/\$ (disk)	60%	200.0E+6	2.1E+9	22.0E+9	2.4E+12	265.8E+12
Bytes (High)/\$ (disk)	40%	50.0E+6	268.9E+6	1.4E+9	41.8E+9	1.2E+12
Network NIC (bits/sec/\$)	50%	100.0E+6	759.4E+6	5.8E+9	332.5E+9	19.2E+12
Clock Frequency (GH)	35%	1.4E+9	6.3E+9	28.1E+9	566.0E+9	11.4E+12
\$1,000 Systems	Fraction TSC	2000	2005	2010	2020	2030
FLOPS	20%	1.0E+9	10.5E+9	110.0E+9	12.1E+12	1.3E+15
RAM (Bytes)	20%	200.0E+6	2.8E+9	40.3E+9	8.1E+12	1.6E+15
Storage (Bytes)	30%	60.0E+9	629.1E+9	6.6E+12	725.4E+12	79.8E+15
BW (bits/sec)	20%	10.0E+9	53.8E+9	289.3E+9	8.4E+12	242.0E+12
\$1,000,000 Systems	Fraction TSC	2000	2005	2010	2020	2030
FLOPS	10%	500.0E+9	5.2E+12	55.0E+12	6.0E+15	664.6E+15
RAM (Bytes)	20%	200.0E+9	2.8E+12	40.3E+12	8.1E+15	1.6E+18
Storage (Bytes)	30%	60.0E+12	629.1E+12	6.6E+15	725.4E+15	79.8E+18
BW (bits/sec)	20%	10.0E+12	53.8E+12	289.3E+12	8.4E+15	242.0E+15
\$10,000,000 Systems	Fraction TSC	2000	2005	2010	2020	2030
FLOPS	10%	5.0E+12	52.4E+12	549.8E+12	60.4E+15	6.6E+18
RAM (Bytes)	20%	2.0E+12	28.4E+12	403.2E+12	81.3E+15	16.4E+18
Storage (Bytes)	30%	600.0E+12	6.3E+15	66.0E+15	7.3E+18	797.5E+18
BW (bits/sec)	20%	100.0E+12	537.8E+12	2.9E+15	83.7E+15	2.4E+18
\$100,000,000 Systems	Fraction TSC	2000	2005	2010	2020	2030
FLOPS	10%	50.0E+12	524.3E+12	5.5E+15	604.5E+15	66.5E+18
RAM (Bytes)	20%	20.0E+12	284.0E+12	4.0E+15	812.8E+15	163.9E+18
Storage (Bytes)	30%	6.0E+15	62.9E+15	659.7E+15	72.5E+18	8.0E+21
BW (bits/sec)	20%	1.0E+15	5.4E+15	28.9E+15	836.7E+15	24.2E+18

Rick Stevens, May 2001

Building Critical Mass – Argonne Theory Institute

- Organized to spread advanced computational culture throughout Lab computational and theoretical activities
- ~ 400 people
 - Theorists, computer scientists, computational scientists
 - Lab joint appointments with ANL divisions
 - University joint appointments with UofC departments
- Advanced Computing Environment
 - Petaflops-scale computing resources
 - Research and development systems
 - Storage for data intensive science
 - Advanced visualization and imaging
 - Terabit network access to the Grid
- Integrated collaborative spaces Rick Stevens, May 2001

Argonne National Laboratory + University of Chicago

Slides after this are Backups

Rick Stevens, May 2001

Computer Science and Math Research

- Immediate: 1–2yrs
 - Scalable Scientific Computing Software for Commodity Based Systems
 - Networking, Distributed Computing and Collaboration Technologies*
- Near Term: 3-5yrs
 - New Directions for Applied Mathematics and Scientific Software
 - Integration of Scientific Computing, Sensors and Experimental Systems*
- Medium Term: 5–10yrs
 - Exploitation of New HPC Architectures (e.g. Grids, Bg, BI++, Pim, Ic)
 - New Classes of Distributed Scientific Applications Environments*
- Long Term: 10–20yrs
 - Automated Problem Solving and Rapid Software Development
 - Alternative Models for Computation (e.g. QC, BioComp)

Rick Stevens, May 2001

Computational Science Applications

- Immediate: 1–2yrs
 - Launch Internal Activities for Computational Biology and Nanoscience
 - Form Partnerships Programs for Climate Modeling and CFD
- Near Term: 3–5yrs
 - Establish Centers for LS Code Development in Bio and Nano
 - Form Partnerships for Energy Systems and Nuclear Engineering
- Medium Term: 5–10yrs
 - Establish Large-scale Computational Science Centers in Bio and Nano
 - Establish Virtual Design/problem Solving Centers for Partnership Apps
- Long Term: 10–20yrs
 - Fully Integrate Computation With Theory and Experimental Programs
 - Applications of New Computing Models (e.g. QC, BioComp)

Rick Stevens, May 2001

Example Application Accomplishments

- Computational Biology
 - Computational modeling of time-resolved protein dynamics [GC w/Harvard]
 - Computational modeling of MDH catalysis [GC w/Harvard]
- Computational Chemistry
 - Parallel ab initio methods for MPPs [Grand Challenge with PNNL]
- Materials Science
 - Million Particle Molecular Dynamics Simulations of Porous Glasses:
- Astrophysics
 - Astrophysical turbulence, multigrid and higher-order methods
- Climate Modeling
 - 650-year run of Fully Coupled Climate Model

Rick Stevens, May 2001

Example Application Accomplishments

- Physics
 - Nuclear Forces: Conducted first ab initio computations of 10-body nuclei on the Linux cluster
 - Multidimensional Deformation Space: Four-dimensional shape space calculations disproved the presence of rotational bands that experimentalists had claimed existed in association with hyper deformed shapes of certain isotopes.
- Advanced Photon Source
 - Crystallography Improved optimization and numerical techniques into LaueView.
 - Microtomography Won the Third Annual Global II Award for use of the GUSTO testbed for real-time, collaborative analysis of data from a microtomographic beamline

Rick Stevens, May 2001

Example Computer Science Accomplishments

- ANL Computing facilities have enabled researchers to explore new techniques for portable, scalable parallel programming
 - Linear Algebra -LAPACK and the level-3 BLAS,...
 - Programming Models Monmacs, and p4, precursors to MPI
 - Scientific toolkits PETSc has enabled several Gordon Bell awards
 - Parallel I/O ROMIO has been adopted by several vendors and is being used on all three ASCI machines as part of the DOE Accelerated Strategic Computing Initiative [ROMIO has been a reference model for MPI-IO]

Rick Stevens, May 2001

Example Computer Science Accomplishments

- Parallel Filesystem PVFS has achieved > 3 GB/s on Chiba City
- Mesh generation, partitioning, and refinement –Software developed in conjunction with Argonne research on parallel unstructured meshes won the 1992 Gordon Bell prize for scalable performance
- Optimization software Nug3O optimization problem was attacked with resources at ANL and elsewhere
- First interactive supercomputer in the loop CAVE application was developed at ANL in 1994 [IBM SP to SGI Onyx]

Chiba City Activity

Learning Experiences

- Barnraising:
 - Building these things by hand with lots of volunteers is fun – our scarcest resource was space.
 - Detailed instructions are critical.
 - Our rate: 128 nodes/day.
- Configuration
 - The hierarchical, database-driven approach has worked very well.
 - Remote power and remote console are awesome.
- Pain:
 - Replacing all the memory in the cluster.
 - Upgrading the BIOS on every node.
- We stress hardware far more than vendors do - AGP lossage, memory Rick Stevens, lova age corcl card lossage...

- Scalability Challenges
 - Myrinet
 - Took a little while for us to get all of the nodes using myrinet happily (early driver releases, mapper, ...)
 - Very small error rates can kill in the large.
 - RSH doesn't scale.
 - RSH is used by default to launch jobs, but can only invoke 256. Boom.
 - Network gear
 - Gets very confused when 32 nodes all try to boot through them at once.
 - PBS uses UDP for internal communication. UDP loses badly in big, congested Angebruer Mational Laboratory + University of Chicago

Chiba City Activity

A Few Computer Science Updates

- PVFS a parallel file system
 - From Clemson / ANL
 - Using 48 I/O Nodes, a single 20GB file, and reading on 112 nodes, Rob is seeing:
 - 3.1 GB/sec writes
 - 2.9 GB/sec reads
 - Very, very soon in production on Chiba. Next week.
- Distributed Tiled Displays
 - Running the Future Lab's Active Mural, a 15-panel, 4096x1995 pixel display, for many kinds of visualization apps.

- MPD, the MPICH multi-purpose daemon
 - An experiment into architecture for job management
 - Can currently launch 100 processes/second
 - 2.6 seconds from pressing return on a front-end node until all processes have started
 - Have tested up to 2000 processes.
- Initial "Practical Scalability Tests"
 - Cluster reboot and rebuild times
 - NFS: How far can you stretch an NFS server?

Argonne National Laboratory + University of Chicago

Rick Stevens, May 2001

The Msys and City Toolkits

Msys

A toolkit of system administration programs, including:

- cfg centralized management of configuration files
- sanity a tool for automatic configuration checking and fixing
- pkg tools and mechanisms for flexible software installation
- softenv tools for setting up the user's environment that adapt to software changes
- hostbase a database of hostname information and scripts for driving all name– related services
- clan, whatami utilities
- anlpasswd a passwd replacement that catches guessable passwords

Rick Stevens, May 2001

City

Cluster-specific tools that build on top of Msys.

- chex the node console management system
- citydb the database used to manage cfgs
- chex the node management system
- city_transit file distribution scripts
- filesystem images
- power utilities
- account management

Msys and City are both open source.

Both toolkits are available at:

http://www.mcs.anl.gov/systems/software/

Both were supported by ANL LDRD and DOE funds.

Chiba City Full Disclosure

Chiba City - Open Issues

- Systems Issues
 - Reliably running 512-cpu jobs for a long time is difficult. This is our primary priority.
 - PBS is not a reliable scheduler at our scale. It crashes a lot.
 - Focused development time.
- Computer Science Usability
 - Some researchers still use the farmsof-workstations approach because it's just a bit easier.
 - Being able to schedule non-exclusive jobs.

- Our Own Success
 - The machine is oversubscribed.
 - We need to move the SP users somewhere.
 - Growth of computational science across ANL.
- An ideal scenario for 2001.
 - 256-node Chiba for our computational science partners.
 - 256-node Chiba for ANL.
 - 1024-node Chiba for scalable computer science and computational science.
 - A development team.

Argonne National Laboratory + University of Chicago

Rick Stevens, May 2001