Scientific Grand Challenges

CROSS-CUTTING TECHNOLOGIES FOR
COMPUTING AT THE EXASCALE

February 2-5, 2010 « Washington D.C.

David L. Brown

Deputy Associate Director for Science & Technology
Computation Directorate, LLNL

Presentation to the Advanced Scientific Computing Advisory Committee
March 31, 2010

LLNL-PRES-426465

What is required to deliver exascale
computational science by 20187

Workshop Objectives:

e Outline the R&D needed for co-design of
the exascale computational science

environment _

* Identify opportunities for “disruptive”

computational approaches for future e A System
scientific discovery applications at software and
the exascale tools
* Produce a first cut at characteristics of
hardware/software system roadmap that
will meet science application needs over

the next decade

. Math Models
.. Programming d Aleorith
— Initial systems 2015 @ 100-300TF models and Algorithms

— Exascale systems in 2018 <=p —

The cross-cutting workshop brought applied mathematicians and
application developers into the discussion

Co-design

ASCAC March 2010

Co-design will be key for exascale
scientific discovery by 2018

* Tightly-coupled multi-disciplinary
partnerships will ensure delivery
of science applications on exascale
platforms

 Transition to exascale will be as
disruptive as transition from

Industry/

vector computing Applications Computer

scientists Scientists

— New programming paradigms

required
— Emphasis on physics fidelity and X
uQ
* Appropriate investments will be
required
— ASC spent only 20% of SS on

]

Application Applied

Developers
hardware L -

— Significant investment in computer
science and math research

— Significant investment in re-design
and re-write of applications codes

ASCAC March 2010

Co-design partnerships
for exascale computing

The cross-cut workshop was a co-design
“practice session”

Brought disparate computational science research
communities together to understand exascale challenges

— Applied mathematicians

— Computer Scientists

— Computer architects

— Science application developers
— Industry representatives

Breakout sessions successfully overcame communication
barriers

Participants left the meeting with a deeper understanding
of each other’s communities

“Co-design could really work!”

ASCAC March 2010

Who and where are the co-designers?
What organizational changes are needed?

* Designers of extreme scale hardware must obtain a detailed
understanding of the scientific challenges

A multi-disciplinary computational science culture has blossomed over
the past 15 years

— Advanced Simulation and Computing (ASC) program used vertically integrated
code teams to successfully deliver 3D simulation capability for the Stockpile
Stewardship program

— SciDAC program taught computational scientists to “collaborate or die”
— CSGF prepares young computational scientists for HPC scientific discovery

— Many applications developers will not be skeptical this time about the need for
drastic re-writes of critical simulation codes

* Organizational changes will be essential to meet the 2018 target
— Co-location of co-designers ideal, but unlikely to be feasible
— Vendor IP issues must be addressed
— Early studies of how best to carry out co-design essential

ASCAC March 2010

Breakout sessions addressed the three
workshop themes

* Theme 1: Math models and algorithms

— Impact of application needs and architectural
developments on math models, algorithms and

programming models
Ve * N — Impact of application, math model and algorithms
Math Models needs on architectural development
Scientific and
wpplicatons aeitms . Theme 2: System Software
\‘ f — System software functionality required at exascale
— What tasks traditionally handled by systems
R System software will need to be addressed elsewhere, e.g.
models - SNGaR resiliency handling?

Theme 3: Programming models and environment

— What programming models and environments are
needed?

— Will programming models provide suitable

abstractions and tools for applications/algorithm
needs?

ASCAC March 2010

Six “math” areas were used to provide
context for the discussions

Theme | Theme Il Theme lll

A. PDEs| Tuesday pm

C. PDEs I Tuesday pm

D. UQ/

Stochastic [
E. Discrete

Math Tuesday pm

B. Data/

Visualization Leseky [

F. Solvers/

Optimization Tuesday pm

10
ASCAC March 2010

Six “math” areas were used to provide
context for the discussions

Theme | Theme Il Theme lll

A. PDEs | Wednesday am
C. PDEs I Wednesday am

D. uQ/

Stochastic Wednesday am
E. Discrete

Math Wednesday am

B. Data/

. . Wednesday am

F. Solvers/

Wednesd
Optimization canesaay am

11
ASCAC March 2010

Six “math” areas were used to provide
context for the discussions

Theme | Theme Il Theme lll

A. PDEs | Wednesday pm

C. PDEs I Wednesday pm

D. uQ/

Stochastic Wednesday pm

E. Discrete

Math Wednesday pm

B. Data/

Visualization AR [Tt

F. Solvers/

Optimization Wednesday pm

ASCAC March 2010

12

Final sessions synthesized results
for each theme

Theme | Theme Il Theme lll

D. UQ/ | Pete Beckman

Stochastic

E. Discrete

Math -- et veer
B. Data/

Visualization

F. Solvers/

Optimization ---

ASCAC March 2010

13

FINDINGS

ASCAC March 2010

14

Exascale # Petascale X 1000

* Traditionally, PDE-based applications have expected 10x increase

in resolution with each 1000x increase in compute capability, but
not this time:

— We won’t have 1000x the memory available
— The processors won’t be 10x faster

— Proportionally, we won’t be able to move as much data on or off each
processor

— Introduction of massive parallelism at the node level is a significant
new challenge (MPI is only part of the solution)

* However, exascale computing is an opportunity for...

— More Fidelity: Incorporate more physics instead of increased
resolution

— Greater Understanding: Develop uncertainty quantification (UQ) to

establish confidence levels in computed results and deliver predictive
science

15
ASCAC March 2010

Uncertainty Quantification will permeate
the exascale

 UQis the end-to-end study of accuracy and reliability of
scientific inferences

* Large ensemble calculations will have dynamic resource
allocation requirements significantly different than
traditional applications

* Traditional space-shared, batch-scheduled usage unlikely
to be effective for UQ or new multi-physics codes

* Client/server model for UQ requires a different failure
model (OK for clients to fail)

e Significant code redesign a likely requirement in general -
opportunity to embed UQ in exascale applications

16
ASCAC March 2010

Understanding characteristics of PDE
solvers important for co-design

 Domain decomposition with nearest-neighbor communication
patterns
* Elliptic solvers: smaller, non-local communication patterns

— Frequent nearest-neighbor communications, less frequent messages
to farthest neighbors

— Frequent, Small global reductions (1000’s/timestep)

 Network performance needed:
— Low latency
— High bandwidth

— High message rate for point-to-point and collective communication
operations

— Highly desirable that physical topology of machine matches
communication patterns (optimize performance by reducing network
contention)

17
ASCAC March 2010

Memory management will be key in PDE
applications

* Memory hierarchy becomes deeper and more complex at exascale

* Inadequate tools and interfaces to hint, manage and control memory for
run-time systems

* Fine-grain, node-level parallelism in PDE solvers could exploit a
hierarchical two-level machine/programming model

* Want system software that can exploit spatial/temporal locality hints
from application code

* Cache is energy-expensive — alternative fast local memory access
approaches for performance and energy savings
* Low-cost thread create/destroy essential for performance
— Global namespace for threads as first-class objects
— Research needed to find best threading model
— Threads > processing elements might help hide memory latency

— Adaptive nature of modern solvers requires a dynamic threading model/
system software support

18
ASCAC March 2010

More dynamic control of system resources
will be required at exascale

* Adaptive run-time * Programming model
systems could address support for dynamic
— Dynamic load balancing control
— Dynamic power allocation, — Dynamic load-balancing
e.g. to network vs. cpu abstractions
— Ability to reconfigure — Language support for
around faults dynamic control of
— Dynamic resource feslolittes
requirements — Methods to record control

flows of execution and data
to allow reverse
computation in adjoint
mehtods (UQ)

19
ASCAC March 2010

Applications must care more about
fault tolerance and resilience

* Checkpoint-restart won’t scale with current storage systems; use
NVRAM instead?

e Co-design will be required to develop standard fault management
API

* Application-specific fault recovery likely

* Consider local recovery from faults

20
ASCAC March 2010

Discrete math applications will challenge
exascale machines

* Large amount of irregular data movement,
few FLOPS
e Adaptive runtime will be important:
— Resource profile is typically dynamic
— Dynamic load balancing on a node required
* Energy efficiencies could be achieved with

dynamic power allocation between FLOPS or
data movement

* Need ability to efficiently handle irregular
data
* Co-design opportunities:
— Discrete event simulators for exascale
architectures

— Use graph algorithms for task scheduling on
nodes and across nodes

Graph theory
Integer programming
Combinatorial optimization

21
ASCAC March 2010

Familiar system support issues will be even
more challenging at the exascale

* File system scalability and robustness will continue to be the
weakest link at the exascale

— Codes must do more in-situ analysis needed to compensate for 1/0
limitations
* Hierarchical debugging tools will be needed
— Sophisticated single-node debugger
— Debugger for 10,000 nodes
— Large-scale debugger a research challenge

* Performance tools are not keeping up with largest machines
— Results in an understanding gap as we approach exascale
— Existing performance tools don’t address heterogeneous architectures

— Research needed to develop vertically integrated performance analysis
tool for exascale applications

22
ASCAC March 2010

Opportunity for compilers to support
heterogeneous and multi-core processors

* Leverage recent advances in compiler technology (e.g.
ROSE)

 Compilers hide complexity of underlying instruction sets,
some parallelism
* Optimizations:
— language keywords,
— annotations
— runtime adaptation
— profile-guided optimization
* New opportunities:
— power management
— small memory capacities
— resiliency

— interoperability B
ASCAC March 2010

Preliminary panel findings are grouped
into three categories

1. Algorithms R&D needed to
support new architectures

2. R&D for Programming Models
to support exascale computing

3. R&D for System Software at
the exascale

24

ASCAC March 2010

Algorithms R&D

1. Re-cast critical applied math algorithms to
reflect impact of anticipated macro
architecture evolution

2. Adapt data analysis algorithms for
exascale

3. Address numerical analysis questions
associated with move from bulk-
synchronous to multi-task approaches

4. Develop “mini-applications”: essential
elements of critical applications

5. Develop simulations of emerging
architectures

25

ASCAC March 2010

Re-cast critical applied math algorithms

* PDEs: e Solvers and optimization
— New PDE discretizations methods:
reflecting shift from FLOP- — Solvers with reduced global
to memory-constralned commuhication
hardware

: : — Leverage low-latency on-
— New algorithms with more chip all-gather

compute, less — New sparse eigensolver
communication e lErEere

* UQ: — FFTS

— Opportunity to re-design A - .
codes with UQ built in Novel algorlthms.
— Reduced-precision

— Move statistics inside loops arithmetic algorithms that

store less, but maintain
accuracy

26
ASCAC March 2010

Adapt data analysis algorithms to extreme
scale environments

* Leverage increased node-local NVRAM availability
— “Back to the future:” out-of-core approaches

* Analysis algorithms for streaming data
* Leverage global address space

 Where is the best place to do analysis?
— In situ (part of simulation code)
— Post processing on the exascale platform

— Post processing on a dedicated analysis platform (but what
about the I/O bottleneck?)

* Research on development of common data structures or
data access patterns to enable re-usable data analysis
software

27

ASCAC March 2010

Address numerical analysis issues
associated with move away from bulk-
synchronous programming model

* Accuracy, stability of multi-physics and multi-scale
coupling

* High-order operator splitting methods

* Accuracy, stability of methods that apply operators
more asynchronously

28

ASCAC March 2010

Role of simulation as part of co-design

* Develop “mini-applications” that capture essential
elements of large scientific applications

— Hardware and system software engineers can understand
critical performance issues

* Develop simulation tools for emerging architectures

— Algorithm, application developers can understand code
performance on a range of potential architectures

29
ASCAC March 2010

New programming models

=

g

e o

R&D new exascale programming paradigms (e.g. MPI+X)
Develop API’s for dynamic resource management

Programming models that support memory management
at the exascale

Scalable approaches for 1/0

Interoperability tools to support transition to new
environment

Language support for PE’s at the exascale
PM support for latency management

PM support for fault tolerance/resilience
APIl’s for power management

30
ASCAC March 2010

Investigate and develop new exascale

programming paradigms

Hybrid programming
models: MPI+X, with X=

— OpenMP

— Pthreads

— CUDA (GPUs)

— Chapel, UPC, co-array Fortran
— MPI

Effective abstractions that
expose loop-level and data-
level parallelism

Improved abstract machine
model

Programming model
support for multiple
networks on same machine

New PM an opportunity to
change how computational
science is done:

— Introduction of intrusive (but
more efficient) UQ techniques

— MPMD approach to multi-
physics application codes

31

ASCAC March 2010

Memory management, 1/0,
interoperability, language support

 Memory management ¢ |/O
— PGAS language support — Consider database
— Memory consistency approaches (object
models to support models) for 1/0
discrete algorithms — PM support for data
structure linearization
* Interoperability e Language support
— Migration from old PMs/ — Asynchronous
languages will be gradual algorithms

— Need support for
interoperability between
“old” and “new”

— Uncertainty-carrying
variables

32
ASCAC March 2010

Latency, Resilience, Power, New approaches

* Latency management * Resilience
— Need capability to — PM support for fault
overlap computing, management
analysis, communication, — Fault-tolerant MPI
/0 collectives

— API for checkpointing

e Power * New approaches
— Power-aware — Message-driven PM’s for
programming models scientific applications?

— API to support execution
through a DAG

— PM'’s for in-situ data

analysis 33
ASCAC March 2010

System Software

1.

2.

System software tools to support node-level
parallelism

System support for dynamic resource
allocation

System software support for memory access

Performance/Resource measurement and
analysis tools

System tools to support fault management
System support for exascale 1/0

34

ASCAC March 2010

Support for node-level parallelism

 Small light-weight messages

* Light-weight fine-grained and flexible synchronization
e Latency tolerance through high degree of threading

e System calls for node-level parallelism

* Low cost thread create/destroy

e Software control of on-chip data movement to enhance
performance

* Fast all-reduce (for fast inner products)
* Tools to manage communication patterns
* Tools to support move away from bulk-synchronous parallelism

* Tools to support maintenance of local state when objects migrate
between processors

35

ASCAC March 2010

System software support for memory
access

e Support for GAS to replace cache-coherence as as
mechanism

* Research the use of GAS in partitioning of graphs
* Tools to manage memory hierarchies

e Ability to turn off memory hierarchy for accesses that
cannot make good use of it

* Hooks for direct access to memory management

e Support to allow local memory to be configured in
either scratchpad or cache mode

e System support for data provenance to support data
analysis

36
ASCAC March 2010

Performance / Resource measurement and
analysis tools for exascale

* Apply data mining methods to help develop
performance measurement tools

* Performance tools for heterogeneous environments
 New performance analysis tools, particularly for
hybrid programs

e System calls to query relative costs of various
operations

— Both static and dynamic information is needed

 Runtime layer functionality to provide information
about system state

37

ASCAC March 2010

System tools for fault management

* Tools to support fault tolerance management
— E.g. Fault notification API

* Research in debugging at scale
* Research the fault-tolerance implications of UQ

 Develop a taxonomy of faults to support advanced fault
handling

* Understand the role of system software in resilience

* |If smaller system (e.g. 10%) is used for data analysis,
observe that:

— Resilience will be less of a problem since it won’t be possible to
move large amounts of data off of the main compute platform

38
ASCAC March 2010

Co-design is essential for exascale
scientific discovery by 2018

* Close multi-disciplinary
partnerships will ensure delivery industry/

of science applications on exascale
R .

* All partners must commit to
significant changes in both

hardware and software design Applications Computer
scientists Scientists
— New programming paradigms
required
— Emphasis on physics fidelity and
uQ
* Appropriate investments will be
required Application Applied
— ASC spent only 20% of SSon Developers -
hardware D -

— Significant investment in computer
science and math research

— Significant investment in re-design Co-design partnerships
and re-write of applications codes for exascale computing

39
ASCAC March 2010

