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What is required to deliver exascale
computational science by 20187

Workshop Objectives:

e Outline the R&D needed for co-design of
the exascale computational science

environment _

* Identify opportunities for “disruptive”

computational approaches for future e A System
scientific discovery applications at software and
the exascale tools
* Produce a first cut at characteristics of
hardware/software system roadmap that
will meet science application needs over

the next decade

. Math Models
.. Programming d Aleorith
— Initial systems 2015 @ 100-300TF models and Algorithms

— Exascale systems in 2018 <=p —

The cross-cutting workshop brought applied mathematicians and
application developers into the discussion

Co-design
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Co-design will be key for exascale
scientific discovery by 2018

* Tightly-coupled multi-disciplinary
partnerships will ensure delivery
of science applications on exascale
platforms

 Transition to exascale will be as
disruptive as transition from

Industry/

vector computing Applications Computer

scientists Scientists

— New programming paradigms

required
— Emphasis on physics fidelity and X
uQ
* Appropriate investments will be
required
— ASC spent only 20% of SS on

]

Application Applied

Developers
hardware L -

— Significant investment in computer
science and math research

— Significant investment in re-design
and re-write of applications codes
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Co-design partnerships
for exascale computing




The cross-cut workshop was a co-design
“practice session”

Brought disparate computational science research
communities together to understand exascale challenges

— Applied mathematicians

— Computer Scientists

— Computer architects

— Science application developers
— Industry representatives

Breakout sessions successfully overcame communication
barriers

Participants left the meeting with a deeper understanding
of each other’s communities

“Co-design could really work!”
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Who and where are the co-designers?
What organizational changes are needed?

* Designers of extreme scale hardware must obtain a detailed
understanding of the scientific challenges

A multi-disciplinary computational science culture has blossomed over
the past 15 years

— Advanced Simulation and Computing (ASC) program used vertically integrated
code teams to successfully deliver 3D simulation capability for the Stockpile
Stewardship program

— SciDAC program taught computational scientists to “collaborate or die”
— CSGF prepares young computational scientists for HPC scientific discovery

— Many applications developers will not be skeptical this time about the need for
drastic re-writes of critical simulation codes

* Organizational changes will be essential to meet the 2018 target
— Co-location of co-designers ideal, but unlikely to be feasible
— Vendor IP issues must be addressed
— Early studies of how best to carry out co-design essential
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Breakout sessions addressed the three
workshop themes

* Theme 1: Math models and algorithms

— Impact of application needs and architectural
developments on math models, algorithms and

programming models
Ve * N — Impact of application, math model and algorithms
Math Models needs on architectural development
Scientific and
wpplicatons aeitms . Theme 2: System Software
\‘ f — System software functionality required at exascale
— What tasks traditionally handled by systems
R System software will need to be addressed elsewhere, e.g.
models - SNGaR resiliency handling?

Theme 3: Programming models and environment

— What programming models and environments are
needed?

— Will programming models provide suitable

abstractions and tools for applications/algorithm
needs?
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Six “math” areas were used to provide
context for the discussions

Theme | Theme Il Theme lll

A. PDEs| Tuesday pm

C. PDEs I Tuesday pm

D. UQ/

Stochastic [
E. Discrete

Math Tuesday pm

B. Data/

Visualization Leseky [

F. Solvers/

Optimization Tuesday pm
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Six “math” areas were used to provide
context for the discussions

Theme | Theme Il Theme lll

A. PDEs | Wednesday am
C. PDEs I Wednesday am

D. uQ/

Stochastic Wednesday am
E. Discrete

Math Wednesday am

B. Data/

. . Wednesday am

F. Solvers/

Wednesd
Optimization canesaay am
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Six “math” areas were used to provide
context for the discussions

Theme | Theme Il Theme lll

A. PDEs | Wednesday pm

C. PDEs I Wednesday pm

D. uQ/

Stochastic Wednesday pm

E. Discrete

Math Wednesday pm

B. Data/

Visualization AR [Tt

F. Solvers/

Optimization Wednesday pm
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Final sessions synthesized results
for each theme

Theme | Theme Il Theme lll

D. UQ/ | Pete Beckman

Stochastic

E. Discrete

Math -- et veer
B. Data/

Visualization

F. Solvers/

Optimization ---

ASCAC March 2010
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FINDINGS
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Exascale # Petascale X 1000

* Traditionally, PDE-based applications have expected 10x increase

in resolution with each 1000x increase in compute capability, but
not this time:

— We won’t have 1000x the memory available
— The processors won’t be 10x faster

— Proportionally, we won’t be able to move as much data on or off each
processor

— Introduction of massive parallelism at the node level is a significant
new challenge (MPI is only part of the solution)

* However, exascale computing is an opportunity for...

— More Fidelity: Incorporate more physics instead of increased
resolution

— Greater Understanding: Develop uncertainty quantification (UQ) to

establish confidence levels in computed results and deliver predictive
science

15
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Uncertainty Quantification will permeate
the exascale

 UQis the end-to-end study of accuracy and reliability of
scientific inferences

* Large ensemble calculations will have dynamic resource
allocation requirements significantly different than
traditional applications

* Traditional space-shared, batch-scheduled usage unlikely
to be effective for UQ or new multi-physics codes

* Client/server model for UQ requires a different failure
model (OK for clients to fail)

e Significant code redesign a likely requirement in general -
opportunity to embed UQ in exascale applications
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Understanding characteristics of PDE
solvers important for co-design

 Domain decomposition with nearest-neighbor communication
patterns
* Elliptic solvers: smaller, non-local communication patterns

— Frequent nearest-neighbor communications, less frequent messages
to farthest neighbors

— Frequent, Small global reductions (1000’s/timestep)

 Network performance needed:
— Low latency
— High bandwidth

— High message rate for point-to-point and collective communication
operations

— Highly desirable that physical topology of machine matches
communication patterns (optimize performance by reducing network
contention)
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Memory management will be key in PDE
applications

*  Memory hierarchy becomes deeper and more complex at exascale

* Inadequate tools and interfaces to hint, manage and control memory for
run-time systems

* Fine-grain, node-level parallelism in PDE solvers could exploit a
hierarchical two-level machine/programming model

* Want system software that can exploit spatial/temporal locality hints
from application code

* Cache is energy-expensive — alternative fast local memory access
approaches for performance and energy savings
* Low-cost thread create/destroy essential for performance
— Global namespace for threads as first-class objects
— Research needed to find best threading model
— Threads > processing elements might help hide memory latency

— Adaptive nature of modern solvers requires a dynamic threading model/
system software support
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More dynamic control of system resources
will be required at exascale

* Adaptive run-time * Programming model
systems could address support for dynamic
— Dynamic load balancing control
— Dynamic power allocation, — Dynamic load-balancing
e.g. to network vs. cpu abstractions
— Ability to reconfigure — Language support for
around faults dynamic control of
— Dynamic resource feslolittes
requirements — Methods to record control

flows of execution and data
to allow reverse
computation in adjoint
mehtods (UQ)
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Applications must care more about
fault tolerance and resilience

* Checkpoint-restart won’t scale with current storage systems; use
NVRAM instead?

e Co-design will be required to develop standard fault management
API

* Application-specific fault recovery likely

* Consider local recovery from faults
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Discrete math applications will challenge
exascale machines

* Large amount of irregular data movement,
few FLOPS
e Adaptive runtime will be important:
— Resource profile is typically dynamic
— Dynamic load balancing on a node required
* Energy efficiencies could be achieved with

dynamic power allocation between FLOPS or
data movement

* Need ability to efficiently handle irregular
data
* Co-design opportunities:
— Discrete event simulators for exascale
architectures

— Use graph algorithms for task scheduling on
nodes and across nodes

Graph theory
Integer programming
Combinatorial optimization
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Familiar system support issues will be even
more challenging at the exascale

* File system scalability and robustness will continue to be the
weakest link at the exascale

— Codes must do more in-situ analysis needed to compensate for 1/0
limitations
* Hierarchical debugging tools will be needed
— Sophisticated single-node debugger
— Debugger for 10,000 nodes
— Large-scale debugger a research challenge

* Performance tools are not keeping up with largest machines
— Results in an understanding gap as we approach exascale
— Existing performance tools don’t address heterogeneous architectures

— Research needed to develop vertically integrated performance analysis
tool for exascale applications
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Opportunity for compilers to support
heterogeneous and multi-core processors

* Leverage recent advances in compiler technology (e.g.
ROSE)

 Compilers hide complexity of underlying instruction sets,
some parallelism
* Optimizations:
— language keywords,
— annotations
— runtime adaptation
— profile-guided optimization
* New opportunities:
— power management
— small memory capacities
— resiliency

— interoperability B
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Preliminary panel findings are grouped
into three categories

1. Algorithms R&D needed to
support new architectures

2. R&D for Programming Models
to support exascale computing

3. R&D for System Software at
the exascale

24
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Algorithms R&D

1. Re-cast critical applied math algorithms to
reflect impact of anticipated macro
architecture evolution

2. Adapt data analysis algorithms for
exascale

3. Address numerical analysis questions
associated with move from bulk-
synchronous to multi-task approaches

4. Develop “mini-applications”: essential
elements of critical applications

5. Develop simulations of emerging
architectures

25
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Re-cast critical applied math algorithms

* PDEs: e Solvers and optimization
— New PDE discretizations methods:
reflecting shift from FLOP- — Solvers with reduced global
to memory-constralned commuhication
hardware

: : — Leverage low-latency on-
— New algorithms with more chip all-gather

compute, less — New sparse eigensolver
communication e lErEere

* UQ: — FFTS

— Opportunity to re-design A - .
codes with UQ built in Novel algorlthms.
— Reduced-precision

— Move statistics inside loops arithmetic algorithms that

store less, but maintain
accuracy

26
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Adapt data analysis algorithms to extreme
scale environments

* Leverage increased node-local NVRAM availability
— “Back to the future:” out-of-core approaches

* Analysis algorithms for streaming data
* Leverage global address space

 Where is the best place to do analysis?
— In situ (part of simulation code)
— Post processing on the exascale platform

— Post processing on a dedicated analysis platform (but what
about the I/O bottleneck?)

* Research on development of common data structures or
data access patterns to enable re-usable data analysis
software

27
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Address numerical analysis issues
associated with move away from bulk-
synchronous programming model

* Accuracy, stability of multi-physics and multi-scale
coupling

* High-order operator splitting methods

* Accuracy, stability of methods that apply operators
more asynchronously

28
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Role of simulation as part of co-design

* Develop “mini-applications” that capture essential
elements of large scientific applications

— Hardware and system software engineers can understand
critical performance issues

* Develop simulation tools for emerging architectures

— Algorithm, application developers can understand code
performance on a range of potential architectures

29
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New programming models

=

g

e o

R&D new exascale programming paradigms (e.g. MPI+X)
Develop API’s for dynamic resource management

Programming models that support memory management
at the exascale

Scalable approaches for 1/0

Interoperability tools to support transition to new
environment

Language support for PE’s at the exascale
PM support for latency management

PM support for fault tolerance/resilience
APIl’s for power management

30
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Investigate and develop new exascale

programming paradigms

Hybrid programming
models: MPI+X, with X=

— OpenMP

— Pthreads

— CUDA (GPUs)

— Chapel, UPC, co-array Fortran
— MPI

Effective abstractions that
expose loop-level and data-
level parallelism

Improved abstract machine
model

Programming model
support for multiple
networks on same machine

New PM an opportunity to
change how computational
science is done:

— Introduction of intrusive (but
more efficient) UQ techniques

— MPMD approach to multi-
physics application codes

31
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Memory management, 1/0,
interoperability, language support

 Memory management ¢ |/O
— PGAS language support — Consider database
— Memory consistency approaches (object
models to support models) for 1/0
discrete algorithms — PM support for data
structure linearization
* Interoperability e Language support
— Migration from old PMs/ — Asynchronous
languages will be gradual algorithms

— Need support for
interoperability between
“old” and “new”

— Uncertainty-carrying
variables

32
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Latency, Resilience, Power, New approaches

* Latency management * Resilience
— Need capability to — PM support for fault
overlap computing, management
analysis, communication, — Fault-tolerant MPI
/0 collectives

— API for checkpointing

e Power * New approaches
— Power-aware — Message-driven PM’s for
programming models scientific applications?

— API to support execution
through a DAG

— PM'’s for in-situ data

analysis 33
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System Software

1.

2.

System software tools to support node-level
parallelism

System support for dynamic resource
allocation

System software support for memory access

Performance/Resource measurement and
analysis tools

System tools to support fault management
System support for exascale 1/0

34
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Support for node-level parallelism

 Small light-weight messages

* Light-weight fine-grained and flexible synchronization
e Latency tolerance through high degree of threading

e System calls for node-level parallelism

* Low cost thread create/destroy

e Software control of on-chip data movement to enhance
performance

* Fast all-reduce (for fast inner products)
* Tools to manage communication patterns
* Tools to support move away from bulk-synchronous parallelism

* Tools to support maintenance of local state when objects migrate
between processors

35
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System software support for memory
access

e Support for GAS to replace cache-coherence as as
mechanism

* Research the use of GAS in partitioning of graphs
* Tools to manage memory hierarchies

e Ability to turn off memory hierarchy for accesses that
cannot make good use of it

* Hooks for direct access to memory management

e Support to allow local memory to be configured in
either scratchpad or cache mode

e System support for data provenance to support data
analysis

36
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Performance / Resource measurement and
analysis tools for exascale

* Apply data mining methods to help develop
performance measurement tools

* Performance tools for heterogeneous environments
 New performance analysis tools, particularly for
hybrid programs

e System calls to query relative costs of various
operations

— Both static and dynamic information is needed

 Runtime layer functionality to provide information
about system state

37
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System tools for fault management

* Tools to support fault tolerance management
— E.g. Fault notification API

* Research in debugging at scale
* Research the fault-tolerance implications of UQ

 Develop a taxonomy of faults to support advanced fault
handling

* Understand the role of system software in resilience

* |If smaller system (e.g. 10%) is used for data analysis,
observe that:

— Resilience will be less of a problem since it won’t be possible to
move large amounts of data off of the main compute platform

38
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Co-design is essential for exascale
scientific discovery by 2018

* Close multi-disciplinary
partnerships will ensure delivery industry/

of science applications on exascale
R .

* All partners must commit to
significant changes in both

hardware and software design Applications Computer
scientists Scientists
— New programming paradigms
required
— Emphasis on physics fidelity and
uQ
* Appropriate investments will be
required Application Applied
— ASC spent only 20% of SSon Developers -
hardware D -

— Significant investment in computer
science and math research

— Significant investment in re-design Co-design partnerships
and re-write of applications codes for exascale computing

39
ASCAC March 2010



